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PREFACE

The present volume consists of the second half of the second
volume of the French edition of Goursat’s * Cours d’Analyse
Mathématique.” As was stated in the preface to the first half
of this volume, it seemed best, for purposes of American schools,
to issue these two parts separately, and this was done with the
approval of Professor Goursat.

It is hoped that the present volume, which is entitled ** Differen-
tial Equations,” will prove serviceable in American universities

for courses which bear that name.
E. R. HEDRICK

OTTO DUNKEL
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DIFFERENTIAL EQUATIONS

CHAPTER 1

ELEMENTARY METHODS OF INTEGRATION
I. FORMATION OF DIFFERENTIAL EQUATIONS

1. Elimination of constants. Let us consider a family of plane
curves represented by the equation .

(1) F(z, Yy 0y Cgy-v ey c-)= 0,

which depends upon n arbitrary constants. If we assign to these con-

stants definite but arbitrarily chosen values, the successive derivatives

of the function y of the variable = defined by the preceding equation

are furnished by the relations

( oF A OF ,
oz + ay y =0

?F *F o oF

@ ﬁ?x’+29:ca ¥ +a-” =9

&

\ o

F =
+- +8 y® =0

If we stop with the equation for calculating the derivative of the
nth order, we shall have in all (» 4 1) relations between z, v, ¥/, ¥",
+++, y™ and the constants ¢, ¢,, - - -, ¢,. The elimination of these =
constants leads in general to a single relation between z, y, ¥/, - - -, y®,

3) =%y, y"y s y™)=0.
From the very way in which the equation (3) is derived it is clear that
every function defined by the relation (1) satisfies this equation (8),
whatever may be the values assigned to the constants ¢;; hence
we say that any such function is a particular integral of the differ-
ential equation (3). The whole set of these particular integrals is
the general integral of the same equation. Using geometric language

for convenience, we shall also say that every curve represented by
8



4 ELEMENTARY METHODS OF INTEGRATION 1§11

the equation (1) is an integral curve of the equation (3), or that the
equation (3) is the differential equation of the given family of

curves (1).

We see that the order of the differential equation is equal to the -
number of arbitrary constants upon which that family of curves de-
pends. It is also clear that the reasoning does not at all prove that
the equation (3) has no other integrals than those which are repre-
sented by the equation (1). In fact, the equation (3) may have other
integrals, as we shall see presently.

The above statements do not apply to the exceptional cases in which the
elimination of the n parameters c; between the (n + 1) relations (1) and (2) leads
to several distinct relations between z, ¥, ¥, ¥, ++-, ¥®. We could in those
cases find one relation not containing y®), so that the family of curves con-
sidered would be the integral curves of a differential equation of an order less
than n. This will occur if th2se curves depend in reality upon only n— p
parameters (p>0). For example, the curves represented by the equation
F[z, y, ¢ (a, b)] = 0 apparently depend upon two arbitrary parameters aand b ;
in reality they depend upon only a single parameter ¢ = ¢ (a, ). There is also
another way in which the lowering of the order of the differential equation may
occur. For example, the curves represented by the equation y2 = 2 azy + bz?
really depend upon the two independent parameters a and b, yet these curves
always satisfy the equation y = zy’. This is because the preceding equation
represents two straight lines through the origin, each of which is an integral
curve of the equation y = zy’.

Ezamples. The straight lines passing through a fixed point (a, b) are repre-
sented by the equation

“ v—b=C(—a)
and depend upon an arbitrary parameter C. The elimination of this parameter

between the preceding relation and the relation ¥ = C leads immediately to
the differential equation of this system of straight lines :

(6) y—-b=y (& — a).
Conversely, we can write equation (6) in the form
v _ 1

y—-b z—a’
and therefore every integral of that equation satisfies the relation

Log (y — b) = Log(z — a) + LogC,

which is equivalent to the equation (4).
The set of all straight lines in a plane, y = C,z + C,, form a two-parameter
family whose differential equation is v” = 0. The converse is self-evident.
The circles in a plane

(6) 492 4+2424 2By 4+ C=0
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form a three-parameter family; the corresponding differential equation must
therefore be of the third order. Differentiating the preceding relation three
times, we find

U} z+ W+ 4+ By =0, 1+ 2+ 9w + By” =0,

8”’”” + WIII + Bylll = o.
The elimination of B between the last two equations leads to the desired equation

(8) v+ y)—-38yy2=0.

The only plane curves satisfying this relation are circles and straight lines.
We see first of all that any straight line is an integral curve, for the equation
is satisfied if we have y” = 0 and therefore ” = 0. Now let us suppose that
¥” # 0; then we can write the equation (8) in the form

ﬁ - s ylyll ,
vu 1 + v/g

from which we derive
3
Logy” = 5 Log(1+ ¥ +,LogC,,

where C, is a constant different from zero. This result may be written in the form

o’

v
—_—=C,.
a+ynt
A second integration gives
y

—_—=C,z ¥+ C
Vityr "
or
Ciz + Cq

ll’ _——
V1=(C,z + C,)?
integrating once more, there results finally
Ciy + Cg=—=V1—(C;z + C,)?,

which is the equation of a circle.

The differential equation of all conics may be found easily by the following
method, which is due to Halphen. If the conic has no asymptote parallel to
the y-axis, its equation solved with respect to y is of the form

y=mz+4+n+VAx3+ 2Bz + C.
After two differentiations we find
o AC—B

T (42? + 2Bz + O}
or
wy t=(ac—- By 422+ 2Bz ¢+ 0),

so that (y”)—¥8 is a trinomial of the second degree in . Hence, to eliminate
the three constants 4, B, C three differentiations are sufficient, and the desired
differential equation can be written in the abridged form

a 24 Yt -
mlenh=o
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Carrying out the differentiations, we obtain the equation
()] 40y — 45y YY" + Oy Yy = 0.
The differential equation of parabolas may be found by the same method.

We have, in fact, for a parabola 4 = 0, and (y")~ %/ is a binomial of the first
degree. ‘The differential equation is, therefore, in an abridged form,

S h=o,

or, after carrying out the indicated differentiations,
(10) 5y —8y’yiv=0.

II. BEQUATIONS OF THE FIRST ORDER

Every differential equation of the nth order, formed by the elimi-
nation of the constants, has an infinite number of integrals that
depend upon = arbitrary parameters. But it is by no means evident
that a differential equation given a priori has any integrals. This
involves a fundamental question to which we shall return in the
following chapter. We shall first consider some simple types of
differential equations of the first order whose integration can be
effected by quadratures. The existence of the integrals will be
established by the very method by which we obtain them. If this
order of procedure seems subject to criticism from the point of
view of pure logic, we may at least observe that it conforms to the
historical development of the subject.

2. Separation of the variables. The simplest type of differential
equation is the equation already studied,

1) )

where f(x) is a continuous function if the variable z is real, or an
analytic function if we regard the independent variable = as com-
plex. We have seen that that equation has an infinite number of
integrals which can be represented by the relation

v= [ rea+c,

where the lower limit z, is considered as fixed, and where C denotes
an arbitrary constant. The equation

12) Y — o)
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reduces to the preceding by considering y as the independent vari-
able and # as the unknown function. The equation may then be
written in the form dz/dy =1/¢ (y), and consequently

dy
¢ )

In general, when a differential equation is solved with respect to
the derivative of the unknown function, it is often convenient to
write it in the differential notation,

13) P(z, y)dz + Q(=z, y)dy = 0.

This form does not commit us in any way as to the choice of the
independent variable, which may be either =z or y. If we wish to
substitute for x and y new variables « and v, we need only replace
z, y, dz, dy in the equation (13) by their coyresponding expressions
in terms of u, v, du, dv. Let us also notice that we may, without
changing the integrals of the equation (13), multiply or divide both
its terms by the same function of x and y, u (=, y), provided that we
take account of the solutions of the equation u(z, y) = 0 which may
be made to appear or may be suppressed by the operation. The two
cases which we have just treated are particular cases under a more
general method, called the separation of variables. If a differential
equation of the first order is of the form

(14) Xdz + Ydy =0,
where X and ¥ depend only upon x and y respectively, we say that

the variables are separated. The equation is then integrable by quad-
ratures, for if we put

x v
U=f Xd:z:+f Ydy,
Zp ¥

the equation can be written in the form dU = 0, and the general
integral is represented by the relation U = C.

The equation

(15) XY, dx + X Ydy =0,
where X and X, depend only upon x, and where ¥ and ¥, depend
only upon y, can be reduced to the preceding form by dividing the
two terms by X,7,. It should be noticed that in this example the
solutions of the two equations, X, =0, ¥, =0, are suppressed. Indeed,
it is clear that if y = 4 is a root of the equation ¥, =0,y =d is an
integral of the proposed equation, while in general it will not be
included in the general integral of the new equation.

+C.

Vo
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8. Homogeneous equations. A differential equation of the first order
is said to be homogeneous if it can be written in the form

ao E-s0)

where the right-hand side is a homogeneous function of degree zero.
It can be reduced to an integrable form by putting y = wx, where
the new variables are z and ». This substitution gives

d du

2y qu
p u+zdas

and the equation (16) becomes

du
z + u = f(u).
We can now separate the variables by writing the equation in the
form
dx _ du
z  fu)—u

and the general integral i3 obtained by one quadrature in the form

du

an z = Ce’l /M=%,

We have only to replace in it z by y/x in order to obtain the equation
of the integral curves.

The general equation of that family of curves is of the form
x =C¢(y/x), where C is an arbitrary constant. These curves are
all similar to any one of them, with the origin as center of simili-
tude, the ratio of similitude being alone variable; for we can derive
the preceding equation from the equation = = ¢ (y/x) by replacing
z and y in it by x/C and y/C respectively. Conversely, given a
family of curves similar to each other with respect to the origin, the
corresponding differential equation of the first order is homogeneous.
We can verify this by actual calculation, but the result is evident
a priori, for the tangents to the different curves of that family at
the points of intersection with a straight line through the origin
must be parallel, and therefore the slope of the tangent y' depends
only on the ratio y/z.

We can reduce to the homogeneous form any equation of the type

@18) Y _y ﬂﬂ,v_u)
dz a'z + by + ¢
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where a, b, ¢, @', §', ¢' are any constants, except that b and &' are not
both zero. In order that this equation be of the desired form, it is
sufficient that ¢ = ¢' = 0. Now, if we put

m=X+a:, y=Y+ﬁ,

where X and Y are the new variables and where a and B are any
two constants, the given equation becomes

dY f( aX+bY+a.a+bﬂ+c)
ax adX+ VY +aa+t bB+c)’

and this new equation will be homogeneous if
az+ b8+ c=0, da+b'B+c =0.

These two conditions determine @ and B8 if ab' — a'b is not zero.
In the particular case in which ab' — a'b = 0, suppose & + 0; we
shall have a'z + b'y = k(ax + by), where k is a constant which has
a finite value. Putting ax 4 by = u, the equation takes the form

1du _ u+c)
bdzr +f(ku+c

in which the variables are separated.

4. Linear equations. A linear differential equation of the first
order is of the form

d
19) L+ Xy+x,=0,

where X and X, are functions of x. If X, =0, we can write this
equation in the form

(20) -d—yz + Xdz = 0,
and the general integral is obtained by one quadrature in the form

@1 I

In order to integrate the complete equation (19), where X, is
supposed different from zero, we shall try to satisfy that equation
by taking for y an expression of the form (21), considering C' no
longer as a constant but as an unknown function of z. This
amounts to making the change of variable y = ¥z, where z is the
oew function to be determined and ¥ any one of the integrals
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of the equation (20). After this substitution, the equation (19),
by virtue of the relation (20) which Y satisfies, takes the form

Y%+&=Q

which is integrable by one quadrature. We derive from it

X
z=—f71dx+0,

where C i8 an arbitrary constant. The general integral of the
equation (19) is therefore obtainable by two successive quadratures.
Replacing Y by its value, we can again write it in the form

(22) y=¢ ‘“‘<c ~ f x,ef “’dz),

where the lower limits in the two integrals are chosen at pleasure.

The general integral is an integral linear funotion of the constant
of integration of the form y = Cf(x)+ ¢ (x), where f(z) and ¢(x)
are definite functions of x. This property characterizes the linear
equation, for if we eliminate the constant C between the preceding
equation and the equation

y' =Cf'(x)+ ¢'(2),
we are evidently led to a relation that is linear in y and %"

This result may be stated in another way. Let y,, ¥;, v, be three
particular integrals of the linear equation, corresponding te the
values C,, C,, C, of the constant C'; the elimination of the two funec-
tions f(z) and ¢ (z) between the three relations,

H=CS@+ ¢x), y,=C,f(x)+ o), %=C,f(®)+ ¢ (=),

leads to the relation (y, — ¥,)/(¥, — %,) = (C, — C,)/(Cy — C,), which
shows that the ratio (y,— #,)/(y, —y,) is constant for any three
particular integrals of a linear equation. If we know two particular
integrals y,, y, of a linear equation, we can then write down imme-
diately the general integral in the form

Y4 - const.
Ya— U
It is also to be noticed that if we know a single particular inte-
gral y,, the general integral can be obtained by a single quadrature ;
in fact, putting y = y, + u, we are led to the equation du/dx + X =0,
which is identical with the equation (20). '
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5. Bernoulli’s equation. Bernoulli’s equation

9 M4 Xy + Xy =0,

where the exponent » may be any number different from zero and
from unity, can be reduced to a linear equation by the substitution
z=y'"~ For then we can write the preceding equation, after
dividing all its terms by 3", in the form

1_ds
1—ndx

+Xz4 X, =0.
‘We can reduce to the preceding type any equation of the form

24) $(Y)dz + y(Y)ay + kem@ay — yaz)=o,

where . and m are any two numbers whatever. For if we put
y = uz, the equation obtained can be written as follows:

[¢ () + wy(x)] % + 2y (u) + ka™+3 =0,

and, putting 2 = z~™+1, we are led to a linear equation.

.

8. Jaocobi’s equation. Let us consider the equation

(25) {(a + a’z + a”y) (xdy — ydz)
) - b+ V4 Y)dy + (c+ T+ c"Y)dz =0,

where &, @/, a”, b, b", b”, ¢, ¢/, ¢” are any constant coefficients. If a =0 =¢ =0,
the equation comes under type (24), for we have only to divide by a’z + a”y to
reduce it to this type. In order to reduce the general case to this particular
case, let us put 2 = X + a, y = Y + 8, where X and Y are two new variables
and where a and 8 are two constants. Thus we obtain a new equation of the
same form, which can be written as follows :

(X + ¢”Y)(XdY — YdX)
(269 —[B+VX+VY—-(A+aX +a"Y)a— AX)dY
+[C+c X+’ Y—~(A+a’' X +a”Y)g— AY]dX =0,
where
A=a+ada+ a’B, B=b4 ba+ b8, C=c+ca+cB.

This equation (25°) will be of the type (24) if wehave Ao — B=0, 48—~ C=0.
We are then led to determine the constants a, B by these two conditions, which
may be written in a more symmetric form by introducing an auxiliary un-
known A:

A-A=0, B—Ax=0, C—N=0.
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The elimination of the unknowns a, 8 leads to an auxiliary equation of the
third degree for the determination of A:

a—\ a’ a”
b Y-\ b |=0.
c ¢ /=

The integration of Jacobi’s equation depends, then, first of all on the solution
of this equation of the third degree, as will be seen by other methods a little

later.

7. Riccati's equation. Riccati’s equation
d
(26) ng + Xy + Xy + X, =0,

where X, X,, X, are functions of z, cannot in general be integrated
by quadratures. The integrals of this equation, when the coefficients
are unrestricted, form new transcendental functions, whose proper-
ties we shall study. But this equation is related to the matter which
we are discussing on account of the following property: If we
know a particular integral, we can find the general integral by rwo
quadratures.

Let y, be a particular integral. The change of variable y =y, + #
leads to an equation of the same form which does not contain any
term independent of z, since z = 0 must be an integral ; thaf equa-
tion is, in fact,

@n 22 F (X, +2Xy)e +Xe2 = 0,
and we have only to put » =1/2 in order to transform it into a
linear equation. This proves the proposition just stated. .

From this result, several important consequences follow. The
general integral of the linear equation in u is of the form (§ 4)

u =Cf(x)+ ¢(x);
hence the general integral of the Riccati equation is of the form
(28) 1 _Cfi(@®+ ¢ (z)

VSRt @t e® T @+ ¢@

We see that it is a rational function of the first degree in the constant
of integration. Conversely, every differential equation of the first
order which has this property is a Riccati equation. For, let f(z),
% (@), f(z), $,(z) be any four functions of z; all the functions y
represented by the expression (28), where ¢ is an arbitrary ocon-
stant, are integrals of an equation of the first order, which is easily
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obtained by solving the equation (28) for ¢ and then taking the
derivative. This gives
c=t—yd ,
w5

and the corresponding differential equation is

@ = 5) (i — DY — yé)— (61 —yd) WS + ' —f)=0,
which is of precisely the form (26).
Let y,, ¥,, ¥, ¥, be four particular integrals corresponding to the
values C,, C,, C,, C, of the constant C. By the theory of the anhar-
monic ratio we have the relation

Y= Ys— Y% _ C4—Cl+C.—Cl’

Yo=% %B—Y C—C C—-0C
which is easily verified also by direct caleu]ation, and which proves
that the anharmonic ratio of any four particular integrals of Riocati’s
equation is constant.

This theorem enables ue to find without any quadrature the gen-
eral integral of a Riccati equation when we know three of its partic-
ular integrals y,, v,, ¥,- Every other integral y¥ must be such that
the anharmonic ratio (y — ¥,)/(y — ¥,) + (¥, — %,)/(¥, — ¥,) is con-
stant. The general integral is then obtained by equating this ratio to
an arbitrary constant. It is clear that y will be a rational funection
of the first degree in this constant, which proves that the preceding
property belongs only to the Riccati equations.

Let us observe that if we know only two particular integrals, y,
and y,, we can complete the integration by one quadrature; for,
after the first transformation y = y, + #, the equation obtained in
has the integral y, — y,. The linear equation in « has therefore the
known particular integral 1/(y, — v,). The general integral of the
equation in % will then be found by a single quadrature.*

Application. Let us consider a family of circles in a plane, which depends
upon one variable parameter. Let (a, b) be the cobrdinates of the center of the
variable circle and let R be its radius (the axes being rectangular). We shall

® The properties of Riccati’s equation established in the text can be derived also
by observing that the equation is not changed in form by any general linear trans-
forraation y = (fz+ @¢)/(f;2+ ¢,), where /, fy, ¢, ¢; are functions of 2. If we know
one, two, or three integrals of the equation (26), we can always choose the linear
transformation in such a way that, in the transformed equation in 2, one, two, or
three of the coefficients of the polynomial of the second degree in z will be zero. A
linear equation may be regarded as a Riccati equation which is satisfled by the
particular integral y = «, that is, such that the equation obtained by putting y=1/z
has the solution z=0.
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suppose that a, b, B are known functions of a variable parameter a. Let us try
to find the curves which cut each of these circles at a known angle V, which
may be constant or a given function of a. The cotrdinates of any point M of
the circle C with the center (a, b) and the radius R can be represented by the

equations .
z=a+ Rcosb, y=0b0+ Rsiné,
where # is the angle which the radius términating at the point M makes with
the direction Oz. The problem reduces to the determination of the angle § as a
function of the parameter a, so that the curve described by the point M cuts the
circle C at the angle V. The differential equation of the problem is therefore
dy _ tan @
ctn V=

dy'
14 tand—
trnfa
which becomes, after replacing dz and dy by their values and reducing,
R:—o + b cosf —a’sinf — ctn V (R’ 4 a’cos @ + b’ sin ) = 0,
a

where a’, ¥, R’ are the derivatives of a, b, R with respect to a. Taking for the
new unknown ¢ = tan (6/2), we obtain the Riccati equation

(29) 2R£+ V(1 —1%)— 2a’t — ctn V[R(1 + ) + a’ (1 — %) 4 2b¢] = 0.

It will suffice, then, to know a single trajectory in order to obtain all the others
by two quadratures.

Let us consider the particular case of orthogonal trgjectories; the angle ¥V is
then a right angle, and the cotangent is zero. If we also suppose that the circles
considered have their centers on a straight line, we know a priori two particular-
integrals of the equation (20), for the line of the centers is an orthogonal tra-
jectory and meets each circle in two points. It is easily shown that the inte-
gration requires only one quadrature, for if we take the z-axis for the line of
centers, the equation (20) reduces to R (dt/dz) — a’t = 0.

8. Equations not solved for . In the different cases which we
have just examined the equation was supposed to be solved with
respect to %'. Let us now consider the general equation of the first
order F(z, y, y")= 0. Let S be the surface represented by the equa-
tion F(z, y, 2) = 0, obtained by replacing y' by z. To every integral
y = f(x) of the proposed equation there corresponds a curve T, rep-
resented by the relations

)] y=sr@), ==r ()

which lies entirely on the surface S, since we have

F[z, f(=), f'(x)]=0.
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But this curve I is not any curve on the surface S'; along this curve,
in fact, y and z are functions of x satisfying the relation dy —z2dx =20,
and that relation preserves the same form if we take any independ-
ent variable in place of =.

Conversely, let T be a curve lying on the surface S; the cobrdi-
nates z, y, =z of a point of that curve are functions of a variable a.
If these three functions, z = ¢,(@), ¥y = ¢,(a), z = ¢,(a), satisfy the
relation dy = zdx, we can deduce from them an integral of the given
equation ; for the first two relations, x = ¢,(a), ¥ = ¢,(z), represent
a plane curve C. Let y = f(x) be the equation of that curve, suppos-
ing it solved for y. Along the entire curve I' we have z = f'(z), and
consequently F[z, (), /()] = 0; the curve C is therefore an inte-
gral curve. There would be an exception only in case the curve C
were to reduce to a point, and the curve T o a straight line parallel
to 0z. The two problems are then equivalent : to integrate the given
equation F(z, y, ¥')= 0 or to find the curves of the surface S for

which we have
dy — zdx = 0.

This being the case, let us suppose that we can express the coor-
dinates of a point «, y, #z of the surface S explicitly as functions of
two variable parameters u, v:

x = f(u, v), y = ¢(u, v), z = Y(u, v).

Every ourve I of the surface S is obtained by establishing a certain
relation between u and v, and, in order that that curve shall define
an integral, it is necessary and sufficient that we have dy = zdx, or
2 g0 2% g0 = 0, 2L e + 2L )
F™ du + P dv = y(u, v) P du + % dv
We have thus a differential equation dv/du = m(u, v), solved with
respect to dv/du. It is clear that the preceding discussion applies
also to equations which can be solved for y'.
This transformation is immediate for the equations solved for one
of the variables x or y. For example, let the equation be

(30) y=S(=¥);

we can here take for the variable parameters = and y' = ». The sur
face § is then represented by the equations

z =, & =p, y=S(=, p),
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and the relation dy = # dz becomes

U U

@y P=F i
This result could have been obtained directly by differentiating the
relation (30) and replacing y' by p. Let p = ¢(z, C) be the general
integral of the equation (31); to deduce from it the general integral
of the equation (30), it will only be necessary to replace »' in the

equation (30) by ¢(x, C).

9. Lagrange’s equation. Let us consider in particular an equation
linear in the two variables = and y:

(32) y =z¢®") + ¢
Differentiating the two sides, and denoting y' by p, we obtain the
equation

P = ¢(p) +z¢'(p) dgf +¢'(?) %

Jf we consider p as the independent variable, and = as the unknown
function, that equation, which can be written in the form

[$(r) — 2] f,’—; + 24'(p) + V() = 0,

is linear and is integrable by two quadratures. Having obtained z
as a function of p, by putting that value of x in the expression

y =zé(p) + ¥(P),
we shall have the cobrdinates = and y expressed as functions of the
parameter p and of an arbitrary constant.*

We can readily discuss the general appearance of the family of integral
curves by vbserving that  and y are polynomials of the first degree in the
arbitrary constant C:

(88) z=CF(p)+®(p)y v =CFy(p)+ % (D).

But the functions F(p), F,(»), ¢ (p), ®,(p) are not arbitrary functions, since
the parameter p represents the slope dy/dx of the tangent. On this account
we must have Fy(p) = pF'(p), #1(p) = p¥'(p). Let I'y, I'; be two particular
integrals corresponding to the values C =0, C =1 of the constant:

r.{Zo=%(), 2, = F(p) + #(p),
0{70 = ®(p), r {yl = Fy(p) + &,(2)-

* The equation (32) can also be reduced to a linear equation by means of Legendre’s
transformation (I, § 62, 2d ed.; § 36, 1st ed.).

A homogeneous equation of the form y = z¢(¥’), not solved for y’, may be consid.
ered as a particular case of Lagrange’s equation and integrated in the same way.
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The equations (88), which represent any integral I', may be written also in

the form
I’{F = C(2, = Zo) + %y
V=0~ ¥) + v,
At the points My(z,, ¥o)y M,(=,, ¥,), M (2, ) of the curves T,, I;, T, which

correspond to the same value of p, the tangents to these curves are parallel.
Moreover, we derive from the preceding expressions

Y=Y _2—2,_ C

v—y, 22—z, O©O-1
which proves that the three points M, M,, M, are on a straight line and that
the ratio MM,/MM, is constant. We have then the following geometric
construction : Given the two curves T'y, Ty, we join the poinis My, M, of these
two curves where the tangents are parallel, and we take on the straight line joining
these pounts the point M such that the ratio MM,/ MM, will be equal to a given
constant K. If the points M,, M, describe the curves T, T',, the point M describes
an integral curve I', and we oblain the general integral by varying the constant K.

10. Clairaut’s equation. A remarkable particular case of Lagrange’s
equation had been treated previously by Clairaut; every equation of
the form

349) y=zy' + (%)

is called a Clairaut equation. Following the general method, we
differentiate the two sides and put p = y'; this leads to the equation

(35) [z +7(2)] L=o.

This equation is satisfied by putting dp/dx = 0; whence p =C. The
general integral of Clairaut’s equation is, then,

(36) y =Cz + f(C).
This equation represents a family of straight lines, and it is readily
seen that they are really integral curves. But the equation (35) is
also satisfied by causing the first factor = + f'(p) to vanish. From
this it follows that there exists a new integral of the equation (34),
which is represented by the two equations

z+f(p)=0, y=px+f(p)
Now the elimination of p between these two equations would lead
precisely to the envelope of the straight lines represented by the
equation (36). Hence Clairaut’s equation has also as an integral
curve the envelope of the straight lines which represent the gemeral
integral. Since we cannot obtain this integral by giving a particular
value to the constant C, we say that it is a singular integral.
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We are led to Clairaut’s equation when we undertake to determine a plane
curve by a property of its tangents in which the point of contact does not enter.
In fact, let y = f(x) be the equation of the desired curve ; then the equation of
the tangent is ¥ = y’X + y — ¥/, and we are led to a relation between 3’ and
y — zy’, that is, to Clairaut’s equation. It is clear that in this case it is the
singular integral which gives the real solution of the problem.

Let us propose, for example, to find a curve such that the product of the dis-
tances from two fized points F, F’ to any one of ils tangents is always equal to a
constant b2. Let 2c¢ be the distance FF’, let the middle point of the segment
FF’ be taken for the origin, and let the straight line F'F’ be the z-axis. This
leads to the differential equation

W —zy)—cty? =031+ ¢?)
if we suppose that the two points F, F” lie on the same side of the tangent. This
equation reduces to the form y = zy’ + Vb + a®y’?; hence the genera! integral
represents the family of straight lines

v =Cz 1+ Vb? + a3C3, a? = + c2.
The singular integral curve, the envelope of these straight lines, is the ellipse
2 B

atu=h

which is the true solution of the problem.

11. Integration of the equations F(x, y')=0, F(y, ¥)=0. The
equations which contain only one of the variables z or y are inte-
grable by a quadrature, provided that we can solve the equation for
y' (§ 2). If the equation is algebraic, ¥ is an Abelian integral or
the inverse function of an Abelian integral. Whenever the relation
is of deficiency zero or deficiency one, we can express = and y as
functions of a variable parameter, either rationally or by means of
the classic transcendentals. Let us consider, first, equations of the
type F(y, y)= 0, of deficiency zero; we can express y and y' as
rational functions of a parameter u, y = f(«), y' = f (%), and the
condition dy = y'dz gives us f'(u)du = f,(u)dx. Then the variables
« and y are given by the expressions

37 - = [L®

37 y=s(v), z Fi(w) du
in terms of the variable parameter u. The same procedure is applica-
ble to the equations F(y, ') = 0 if the relation is of deficiency one;
but we must take for f(«) and f,(«) elliptic functions, and z and y are
expressed in terms of the transcendentals p, ¢, o (Part I, § 756).

We can proceed similarly with the equations F(xz, y")= 0 if the
relation is of deficiency zero or one; besides, they reduce to the pre-
eteding form by interchanging z and y.
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ZEzample 1. The equation (¥’ — 1) = (2 — y’)? is of deflciency zero. Putting
2 ~ ¥’ = yu, we derive from it 3’ =1+ u3, y = 1/u~— u. The relation dy = y'dz
becomes here dz = — du/uf. We have, then, z = 1/u 4 C, and the general inte-
gral of the given equation isy =z ~ C — 1/(z — C).

Ezample 2. The equation y3— 8y — 9y* — 123 = 0 represents, if we regard
v and ¥ in it as the cobrdinates of a point, a unicursal quartic having three
double points (y =0, ¥’ =0), (¥ =+ V= 2/8, ¥ = 2). We can, in fact, write
the preceding equation

W =22 +1)= 31+ 2)%
Putting first 3 =u®—1, we have 8y =(u+1)3(u—2); if we then put
u— 2 = 8¢2, we obtain finally the following expressions for y and y’ as func-
tions of the parameter ¢ :
y=8@¢+1t%), ¥ =8(1+1%(1+8¢).
The relation dy = y’dz reduces here to (1 + t2?)dx = dt ; we'derive from it
t =tan(z + O),
and the general integral of the given equation is therefore
y = 8tan(z + C) + Stan®(z + C).

Ezample 8. Let R (y) be a polynomial of the third or of the fourth degree,
prime to its derivative ; let us consider the differential equation

(38) v?=R(®y).

We have seen in § 78, Part I, that we can satisfy this equation of deficiency
one by putting y = f(u), ¥’ = f’(u), where f(u) is an elliptic function of the
second order. The condition dy = y’dr becomes du = dz ; the general integral
of the equation (38) is therefore an elliptic function y = f(z + C).

If the polynomial R (y) is of lower degree than the third, or if the polyno-
mial, although of the third or of the fourth degree, is not prime to its derivative,
the relation (38) is of deficiency zero. We can express y and 3’ by rational func-
tions of a parameter », and, by applying the preceding method, we easily show
that the general integral is a rational function of z or a rational function of e==,

12. Integrating factors. The method of integration by the separa-
tion of the variables was generalized by Euler. The reasoning of § 2
applies really to every equation of the first order

(6] P(x, y)dz + Q(x, y)dy = 0,
where the coefficients P and @ contain both # and y, provided that
we have 0P/0y = 0Q/ox. This condition is necessary and sufficient
in order that Pdx 4 Qdy shall be the total differential of a function
U(x, y), and the function U (x, y) is obtained by quadratures, as we
have seen (I, § 151). The equation (39) is then identical with the
equation dU = 0, and the most general solution is given by a rela-
tion of the form U (z, y) = C between = and y. The equation (39) is
therefore integrable by quadratures whenever the coefficients P and
Q satisfy the condition P /9y = 0Q/ox.
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In order that the preceding method may be applied, it is not
necessary that we have 9P/0y = 0Q/0z; it suffices to know an inte-
grating factor, that is, a factor u(z, y) such that the product

u(x y) [Pdz + Qdy]

satisfies the integrability condition 9(uP)/dy = @ (uQ)/ox, or, after
developing,

(40) P —— —f—p(ﬁl—)—-?—)=0

oy ox

The investigation of the integrating factors is thus reduced to the
integration of the preceding equation, which is a partial differential
equation of the first order. It seems that in proceeding in this way
we have made the integration of equation (89) depend on an appar-
ently more difficult prqblem, but it is to be noticed that it suffices
to know one particular solution of the equation (40) in order to apply
the method, and in many cases we can find a particular integral of
the equation (40) by more or less direct processes. Let us see, for
example, in what case the equation (39) has an integrating factor
depending only on x. If we suppose du/dy = 0, the equation (40)

becomes u [P 9Q

Q%= *‘(@ ~%)
and the expression [0P/dy — 0Q/0x]/Q must be independent of y;
if it is, we obtain an integrating factor u by a quadrature. Let us
suppose in addition that @ =1; then dP/dy must be a function X
of the variable «, and the equation (39) is a linear equation,

(39" dy + (Xy + X)) dz = 0,

where X and X, denote functions of x alone. In this case, the equa-
tion (40) is satisfied by .
I-l- —e .“Xd:

and it is easy to show that if we multiply the equation (39") by this
factor, we have on the left an exact differential

e (dy + Xydz + X,dz)= d(yef-i“‘ +f Xlef':“'da:>= 0.

The calculations which have to be made for the integration are
exactly the same as in the first method (§ 4).

We shall show farther on that the equation (40) has an infinite
number of integrals under very general conditions, which are always
satisfied in the cases in which we are interested. If we know one
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integrating factor u,, we can obtain all others in the following way:
Putting # = uv, the equation (40) becomes
, oy oy
(40" PE.'; —Q5 = 0.

Now we know one function satisfying this relation: it is the func-
tion, U (x, y), whose total differential is u (Pdx + Qdy), since the
partial derivatives 9U/dz, 90U /0y are equal to u, P and to p,Q. We
have, then, also (9v/dy) (90U /ox) — (9v/0x) (dU /dy) = 0, which proves
that v is of the form ¢ (U') and that the general expression for the
integrating factors is u = u ¢(U), where ¢ is an arbitrary function
of U. It is easy to show that x is really an integrating factor, for

from the identity
F'I(P dzr 4+ Qdy): aUu

we derive, by multiplying by ¢ (U),
.“"1¢(U)[P(x; ydz + Q(x, y)dy]= ¢(U)dU)
and the right-hand side is the exact differential of the function

F(U)=f¢.(U)dU.

We deduce from this an interesting consequence: if x, and u, are
two integrating factors, the ratio u,/u, is a function of U. If this
quotient u,/u, is not constant, the general integral of the differential
equation can then be written in the form u,/u, = constant.

The preceding theorem is sometimes helpful in finding an inte-
grating factor. Let us consider the differential equation

41) Pdx + Qdy + P,dx + Qdy =0,

where P, P, Q, Q, are functions of x, y, and let us suppose that we
know how to find an integrating factor for each of the expressions
Pdx + Qdy, P,dx + Q,dy. The general expression for the integrat-
ing factors of Pdx + Qdy is u¢p(U), where u is the known factor, U
a function of = and y which we obtain by quadratures, and ¢ an
arbitrary function. Similarly, the general expression for the inte-
grating factors of P dx + Qdy is u,¢(U,), where u, and U, are
detinite functions and y an arbitrary function. If we can choose the
functions ¢ and ¢ in such a way that we have

F"b(U) = ”’1"’(U1)’
we shall have an integrating factor for the given equation (41),



22 ELEMENTARY METHODS OF INTEGRATION (1§12

Let us take, for example, the equation
axdy + byde + zny~(azdy + Bydx) =0,
where a, b, a, 8 are constants. Every integrating factor of azdy + bydz is of
the form ¢ (z%y=)/zy, and, similarly, every integrating factor of the second

part is of the form y (z8y<)/zm+1ys+1. In order to have a common integrating
factor, it will suffice to find two exponents, p and g, such that we have
zmyn (zPye) P = (rBy")e,
which leads to the conditions
pa—qga+n=0, pb—gB4+m=0.

These conditions are compatible if a8 — da is not zero, and determine an inte-
grating factor of the form z¥y¥, Multiplying by this integrating factor, the
equation takes the form v»—1dv + v{—1dv, = 0, where we have put v = 2Py,
v, =zPy*; and this equation is immediately integrable.

In the particular case where ag — ba = 0, we obtain from it a/a = 8/b =k,
and the equation can be ®ritten in the form (axdy + bydz) (1 + kz™y») = 0.

Note. If we know the general integral of a differential equation of the first
order, it is quite easy to obtain an integrating factor. For let f(z, ¥) = C be
the general integral of the equation (89). The differential equation of the curves
represented by that relation is also (af/oz)dx + (@f/2y)dy = 0; In order that it
be identical with the equation (39), we must have

of of
E_a—_y'
P Q

and the common value of the two preceding ratios is evidently an integrating
factor for Pdz + Qdy. Every other integrating factor is equal to this one
multiplied by an arbitrary function of f(z, ).

13. Application to conformal representation. The theory of integrat-
ing factors finds an important application in the problem of conformal
representation. Let

ds? =Edu®+ 2 Fdudv + Gdv*
be a quadratic form in du, dv whose coefficients E, F, @ are analytio

Sunctions of u and » such that EG — F? is not zero. We can also
write ds? in the form

ds® = (adu + bdv) (a,du + b,dv),

where @, b, a,, b, are also analytic functions of « and ». According
to a result which will be rigorously proved later, each of the expres-
sions adu + bdv, a,du 4 b,dv has an infinite number of integrating
factors, which are themselves analytic functions. If u, u, are two
such factors, we have the identities

u(adu 4 bdv)=dU, #(a,du + b dv)=dU,
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and therefore
. ppyds® = dUAU,;
whence, substituting

U=X+Yi, UI=X—Y1', ”,F,‘=§,

we obtain
Edu® + 2 Fdudv + Gdv® = A\ (dX® + ar?).

Every analytic surface can therefore be represented on a plane
conformly ; that is, without alteration of the angles between pairs of
curves. If the surface is real, we may suppose that the real points
of the surface correspond to real values of the variables u, v; the
coefficients E, F, G are real, while ¢ and e, are conjugate imaginaries,
as also b and 4. We can also take for p and u,, and therefore for U
and U, conjugate imaginaries, so that to real values of u, v corre-
spond real values of X and of ¥. To redl points of the surface
correspond therefore real points of the plane.

Since it is possible to represent every analytic surface on a plane
conformly, we conclude that any analytic surface can be represented
conformly on any other analytic surface.

14. Euler’s equation. A great many devices have been invented for
the integration of differential equations of special forms. A cele-
brated example, due to Euler and now known by his name, is the
equation

(42) \/. +=£ ‘/_

where X and Y are two polynomials of the fourth degree in = and y
respectively, having the same coefficients :

X =o'+ a2 + a,2* + o,z + a,,
Y=ay + a9 +ay +ay+a,

The variables being separated, we obtain the general integral of
equation (42) by two quadratures, which introduce two transcen-
dental functions depending respectively upon  and y. Euler’s fun-
damental discovery, which was the starting point of the theory of
elliptic functions, consisted in showing that that relation between
the variables « and y which in appearance is transcendental is in
reality algebraic.

Let us first consider the case where X is a polynomial of the sec-
ond degree, not a perfect square. A linear substitution enables us to
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Yring it to the form X =4 (2* —1), and in this particular case the

equation (42) becomes
dy

+ =
(43) Vi—2' Vi-2?
Clearing of fractions, we can write this in the form

VI— pdz + V1—2idy =d(zV1— 3 + y V1 —2?)

dx dy )
=0
+xy<\/1-—ac’+ Vi—g/
which shows that we have identically
dzV1—-y+yV1i—2) .
TR NN dx
=[Vi—-a1-9)— ( Y )
Va-HC-D-al Gt v
The expression V(1 -+ &%) (1 — 3*) — xy is therefore an integrating

factor for the equation (43), and the general integral is given by the
relation

0.

(44) zVi—py+yVi—-al=cC,
or by the relation
(45) V- A - ) -2y =0,

since the equation (43) has the two integrating factors, 1 and the
expression on the left-hand side of (45). It is also very easy to
verify that the two expressions (44) and (45) are equivalent by
mezns of the identity

=Vi—-y+yVi-2)V 4+ [V(l—m’)(l—y’)—:cy]’=1,

Rationalizing the expression (45), we can write the general integral
of the equation (43) in the form

(46) @+ P+ 20Ty +C?—1=0,

where C' denotes an arbitrary constant, and this equation represents
the conics tangent to the four straight linesz =41,y =+ 1.

By a bold induction Euler was led to a more general formula of
the same kind, which corresponds to the case where X is any poly-
nomial of the third or of the fourth degree (Imstitutiones calculi
integralis, Vol. I, chaps. v, vi).

Let F(x, y) be a polynomial of the second degree in each of the
variables x and y and symmetrical with respect to these two variables

(47) F(m) y)=A,a=’y' +Azxy(x + 3/)
+4,(@ + ) tAzy +A4,(z+ y)+ A4
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This polynomial depends upon six arbitrary coefficients 4, 4, 4,,
A, 4, A, and the relation F(z, y)=0 can be written in two
equivalent formns:

(485 F(z, W=My'+Ny+P =0,

F(z, y)=M2’ + Nz + P, = 0,

where M, N, P are three polynomials of the second degree in z:
M=Ax+Ax+4, N=A42"+Az +4; P=A2+Azx+A4,

and where M, N, P, are the polynomials obtained by replacing z by y
in M, N, P. From the relation F(z,y)= 0 we derive F.dx + F,dy =0,
or, after replacing F; and F, by their values,

(49) (2 M,z + N)dx + (2 My + N)dy = 0.
We derive, moreover, from the relations (48),
2My+N=+VN —4MP, 2Mz+N,=+VN—4MP,
and the preceding equation (49) may be written in the form

dx dy
VN —4MP T VNI 4MP,

(50)

This relation will be identical with the given equation (42) if we
have N? — 4 MP = X, which necessarily carries with it the other
equality N} — 4 M, P, =Y. Now, since M, N, P are of the second
degree, N2 — 4 MP is of the fourth degree, and the preceding condi-
tion is an identity between two polynomials of the fourth degree,
which requires only five conditions. Since we have six coefficients
A; at our disposal, we see that one of these coefficients will remain
arbitrary. There are therefore an infinite number of polynomials
F(x, y) of the form (47), depending upon an arbitrary constant C
and such that the relation

(61) F(z y)=0,

between the variables x and v, leads to the relation (42). Hence the re-
lation (561) represents the general integral of the proposed equation.

The actual determination of the polynomial F(z, ¥) requires a calculation by
equating coefficients which can be simplified by means of a geometric repre-
sentation due to Jacobi. Let us consider, in order to take the general case, a
polynomial of the fourth degree R (t) prime to its derivative, and let ¢, ¢, tg, ¢,
be the roots of R(f) = 0. On the other hand, let = be any conic the codrdinates
of any point of which are rationa) functions of the second degree of the varia-
ble parameter ¢, so that to a point (z, ) corresponds a single value of ¢; let us
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call m,, mg, my, m, the points of T which correspond to the values ¢, ¢, &,
of the parameter. Finally, let Z' be a second conic passing through the four
points m,, my, my, m,. Every straight line tangent to 2’ meets = in two points
M and M ; if ¢ and ¢’ are the corresponding values of the parameter, the rela-
tion between ¢ and ¢’ is the one desired. It is evident, in fact, that that relation
is symmetric in ¢ and ¢, and that it is of the second degree in each of the varia-
bles, for through a point M” we can draw two tangents to 2, and 8o to each
value of ¢’ correspond only two values of &.
Let

(52) F(t,t)=0

be that relation. We can derive from it, as we have just seen, a relation
between the differentials dt, dt’, of the form

dat dt’
—_— = 0,
5% VP(t) * VP(t)

where P (t) is a polynomial ef the fourth degree. This polynomial P(t) is iden-
tical ezoept for a constant factor with B(t); for, according to the preceding
method for obtaining the polynomial P (¢) from F(t, ¢') = 0, the roots of P(t) =0
are the values of ¢ for which the two values of ¢’ coincide. Now the geometric
significance of the relation (52) shows immediately that this can only occur if
the two tangents from M to 2’ coincide ; that is, if the point M is one of the
points m,, m,, mg, my. We are thus led to the following method, which requires
only rational calculations, for obtaining the general integral of the equation

@ L
vE@®) VEE)

where R(f) = ayt* + a,t® + a,t? + a,t + a,. This equation differs only in nota-
tion from the proposed equation (42). We begin by forming the general
equation of the conics 2’ passing through the four points my, my, mg, m, of I ;
that equation is of the form f(z, ¥) + C¢ (2, ¥)= 0, where C is an arbitrary con-
stant. We then write the condition that the straight line joining the two points
M and M’ of 2, which correspond to the values t, ¢’ of the parameter, shall be
tangent to 2. The resulting relation, which contains the arbitrary constant C,
represents the general integral of Euler's equation.

To carry out the calculations, let us take for = the parabola y* =2z, and let
us put z = %, y = . The conic 2’ given by the equation

(64)

(566) Az? 4+ A’y’+2B"zy+2B’z+2By+A”=0

cuts 2 in four points, given by the equation of the fourth degree in ¢ which is
obtained by replacing z by 2 and y by ¢. In order that that equation shall be
identical with R (t) = 0, it is mifficient that

(56) Ad=a, A4’'4+2P =a,, 2B’=a,, 2B=a, A”=a,.
The coefficient B’ remaining arbitrary, we shall put B’ = C, which gives
4’=ag—20.
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Let us recall now that the tangential equation of 2, that is, the condition that
the straight line az + Sy + v = 0 shall be tangent to that conic, is given by the

equation A B B a
B” A B B8
(7 B B 47 ="

a B y 0

The straight line joining the two points (¢3, ¢) and (¢9, ¢’) of 2 has for ita
equatlon T—(E+t)y+ ' =0.
We can therefore take

a=1, B=—=(t+1), v =1t

Substituting the values obtained for 4, B, 4’, B, 4”, B”, a, B, v in the con-
dition (67), and replacing t and ¢’ by z and y respectively, we arrive at the gen-
eral integral of Euler’s equation in the following form, which is due to Stieltjes:

Qg % C 1
a

) 2 4-2C 2 —@+y) —o
C % a, 2y

I
1 ~@+w) v o© ,

This equation represents a family of curves of the fourth degree, having two
double points at infinity on Oz and Oy respectively. The equation being of the
second degree with respect to the constant C, through each point of the plane
there pass two curves of the family, as we might have foreseen, since the given
differential equation gives two equal values, but with opposite signs, for the
derivative 3 at each point. These two values of y° become equal only if the
point (z, ) belongs to the curve XY = 0, which is composed of four straight
lines D,, D,, Dy, D, parallel to the axis Oy, and of four straight lines 4, A;, A,, A,
parallel to the axis Oz. Let us write Euler's equation in the rational form
Ydx3— X dy? = 0, and let us take a point M (z, ¥) on one of these straight lines,
A, for example, not belonging to any one of the D lines. For the cobrdinates
of the point M we have Y = 0, X3 0, and Euler’s equation gives for y’ a double
value, " = 0. Hence the straight line A, itself is an integral curve through M.
But it can be verified that the curves represented by the equation (58) have as
their envelope the set of eight straight lines given by the equation X¥ =0.
Hence there is a new integral curve tangent to the first one at M. Thus the
eight straight lines D;, A; are singular integral curves, for they are not included
among the curves represented by the general integral.

Note. We have supposed, in order to arrive at the equation (58), that the
polynomial R (x) was one of the fourth degree and prime to its derivative; but
it is clear that the result can be verified directly without the hypothesis that
R(z) is prime to its derivative. We could, for example, form the differential
equation of the curves represented by the equation (58) by applying the general
method of § 1, and the equation obtained would necessarily be identical with
Euler's equation, whatever may be the values of the coefficients a,, a,, a,, a4, @,,
since we reach this result when the coefficients do not satisfy any particular
relation. The equation (58) therefore applies to all cases.
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15. A method deduced from Abel’s theorem. We can also very easily deduce the
general integral of Euler's equation from Abel’s theorem. Let us now denote
by R (z) a polynomial of the third or of the fourth degree, prime to its deriva-
tive, and let us consider the curve C which has for its equation y? = R(z).
If a variable algebraic curve C’ meets the curve C in three variable points
only, M,, M,, M, we have shown (Part I, § 103) that the codrdinates (z,, ¥,),
(23, ¥g)» (@3, ¥s) of these three variable points satisfy the relation

de, dz, dz
5 & B S,
(59) " + m +— 7

If the variable curve C’ depends upon two variable parameters which we
can select in such a way that two of the points of intersection, (z,, ¥,), (22, ¥3),
can be brought to coincide with any two points of the curve C given in advance,
the cobrdinates of the third point of intersection, (zg, ¥;), are functions of the
coordinates (Z, ¥; ¥z, ¥,) of the first two, and satisfy the relation (69). The equa-~
tion dz,/y, + dz,/y, =0 is therefore equivalent to the equation dzz/y; = 0, whose
general integral is :c, = constant Now, since the points (z,, %,), (Z,, ¥,) are on the
curve C, we have 3 = R(z,)y¥2 = R(z,), and the equation dz,/y, + dz,/y; =0,
which may be written in the form

=9y
VR () VE(,)
is identical with Euler's except in notation. In the expression which gives the
general integral
(61) Ty = F (21, ¥1; Ty ¥,) = comst.

we should replace ¥, and y, by VE(z,) and VR(z,) respectively, the deter-
minations of the two radicals being the same in the two expressions (60)
and (61). We thus obtain for the general integral an expression containing
radicals, while the result (58) is rational. But the irrational form fs in certain
cases the more advantageous.

Let us carry out the calculations, supposing the polynomial R (z) reduced to
the normal form of Legendre, R (r) = (1 — z2)(1 — k2z%), where k3 is different
from zero and from unity. The parabola C’,

(62) yv=az*+ bz +1,
meets the curve C represented by the equation 2 = R (z) in the point (z =0,
¥ =1) and in three variable points whose abscissas #,, Z,, Z, are roots of the
equation

(68) (@® —k?)a® + 2abz? + P+ 2a+ K3+ 1)z + 20 =0,

which is obtained by eliminating ¥ and suppressing the factor z.
We derive from this equation the relations

(80)

2ab B4+ 2 2
R R e U s +—a_+$i
25
ziz’z'-k’—aﬁ

whence
(64) %y + %3 + Ty = az, 747y,
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The condition that the parabola C’ passes through the two points (z,, y,),
(%3, ¥g), enables us to determine a and b. We have in particular

Substituting this value of a in the precedlng expression, we obtain finally the
expression for z, in terms of z,, ¥,, T, ¥y :
z§ — z§

T3V~ %1V,
The general integral of Euler's equation,

dx dz.
(65) —l T2 =

VE@,) VE@)

is therefore represented by the expression

Ty =

z}— 22
z, VR (,) — 2, VR (z,)

16. Darboux’s theorems. Let us consider a differential equation of the form
(87) ~ Ldy + Mdz + N (zdy — ydz) =
where L, M, N are three polynomials in z, y of at most the mth degree, and
where at least one of them is actually of the mth degree. In order that the

relation u(z, ¥) = constant shall represent the general integral, it is necessary
and sufficient that the equation (87) be identical with the equation

(66) Ty =

ou ou
—dz 4 —dy =0,
oz + oy V="5%
which requires that we ha.ve
ou
68 L M — —N(z 0.
(68) = ‘4 ( =t y)

This condition assumes a more symmetric form if we replace £ by z/z and y
by y/z, where z is a fictitious variable which we shall always suppose equal to
unity after the indicated operations have been performed. Then u(z, ¥)
changes into a homogeneous function of degree zero, and we have

ou ou

— =0.
za.z+ ay+ az

The condition (68) takes now the form
(69) + ——+N—— 4 (uw)=0.

Conversely, if we have obtained a homogeneous function of degree zero,
u(z, ¥, 2), which satisfies the relation (69), u(z, y, 1) = constant represents the
general integral of the equation (7).

Darboux#* has shown that we could form a function u (z, ¥, 2) satisfying
these conditions if we knew a certain number of algebraic integrals of the

* Sur les équations différentielles algébriques du premier ordre et du premier
degré (Bulletin des Sciences mathématigues, 1878).
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equation (67). Suppose that the equation (67) has an algebraic integral defined
by the relation f{z, ¥) = 0, where the polynomial f(z, ) is irreducible and of
degree A. Repeating the previous work, we find that the relation

f & _ o, ¥\ _
(10) v ul N(zaz-}-yz)_o

must be a consequence of the equation f(z, y) = 0. If we again replace z by
z/z, and ¥ by y/z, and then multiply by z*, f(z, ¥) becomes a homogeneous
function of z, y, 2, of degree A, satisfying the relation

of , . af , af _
zz + yﬁ"' l-a—'z =i/
and the condition (70) becomes
_rof of of _
m an=rZ+u+nZ=nw.

This condition is not satisfied identically, but by reason of the relation
f(z, v, 2) =0. Bince the last relation is irreducible by hypothesis, it is neces-
sary that we have identically

(12) A(f)= K/,
where K denotes a polynomial in z, ¥, 2 which is necessarily of degree m — 1,
for if f is of degree h, A(f) is of degree m + A — 1.

Let us now suppose that we have found p algebraic solutions of the equa-
tion (67), defined by the p following equations :

f](za 1/)=0, fg(z| ”)=ov ey f;:(z’ 1/)=01

where f}, f3, - - -, fp are irreducible polynomials of the degrees &, Ay, -:-, A,.
This requires that we have p identities of the following form :

(78) A(f]) = K1fu A(fg) = K_gf,a cccy A(fp) = Kpfm

where the polynomials K, K, - .., K, are all of degree m — 1.

Let us observe that the symbolic operator A4 (f) has properties analogous to
those of a derivative. In particular, we can apply to it the rule for the deriva-
tive of a function of functions: if ¥ (u. v, w) is any function of u, v, w, we have

AR =2 40+ 40) + X 4).

Consequently, if we put u =/ fs... £, where a,, aj, -, a; are any con-
stants, we have
A@W)=a SIS AN + ag S S S A ey

or, by (78)
' ’ A= (@K + a; K, + -+ + apEp)u.

The function u (z, ¥, #) is a homogeneous function of degree
ahy + aghgt - - + aphy.
If we can dispose of the constants a, - - - a, in such a way that we have

(74) b+t aphy =0,
K 4 -4 apKp, =0,
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the equation u(z, ¥, #) = constant will furnish the general integral of the given
equation, by what we have established above.

The equations (74) form a system of m(m + 1)/2 + 1 homogeneous equa-
tions in a,, a,, -+, ap, since the polynomials K; of degree m — 1 contain
m(m + 1)/2 terms. We shall surely be able to satisfy all these equations by
values of a; not all zero, and therefore to complete the integration, whenever
there are more unknowns than equations ; that is, whenever we have

(15) psﬂﬁ;in+2.

This is Darbouz’s first theorem. 1f the equations (74) are not independent,
we can find the solutions without requiring p to reach the preceding limit
m(m + 1)/2 4+ 2. A large number of examples in which this is the case will
be found in Darboux's paper.

If we know only p = m (m + 1)/2 4+ 1 particular algebraic integrals, we can,
in general, dispose of the p constants a; in such a way as to satiafy the conditions

3L oM oN
(76) {“1K1+“':Ks+"'+“pK,=—3£-W—-§-
ah+ahy+ - taphy=—m—2,

which are equivalent to a system of m(m + 1)/2 4 1 linear non-homogeneous
equations. The function u thus obtained satisfies the two equations,

ou ou ou oM ©oN
JALING VLIS oM
+ M4 +u( +2 4 ) 0,

+yw+z—+(m+2)u._
whence we derive, by eliminating ou/oz and replacing z by 1,
oM oN
L +M—-——N[(m+2)u+x—+v ]+ (EE ay+az) 0.

But, since the function N has been made homogeneous by substituting z/z for z
and y/z for y, and then multiplying by 2=, we also have, after making z =1,

aN mN — zi)N_ oN
7z = Vo'

so that the preceding relation may be written also in the form
ou ou
— (L — N — (M — Ny
an N+ (M —Ny)
oL A oM aN oN
e ——2—— —2N)=0.
+ “(aa + oy bz L oy )

It is easily seen that this last condition expresses the fact that u is an integrat-
ing factor for the equation (87), and we obtain thus Darbouz's second theorem :

If m(m + 1)/2 + 1 particular algebraic integrals of the equation (87) are known,
an integrating factor can be determined.

The proof of this last theorem is not complete in the particular case where
the determinant of the coefficients of the unknowns a; in the m(m + 1)/2 4 1
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equations deduced from the relations (76) turns out to be zero. But we can then
satisfy the m (m + 1)/2 + 1 homogeneous equations, obtained by suppressing the
right-hand sides, by values of the a; not all zero, and therefore obtain the
general integral by the first theorem.

Ezample. Let us consider in particular Jacobi’s equation (§6); the num-
ber m is here equal to 1. Let us look first for the linear integrals of the form
uz 4 vy + wz = 0. By the general method we must have identically

u(bz+ 0z +0"Y)+ v(cz+ ¢’z 4+ cy)
+ w(az + a’z + a”y) = \ (ux + vy + wz),

where X is & constant factor. This leads to the three conditions

ub 4 vec+w(a—2N)=0, u(d —N) + ve’ + wa’ =0,
ub” 4+ v(c” —\) + wa” =0,
and, after eliminating u, v, w, we find again the equation in A obtained by the
first method (p. 12). .

Let us limit ourselves to the case in which the equation in X has three dis-
tinct TOOt8 A;y A, A;. Each of these roots furnishes a linear integral, and we
therefore have three linear functions, X, Y, Z, giving the three identities

AX)=N\X, A(X)=\Y, A(Z)=NZ.

By the general theory we can deduce from them the general integral, since
in this case m = 1. For this purpose it is necessary to determine three numbers
a, B, v satisfying the relations

at+B+v=0, al+8\+1N=0.
‘We may take a = N\, — A5, B = Ay — A, ¥ = \; — Ay, and the general integral of
Jacobi’s equation is therefore

XM= AYAs—AZAi =2 = const.

17. Applications. When we seek to determine a plane curve by a
given relation F(z, y, m)= 0 between the cobrdinates (x, y) of a
point on the curve and the slope m of the tangent at this point, the
curves desired are evidently obtained by the integration of the differ-
ential equation of the first order F(x, y, ¥")= 0, which we obtain
from the given relation by replacing in it m by y'. If this equation
is of the gth degree in %', there pass in general g such curves through
each point of the plane, as will be proved farther on. Let us con-
sider, for example, a family of curves C, represented by the equation
®(x, y, )= 0, depending upon an arbitrary parameter, and let us
try to find their orthogunal trajectories, that is, the curves C' which
cut orthogonally in each of their points a curve C passing through
the same point. Let m, m' be the slopes of the tangents to the two
orthogonal curves C, C' passing through the same point (z, y). Then
m and m' must satisfy the relation 1+ m'm=0. On the other hand,
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let F(z, y, y") = 0 be the differential equation of the given curves C.
Then we have F(z, ¥, m)= 0, since m is the slope of the tangent to
a curve C passing through the point (z, y). It follows that

1
F a:,y,—-;z—,>=0.

Moreover, m' is also the slope of the tangent to a curve C’ passing
through the point (z, y); hence the curve C’' satisfies the equation

1
(78) Flz, y, — ?) =0,

and e obtain the differential equation of the orthogonal trajectories
of the curves C by replacing y' by — 1/y' in the differential equation
of the curves C.

In order to obtain the differential equation of the curves C, we must
eliminate a between the two equations & = 0, (9®/0x) + (3®/0y) y'= 0.
Therefore, in order to obtain the differential equation of the orthogonal
trajectories, it will suffice to eliminate a between the two relations

Let us take, for example, the conics represented by the equation

P+ 32— 2ax =0,

where a is a variable parameter. The application of the preceding
method leads to the homogeneous differential equation

(P—=3z)y' + 22y =0,
which becomes, after putting ¥ = ux and separating the variables,

g_a_u_ 3du du du

-+

x u _u+1_u—1=o'

Solving this equation, we find
= C(u*—1), or y=CH —).

The orthogonal trajectories are therefore cnbics with the origin as a
double point.

Let us consider in a more general manner a surface S the codrdi-
nates z, y, z of any point of which are expressed as functions of

two parameters u, v

z = f(u, v), ¥ =, ), z=y(yu, v).
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We derive from these expressions

da,-=%£du+%£dv, dy=%$du+%%dv, dz=%‘£du+%—'gdv.
To every value of the ratio dv/du corresponds a tangent to the sur.
face passing through the point (%, v). If we wish to determine the
curves of that surface such that the tangent to one of these curves in
any point depends only on the position of that point on the surface,
we are again led to integrate a differential equation of the first order:

dv
(79) Flu, v, a)= 0.

Conversely, every equation of this form establishes a relatior between
a point of a curve lying on the surface § and the tangent at that point.

Let us, for example, try to find the trajectories at a constant
angle ¥ to a family of given curves lying upon the surface. Given
two curves, C, C', passing through a point (%, v) and cutting at an
angle V, we have the general formula (II, Part I, § 20)

Edudu + F(dudv + dvdu) + Gdvdv

~Edw + 2 Fdudv + Gdv* VE®E + 2 Foudv + Gov*
where E, F, G have the usual meanings, where du and dv denote
the differentials relative to a displacement on C, and where 8« and &v
denote the differentials relative to a displacement on C'. The curves
C' being given, 8v/3u is a known function of » and v, 8v/8u = 7 (u, v).
Replacing 8v/8u by r (u, v) in the preceding relation (80), the result-
ing relation F(u, v, dv/du) = 0 is the desired differential equation of
the trajectories.

Let us consider in particular the trajectories at a constant angle
to the meridians of the surface of revolution,

T = p CO8 w, Yy =psinae, z = f(p).
‘We have here
u = p, v =ow, E =1+ 1%p), F=0, G = p’, v =0;
hence the equation (80) becomes
cos V = V1+ f?(p)dp )
V[1+£%p)]dp* + p*de?

Solving for dw, we find
V1+(p)dp,
P

(80) cos V =

deo=tan V

whence w can be obtained by a quadrature.
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III. EQUATIONS OF HIGHER ORDER

18. Integration of the equation d"y/dx" = JS(x). Given a differen-
tial equation of the nth order,

(81) %;é Fx,p v, 9" -, 3/"“”),
where y® = d'y/dx’, this equation and those which are obtained from
it by repeated differentiation enable us to express all the derivatives,
beginning with 3™, in terms of z, ¥, ', ¥", - . ., y®=V. If, then, for a
particular value x, of the independent variable we are given the cor-
responding values y,, ¥, - + +, ¥~ of the unknown function y and of
its » — 1 first derivatives, we can calculate the values of all the
derivatives of y for the value z; of x, and form a power series,

x — x,)? . r — 2)"
2 w+e—zy+EGE L Eo B oy

whose value represents the integral in question, provided that inte-
gral can be developed by Taylor’s series. Up to the time of Cauchy’s
work the convergence of this series had been assumed without
proof.* We shall see later that the series does converge under cer-
tain conditions which will be stated precisely. We shall indicate
here only some simple types of differential equations of the nth
order whose integration can be reduced to quadratures or to the
integration of an equation of lower order than =.
The differential equation

(83) LY = fa)

constitutes the simplest possible type of differential equation of the
nth order. It can be integrated by means of n successive quadra-
tures ; for, indicating by z, any arbitrary constant, we have

= @i,

""If,—f dxf F@)dz + Oy — 2+ Oy

y= z“dszdz...sz(x)dx

Co@ =z  Cy@—z)~?
w1 =2y Tt Ce-n

* See, for example, the 7Traité by Lacroix.
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where C,_,, Ca_s, -+ *» C, are n arbitrary constants which are equal
respectively to the values of the integral and of its first (n —1)
derivatives for x = z,.

We can replace the expression

Y=L=hL=a---L'f(z)a,

which contains n successive signs of integration, by an expression
containing only a single quadrature, to be carried out on a function
in which the variable = appears only as a parameter. It is easy to
verify this fact, which will appear later as a special case of a general
theory (§ 39). For if we put

1 x
B K=oy [ @@
we obtain successively, by the application of known rules,

Tmamif Cmae e f ),

and, finally, d"Y,/dz" = f(x). The function ¥, is therefofe an inte-
gral of the equation (83). Besides, the two functions Y and Y, vanish,
as do also their first (» — 1) derivatives, for = a,. Their differ-
ence, which is a polynomial of degree equal to » — 1 at most, cannot
be divisible by (x — x)* unless it is identically zero. We have

therefore ¥, = Y.

19. Various cases of depression. The most usual cases in which the
order of the equation can be depressed are the following :

1) The equation does not contain the unknown function. An equa-
tion of the form

k ak+1 L
Ty, 4y =0 (=% =n)

(85) Fz,:z;-k"m,...,a—z;_

reduces immediately to one of order n — k by taking « = d*y/dx* as
a new unknown funetion. If the auxiliary equation in  can be inte-
grated, we shall then obtain y by quadratures, as has just been
explained,

It sometimes happens that we can express z and w = d*y/dz* in
terms of an auxiliary parameter ¢,

2= TL=40),
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where the functions f and ¢ contain also the arbitrary constants
introduced by the integration of the equation in u. We can then
express y in terms of ¢ also by quadratures. We have first

dy®=D = ¢ () dx = $ (£) F'(2) dt,

whence we derive y*~». Continuing in this way, we calculate suc-
cessively y*-%,... o up to y.

2) The equation does not contain the independent variable. Given
an equation of the form

2 n

(86) F(y,%;l’j—:gs---, %):0,
we can reduce it to the preceding form by taking y for the independ-
ent variable and = for the unknown function. Then the new equa-
tion does not contain z, and, taking dx/dy for the new unknown, we
are led to an equation of order » —1. But we can carry out these
two transformations simultaneously by taking y for the independent
variable and p = dy/dx for the dependent variable. This gives

d* " dr dyda: de

d? d/ d d/ dp d
3-2(%)-5( Dr-+(2) 0
and so on. In general, d"y/dx" can be expressed in terms of p and
of its first » — 1 derivatives with respect to y. The resulting differ-
ential equation is of order n — 1.

Let us suppose that we have integrated this auxiliary equation of
order n — 1, and for the sake of generality let us suppose that y and
» are expressed in terms of a variable parameter ¢, which may be one
of the variables themselves. Then we shall have y = f(¢), p = ¢ (¢),
where the functions f and ¢ depend also on arbitrary constants.
From the relation dy = pdx we derive f'(t)d¢ = ¢ (¢t)dz, so thatz in
turn is obtained by a quadrature,

J
%5)2 d.
This method is especially useful for the equation of the second order,
Fy, ¥, y"=0
which is thus reduced to an equation of the first order,

d
F(%P’P 2’5)": 0.
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Let p = ¢(y, C) be the general integral of this equation of the first
order. From the relation dy/dz = ¢ (y, C) we obtain z by a quadrature,

= _dy__,
= +f¢(% ©)

If the general integral of the equation in p is solved for y and
appears in the form y =f(p, C), we have, in the same way,

S (p)dp =pdx
r==z, +fﬂ§ﬁ£

and therefore

The codrdinates of a point of an integral curve are thus expressed
in terms of an auxiliary variable » which represents the slope of the
tangent to the curve.

3) The equation is homogeneous in y, y', y", - - -, y™. 1If the degree
of homogeneity is m, the equation is of the form

AN S s W

(87) y"'F(z,y:y; , y)—o,
and we see that, if y, is a particular integral, Ay, is also an integral
for any value of the constant A. The order of this equation is
lowered by unity by putting

y=e f udz,

This substitution gives

y’=uef“:, y"=(u’+u’)ef'a, ceey
and, in general, ¥ is equal to the product of eJ** and a polynomial
in u, u', ¥", ..., u“—D, Substituting these values in the given equa-
tion, we obtain an equation of order n — 1.

4) The equation is homogeneous in z, y, dz, dy, d%, ..., d"y. In
this case the equation is not changed by substituting Cx for x, and
Cy for y, where C is any constant. Let us now take a new dependent
variable # = y/x and a new independent variable ¢ = Logz. The
new differential equation.does not change if we replace ¢ by ¢ 4 Log C,
leaving u unchanged ; hence it does not contain explicitly the vari-
able ¢z. This is readily verified, for it is easy to see that the given
equation must be of the form

F(g, Y, zy", 2y, .-, a:""g/'“) =0.
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If we put y = ux, we have, as a general expression,
y(p) = au'P 4 pu(p-l)’
and the quantities y', zy", x*y'", . . . are expressible in terms of w, zu’,
2*u", -« ., z*u™, go that the transformed equation takes the form
®(u, zu', 2u", - - ., ™) = 0.
If we now put x = ¢, we have successively for the products zu',

x*u', . - . certain functions of du/dt, d*u/dt3, ..., and we are led to
an equation which does not contain the variable ¢.*

Note. In the various cases of reduction which precede, it may
happen that we can obtain certain integrals of the auxiliary equation
without being able to determine the general integral. The preced
ing methods are still applicable and enable us to obtain by quadra
tures integrals of the given equation containing less than = arbitrary
constants.

20. Applications. 1) Equations of the form y” = f(y) come under the preced-
ing types. We can integrate them directly without any transformation, for if we
multiply the two sides by 2¢’, we deduce fromn. the result, by a first integration,

vi=C+ "2/ =F@)+0C,

and we have next, by a quadrature,

dy
‘ _fVF(vH G+ ¢
Let us consider, for example, the equation
V' =00+ 0,17 + av + ay,
where one at least of the coefficients a,, a, is not zero. Multiplying the twe
sides by 2’ and integrating, we find
v? =%y‘+ ;aw' + ;0% + 20,y + C.

The general integral of this new equation is an elliptic function (§ 11), which
may in special cases reduce to simply periodic functions, or even rational func-
tions, if the constant C has been so chosen that the polynomial on the right has
a factor in common with its derivative.

* We may proceed in another way by taking % and v = zu’ for the variables. This
gives dv/dx = u’ + zu”’, and therefore x2u’” = (dv/du) u’z - xu’, or
dy
2 7 @) e = Y.
Bu’=o -

Continuing in this way, we are led to a differential equation of order (n—-1) in
% and v.
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2) It may happen that we can apply successively several of the methods of
reduction to the same equation. Let us take, for example, the equation of the
fourth order 5”3 — 8y”¥i* = 0. If we first put y = u, we derive from it an
equation of the second order, 6 u™ — 8 uu” = 0, which is homogeneous in u, ¥’, ¥”.

Let us put
p 1l=8f"‘;
the equation becomes 8 v = 213, or v//v? = 2/8, from which we obtain
__3 1
- 2z+a.'

where @ is an arbitrary constant. Hence we have

u=y" =bz+ a)'l,
=—2b@+a)"t+¢
y=—4abz+ )t + ez + g,
where b, ¢, d are three new coustants. We find, therefore, that the general
integral represents a system of parabolas (§ 1).

8) Let it be required to determine the plane curves whose radii of curvature
are proportional to the portion of the normal included between the foot M and
the point of intersection N of that normal with a fixed straight line. Taking
the fixed straight line for the z-axis, the differential equation of the problem is

(88) 1+ + my” =0,
where the coefficient x is equal to the ratio of the radius of curvature to the
length MN, preceded with the sign 4+ or —, according as the direction from M
to the center of curvature coincides with the direction MN or with the opposite
direction. In order to integrate this differential equation (88), let us put
¥’ =p; it becomes dp

14+ 92+ uyp H =0,
which can be written in the form
gl + Lo __2p dp =0

v 214p%
from which we derive, by a first integration,
'3
yv=0Q1+ p’) 3,

where C is an arbitrary constant. The relation dy = pdz gives us next

A
— uCp(1 4+ p) "1 'dp = pdz,
or

“—
z=zy— pC’f(l + 09”7 lap.

Let us put » = tana; ‘all the curves obtained by varying C and z, result
from a translation and an expansion about the origin of the curve I’ represented
by the equations

a
@™ T==p j; cost ada, ¥ = costa.

It is easy to get an idea of the form of the curve from these equations, what-
ever may be the value of u. If u is an integer, we can carry out the integration.
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If x is a positive integer, the curve has no infinite branches, but it may have
two forms that are very different in appearance, according to the character of 4.
If 4 is an odd integer, z is a periodic function (Part I, § 16), and the curve
T is an algebraic closed convex curve. If i is even, z increases by a constant
quantity different from zero when a increases by 2= ; y is always positive,
We have a periodic curve with an infinite number of cusps on the z-axis. The
appearance of the curve is that of a cycloid ; it is a cycloid for x = 2.

Note. In the examples which we have just studied we always try to reduce
the integration of a differential equation to the integration of an equation of
lower order. However singular it may appear at first sight, the reverse process
may sometimes succeed. Given, for example, an equation of the first order
Sz, v, ¥) = 0, by combining with it a second equation obtained from it by
differentiation, we obtain an infinite number of equations of the second order
which are satisfied by all the integrals of the original equation. Suppose that
we can find thus an equation of the second order which is integrable, and let
vy = ¢(z, C, C’) be the general integral. All the integrals of the original equa-
tion of the first order are included in this expression, but since they depend
upon only a single arbitrary constant, there must be a relation between the
constants C, C’. In order to obtain it, it suffices to write the condition that the
function ¢ (z, C, C’) satisfies the original equation of the first order; we are
thus led to a certain number of relations between the constants C, C’, and these
relations should reduce to a single one.

A most interesting example of this device is due to Monge, who made use of
it to find the lines of curvature of an ellipsoid. Let 2a, 2b, 2¢ be the three
axes ; the projections of the lines of curvature on the plane of the major axis
and the intermediate axis are determined by the differential equation

Azyy® + (23— 42 — B)y’ — zy = 0.

(89) _a*(p2—c?) B= a2 (a3 — b3)
A—b’(a’—c’)' T ad—ct
Differentiating the equation (89), and then eliminating the expreasion
23— Ay? — B,
we obtain the differential equation of the second order,
v,y 1 _ ..
vty z=%

whence we derive first yy’ = Cz, then y3 = Cz3 4+ C".

The general integral of the equation (89) will be obtained by establishing
between C and C’ the relation 4 CC’ + C’ + BC = 0, as is seen by replacing y*
by Cz? + C’ on the right-hand side.*

* The equation (89) can also be easily integrated by the classic processes. It suffices,
in fact, to put 2% = X, y2 = Y, after having multiplied all the terms by xy dz2, in order
to transform it into the Clairaut form. .

Lagrange and Darboux have employed similar devices to integrate Euler’s equation
(see J. BERTRAND, Traite de Calcul intégral, pp. 569-572). We can also regard a cer-
tain theorem of Appell’s as an illustration of the.same procedure (Comptes rendus,
Nov. 12, 1888).
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2) It may happen that we can apply successively several of the methods of
reduction to the same equation. Let us take, for example, the equation of the
fourth order 53”3 — 8y”yiv = 0. If we first put y” = u, we derive from it an
equation of the second order, 5 4™ — 8 yu” = 0, which is homogeneous in u, w’, u”.

Let us put
P u=ef"";
the equation becomes 8v" = 2 v3, or v'/v? = 2/8, from which we obtain
v=—3_1
T 2z+a

where @ is an arbitrary constant. Hence we have

u=y"=b(z+ a)'!,

Y =—2b(z+ a)'i + ¢,

y=—4dbiz+al +cz+4,
where b, ¢, d are three new coustants. We find, therefore, that the general
integral represents a system of parabolas (§ 1).

8) Let it be required to determine the plane curves whose radii of curvature
are proportional to the portion of the normal included between the foot M and
the point of intersection N of that normal with a fixed straight line. Taking
the fixed straight line for the z-axis, the differential equation of the problem is

(88) 1492+ uy” =0,
where the coefficient x is equal to the ratio of the radius of curvature to the
length MN, preceded with the sign + or —, according as the direction from M
to the center of curvature coincides with the direction MN or with the opposite
direction. In order to integrate this differential equation (88), let us put
¥’ = p; it becomes dp

14 0%+ uyp E =0,
which can be written in the form
dy , pn 2pdp
— 4= =0
v FaTep
from which we derive, by a first integration,

v=C+p})"
where O is an arbitrary constant. The relation dy = pdz gives us next

4
2
[}

B
— uCp(1+ 1% 3 'dp =pdz,
or

m
T =0y pCf(l + p’)—i—ldp.

Let us put p = tana; all the curves obtained by varying C and z, result
from a translation and an expansion about the origin of the curve I' represented
by the equations

a
(1) =—pn f; cost ada, ¥ = costa.

It is easy to get an idea of the form of the curve from these equations, what-
ever may be the value of x. If x is an integer, we can carry out the integration.
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If u is & positive integer, the curve has no infinite branches, but it may have
two forms that are very different in appearance, according to the character of a.
If » is an odd integer, z is a periodic function (Part I, § 16), and the curve
T is an algebraic closed convex curve. If u is even, z increases by a constant
quantity different from zero when a increases by 2w; y is always positive.
We have a periodic curve with an infinite number of cusps on the z-axis. The
appearance of the curve is that of a cycloid ; it isa cycloid for u = 2.

Note. In the examples which we have just studied we always try to reduce
the integration of a differential equation to the integration of an equation of
lower order. However singular it may appear at first sight, the reverse process
may sometimes succeed. Given, for example, an equation of the first order
Sf@, ¥, ¥) = 0, by combining with it a second equation obtained from it by
differentiation, we obtain an infinite number of equations of the second order
which are satisfied by all the integrals of the original equation. Suppose that
we can find thus an equation of the second order which is integrable, and let
y = ¢(x, C, C’) be the general integral. All the integrals of the original equa-
tion of the first order are included in this expression, but since they depend
upon only a single arbitrary constant, there must be a relation between the
constants C, C’. In order to obtain it, it suffices to write the condition that the
function ¢ (z, C, C) satisfies the original equation of the first order; we are
thus led to a certain number of relations between the constants C, C’, and these
relations should reduce to a single one.

A most interesting example of this device is due to Monge, who made use of
it to find the lines of curvature of an ellipsoid. Let 2a, 2b, 2¢ be the three
axes; the projections of the lines of curvature on the plane of the major axis
and the intermediate axis are determined by the differential equation

Azyy? + (z? — Ay? — B)y' — zy = 0.
(89) A= a3 (b2 — c3) B= al?(a? — b%)
T Hi(a -3 T T ad—ct
Differentiating the equation (89), and then eliminating the expression
22— Ay* - B,
we obtain the differential equation of the second order,
v, v _1
Zi+L =0
vty Tz

whence we derive first yy’ = Cz, then y2 = Cz2 4 C".

The general integral of the equation (89) will be obtained by establishing
between C and C’ the relation ACC’ 4+ C’ 4+ BC = 0, as is seen by replacing y2
by C«3 4+ C’ on the right-hand side.*

* The equation (89) can also be easily integrated by the classic processes. It suffices,
in fact, to put z2 = X, 3 = ¥, after having multiplied all the terms by zy dx3, in order
to transform it into the Clairaut form. g

Lagrange and Darboux have employed similar devices to integrate Euler’s equation
(see J. BERTRAND, Traite de Calcul intégral, pp.569-572). We can also regard a cer-
tain theorem of Appell’s as an illustration of the:same p dure (Comptes rendus,
Nov. 12, 1888).




42 ELEMENTARY METHODS OF INTEGRATION [I, Exs.

1. Find the differential equation of all conics by starting from the general
unsolved equation and eliminating the coefficients between it and the rela-
tions obtained by five successive differentiations.

2. Integrate the differential equations

- =v@*+v)%, v(A+2rh 4+ =0,

A+ vy’ =@8y:-1)y?, @+ -+t —y=0,
2y3+ 22y (v —2a)y - 2Y*(y—2a)=0, zyy” + 2yt —yy’ =0,
Vi+8yi+t—4=0.

3. Apply the general methods of depression to the integration of the differ-
ential equation of conics.

4, Find the integrals of the equation y” = 2y2(y — 1) which are rational
functions or simply periodic functions of the variable.

[Licence, Paris, 1899.]

B. Given & triangle ABC and a curve T in its plane, let a, b, ¢ be the points
of intersection of the sides of the triangle with the tangent at m to the curve I'.
Find the curves I' for which the anharmonic ratio of the four points m, a, b, ¢
is constant when the point m moves on one of them.

The anharmonic ratio of the tangent at m and the straight lines m4, mB, mC
is also constant.

8. Given a point O and a straight line D, find a curve such that the portion
of the tangent MN included between the point of contact M and the point of
intersection N of the tangent and the line D subtends a constant angle at O.

[Licence, Besangon, 1885.]

7. Find the projections on the zy-plane of the curves lying on the paraboloid

2 az = mx? + y%, whose tangents make a given constant angle ¥ with the axis Oz.
[Licence, Paris, 1879.]

8. Find the orthogonal trajectories of each of the families of curves repre-

sented by one of the following equations:

v¥(2a— z) =128, v 4+ mz3—2az =0,

@+ =a%zy, 22+y%=adlog (%) ’
where a is the variable parameter.

9. In order that the equation 6 (z, ) = C shall represent a family of parallel
curves, it is necessary and sufficient that we have

where ¢ (f) is any function of 4.

[Write the condition that the orthogonal trajectories are straight lines.)

10. Find the necessary and sufficient condition that the integral curves of
the equation ¥’ = f(z, ) form a family of parallel curves, and show that the
integration can be carried out by a quadrature.

[Licence, Paris, 1898.]

11*. Form the general equation of the conics which cut a given conic C
orthogonally at the four common points. These conics form, in general, several
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distinct families. Find the orthogonal trajectories of each of these families.

Hence derive all the orthogonal systems of which the two families are made ap

of conics. {If f=0, ¢ = 0 are the equations of two conics cutting each other

orthogonally at each of their four common points, we have an identity of the
2 08 _

form »
of 2¢
A R =N+ e,

where A and u are two constant coefficients.]

12. Find the condition that the integral curves of the differential equation
v’ =f(z, y) form a family of isothermal curves, and show that an integrating

factor can be found.
[Sornus Lis.]

18. Let y,, ¥, be two particular integrals of Riccati’s equation (26) (§ 7).
Show that the substitution (¥ — 7,)/(yv — ;) = z reduces the equation to the
linear equation

7+ Xy —v)2=0.°

14. Find a plane curve C such that the triangle formed by any point M of
the curve, the corresponding center of curvature, and the foot of the ordinate
of the point M, has a constant area. Show that one of the cobrdinates can be
expressed as a function of the other by a quadrature, and that we can obtain a
knowledge of the form of the curve without having the definite equation. [The
axes of cotrdinates are supposed to be rectangular.]

[Licence, Paris, 1877.]

16. Given a plane curve C, let M be any point of that curve, P the center of
curvature of the curve at the point, and MT the tangent. Through the point
T where the tangent cuts the axis of z, draw a straight line parallel to the axis
of y, meeting the normal MP in & point N. Determine the curve C so that the
ratio of MP to MN is constant.

[ZLicence, Toulouse, 1884.]

16. Determine the surfaces of revolution such that in each of their points
the radii of curvature of the principal sections are directed in the same sense
and have a constant sum a. Sketch a figure of a meridian of the surface.

[Licence, Toulouse, 1878.]

17*. Show that the general integral of Euler's equation can be written in

the form VE _ v\
(——%—Z) — 4@ +Y)'-e,@+vY)—a=0_,

where X = ayzt + a,2® + 2,2% 4+ ayz + a, and where Y has an analogous

meaning [LaGraxce.]

[It suffices to solve the equation (58) (§ 14) with respect to the constant.,
After a few transformations we obtain Lagrange's form.]
18. The asymptotic lines of the surface represented by the equations
= A(u~— ay=(v-—a)",
y=Bu—Dbm(— b~
g2=Cu—cy=(v—o)
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are obtained by the integration of Euler’s equation when we have m == or
m + n=1. Deduce from this result the asymptotic lines of the tetrahedral

(e -

19. How can we determine whether & differential equation
dy—f(z, y)dz =0

has an integrating factor of the form XY, where X depends only upon z, and
Y depends only upon y, and find this integrating factor when it exists ?
[Licence, Paris, October, 1902.]

20¢. Given a plane curve C, the middle point m is taken of the cord MM’
which joins any two points M, M’ of that curve. The point M remaining fixed,
if the point M’ describes the curve C, the point m describes a similar curve c.
Prove that the curves c satisfy a differential equation of the first order, which is
integrated, like Clairaut’s equation, by replacing 3’ in it by an arbitrary con-
stant. (Bulletin de la Société mathématique, Vol. XXIII, p. 88.)

21. Integrate the differential equation

F(V’, V-ay,y—zy + ’—;:r): 0.

‘We observe that y” appears a8 a factor in the derivative of the left-hand
side. There exist equations of an analogous form and of any order (see Dixon,
Philosophical Transactions, Vol. CLXXXVI, Part I; Rarry, Bullelin de la
Bociété mathématique, Vol. XXV, p. 71; BouxniTzky, Bulletin des Sciences
mathématiques, Vol. XXXI, 2d series, p. 260).



CHAPTER I
EXISTENCE THEOREMS

The first rigorous investigations to establish the existence of the
integrals of a system of ordinary differential equations or of partial
differential equations are due to Cauchy. That illustrious mathe-
matician gave for analytic equations a type of demonstration based
on a method of comparison to which he gave the name of * caleulus
of limits” (calewl des limites). We owe to him also another method
which does not assume the functions to bé analytic, and which we
shall discuss later.

I. CALCULUS OF LIMITS

21. Introduction. The fundamental idea of the calculus of limits
congists in the use of dominant functions. The reasoning is quite
analogous to that which has already been used to establish the
existence of implicit functions (I, § 193, 2d ed.; § 187, 1st ed.).
Since every analytic function has an infinite number of dominant
functions, we see that the method can be varied in a great many
ways. The simplicity of the demonstrations depends largely on the
choice of the dominant functions. Since the work of Cauchy, his
proofs have been perfected and extended to more general cases by
Briot and Bouquet, Weierstrass, Darboux, Méray, Riquier, Madame
Kovalevsky, and many others. Even to-day we make use of this
same method constantly to treat analogous questions relative to par-
tial differential equations with various initial conditions.

22. Existence of the integrals of a system of differential equations.
Let us consider first a single equation,

® W o £ ),

the right-hand side of which, f(z, y), is an analytic function in the
neighborhood of a system of values z,, y,. We propose to prove that
this equation has an integral y(x) analytic in the neighborhood of the
point x, and reducing to y, for x = z,.

46
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Let us suppose for the sake of brevity that z, =y, = 0, which
amounts simply to writing # and y in place of z — z, and y — y,.
If the given equation has an integral which is analytic in the neigh-
borhood of the point z = 0, and which vanishes with x, and if we
can calculate the values of all the successive derivatives of that
integral for z = 0, we can write the development of that integral in
a power series.

The equation (1) gives us first of all (dy/dx), = £(0, 0). On the
other hand, the equations which we derive from it by repeated dif-
ferentiations enable us to calculate the value of a derivative of any
order in terms of x, y and of derivatives of lower order,

ey _of 2 dy

dx®  ox 3y dx’

&) &y _%f __L"y_,_l(_}z)

dz® 33:" ox ay dx 3y dz’
Setting in these relat ons x =y = 0, we calculate step by step the
initial values (*y/dx?),, (d®y/dx®),, - - -, (@"y/dx™),, - - - of the succes-
sive derivatives of che desired integral in terms of the coefficients
of the development of f(x, ¥) in a power series in z and y. Until
Cauchy’s work appeared, mathematicians had assumed without proof
that the power series thus obtained,

® =@ @5+ @5

was convergent for values of x near zero.

To establish rigorously this essential point, let us observe that the
operations by which we calculate the coefficients of the series (3)
reduce precisely to additions and multiplications alone, so that the
value obtained for (d"y/dz"), can be written in the form

4 (%)o= Po(@yyy gy By =+ oy Topy = *5 Bo)y

where P, is a polynomial with positive integral coefficients, and where
a, is the coefficient of x‘y* in the development of f(z, ). If, then, we
replace the function f(z, ) by a dominant function ¢(z, ¥), and if
we seek to determine an analytic integral of the auxiliary equation
ay
®) == $(z, ¥)

vanishing with z, the coeflicients of the series obtained for the devel-
opment of ¥ will be positive numbers greater than the absolute value
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of the corresponding coefficients of the same rank in the series (3).
If the series obtained for ¥ is convergent in a certain neighborhood,
the same must be true a fortiori of the series (3). Now the series
obtained for ¥ will certainly be convergent if the auxiliary equation
has an analytic integral vanishing for x = 0,

Let us suppose that the function f(z, ) is analytic when the varia-
bles z and y remain in the circles C, C' of radii a and & described in
the planes of the two variables about the two origins as centers, and
that it is continuous on the circumferences, and let M be the upper
limit of | f(x, )| in this neighborhood. We can take for the domi-
nant function M

N I

and, multiplying the two sides by (1 — ¥/b), we may write the
auxiliary equation (5) in the form

(©

We can show directly that this equation has an analytic integral
which vanishes for z = 0. In fact, separating the variables, we obtain
the integral of that equation in the form

. y— Lo usriog(1-).

The constant which must be added to the right-hand side to
express the general integral of the equation (6) is here zero if we
adopt for the determination of the logarithm the one which is zero
for z = 0. Solving equation (7) for Y, we get

M x
®) Y=b_b\]1+2aTLog(1—;)-

If we take for the radical the determination which reduces to 1
for = = 0, the result (8) represents precisely an integral of the
equation (6) which is zero for z = 0. This function Y is also ana-
Iytic in the neighborhood of the origin, for the function under
the radical is analytic in the interior of the circle C of radius a,
and is zero for

)] z.—;.p= a(l—e_;:'—").

When the variable # remains in the interior of the circle C, of
radius p described about the origin as center, the absolute value
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of (2aM/b)Log(1 — z/a) remains less than unity,* and the radical
is an analytic function of z in this circle. The series obtained for
the development of ¥ is therefore convergent in the circle of radius p,
and the same is true a fortiori of the series (3) first obtained.

It is easily seen from the formula (8) that all the coefficients of
the development of ¥ are real and positive, a fact which is evident
also a priori. If we give to « any value whose absolute value is less
than p, the absolute value of ¥ will be less than the value obtained
by replacing by p. We have, then, for every point in the circle
C,, |¥Y|< b, and therefore |y| < b. If we replace y in f(x, ) by the
sum of the series (3), the result of the substitution is therefore an
analytic function &(z) in the circle of radius p. From the manner
in which we have obtained the coefficients of the series (3), the two
functions ®(z) and dy/dz are equal, as well as all their successive
derivatives for x = 0. 'Hence they are identical, and the analytic
function y satisfies all the given conditions.

In order to calculate the coefficients of the series (3), we can substi-
tute directly for y in the equation (1) a power series y=C x4 C, x>+ - - -
and write the conditions that the two sides are identical. The coeffi-
cient of *~! in dy/dx is nC,, while the coefficient of x"~! on the right
depends evidently only on ,, C,, - - -, C,_; and the coefficients a,.
It is easily seen that the coefficients C, are calculated in this way
by the use of the operations of addition and multiplication alone.

The method can be extended without difficulty to a system of any
number of differential equations of the first order. Let

d .
(10) e @ Yo ¥ %) G=1,2,00m)

be a system of differential equations in which the functions f; are
analytic in the neighborhood of the values z,, (v,), -« *» (%), ZThese
equations have a system of integrals analytic in the neighborhood of
the point x, and taking on the values (y,), (Y5)ys * * *» (Yu), TespeCtively
Jorz ==z,

The proof of this theorem can be made to depend on the fact
that the system of auxiliary equations

(11) &:ﬁ:. .=.d_¥.'!._.

e L R

*In fact, all the coefficients of the development of that function in powers of =
are real and negative. The absolute value of the preceding expression for || < p is
therefore less than its absolute value when z = p, that is, less than unity.
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has a system of integrals which are analytic in the neighborhood
of the origin, and which vanish for z == 0. The functions f, are sup-
posed to be analytic as long as we have |z — z,| = @, |7 — (%.),| =5,
and M denotes again the maximum absolute value of the functions
/. in this neighborhood. These integrals, having their derivatives
equal and all vanishing for # = 0, must be identical, and it suffices
to consider the single equation
ay M

= ’
* (@-26-3)
a b
in which we can again separate the variables. This equation has
the integral

n+1
Y=0b—10 \f1+£"_*'71L1”_“L08(1_§),

which is analytic in the circle with the radius

-8
p= a(l -_ e"'*”"“),
and which is zero for z = 0. Hence the system (10) has a system

of integrals that are analytic in the same circle.
A single equation of the nth order,

dny d ar-!

1o 2 5)
can be replaced by an equivalent system formed of » equations of
the first order,

12)

d dy,
=Y = Yo
(13) 4 oo "
-::/—i!x_—’ = Yn-1» %F F(z, ¥ Y5t **s Yn1)r

by introducing as auxiliary dependent functions the successive
derivatives of y up to the (n — 1)th order. We deduce from the
general theorem, then, the proposition that the equation (12) has an
analytic integral in the neighborhood of the point x, and such that
that function and its first n — 1 derivatives take on for = =z, the
values Yy, ¥y, -+ +» Yo~V given in advance, provided that the function
F i3 analytic in the neighborhood of the system of values x,, Y,, Yo,
cH YT

From the demonstration it results that there cannot be more than

one analytic integral of the equation (1) taking on for z = x, the
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value y,. But nothing enables us to say up to this point that there
do not exist non-analytic functions satisfying the same conditions.*
This is a point which will be rigorously established farther on

(§ 26).

23. Systems of linear equations. We shall find farther on, by another
method, a lavger value for a lower bound of the radius of convergence
of the series which represents the integrals (§ 29). If the functions
/f; have special forms, we can sometimes employ more advantageous
dominant functions, still making use of the method of the calculus
of limits.

In particular, this is what happens in the very important case of
linear equations. Let

d .
14) E%= a + GgYs+ o+ any+ b (¢=12,.-,m)
be a system of linear equations in which the functions a,, and 2, are
functions of the single variable «, analytic in the circle C of radius R
about the point x, as center. These equations have a system of inte-
grals analytic in the circle C and reducing respectively to (y,)g, (¥2)e

vy (Yn)o Jor T =2,
‘We may suppose in the proof that

(yl)o = (ya)o == (?/n)o = o)

for if we change y; into (%), + ¥:, the system (14) does not change
in form, and the new coeflicients are again analytic in the circle C.
Let M be the maximum value of the absolute values of all the

* The following is the reasoning used by Briot and Bouquet to treat this matter.
Let y; be au analytic integral of the equation (1) taking on the value y, for z= 2.
Putting y = ¥, + 2, the equation (1) takes the form

dz

(1) 'J'z"zw(zr z),
where ¥ (z, 2) is analytic for *=2z,, 2=0. Let us suppose that this equation has an
integral, other than z =0, approaching zero when the variable = describes a curve C
ending in the point x,. Let z,, 3 be two points of this curve to which correspond the
two values 2; and 2z of 2. We obtain from the equation (1°)

fdz_ f”va (2, 2) dz.
*y

s Z

It z, approaches z,, 2; approaches zero, and the absolute value of the left-hand side of
this equality becomes infinite, while the absolute value of the right-hand side remains
finite; there cannot be, then, an integral approaching zero different from z=0. But
the reasoning supposes that the point  approaches z, along a curve C of finite length.
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functions ay, & in a circle C’ with the center z,and the radius r < R.

The function
M

x — x,
r

(1+YI+Y,+"‘+Y-)
1

is a dominant function for all the functions a3, + « - + + @y, + b;,
and we are led to consider the auxiliary system

ay,_dY, _ _df.___ M
I5) G =@ = T d ST aomQthithite+ )

r

Since the functions Y, ¥,,..., ¥, are required to be zero for
x = x,, and since their derivatives are equal, they are identical, and
the system (15) can be replaced by the single equation

ay M
16) P
r
which can be integrated by separating the variables. The integral
which is zero for x = x, has the form

Y= 71‘ [(1 - ’—‘;ﬁ’)_m_ 1],

and it is analytic in the circle C'. The same thing is therefore true
of the integrals of the system (14), and, since the number » may
be taken as near R as we wish, it follows that these integrals are
analytic in the circle C.

(1 + nY),

24. Total differential equations. Let z,, Z,, - - -, Zy be & system of » independ-

ent variables, let z be an unknown function of these variables, and let f,, fg,

- + Ju be n given functions of z,, z,, - .-, &, 2. A total differential equation is
a relation of the form

(17 dz:fldzl"'fgdz,"' cor F Sudy ;
it is really equivalent to n distinct equations:

0z az 0z
(18) a—fu a_zz'—fm R ] —‘—fn-

Let us suppose that there exists a function z of z,, z,, ---, = satisfying
these n relations. We can calculate the second derivative 82z/0x;0x: (i # k) in
two different ways. Writing the results obtained as identical, we obtain thus
n(n — 1)/2 ! relations of the form

ofs S e  ofe
—— = == —— i, k= “es
(19) F P Se 2 oz iy «, k 1,2, ] ﬂ)
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and the function z can only be taken from among those functions which satisfy
these relations. We are going to consider only the very important case, in
which these relations are satisfled ¢dentically. The equation (17) or the equiva-
lent system (18) is then said to be completely integrable.

Given a completely integrable total differential equation in which the functions f,
are analytic in the neighborhood of the system of values (T,)o, (Z3)gs - = *» (Tu)os Zos
this equation has an analytic integral in the neighborhood of the system of values
(@1)os + * *1 (Zn)os Wwhich reduces to z, when T, = (T1)gy * - *» Tn = (Tn)o-

The equations (18) and those which are derived from them by successive
differentiations enable us to express all the partial derivatives of the unknown
function z in terms of z, z,, z;,- -+, Zn; hence we can obtain the values of the
coefficients of the development of the analytic integral, if it exists. But, while
it is evident that we can calculate such derivatives as ”z/2zf in only one way,
it requires a little more care to assure ourselves that we shall always obtain the
same expression for a derivative of any order, such as o7 +9z/2z¥ oz, which can
be calculated in several different ways. This will be the case for the deriva-
tives of the second order, if the conditions (19) are identically satisfied. In
order to show that the same property is true in general, it suffices to show that,
if it is true up to the partial derivatives of order p, it will also be true for the
partial derivatives of order p + 1. We shall base the proof on the following
fa.o&: Let U(z,, Z3, ¢ - -, Tn, ) be any function of z,, 4, - - -, Za, 2z, and let us put

M au _aU  aU U _ d (d _

sz—‘—'a—z:'f'z'ﬁy m—a(al’) G Ek=1,2---,7m)
From the conditions (19) it follows immediately that we have for any function U
the relation

auv _ dw
dridze  dopdz

Let now u and v be two partial derivatives of the pth order differing only in
the fact that a differentiation with respect to z; in one has been replaced by a
differentiation with respect to z; in the other. The proof depends on showing

that we have
ou du, 9dv o7

ot w2t Tt

or that du/dz, = dv/dx;. But u and v have been obtained by taking the partial
derivatives of a partial derivative w of order p — 1 with respect to the variables
x; and zp respectively. We have therefore u = dw/dz,, v = dw/dx;, and the
equality to be established reduces to d?w/drdx; = d?w/dzidr;, an equality which
has already been proved.

To prove the convergence of the series thus obtained, we can therefore replace
the functions f; by dominant functions ¢;, provided that we choose these func-
tions ¢; so that the resulting auxiliary total differential equation shallitself be com-
pletely integrable. For simplicity let us put (z,), = (z,)g= *++ = (Tn)o =2, =0;
we can take for the dominant function of all the functions f; an expression of

the form
M

I, EL""__“-) (1 ~ E)
P

\
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and the auxiliary equation

Mz 4 dzg ...
20) dz_(l—zl"’l.'-";"-“."'z-.')-z::_;)

is completely integrable from the symmetry of the right-hand side relative to
the n variables z;. In order to obtain an analytic integral that vanishes with
these variables, we need only seek an integral which is a function of the single
variable X = x; + &, 4+ - -+ + Z». This leads to an ordinary differential equation

of the form (6)
(1 - 5) az = MIX

P 1-X
r

Since the integrai of this equation is represented by a development in a con-
vergent series the coefficient of any term zf1 - . . 3® of which is real and positive,
the development obtained for z is a fortiori convergent in the same neighborhood.
The theorem can be extended without difficulty to systems of total differential
equations in n independent variables z,, Z,, - -+, T» and m dependent variables
Zyy 2500 %y Zmt
h=1,2,...
@1) dza =F1ade, + -« + findZi + + - - + Fardm. Tram
i=1,2 -0, 0
By calculating in two different ways the derivatives of the form a’z./én.aa:l,
we are led to the conditions
ofim , ofin oS ofin , 0Sen 3fkn
2 —_— - ose == = —_ “ee —_— .
(22) in T 72, Juit -+ azm.fkm o + azlfn-l- + az.,.f"'
The system (21) is said to be completely integrable if these conditions (22) are
satisfied identically, and we have the following theorem which is demonstrated
like the preceding :

Every completely integrable system in which the functions f; are analytic in the
neighborhood of a system of values (Z,)g, (T3)gr***s (Tn)os (21)0s ** s (Zm)o has a
system of integrals analytic in the neighborho.d of the point (,)q, - -+, (Tn), and tak-
ing on respectively the values (2,)g, (Z5)gs * * *y (Zm)o When Ty = (T1)g, * * *» Tn = (Tn)o-

25. Application of the method of the calculus of limits to partial differ-
ential equations. The calculus of limits enables us also to prove the
existence of integrals of a system of partial differential equations.
Let us consider first an equation of the first urder,

0z PYRP .
(23) _a;;= (:1:1,2‘2,..., xm#aé;;’-a-m—.g...,.a?-),

in which the right-hand side does not contain the derivative dz/0x,.
This equation and those obtained from it by successive differentia-
tion enable us to express all the partial derivatives of z in terms of
x,x,, - - -, x,, 2, and of the partial derivatives of z taken with respect
to the variables z,, @,, « - -, , alone. This property is evident for the
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derivatives of the form 8%+ +®+ly /gy dxfs ... x5, as is seen by
differentiating the two sides of the equation (23) e, times with
respect to z,, - - -, and then «, times with respect to x,. If we differen-
tiate the two sides of the equation (23) once with respect to z,, and
any number of times with respect to the other variables z,, z,, - - -, z,,
and if we then replace in the right-hand side of the result the par-
tial derivatives which involve just one differentiation with respect
to the variable z, by the expressions already obtained, we shall obtain
also the derivatives 9%+ -+as+22/0220xgs - . . dx=~ expressed in the
manner stated above, and it is clear that we can continue to apply
the same process indefinitely.

Let us now suppose that the function f is apalytic in the neigh-
borhood of a system of values (z,),, - -+, (Za)gs %0 (P ** *5 (Pudor
and let ¢(x,, «,, ---, x,) be a function of the (n — 1) variables
%y %, -+, @, analytic’ in the neighborhood of the point* (z,),
(@D -+ *» (%), and such that we have for these particular values

We=r  (G)=0 (m)=@d - ()=

If these conditions are satisfied, the equation (23) has an integral
which i3 regular in the neighborhood of the point (x,),, - - -, (x,), and
which reduces to ¢(z,, x,, - + -, T,) for x, =(x,),

By hypothesis, the function ¢(x,, z,, - - -, ,) can be developed in
a series of positive powers of the variables x, —(z;),, and the coeffi-
cients are, except for certain numerical factors, the values of the
partial derivatives of that function at the point (z,),, (% « = *» Za)o:
Since the function 2, the existence of which we wish to prove, must
reduce to ¢(zy, =, - - -, x,) for x =(x,),, we know from that fact
alone the values at the point (2),, (x,), - -, (x,), of all the partial
derivatives of the function 2 which involve no differentiation with
respect to the variable 2. We have just seen how all the other partial
derivatives of z can be expressed in terms of these. We can there-
fore calculate, step by step, all the coefficients of the development of 2
according to powers of x; —(x;), in terms of the coefficients of the
two developments of the function f and of the function ¢, and the
calculation involves the operations of addition and multiplication
alone. We can therefore employ again dominant functions to prove
convergence : if the series obtained by replacing, in the preceding

* For the sake of brevity we shall designate as a point every system of particular
values, real or imaginary, assigned to the variables appearing in the discussion.
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calculation, f by a dominant function 7, and ¢ by another dominant
function &, is convergent, the same thing must necessarily be true of
the series obtained for z.

‘We can, first of all, replace the given initial conditions by other
simpler conditions by means of a succession of easy transformations.
We may suppose (z ), = (z,), = - - - =(z,), = 0, for that amounts to
writing x; in place of x; —(z,),. If we also put

z= ¢(xgl Xgy * :C‘) + u,

the new unknown function % must reduce to zero for x, = 0. We
may suppose also that after these transformations the right-hand
side of the equation, when developed, does not contain a constant
term, for if the development commenced with a constant term a
different from zero, it would suffice to put x = ax, + v in order to
make it disappear. Having made these transformations, if we now
replace the right-hand side by a suitable dominant function, the
demonstration of the theorem reduces to showing that the equation

M

2z
(24) oz,

0Z ozy
(1_z1+4‘z+--~+¢.+Z)<1_axn+“.+5:.)
r P)

where M, r, p are determined positive numbers, has an integral which
is analytic in the neighborhood of the origin and which reduces to
zero for x, = 0. If we replace x, on the right-hand side by z /a,
where « is a positive number less than unity, we increase the coeffi-
cients, and the theorem will be established a fortiori if we prove
the proposition for the new equation

@) 3= T

/ —‘+z,+---+x,.+2)< —1+---+a——)
a 1 L

kl_ __ 0z
r P

Indeed, it is sufficient to show that this equation has a regular
invegral, represer:ted by a power series whose coefficients are all real
and positive; for the coefficients of this third development are at
least equal to those of the series obtained by supposing that Z van-
ishes when z, = 0, since the coefficients are all obtained by means
of additions and multiplications of the coefficients of the terms inde-
pendent of x,. In order to establish this last point, let us try to
satisfy the equation (25) by taking for Z a function of the single
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variable X =z,/a + x,+ -+ - + x,. We are thus led to the differen-
tial equation of the first order,

1 n-—1 dZ n—1/(dZ\? M
(26) (;———-P M)H=—-——ap E-j) M.

1— X+Z
r

Let us suppose that & has been chosen so small that the coefficient
of dZ/dX on the left is positive. For X = Z = 0 the equation (26)
has two distinct roots, one of which is equal to zero. That equation
has therefore an analytic integral in the neighborhood of the origin,
which, together with its first derivative, is zero for X = 0. It is easy
to show directly that all the coefficients of the development of this
integral are positive; for the equation (26) may be written in the
form

iz dZ\*
72:‘4(?133) + (X, 2),

where 4 is positive and where ®(X, Z) denotes a series whose coefti-
cients are all positive. After a first differentiation we find

&z _,, 4282 00 dedz
axs dX dX*® ' 0X ' 0Z dX

For X = 0, Z and dZ/dX are zero; hence d®Z/dX? is positive. The
verification for the following derivatives is similar.

The series obtained for the development of the desired integral
is therefore convergent as long as the absolute values of the differ-
ences z; — (x;), remain less than a positive number ». The value of
that series is an analytic function in the neighborhood of the point
(®)y (XD - 5 (Zn), and Teduces to ¢(z,, =, - - -, z,) for x, =(x,),
That function satisfies the given equation; for if we replace in f the
variables z, 92/0x,, - - -, 0z/0x, by the preceding function and by its
partial derivatives, the result is a function y(z, =,,---, z,) which
is regular in the neighborhood of the point (z,),, () * ) (@n)y
and, from the manner in which we have obtained the coefficients
of the series #, the two functions y and 92/0x, are equal, as well as
all their partial derivatives, at the point (z,),, (%), - - -y (%.), They
are therefore identical.

The proof is the same for a simultaneous system of equations of
the first order,

@n gi;l‘=ﬁ, %3—:=j;, g-:f=.ﬂ:
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whose right-hand sides contain only the variables z,, =, - - -, «,, the
functions z, #,, - - -, 2,, and the partial derivatives of the first order
except those with respect to «,. Supposing the right-hand sides ana-
lytic in the neighborhood of a system of particular values (z,),, (2:)os
(2%),» assigned to all the variables which appear in the function f,
these equations have a system of integrals which are analytic in the
neighborhood of the point (z,), :-:, (x,), and which reduce for
x, = (x,), to p given functions ¢, ¢,, - -+, b, of the (n — 1) variables
Xy Tgy 5 Ty which are analytic in the neighborhood of the point
(@er (@g)gs * * *5 (Tn), and are such that the values of ¢, and of O¢,/0x,
at that point are precisely (z;), and (pf), (k=1,2,..., p; i=2,
3, ceny n),

26. The general integral of a system of differential equations. The
preceding theorem enables us to complete the theory of differential
equations on several important points. Thus, the existence of an
infinite number of integrating factors for an expression of the form
P(x, y)dx + Q(=, y)dy is an immediate consequence of it if P and
Q are analytic functions of the variables z and y (§ 12).

Let us consider again the equation of the first order y' = f(z, ¥),
and let (x,, »,) be a pair of values for which the function f(x, »)
is regular. The analytic integral the existence of which has been
established, which takes on the value y, for z =, may be con-
sidered as a function of three independent variables x, x,, 7, ; it is
from this point of view that we are going to study it. For definite-
ness let us suppose that the function f(z, y) is regular in the
neighborhood of a point (x = @, y = B). We can evidently consider
the given equation as a partial differential equation,

(28) % — f@, v,

which defines a function y of the three variables z, «,, y,, and we
propose to determine an integral of that equation which is analytic
in the neighborhood of the point z = «, =, =: @, y, =8 and which
reduces to y, for x =x,. This last condition is not in the same
form as that of the preceding paragraph, but it suffices, in order
to overcome the difficulty, to take instead of z and of =z, two
new independent variables © =& 4 x, and v =« — z; Then the
equation (28) becomes

oy @
@9) m+a=s(F0 )
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and we are led to seek an integral of this new equation which is
analytic in the neighborhood of the values u =2a, v =0, y,=8
and which reduces to y, for v = 0. By the general theorem, there
exists an analytic integral, and only one, which satisfies these
conditions; we shall denote it by ¢(x, «,, y,), supposing that we
have replaced » and v by their values in terms of z and y. Let D
be a region defined by the conditions |z — a|=1, |z, —a|=7,
|y, — B] =p, in which the function ¢(z, =, y,) is regular. The
function ¢ has the following properties in this region. In the first
place, from the very way in which we have obtained it, if z, and y,
are constants, it represents the integral of the differential equation
y' =f(z, y), which takes on the value y, for x = z,. This integral
is surely analytic whenever |® — «| is less than r, for any point
(z, ¥,) in the region D.
The development of: ¢ (x, «,, ¥,) is of the form

y=y,+ @ —=x) Pz, Ty Yo)s

where P also denotes a regular function. By the general theory
of implicit functions, we can solve the above relation, obtaining
¥, = ¥ (=, «,, ¥), in which the right-hand side is also a power series.
The function y(x, x,, y) is tdentical with ¢ (x,, =, y). In fact, let x,
and z, be two values of « in the region D; then the integral which
is equal to g, for x = x, takes on at the point x, a certain value y,,
and we have y, = ¢(x,, x,, %,)- But it is evident that the relation
between the two pairs of values (z,, ¥,), (%,, 7,) is a reciprocal one;
hence we have also y, = ¢(z,, z,, 7).

Let x5 be any value of x such that we have |x; — a|< . Every
analytic integral of the equation (28), passing through any point
(@ Yy of the region D, satisfies a relation of the form

(30) ¢ (x5, x, y) =C.

For, let us consider the analytic integral equal to y, for z ==z,
That integral takes on a value y; when « has the value x;, and we
have, from the definition of the function ¢, ¢ (z;, z,, ¥,)= v;. Let
be another value of the variable in the same region and y the corre-
sponding value of the integral. We have also ¢ (z;, z, ¥) = y;, and
therefore the analytic integral considered does satisfy a relation of
the form (30). By differentiating it with respect to = and replac-
ing y' by its value f(z y) we find that the function ¢(z;, =, ¥)
satisfies the relation

0 0
31 @ =0.
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This relation reduces necessarily to an identity, for it must be true
for x = x,, y = y,, and the point (z,, y,) is any point of the region D.

This enables us to answer a question left undecided in § 22.
In the plane of the variable x let any curve T approach the point z,
as a limit. We shall say that a function y of the variable z which
can be continued analytically along the whole length of I approaches
¥, as x approaches z, on T if for every positive number ¢ we can find
a corresponding positive number » such that |y — y | remains less
than ¢ for all the values of z lying on I in the interior of a cirele
with a radius 5 and with the center «,.

The reasoning of Briot and Bouquet does not prove that there do
not exist other integrals than the analytie integral, approaching y,
88 z approaches z,in the manner which has just been defined. This,
however, is the fact. For let us consider a definite point (z,, ¥,)
of the region D, and let us take for the new dependent variable in
the equation (28) the function Y= ¢ (x,, «, ¥) defined above. Then
we have dY _ 04 . ¢ dy

dz oz ' Oy dx’
and, by the relation (31), the given differential equation reduces to
dY/dx = 0. If, now, y approaches y, when x approaches z,, the same
thing is true of ¥, and the only integral of the new equation d¥/dx = 0
which satisfies this condition is evidently Y=y, The integral sought
must therefore satisfy the relation

4’(‘”0: x, .7/) = Yo
or

(32) Yo=Y + (:1: - z"o) P(m! Y, zo)y
and, by the theorem on implicit functions (I, §193, 2d ed.; §187,
1st ed.), there is only one root of the equation (32) approaching y,
as x approaches x, and that root is an analytic function.*

It follows that every integral of the equation (28) which passes
through a point of the region D satisfies a relation of the form (30).
On that account we say that that equation represents the general
integral of the differential equation in this region. The number C
is the constant of integration which remains arbitrary at least be-
tween certain limits. We have seen that we could also put the
equation (30) in the equivalent form y = ¢(z, z;, ¥;), where the
constant of integration is y;.

* PICARD, Traité d’ Analyse, Vol. 11, pp. 315-317. PAINLEVE, Legons de Stockholm.
p. 394.
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All these properties can be extended to a system of differential
equa.ﬁons of the form

d dy,
(33) L= (% Yy Yor - " Yu)s ?‘%’ =fo cony .‘_i% =f.

Let us suppose that the right-hand sides are analytic in the neigh-
borhood of the system z =a, y, = B, - - -, ¥» = B.. We may again
regard the preceding equations as a system of partial differential
equations involving the »n dependent variables y,, v,, ---, ¥, and
the » + 2 independent variables z, =, () (WDp * * *» (¥n)s» and We
may seek the integrals of this system which are regular in the
neighborhood of the values x=a, x,=a, (¥), =B, ***» U)o =B,
and which reduce to (¥, (%) *-*» (¥u), respectively for z = x,.

Let
(34) {y1 = ¢1[m’ Ty (.yl)o’ M} (yn)o]’ Y= ¢z’ b ]

Yo = ¢n[x) xn! (y1)01 M) (yn)o]

be the » functions thus defined, which we suppose to be analytic
in the region D defined by the conditions |z —a|=7, |z, —a|=7,
[(#:)g —B:s| =p. From the equations (34) we derive, conversely,

(35) (?/:)o ¢1<zo; x, yp M) :’/u); R ] (./n)o ¢n(mo) z, yp R | y..),

and each of these functions ¢; satisfies, for any value of z, the

relation

¢ ¢ Oy o _
(36) 2t 3 ‘fl o F g Sa=0

We prove this just as before by observing that the analytic
integrals which take the values (y,),, ---, (%), for z = z, satisfy
the relations (35), and therefore the relations (36), which we deduce
from them by differentiating with respect to the independent
variable « and by replacing the derivative dy,/dx by f;. These
relations (36) must reduce to identities; for if z, is supposed fixed,
we can show as above that we can choose (¥,),, - -+, (¥a), in such a
way that the integral curve * passes through any given point of the
region D. The left-hand side of the equation (36) must therefore
be zero for the codrdinates of any point whatever of this region.

If in the equations (33) we take for new dependent variables
the z functions ¥;=¢;(zy, @, ¥, * * *» ¥»), where z, is constant, these

* As a generalization we shall say that every system of integrals of the equations
(33) defines an integral curve.
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equations become, by the conditions (36),

ar, az,

(37 o, Zhag, .., Za

It follows that all the integrals of the system (33) satisfy relations
of the form (35), where (y,),, -+, (¥a), are constants — at least all
of those integrals which have a point in the interior of the region
D where the functions ¢ are regular. We shall say, then, that the
equations (35) represent the general integral of the system (33) in
this region.

From these equations it follows also that there are no other
systems of integrals than the analytic integrals which approach
%)y **-» (¥a), When x approaches x,. We have, in fact,

b=+ (x— %)Pt(%: Ty Py Yu)s

and the Jacobian D (¢, ¢, -y $u)/D(¥y Ygs -y Ya) reduces to
unity for ¢ = z,. According to the general theory of implicit func-
tions, the equations (35) have only a single system of solutions for
Yo Y s Yny which approwch (yl)o! R} (yl)o when = a.pproawhes Ty
and these solutions are analytic.

To sum up, through every point of the region D there passes an
integral curve, and only one, represented by n equations y; = y;(2),
where the functions y; are analytic so long as |z — a|=1.

1I. THE METHOD OF SUCCESSIVE APPROXIMATIONS. THE
CAUCHY-LIPSCHITZ METHOD

97. Successive approximations. The method of successive approximations has
been applied with success by E. Picard to ordinary differential equations and
to a great number of cases of partial differential equations, We shall apply it
to the treatment of differential equations with an important addition due to
Ernst Lindeldf.

Let y(z) be an integral of the differential equation dy/dz =S (g, ¥) taking
on the value y, for z = z,. The function y(z) satisfies the relation

(88) y(@) =+ f; s [ty (],
0

and conversely. The equation (88) is an integral equalion which is equivalent
10 the two conditions ¥’ () = f[z, ¥ (2)], ¥ (%,) = ¥, and which lends itself readily
to the method of successive approximations. We shall develop the method on
a system of two equations of the first order

dy

(89) 'd; =f(, ¥, 2), gﬁ_ =¢( v, 2),
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supposing first that the variables are real. We shall assume that the two func-
tions f and ¢ are continuous when z varies from «, to *,+ a and when y and z
vary respectively between the limits (y, — b, y, + b) and (z, — ¢, 2, + c) ; that
the absolute value of each of these functions f and ¢ remains less than a posi-
tive number M when the variables z, 7, z remain within the preceding limits;
and, finally, that there exist two positive numbers 4 and B such that we have

{lf(xv Vv, z)—f(z, v, z’)|<A|y—y’l+Blz_fli
9@ ¥, 2)— ¢z, ¥, 2) |< Ay — ¥ | + Blz — 7|

for any positions of the points (z, 7, z) and (z, ¥, 2’) in the preceding region.

Let us suppose, for ease in the reasoning, a >0, and let 2 be the smallest of
the three positive numbers a, b/M, c/M. We shall prove that the equations (39)
have a system of integrals which are continuous in the interval (zo, T, + k) and
which take on the values y, and 2, for z =z,. For this purpose we shall write the
equations (39) in the form of integral equations :

(40)

4D v@=vo+ [y O, 2018 2@ =2+ [ ot v, 201,

and we shall solve these equations by successive approximations in the same way
a8 for a system of simultaneous equations (I, § 34, 2d ed.; § 25 ftn., st ed.),
taking for the first approximation values the initial values Yo and z, themselves.
We are thus led to write

( x

yl(z)=yo +f' [, Yoy zo)dtl
2@ =2+ [ ®vor 2 dat,
@) =20+ [ 6t 10, 2)

(42) 1 .
1@ =¥+ [ 11t nO), n 014,

2@ =2+ [ ot ), O]
\ X,
and, in general, °

@ =vo+ [ St ta-1(0), 2m_1(O] 1,
(8)
@ =20+ [ B[t va1(t); 2a-s()] .

Let us prove first that this process of approximation can be continued indefi.
nitely if # is contained in the interval (z,, z, + k). We have, in the first place,
if = is within that interval,

1=l < MR <D,

and, similarly, |2, — z,|<c. If we replace y and z by %, and z, in the functions
J and ¢, the functions of z thus obtained are therefore continuous between z,
and z, + k, and their absolute values remain less than M. For the same reason
as before, y, and 2, are continuous functions of z in the interval (o, Zo + R),
and we have in this interval |y, — ¥,|<b, |2, — 2,/ <¢. The reasoning can be
continued indefinitely ; all the functions y, and 2, are continuous between z, and
Zo + %, and we always have in this interval |y, — y,|<b, |2s — 25| <C.
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In order to prove that y, and z, approach limits when n becomes infinite, let
us notice that we derive first, from the first of the relations (42),

(44) M@ —vl<M@Ez—=z), |z,(@)—2z]< M(z—z),

where z is any value whatever except z, in the interval (z,, z, + &). We have next
r
%@ = 1@ = [ {16 1,0, 201 = 7, vor 20}
0
and, by taking account of the first of the inequalities (40),
x x
Iva@) = @) < [ A11O = soldt+ [ BlnO — zld;

and therefore, by the inequalities (44),
—2)2
120) — 1y(@) | < (4 + By w EZ T

We have an analogous result for |z, (z) — z,(z)|, and, continuing in this way,
we see that we have in general *

| ¥n(@) = Yn—1(z) | < M (4 + B)r—1 1l ;‘:o)'l

(45) .
|2a(2) — 2n-1(@) | < M(4 + Byr-1 EZ D),

The two series

(46) ”o""(vl—yo)"‘(yg—y‘)'l‘"'+(1/n—1/n-l)+"'s
Z+t @G —2z)+ @B —2)+ + @—zmo1) + ey

whose terms are all continuous functions of z in the interval (z,, z, + k), are
therefore uniformly convergent in that interval. The values of these two series,
Y (z) and Z (z), are consequently continuous functions of  between z,and z, + A.
As the number n becomes infinite, the relations (43) become, at the limit,

Y(x)=1y, +£If[t, Y (), Z(t)] dt, Z(z) =z, +j;¢¢ ft, Y(t), Z(t)]dt.

For we have just seen that the differences Y () — yn—1(2), Z(Z) — 20-1(2)
approach zero uniformly in the interval (z,, 2, + %), and therefore, by virtue of
the relations (40), the integrals

ST X O, 201~ ST V1), 7a-sO]} a1,
[0t YO, Z01- oLt va-1(0), a1 O]}

approach zero when n becomes infinite. The functions ¥ (z) and Z (z) therefore
satisfy all the given conditions.

The preceding method is evidently applicable, whatever may be the number
of the equations in the system. The inequalities (40), which play an essential
part in the demonstration, are certainly satisfied for suitable values of 4 and B
whenever the functions f and ¢ have continuous partial derivatives with respect
to ¥ and z within the limits indicated for the variables; this is an easy conse-
quence of the law of the mean (I, § 20, 2d ed.; § 11, 1st ed.). Let us also notice
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that if the functions f and ¢ remain continuous when z varies between z, — a
and z, + a, and the variables ¥y and z between the same limits as above, the same
reasoning proves the existence of a system of integrals, Y (z) and Z (z), which
take on the values y, and 2, for ¢ =z, and are continuous in the interval (z,— &,
Zo + k), where k has the same meaning as before.

There are no other systems of integrals than Y (x) and Z (z) taking on the values
¥, and 2, for £ = z,. The reasoning being always the same, let us take for sim-
plicity a single equation dy/dz = f(z, ¥), and let us put, as before,

Y =%+ j:'f(ty Vo)dtt cey Yn=Yo +.£:f[tv Yn—-1()]dt.

Let Y, () be an integral of that equation which takes on the value y, forz ==z,
and which is continuous in the interval (z,, z, + @’), where a’ is less than the
smaller of the numbers a and b/M and such that we have | Y, (z) — y,| <b in this
interval. Since Y, satisfles the given equation, we can write

ni@-vo=[ I T,
and, consequently,

x
Y@ — val@) = [ (Tt Y101 — STt va-1()]} .
*o
Let us put successively in that relation n =1, 2, 8, ...; we have first

1 X1®) — (@) | < 4b(z — z,),
then

| 7,@) — 1) | < A [ "4b @~ zg)at = A EE,
and, in general, ’
| ¥,@ ~ vato) | < 4o E— 20,

The right-hand side of that inequality approaches zero when n becomes
infinite ; the integral Y, is therefore identical with the limit of y,, that is,
with Y'*,

28. The case of linear equations. The general reasoning proves that the integrals
are certainly continuous in the interval (z,, z, + %) defined above; but in quite
a number of cases we can state the existence of a more extended interval
in which the integrals are continuous. If, in fact, we go over the proof again,
we see that the conditions 2 <b/M, h <c/M are needed only to make sure that
the intermediate functions y,, 2,, ¥;, 2,,--- do not get out of the intervals
Wo— b, ¥o + ), (20— ¢, 2, + ¢), 80 that the functions f(z, v¢, 2), ¢ (2, ¥, 2)
shall be continuous functions of = between z, and z,+ k. If the functions
f(z, ¥, 2), ¢(z, v, 2) remain continuous when z varies from z, to z, + a, and
when y and z vary from — o to 4 o, it is unnecessary to make these require-
ments. All the functions y; ahd z; are continuous in the interval (z,, z, + a).

*Regarding questions concerning the approximate integration of differential
equations, the reader is referred to the articles of E. Cotton (A4cta mathematioa,
Vol. XXXI; Bulletin de la Société mathématique de France, Vols. XXXVI, XXXVII,
and XXXVIII; Annales de I’ Université de Grenoble, Vol. XXI).
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Agslin, in order to prove the convergence of the two series (48) it is sufficient
that there exist two positive numbers 4 and B such that the two inequalities (40)
are satisfied for any values of y, ', z, 2’ if z remains in the interval (z,, z, + a).
We recognize, in fact, on going over the calculations made above, that the in-
equalittes (46) still hold, provided that we indicate by M an upper bound of
|/ (=, ¥o» 2o)] and of | ¢ (2, ¥, 2p)| in the interval (z,, z, + a).

These conditions are satisfied, according to the law of the mean, if the
functions f(z, ¥, 2), ¢(z, ¥, z) have partial derivatives with respect to the
variables ¥ and z which remain finite for all values of ¥ and z when z varies
from x, to £, + @. Such, for example, is the case for the equation

dy .
=7 + siny;
the right-hand side is a continuous function, whatever z and y may be, and
the partial derivative &f/oy is at most equal to unity in absolute value.
All the integrals of that equation are therefore continuous functions when z
varies from — o to + w.* .
The preceding conclusions apply in particular to systems of linear equations

47) %=auyl+a.wa+---+af.1/.+b‘, (6=1,2-..,m)
where the coefficients ay, b; are functions of z. If all these functions are
continuous in an interval (x,, z,), all the integrals of this system are likewise
continuous in this interval; if the coefficients are polynomials, all the integrals
are then continuous when z varies from — o to + .

Limiting ourselves to real variables, we see that the integrals of linear equa~
tions can have no other singular points than those of the coefficients. This very
important property cannot be extended to many other equations, even though
they are apparently just as simple — for example, to the equation 3" = 3.

Note. We often have occasion to study systems of linear equations whose
coefficients are analytic functions of certain parameters. Let us suppose, for
definiteness, that the coefficients ag and b, of the equations (47) are continuous
functions of z in an interval (a, b), and that they depend also upon a parameter A
of which they are analytic functions in g region D.

The integrals of this system which take on given initial values for a value z,
of z included between a and b are represented in the whole interval (a, b) by
uniformly convergent series, and from the very manner in which we obtain
them it is clear that all the terms of this series are analytic functions of the

*We can deduce an analogous theorem from the calculus of limits. Let /(z, y) be
& function which is real for every system of real values of  and y and analytic in
their neighborhood. Suppose, besides, that |/ (z, )| remains less than a fixed num-
ber M when we have respectively | R (z/%)| =a and | R(y/D|=b. U zo, ¥, are & pair
of any real values of x and y, the function f(z, ) is analytic in the region defined by
the inequalities |z—2¢|=a, |y -y,|=b, and its absolute value is less than M.
Then, by the calculus of limits, the integral of the equation y’'=f(z, y¥), which is
equal to y, for =z, is surely analytic in a circle C' whose radius 7 is independent
of z,, yo. We can follow the analytic extension of that integral along the real axis
by means of circles of radius r, and we see that it is analytic in the interior of the
strip bounded by two parallels to the real axis at a distance = from it.
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parameter A in D. These integrals are therefore themselves analytic functions of N
in the region D (Part I, § 89).

Most frequently the coefficients a; and b; are integral functions of the
parameter \; the integrals are therefore themselves integral fu.ctions of A.
We can obtain directly the developments, according to powers of A, of the
integrals which take on given initial values, by first substituting in the two
sides of the equations (47) developments of the form

Vi=Uo+UgN+ -+ UpAP + - ., (i=1,2,...,")
where the variables u; are functions of z, and by then equating coefficients.
The functions u,p must take on the given initial values for z = z,, while the
other functions u,;, where k=1, must be zero for z = z,.

Proceeding in this way, we find, step by step, systems of linear differential
equations for determining these coefficients. We shall return to this subject
later.

29. Extension to analytic functions. The method can be extended to complex
variables. To do so it suffices to observe that we have for analytic functions
of one or several variables inequalities analogous to the inequalities (40). First,
let f(x) be an analytic function of a complex variable z, in a region bounded
by a convex curve C and also on the boundary, and let 4 be the maximum
value of | £ ()| in this region. The difference f(z;) — f(x,), where z, and z, are
any two points of that region, is equal to the definite integral ff*(z)dz taken
along the straight line joining these two points. We have, therefore,

1f(@) —f(z)) | < 4|23 — z{].

Similarly, let f(z, ¥) be an analytic function of the two variables z and y
when these variables remain respectively in two regions Q and " bounded by
two closed convex curves C and C’, and let A and B be the maximum values
of | f,| and of |f;| in this region. If z, and z, are any two values of z in @, and
v, and y, any two values of y in ', we can write

S (@gy ¥2) =S (215 V1) = [S(®21 ¥5) = F (@44 ¥5)] + [ (@4, v2) = F (&g, %),

and, consequently, from what we have just shown, we have

17 (g ¥a) = F (21, ¥1) | < A|2Zg — 2, |+ Blyz — 3|

The proof is the same whatever the number of the independent variables.

Having seen this, let us limit ourselves, for simplicity, to the case of a single
equation, a

(48) Z=7@),
the right-hand side of which we shall suppose to be analytic in the region defined
by the inequalities |z — Z,|= a, |¥ — ¥o|=b. Let M be the maximum value
of | f(z, ¥)| in this region, and & the smaller of the two numbers a and b/M.

In the plane of the variable z let us describe a circle C, of radius A about the
point z,, as center, and let us put, as above,

n=vot 16008 n=v+ [In01@ o

w=vo+ [ Il va-r )],
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where the upper limit  is a point within C;. We prove first, step by step, that
we have

'yl_”o|<b’ Iyﬂ—y0|<bi sy IV-"'Vo|<bv St

All the functions y;, ¥,, +++, ¥a, + - - ar8 therefore analytic functions of z in the
circle Cyj, and the process can be continued indefinitely. Moreover, we have

49 %@ =@ = T o1 O] = 7T -2 O

where the integral is taken along the straight line joining the two points z,, 2.
Let A be the maximum value of |3f/2y | in the region |z — z,| =k, |y — ¥, | =b;
then, according to the observations made just above, we have always

Wt 1)) =St Yn—2 O] | < 4 |¥n-1(0) — Un—-2(t)|.

In order to prove that we have an inequality analogous to the inequalities (45),
let us suppose that we have

[¥ao1() — Yn—2(t)| < Man-2 = Tl""

zn-—l)l ’

which is evidently the case for n = 2. Let z = z, + ref’; the change of variable
t — x, = pedi reduces the integral (49) to an integral taken along the real axis

from 0 to r, and we have (Part I, § 44)
r n—1 ™
—_— An—1_P" " 4y — Man—1 T
@ = a1 @1 < [ UAr-1 B e =

or

T—Zy|"
|Yn(Z) = ¥n-1(2)| < MAn-1 ITO"

The proof can be completed as before. The series whose general term is
¥n— ¥Yn—1 18 uniformly convergent in the circle Cj;, and, since all the terms
are analytic functions, the sum of that series is an analytic function in the
same circle (Part I, §89), which satisfles the equation (48) and which takes
on the value y, for ¢ = z,. The development in power series of this integral
is necessarily identical with that furnished by the calculus of limits, but the
limit obtained for the radius of convergence is greater than that given by the
first method.

The remark relative to linear equations applies also to analytic functions.
Let us suppose that the coefficients a; and d; of the equations (47) are analytic
functions of the complex variable z. Let us mark in the plane the singular
points of these functions, and let us suppose that from each of these singular
points a ray is drawn following the prolongation of the segments from z, to the
singular point. The set of points of the plane which are not situated upon any
of the preceding lines is called the star corresponding to the system of singular
points. The straight line which joins the point z, to a point z of the star does
not pass through any of the singular points, and the method of § 28 proves
that all the integrals of the system (47) are analytic functions along that straight
line. The point z being any point of the star, it follows that all the integrals of
the linear system (47) are analytic functions in the whole star — a result which
will be established later in another manner (§ 87).

The method of successive approximations enables us also to obtain for the
integrals developments in series converging in the whole star. Let A be a region
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of the plane bounded by a closed curve C lying entirely in the star; the series
furnished by the method of successive approximations are uniformly convergent
in A. The remaining details of the proof are left to the reader, since they do
not differ essentially from the details of the proof given before.

80. The Cauchy-Lipschitz method. The first proof given by Cauchy of the
existence of integrals of a system of differential equations has been preserved
in the lectures by Moigno published in 1844. It was considerably simplified by
Lipschitz, who made clear just what hypotheses were necessary for the validity
of the proof.

In order to gain a clear grasp of the whole process, let us take the simple
equation d

i =f(z).

We have shown (I, § 78, 2d ed.; § 76, 1st ed.) that the integral of this equa-
tion which takes on the value y, for z = 2, is the limit of the sum

(50) o+ (o) (2, — Z)HS(2) @ —2) + + - + S (@n—1) (T — Ta—1)y
where z,, g, « + +, Zn~1 are n— 1 points of the interval (z,, ), as the number n
becomes infinite in such a way that all the intervals (z; — z;_,) approach zero.
It is this process, suitably generalized, which leads to Cauchy’s first method.
In order to simplify the exposition, we shall take the case of a single equation,

1) 2 1@ ).

We shaii suppose that the function f(z, %) of the real variables z, y is continuous
when z varies from z, to z, + @ and when y varies from y,— b to y, + b, and
that there exists a positive number K such that

(52) @ v)—re <Ky —vl,
where y and y’ are any two numbers included between y, — b and y, + b, and
where z lies between z, and z, + a.

This condition, the importance of which was brought out by Lipschitz, will
be called, for brevity, the Lipschitz condition. It has already been used in the
method of successive approximations (§ 27; and I, § 84, 2d ed.; § 25 ftn., 1st ed.).

Let M be the upper limit of | f(z, ¥)| in the preceding region, and A the smaller
of the two numbers a and b/M (we suppose a >0, b > 0). In order to prove that
the equation (61) has an integral which takes on the value y, for z = z, and
which is continuous in the interval (z,, z, + %), we shall imitate so far as pos-
sible the procedure followed in establishing the existence of a primitive function
for f(z). Let z be a value of the variable belonging to the interval. Let us take
between z, and z a certain number of intermediate values, Ty Lgy » ooy Li—1y Ty
»++yZn_1, Proceeding in increasing order from z, to z. We shall put successively

(63) ¥, = yp + S (g, ¥o) (X1 — Zp)y Y =¥, + S (2, ¥)) (T3 — Zy)y eecy
end, in general,

(64) Yi=vi-1+f(@-1, ¥i-1) (@ — 24—3). (=12 ,n=1)

The sum

(65) {Vn = ¥o + S (Zoy Vo) (B — To) + S (2y, 1) (Tg —Tg) + ¢+«
+ (a1 Yn=1) ( ~= Zn-1)
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presents an evident analogy with the sum (50), to which it reduces when the
function f(z, y) does not depend upon y. We are thusled to investigate whether
or not that sum approaches & limit when the number » becomes infinite. We
shall generalize the question by defining first two sums analogous to the quan-
tities S and 8 (I, § 72, 2d ed.; § 71, 1st ed.).

Let us consider the triangle A BC formed by the straight lines defined by
the equations

X =ux,+ b, Y=y, + M(X—2), Y=y,— M(X—z)).

From the way in which we have defined %, the function f(z, y) is continuous
when the point (z, ) remains in the interior or on the sides of this triangle,
and its absolute value is at most equal to M.

The parallels to the y-axis, X=z,, X =gz,,..., X =gz, divide the triangle
ABC into a certain number of isosceles trapezoids of which the first reduces

rd

v /B

P.

X Zo+h

Fie. 1 \0

N

to a triangle. Let M, and m, denote respectively the maximum and mini-
mum values of f(z, ¥) in the triangle Ab,¢, ; then we have — M=m, <M, = M.
Through the point A let us draw the straight lines with slopes equal to M, and m,,
meeting the straight line X = x, in two points, P; and p,, whose ordinates are
respectively ¥, =y, + M,(z, — z,) and y, = y, + m,(z, — z,). The letter y, no
longer denotes the same thing as in the expressions (63) to (55). These points,
P, and p,, are evidently in the interior of the triangle 4 BC or on its sides, and
we have ¥, >y,. Through the point P, let us draw the straight line with the
slope M up to its intersection with the straight line d;¢, in @, and through p,
let us draw, similarly, the straight line with slope — M up to its intersection g,
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with the same straight line bgc,. Let My and m, be the maximum and minimum
values of f(z, ¥) in the trapezoid P, Q;¢,p,; the straight line with the slope M,
drawn through P, meets the straight line b,c, in a point P, whose ordinate is

Yo=Y, + My (2, — zy),

and the straight line with the slope mg; drawn through p, meets by¢, in a point
P, With the ordinate y; =y, + my(2; — 2,). We have evidently Y, >y, and
Y, -1, =Y, — 1, the equality holding only if the function f(z, ¥) is constant
in the trapezoid P, @;q,p,. This process can be continued. Having obtained two
points, P;_; and p;_3, on the straight line ¢;—1 51, let us draw through P; _; a
parallel to 4B, and through p;_1 a parallel to AC. We thus form an isosceles
trapezoid P;-1Q¢qiPi—1. Let M; be the maximum value of f(z, ) in this trape-
zoid, and my the minimum value; the straight line with the slope M; drawn
through P;_; meets the straight line ¢;b; in a point P, and the straight line
with the slope m; drawn through p;_; meets c;b; in a point p;. We thus form
two broken lines starting from the point 4, namely, AP,P, -« P;_1P;--: Py,
or L, and Ap, py -+ Pi—1 Di++- Du, Or I, ending in the two points P, and p, of
the straight line X = z. From the manner in which these two lines were con-
structed it is evident that they both lie in the triangle 4 BC, that the line L is
never below [, and that the distance between these two lines, measured on a
parallel to the axis Oy, cannot diminish when the abscissa increases from z, to x.
The ordinates ¥, and y, of the two extreme points are entirely analogous to the
sums 8 and 8 (I, § 72, 2d ed.; § 71, 1st ed.). We shall put S = Y,, 8 = y/a.

To each method of subdivision of the interval (z,, ) corresponds a sum S
and a sum 8. If we subdivide each of the partial intervals (z,..1, z,) into still
smaller intervals in an arbitrary manner, the preceding geometric construction
ghows immediately that the line L’ corresponding to this new division is never
above L, and the line I’ is never below . We have, therefore, 8’'= S, 3’ = s,
where the accented letters denote the sums, relative to the second division. We
conclude from this (a8 in § 72, 2d ed.; § 71, Ist ed.) that if S, s, S,, s, represent
respectively the sums relative to any two methods of division whatever of the
interval (z,, ), we have 8 = §,, 5, = 8. Indicating by I the lower limit of the
sums 8, and by I’ the upper limit of the sums s, we have, therefore, I’ = I.

In order that the sums 8 and s shall have a common limit when the maximum
length of the partial intervals approaches zero, it is necessary and sufficient that
8 — s approach zero. In fact, we may write

8~83=8S—I+4+I-I4TI-—s,

and the difference S -~ s cannot be less than a number e unless each of the num-
bers 8§ — I, I — I’, I’ — 8 (no one of which can be negative) is itself less than e.
Since e is an arbitrary positive number, this cannot happen unless we have
I’ = I, and it is, moreover, necessary that S and s shall have the same limit I.
In order to prove that S — s has zero for its limit, it is not sufficient to suppose
that the function f(z, ) is continuous, and it is here that the Lipschitz condition
plays a part.

Let Y; and y; be the ordinates of the points P; and p¢, and 3 the differ-
ence Y; — ;. Since the function f(z, ¢) is continuous in the triangle 4 BC,
corresponding to every positive number A we can find another positive number

h th
« such that 7@ ) =S @ V) <N
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provided that the distance between the two points (z, 7) and (z’, ¥) of the tri-
angle ABC is less than ¢. We shall suppose that all the differences x; — z;._;
are less than ¢. From the construction by which the points P;, p; are obtained
from the points P;_;, p;—1, We have

3 =31 + (Mi — my) (T4 — 24-3).
On the other hand, we can write

M — mq = f (24 ¥0) — T (25 ¥0)
=S (@ ) — 1 ) + (R{CAA AR (AR T}

where (z, ¥;) and (z{’, ;) are the cobrdinates of two points of the trapezoid
P;_1Qiqipi—1. We have, therefore, by the condition (52),

Mi— mi<\+ K|y{ — ¥
But the difference |y;" — ;| is at most equal to 3,_; + 2 M(z; — z;_;), and we
have
Mi—mi< AN+ 2MK (z;:— Zf—:).+ K8 _,.
1f we take all the intervals so small that each of the products 2 MK (z;— Z-3)
is less than )\, the difference M;— m; will be less than 2\ 4+ K3;_;, and conse-
quently we shall have the inequality

(56) 8 < 8io1[1 + K (m — 2i-1)] + 2 (3 — -1),
which can be written in the form

2 22\
3 — 3 —)I1 —_xi-1)].
I+K<(i 1+K)[ + K (x — 2i-1)]
We have, therefore, a fortiori,
2\ 22X\
3‘ + =< e’“‘(—z‘—l)(ﬂ{_l -+ _).

Putting i =1, 2, ..., n successively in this last inequality and multiplying the
two sides of the inequalities obtained, we find
22X 21

8 + x < 'fex("'_"’)-

or
22
S—8=28, < — [eKz—z) — 1].
8 <K[e ]

Since it is possible to take the positive number A as small as we wish, provided
that all the partial intervals are themselves less than another suitably chosen
positive number, we see that the sums S and s have the same limit, That umit is
a function of z, say F(z), defined in the interval (z,, z,+ k). We shall now show
that this function F(x) is an integral of the given equation (51), and that it
reduces to y, for ¢ = z,. In showing this we shall continue to make use of the
geometric representation.

If all the partial intervals approach zero, not only the extremities of the two
broken lines L and ! approach a limit point, but the lines themselves approach
a limiting curve. Any straight line parallel to BC meets the line L in a point P,
and the line ! in a point p, and the distance Pp is less than S —s. From the
properties of these broken lines, all the points P have their ordinates greater
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than the ordinates of the corresponding points p; and since the distance Pp
approaches zero, it follows that the points P and p approach a single limit point =
lying on the line considered. The locus of these points, =, is evidently a curve O
lying between the two broken lines L and ! and passing through the point 4.
The ordinate of a point of that curve with the abscissa z is equal to the func-
tion F(z) just defined, for in order to obtain the position of the point # on the
line X = 2, we make use of only the portions of the broken lines which are on
the left of that line. Let us suppose the two broken lines L and ! produced up
to the side BC, all the partial intervals being less than the smaller of the two
numbers ¢, /(2 MK), and let P (z) and Q(x) be two continuous functions which
represent the ordinates of a point of the line L and of the line { in the interval
(o, To + k). The difference P (z) — Q(z) is less than 2 (X4 — 1)/K, and each
of the functions P (z), Q(z) differs from F'(z) by a still smaller quantity. Since A
can be made as small as we wish, we see that we can construct a uniformly
convergent series of continuous functions in the interval (z,, , + %) which has
F (z) for its sum ; this function is therefore itself continuous (see Vol.I, § 81,
2d ed.; §178, 1st ed.).

Every broken line included between L and { has evidently the same curve C
for its limit. Such would be the broken line A, whose successive vertices have
the cobrdinates obtained by the recurrent formula

2 = 2i—1 + f(Ti-1, 2i-1) (T — Ti-1),
the first vertex being the point (z,, ¥,). Thus we find again the expressions (54)
which served as our starting point. Let us notice also that if we apply the
construction starting with a point M’ (z’, ') on the curve C, we obtain two
broken lines L’ and I’ lying between L and !, which also approach more and
more the portion of C included between M’ and the straight line BC. Let now
M (z’, v') and M” (z”, y”’) be two neighboring points of C (z” > z’). The slope
of the straight line M’M" lies between the maximum and minimum values of
J(z, ¥) when the point (x, ¥) moves over the triangle formed by the straight lines

X=2", Y-y=MX-2), Y—¢=—MI-2);

if the difference z”” — 2’ is less than a suitably chosen positive number, these
two values of f(z, y) will differ from f(z’, ) and from f(z”, y”’) by as little as
we wish, If one of the two points, M”’ for example, approaches the first one as
& limit, the slope of M"M” will therefore have for its limit f(z’, ¥). The func-
tion F(z) consequently satisfies the given differential equation (51). It is, more-
over, evident that the curve C passes through the point 4, that is, that we have
F (o) = ¥o-

The curve C is the only solution of the problem. If there existed a second
solution €, this curve €’ could not be at the same time below all the lines L
and above all the lines I, since these lines approach the curve C. We can there-
fore find a line — for example, L — which will be cut by this curve C”. Since C’
is below the line L in the neighborhood of the point 4, let us suppose that it
passes above L, crossing that line in a point n; of the side P,_, P;, and let m;_,
be the point of C” with the abscissa 2y—2. The slope of the chord m; 37 is equal,
by the law of the mean, to the value of the function f(z, ¥) at a point of the arc
my_1 n;; hence this slope cannot be greater than the slope of the side P;_, P;,
since the arc m,_1n; is in the trapezoid P;_;Q:;q(p;-1. But the figure shows
that the slope of the chord must be the greater.
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Cauchy’s first method and that of the successive approximations give, as
we see, the same limit for the interval in which the integral surely exists. But
from a theoretical point of view Cauchy’s method is unquestionably superior:
we shall show, in fact, that this method enables us to find the integral in every
finite interval in which the integral is continuous. More precisely, let us sap-
pose that the equation (61) has an integral y = F'(z) continuous in the interval
(zgy Zo + 1), that the function f(z, ) is itself continuous in the region (X) of the
zy-plane bounded by the two straight lines z = z,, z = z, 4+ ! and by the two
curves ¥ = F(z) & %, where 7 is a positive number taken at pleasure, and that
J(z, v) satisfles the condition (62) in this region. Let us suppose that we divide
the interval (z,, ¢, + ) into smaller partial intervals and that we construct
the broken line A by the method which has just been explained, relative to
this manner of division and starting from the point (2,, ¥,). If all the partial
intervals are less than a suitadle positive number o, this broken line will lie entirely
in the region (E), and the difference of the ordinates of two points having the same
abscissa, taken on the integral curve C and on the line A, will be less than any positive
awymber ¢ given in advance. *

Let z,, Z,, Ty, «++y Ti—1, Ti+++y Tn—1, Zo + I be the abacissas of the points of
division, let y,, ¥y, - - -, ¥ be the corresponding ordinates of the curve C, and let
Vor Z1y %9y * *+y iy + + +y 2n be the ordinates of the vertices of the line A. Let us
flrst suppose that all the vertices to the left of the vertex (z;, 2,) are in the
region (E), and let us consider the problem of calculating an upper bound
for the difference d; =|z; — |-

We have, on the one hand, from the very definition of A,

2z = zi—1 + (@i -1, Zi-1) (&5 — Ti-1)-
On the other hand, from the law of the mean, we have also
Yi = Vi1 + S (&5 v2) (@ — zi-1),

where (z;, y;) are the cobrdinates of a point of C, and where z; lies between
2;—1 and z;. We derive from these equations

67 zi—yi=2zi—1— pi-1+ @ — Ti—1) [f(@i-1, 2e-1) = F (@, VD15
and the coeflicient of (z, — z:—j) can be written in the form

[f (Zi=1, Zem1) = S @i=1, ¥i-1)] + [ @i~1, Vi—1) =S (&5 D]

The absolute value of the first difference is, by the condition (62), less than
Kd;_;. On the other hand, since the function f(z, ¥) is continuous in the region
(E), it is a continuous function of z along C, and we can find a positive number ¢
so small that | f(z, ¥) — J (¥, ¥’)| 18 less than a given positive number 2 X for any
two points of the curve C, provided that |z — z’| is less than ¢. Having chosen
the number ¢ in this way, we have

(68) di<dioy + @~ 2-1) @\ + Kdia),

a relation which is very similar to the relation (56), and from which we obtain,
as before, the inequality an
&< x [eE@-=p —1].
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Let us suppose that the number X is so small that we have 2 (eX? — 1) < K.
We may then establish, step by step, that each of the differencesd,, dy, .-, dy is
less than . All the vertices of the broken line A are therefore in the region (E).
Let P(z) be the ordinate of a point of the line A ; similarly, let Q(z) be the
ordinate of a point of the auxiliary broken line A’ obtained by joining the
points of C having the abscissas z,, Z,, Z,, - -+, Tn—1, Z, + {. Then we have

P(@x)=F(z) =P(x)— Q@) + Q) — F ().

If the oscillation of the function F(z) in each of the partial intervals is less
than ¢/2, we have always |Q(z) — F(x)| <e/2 (see Vol. I, § 206, 2d ed.; §199,
1st ed.). If also the number 5 is less than /2, we have | P(z) — Q ()} <e/2, and
therefore | P(z) — F(z)| <e. Then the continuous function P (z) represents the
function F(z) with an error less than ¢ in the whole interval (z,, z, + {).

The Cauchy-Lipschitz method can be extended to systems of differential
equations without any other difficulty than some complications in the formule.
1t applies also to complex variables. The investigations of E. Picard and of
Painlevé have shown that tHe method leads to developments of the integrals in
convergent series in the whole region of their existence if the right-hand sides
of the given equations remain analytic in this region.

III. FIRST INTEGRALS. MULTIPLIERS

31. First integrals. Given a system of n — 1 analytic differentinl
equations of the first order, we shall write these equations in the
symmetric form

(59) —_— =t = . e =

where the denominators X,, X, . . ., X, are functions of the n variables
Z, -+, &,. This form of the equations does not involve a choice
of the independent variable, which may be any one of the variables
or may be chosen arbitrarily. We have seen above that, under
certain conditions which have been defined, all the integrals of this
system which pass through any point of a region D are represented
by a system of equations of the form

(60) {fl(xv Tttt E) = Cp S2(@p @y o -0y Ta) = Cy i}
j‘l—l(xl) Lyy =%y zn) = Cu—l)

where f,, f;, - - -, fa-1 are (n — 1) functions analytic in D, and where
¢, C, - -+, C,_, are constants which may be arbitrarily chosen, at least
within certain limits (§ 26). The formula (60) represent the general
integral of the system (59) in the region D; but there may be other
values of the variables also, for which (60) represents the solution.
It may happen that we obtain several different systems of formule
zepresenting the general integral in different regions. It is also clear
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that, in the same region D, the system of equations (60) is not the
- only possible representation. We can replace the (» — 1) functions
J: by (n — 1) functions F; which depend only upon the functions f;,
provided that these (» — 1) functions F; are independent functions
of the variables f;.

However the functions f; have been taken, if the formule (60)
represent the general integral of the system (59), the functions f;
satisfy the same partial differential equation of the first order. For,
let us suppose the cosrdinates of a point z,, x,, - - -, 2, of an integral
curve expressed as functions of a variable parameter. If we replace
the coordinates z, z,, - - -, z, in f; by their expressions as functions
of this parameter, the result reduces to a constant.” We have, there-
fore, df, = 0, and, replacing the differentials dx,, dx,, - - . in df; by
the proportional quantities X,, X,, ..., we fiud that f; satisfies the
relation o s s

f f

(61) X(f)=Xl£;+x15z—a+...+X"a—xn—0.

This relation must reduce to an identity, when f is replaced by £,
since we can choose the constants C; in such a way that the integral
curve passes through any point of D. The (» — 1) functions f,, f,,
-« +, fu—1 are therefore (» — 1) integrals of the equation X (f)= 0.
Every function II(f,, f; - - *» fu-1) i8 also an integral of the same
equation, whatever may be the function II, by the relation

X = 52 X(F) +%%X(fa) ok g XU,

which is easily verified.
Conversely, we obtain in this way all the integrals of the equation
X(f)=0. For, eliminating the coefficients X; from the n relations

X(f)=0, X(fx)=os *c X(j;_l)=0,
we obtain

D(f’fu.ﬂn i ".f:--l) — 0,

D(a:,, Tyt t a:,)

which shows that f'is a function L (£, f;, * - *sfu—1) Of the (n —1) par-
ticular integrals £, £y + -+ fu1 (I, § 55, 2d ed.; § 28, 1st ed.). We
can also verify this by a change of variables. Let us suppose, in fact,
that we take a new system of independent variables y,, ¥,, - - -, ¥,,
where the n — 1 variables y,, ¥,, - - -, ¥,_, are precisely the functions
Jo Jor+**s fu—y themselves, and where the variable y, is chosen in
such a way as to form with y,, y,, - - -, ¥, 2 system of » independent
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functions of the original variables z,, x,, - .-, z,. Then the equation .
X(f) =0 is replaced by an equation of the same form

vy U o _
(62) YU)—Ylayl+y.ay’+"'+yqay-_o,

which must have the (» — 1) particular integrals

S=v tt S =Yu-ar
We have, therefore,
Y=Y=...=%,_,=0,
and the equation (62) reduces to 2f/dy, = 0. The general integral is
therefore an arbitrary function of y,, ¥, - - -, ¥n-1.*

The integration of the partial differential equation X(f)=0is
therefore reduced to the integration of the proposed system of dif-
ferential equations (89). Conversely, let us suppose that we have
obtained an integral f of the equation X(f)=0 in any manner
whatever. If we replace x,, z,, - - -, z, in that function by the coor-
dinates of a point of an integral curve, supposed to be expressed as
functions of a variable parameter which may be one of the cobrdi-
nates themselves, the result obtained redices to a constant. In fact, if
we suppose that x,, x,, - - -, x, are functions of a variable parameter
satisfying the relations (59), the total differential df of the preced-
ing function reduces to KX (f), where K denotes the common value
of the ratios dir;/X,. The equation f = C is therefore a consequence
of the given system of differential equations. For this reason we say
that the function 7 is a first integral of that system.t

If we know n — 1 independent first integrals, we can write im-
mediately the general integral of the system (59); if we know only
p independent first integrals (» < n —1), we can reduce the integra-
tion of the given system to the integration of a system of n —p —1
differential equations. For, let f,, f;, - - -, f; be these p first integrals.
From the p relations

5i=Cy fi=0Cy MY =0,

* The two modes of reasoning do not require that the function f should be analytic.
The only necessary conditions are those which are required in order that we may
apply the formuls for change of variables, that is, the existence and the continuity of
the partial derivatives of the desired function /.

t The reasoning would no longer apply if the factor K were infinite for all the
points of the integral curve, which would be the case if the codrdinates of all the
points of that curve were to make the n functions X; vanish. It is also necessary
to make an exception of the integrals which are such that at least one of the functions
X, X3, - -+, Xn is not analytic in the neighborhood of any point of that curve. This
case arises when there are singular integrals.
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we can obtain p of the variables z,, =,, - - -, z,, for example, z,, =,

-+, &,, a8 functions of the remaining n — p variables z,,,, - -+,
, and the p arbitrary constants C,, C,, ..., C,. It will suffice, then,
to determine ,.,, Tp44,- - T, 88 functions of a single independent
variable. If we denote by '+ Xptw - X, the new functions
resulting from X, ,,, X, 4, - - -, X, after we have replaced z,, «,, - -+,
z, in them by their expressions, it will suffice, therefore, to integrate
the new system,

(63) —-Ldz +1=—de +’=...=d_m",

XP +1 Xp +2 Xu

in which the new denominators depend upon p arbitrary constants.
‘We can also reason in another way. If we take a new system of
independent variables, ¥, y,, - - +, ¥, Where the p variables v, y,,- - -,
¥, are identical with the » known first integrals f, f;, - - -, f,, the
equation X ()= 0 is replaced by an equation of the same form,
Y(f)=0, which must have for integrals f'=y,,--., f=y,. That
equation is therefore of the form
9 o _
Vgl oo+ Yugk
and its integration reduces to that of a system of n — p —1 differ-
ential equations of the first order,

We see from this the importance of looking for first integrals.
In each particular case the discovery of a new first integral con-
stitutes a step farther toward the complete solution. It would not
be possible to give a very definite rule of procedure for this purpose.
Let us merely notice that the problem amounts to forming an inte-
grable combination of the equations (59), that is, to determining n
factors, u,, p,, - - -, Ky, 80 that

X Xt 4 p X, =0,
and that
f‘lde + /"gdxg + .04 /‘ndx
is an exact differential d¢. For it is clear that we can deduce from
the equations (59) a new ratio equal to the first

dz; _ pdzy + - - - + poda
X, X 4+ X,
hence the relation
d¢ = pde, + - - - + p,dz, =0
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is a consequence of the equations (59) if

"‘1X|+"' +l“'nxu=o'
It follows that we can find a first integral by quadratures if we
know the factors w;. This is the case in particular whenever we

can find n factors, w, m,, -, u,, such that the factor u; depends
only upon the variable x;, and such that

3u. X, =0.

Let us also observe that, if we have obtained p first integrals of
the system (59), it may happen that the new system (63) can be
integrated completely for particular numerical values of the con-
stants C,, C,, - -, C,, while the actual integration is impossible for
arbitrary values of these constants.

Ezample 1. Let it be reéquired to integrate the system

du dv dw
(M) E = ww, d: = wu, E = uv.

We easily see two integrable combinations udu = vdv = wdw. We have, there-
fore, two first integrals, u? — v2 = C,, u? — w? = C,. Hence, putting the values
of v and of w obtained from these relations in the first of the equations (64),
we have for the determination of u the differential equation

d
(65) &= V&= 0) @ =0y,
the general integral of which is an elliptic function (§ 11), reducing in special
cases to a simply periodic function or even to a rational function. Since the
given system is symmetric in u, v, w, we conclude that v and w are also elliptic
functions.
Ezample 2. Let us consider the system

(66) a—;:rn—qw. %:pw—m, %:qu—pv,
where p, g, r are given functions of z. We have again an integrable combination,
udu + vdv + wdw = 0, from which we derive the first integral, u? + v2 + w? =C.
Discarding the case where C is zero, we may suppose C = 1, for the system (66)
is not changed by multiplying u, v, w by the same constant factor. Instead of
solving the relation u2 4+ v2 + w? = 1 for one of the unknowns, we can proceed
in a more symmetric manner by considering u, v, w as the codrdinates of a
point of a sphere of radius unity and expressing them as functions of two varia-
ble parameters — for example, in terms of the parameters which determine the
rectilinear generators of the sphere. Let us put for that purpose

u + v 1+w_)‘ ut+iv_l—w

1—w u—t0 " Tvw a—w_ _»
which gives
u—l—M, o=i.1_t..l_‘.‘, w=§i‘_‘.

TA=p AN—p A=pn
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Substituting these values of u, v, w in the system (66), we find after some
easy calculations that A and x must satisfy the same Riccati equation,

o3,

do . q—ip  q+ip
8 bk PR, -
(67) ire + 2 + 2

Hence the integration of the given system is reduced to the integration of a
Riccati equation.#
Ezample 8. Let us consider the equation integrated by Liouville,

V'+e@y +50)y?=0.
Putting ¥’ = 2, we may replace the given equation by the system
dz _dy _ —dz

T 2 ¢@z+/
from which we derive the integrable combination dz/z + ¢ (z)dz 4 f(y)dy = 0.
The given equation of the second order has therefore the first integral,
y’ef-:"‘“)"’efv:"”"" —C
- ’

which we could also have obtained directly by dividing all the terms of the
equation of the second order by y°. The preceding equation of the first order
is of the form 3= CXY ; hence, by separating the variables, the integration
may be completed by two quadratures.

Note 1. We sometimes replace the system (59) by the system

dz dz, dz,
68) ot =2
¢ X, X, X, ’

where ¢ is an auxiliary variable which is introduced in many cases only for the
sake of greater symmetry in the reasoning. If the original system (59) has
been integrated, we can obtain ¢ by a quadrature, for if we replace z,, 24, ---,
z,, for example, by their expressions in terms of z, and of the constants C,,
Cyy +++y On—1in X,, we are led to a relation,

dt = P(z,, C,, C3,+-+, Cp_1)dz,,

from which we can find ¢t by a quadrature. It follows from this that the gen-
eral integral of the new system (68) will be represented by the n equations of
the form
fi=0C Ja=C, .. Ja—1= Cp-1,
69! 1 1 29 )
(69) { f,.(:t,,a:,,---,z,.):t—to,

where f, fy, -++, Ja—-1 are (n— 1) independent integrals of X(f)=0, and
where f, is a new arbitrary constant.

Conversely, in order to obtain the integral curve of the system (59) that
passes through the given point z§, z3, - - ., z3, we can look for the integrals of

# See DARBOUX, Théorie des surfaces, Vol. 1, chap. ii.
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the system (68), where ¢ is considered as the independent variable, which for
t = 0 take on the values 2}, z3, . - ., 20 respectively. Let

(70) {31=¢1(t; 21,“',2.), z, = ¢g(t; 51,"',331 bR

In = %(t; zgv ] z:)
be these integrals ; it is clear that the preceding expreasions represent the inte-
gral curve sought. We should have to make an exception only if all the func-
tions X; were zero for the initial values z{ and analytic in the neighborhood.
In this case the expressions (70) should reduce to z; = z{. But, since the ratios
dz,/dz,, - - +, dZ/dz, appear in an indeterminate form, nothing justifies us so
far in saying that there is no integral curve passing through the given point.
This is a case which will be examined later (§ 75).

Note 2. The relation which exists between the system of differential equa-
tions (59) and the linear equation (61) proves that X (f) is a covariant of the
gystem (59). The meaning of this statement is as follows: Let us suppose that
we take a new system of independent variables, y,, ¥, - - *, ¥s, connected with
the variables z,, Z,, -« +, 24 by the relations

(1) 2= ¢i(¥ys Vas * * *» Yn)- G=1,2,---, 1)
By the formule for change of variables, 3f/az; is a linear homogeneous func-
tion of the derivatives 3f/2y;, and X (f) changes into an expression of the
same form, f

af
72 Y + Y Y=

3 = aﬂ 311 n
where Y,, Y,, - -+, ¥, are functions of y,,y,, < -+, ¥a. This being true, we may
now assert that the same change of variables applied to the system (69) leads
to the new system of differential equations,

=0,

(79) dy, _dva_  _dun

We could establish this by a direct calculation, but it results also from the
preceding properties. In fact, let

T A==
be the system to which we are led by applying to the original system (568) the
change of variables (71) ; it suffices to show that Z,, Z,, ..., Z, are proportional
to ¥,, ¥g,:-+, ¥y. Now let f(z,, Z4,--, Z») be a first integral of the system
(69) and

F(l/p Ygr*<» Vn)

the function derived from f(z,, «,, -+, z,) by the change of variables. Since
we have X (f) =0, we have also ¥ (F) = 0. Besides, F(y,, ¥g, -, ¥n) i8 evi-
dently a first integral of the new system (74), that is, an integml of the linear

equation 7
? oF
Z(F Z,—+ o+ Z,—=0.
&)=z -

Since the linear equations Y (F') = 0, Z(F') = 0 have the same integrals, their
coeflicients are proportional, which proves the theorem.
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This last point in the proof results from the fact that s linear equation
X (f) = 0 is completely determined, except for a factor, when we know (» — 1)
independent integrals, f,, f3,:++, fa—1, of it. In fact, the (n — 1) equations,
X (f)) =0, linear and homogeneous in X, , X,, ..., X,, determine the ratios of
these coefficients as unknowns, for the determinants of order (n — 1) formed
from the partial derivatives of the functions f; cannot all be zero at the same
time (I, § 65, 2d ed.; § 28, 1st ed.). It may be noticed that the most general
linear equation having the (n — 1) integrals f; can be written in the form

‘D(ﬁlilLf”"" 0—1) =0
D (2y,y Tgy -+ +y Tn) '

where II (z,, Z,, - -+, Z») 18 an arbitrary function.

n(z:l.v Tgy* 2y Tn)

82. Multipliers. The theory of integrating factors has been extended by
Jacobi to simultaneous differential equations. Let f;, /3, - - -, fu -1 be independ-
ent first integrals of the system (60). The equation X (f) =0 is, as we have
already remarked, identical with the equation

—_ D(fvfpfy"'ofn—l) —
A= D(zl,z,,---,z,.) =0

Writing the condition that the coefficients of the derivatives af/az; in the two
equations are proportional, we are led to n relations which may be written in
the form

(75) A= MX,, G=1,2---,m)

where A, denotes the coefficient of gf/ox; in the determinant A. This factor M
is called a multiplier.

Whatever the first integrals f}, f;, - - -, Ja —1 may be, this function M satisfies
the linear partial differential equation

2(MX)) , 9(MX,) ?2(MX,)
76 e LE AR ieinins L PP el Y 1 8
(70) oz, oz, + 0Zn

Substituting for each of the products M.X; = A; its equivalent expression as
a determinant of order n— 1, and carrying out the indicated differentiations,
each term of the left-hand side is, in fact, the product of a derivative of the
second order, such as 8%f;/0x:0z (i # k), and (n — 2) partial derivatives of the
first order. To prove that the result is zero, it suffices to show that it does not
contain any derivatives of the second order. Let us take, for example, the
derivative 2%f,/2z,0x,. This derivative appears in two terms; in one it is mul-
tiplied by D (f,, f3, ** s Ja—-1)/D (24, Z,, + - -, Za), and in the other by the same
coefficient but with the opposite sign. The sum of these two terms is therefore
zero, and similarly for all the others.

If M, is a particular integral of the equation (76), the substitution M = M, u
reduces that equation to the form X (u) = 0. If we know a multiplier M of the
system (59), the general integral of the equation (78) is accordingly MIL(f,, fs,
«+«y fa—1), where II is an arbitrary function. Every function of this form is
also a multiplier ; in other words, there exist (n — 1) first integrals Fy, ..., B, _,,
such that MII(f;, f3,***, fa—1) can be deduced from Fy, Fy, -+, Fy_y in the
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same way that M was deduced from fy, f;,---, fa—1. For this purpose it is
sufficient that we have, supposing X, # 0,

_1_ D(Fy, Fg,--+, Fa1) = i D(Fy, Fyy - -2, Fuy) D(fys Sas 221 Ja=1) = MIIL
X1 E(Im Tgy ***y Zp) Xl D(fnfm"', fn—l) D(zm ey Tw) *

or D(Fy, Fy, -+, Fay) _
D(le,f:, B A = n(fnfnv "'-f--l)-

This condition can be satisfied in an infinite number of ways. Indeed, n — 2
of the first integrals F; may be assigned arbitrarily in advance.
Let us consider the system

dz, dz. dz,
77 A2, ="
n =3 ¥ =%
with the auxiliary variable ¢. This system can be reduced to the simple form
(78) dy,=dy,=+-- =dya_1=0, dy, =dt

by taking for the variables the n — 1 first integrals f,, f,,---, fa—1 and the
function f,, which appears in the preceding formul® (69). It is easy to obtain
the general expression for the multipliers in terms of the variables y;, for
every multiplier is of the form

1 D(yy Ygo ***s Un~1)
M=_- 2MpIp " Ia~-l/pn
X, D(z, 245, Tu) @0 V2 -+ 1 Va2)-

On the other hand, we have

=% _omdy, L 0y 02y
17 7d T oy, dt Yn & T Oyn

From the relations y, = f}, - - -, ¥» = fa, Which define the change of the variables,
we derive, by differentiating with respect to ¥, and solving,

D(yu 7/31 ) yﬂ:l_)
a_'c.'l.:{_.l)l—l D(zﬁqzﬂq"‘uzl)l
n Dy Va2 ¥a)

D(z,, Tg, -+ -y Tn)
and the general expression for the multiplier can be written in the form

1 D(z;, Ty, -+,
(79) "“=_SL&'—2L)§(T/1' Vgs***s Yn—1),

M D(¥yy Yg+*+*s Un)
where ® is an arbitrary function of y,, yg, + -+, Yn—1.
Let us suppose, now, that after carrying out any change of variables affecting
only the z;’s without changing the variable ¢, we have reduced the system (77)
to the form

dz{ dz; dz,
80 —_—m e S m i = =
(80) X7 X b4 d,

where the X}'s are functions of the new variables z; independent of t. If M’ is
a multiplier of this new system, we have

. 1 _D(z{. z;....,z;)
o b m’@v Vss** s Yn=1):
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Taking the same function @ in the two expressions, we derive from them, by
dividing their corresponding sides, the relation

, D@y, Tgy >ty Tn)
82 M =M ! Lt Ui %
( ) D(zhlﬁ""'zn)

Hence, {f we know a mulliplier M for the system (17), we can derive from it a
multiplier M’ for the transformed system.

This property explains the practical importance of multipliers. Let us sup-
pose that we know n — 2 first integrals of the system (59), and also a multiplier.
We can then reduce this system to the form

g‘ﬁ-_—_—...: ':""-—dx:‘"—di:'—dg
o TX T

by a change of variables, and we can then find a multiplier M’ for this new
system, that is, a solution of the equation
2MX,_y)  2(MX;)

7 0.
aa"n -1 amn

It follows that M’ is an integrating factor for X, dz,_, — X,_,dz,, and the
integration can be finished by quadratures.

A particular case which presents itself frequently in mechanics is the one
for which we have 20.X,/dr, = 0. The equation (76) reduces then to X (M) =0,
and we know at once a multiplier M = 1.

This remark applies also to the equation of the second order, ¥ = f(z, y), the
integration of which leads to that of the system

dz_dy _ _dy
17y @&y
If we know a first integral of it, ¥ (z, ¥, ¥) = C, we can, from what precedes,

finish the integration by quadratures. This is easily verified as foilows: Let us
suppose that the equation y (z, ¥, ¥") = C has been solved for y’:

v =¢(z, v C).

Since all the integrals of this equation of the first order must satisfy the equation
y” =f(z,v), whatever may be the constant C, we must have d¢/02 + (8¢/3y)p =J1.
Hence, since f does not contain C,

3¢ 3¢ op o¢ _
5 T 5o taysc =2

which states that 2¢/0C is an integrating factor for dy — ¢dz.
83. Invariant integrals. The invariant property of the multipliers relative to

every change of variables can be brought into relation with the general theory
of invariant integrals, due to Poincaré,* and about which we shall say a few

* Les méthodes nouvelles de la Mécanique céleste, Vol. III, chap. xxii, and the
following chapters. See also GOURSAT, Sur les invariants intégrauz, in Journal
de Mathématigues, 6th series, Vol. IV,
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words. Let us consider in particular a system of three differential equations,

(88’ I‘=_}:=E= "

whers X, Y, Z are functions of z, y, z. In order to simplify the statements, we
shall regard these equations as defining the movement of a particle in space,
where the variable ¢ represents the time. The particle which, at the time ¢ = 0,
is at a point M, (z,, ¥, 2,) has arrived at the time ¢ at a point M; whose cobrdi-
nates are (z, ¥, z). If the point M, describes a certain region D, of space, the
point M, describes a corresponding region D,. Now let M (z, ¥, #) be a function
of the variables 2, y, z; we shall say that the triple integral

I=fffM(z, v, 2) dedydz

8 an invariant infegral of the system (83) if the value of that triple integral,

‘[fL‘M(z, v, 2) dzdydz,

extended over the region Dy, is independent of ¢ and equal to the same inte-
gral extended over the region D,. For example, if the equations (83) define
the movement of an incompressible fluid, the volume of the region D, is constant
and the integral [ff dzdydz is an invariant integral.

Invariant line and surface integrals are defined in a similar way. If the
point M, describes a curve L, or a surface X,, the point M; describes & curve
L, or a surface ¥;. A line integral

fadz+ﬂd1/+'ydz

18 an invariant integral if the value of that integral along the curve L, is inde-
pendent of £ and equal to the same line integral taken along L,. Similarly, a

surface integral
ffpdydz + Qdzdz + Rdzdy

is an invariant integral if the value of that integral extended over the surface X,
is independent of &.

These notions can be extended without difficulty to the most general systems
of differential equations of the form (68). For such a system there are n classes
of invariant integrals, of the 1st order, of the 2d order, - .., of the nth order,
according to the order of multiplicity of the integral considered. The conditioe
that a maultiple integral of order p shall be an invariant integral are easily 6b-
tained by means of the formula for the change of variables in multiple integnip
We shall develop the caleulations for a multiple integral of order n. Let °

1() = ff fM(:,;,,a.:,,...,z,.)dm,1

be a multiple integral of order n extended over the region D, which corresponds
to a definite region D, in the manner just explained. This integral will be an
invariant integral if it is independent of ¢ ; that is, if we have I’ (f) = 0. In order
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to calculate that derivative, we shall give to ¢ an increment A, and we shall cal-
culate the coefficient of % in the development of 7 (¢ + h). Let 2 be the value to
which z; changes when we change t to ¢t + 2 ; we have

1e+my= [ f U@z, 2 dridzg - - ael,

where the new integral is extended over the region D}, which corresponds point
for point to D;. Then we may write

D(zl, 23, -+, 27)
I(t+ A M(zy,+++, Z n .
€= [ f M@, By g oy G e d
On the other band, omitting the terms in % of degree higher than the first.
we have
z:=zi‘+hxd+ Ty

’ M
M(mh Tgy ** ,Z“)-—M(Jﬂl,zz,---, z..)+h(X1-——+ b +X||fo)+ AR ]

14825 R2X% 0%
Dz, 25,0 8 _ o o2 B

'D(zl’zﬂl"'izl) aX’ l'f'hEa s
zl Y
2, 2 X,
=1+n(2% _-)
+ (az,+ )t

and
;o D(xy, T3y -y T,)
M(zy, Tay -+ s Tp) D‘E:‘:—fj—‘?:;

0.X, oX, 0.
+h[M<aT;+"'+az.)+Xlaz M]+....

The derivative dI/dt has therefore the value

ar _ aMxy) 8 (MX,)
a‘i‘ff""f;[ azll . +T]dzxd-"s'“¢”n-

In order that I be an invariant integral, it is necessary and sufficient that dI/dt
be identically zero, whatever may be the region D, and therefore that we have

= M(Zy, Tgy - -+ Tn)

2 d(MX, X,
".(84) _(_aE:ll+...+a_(.éM;"_").=0.

This condition is identical with the equation (76), and we obtain Poincaré's
theorem : In order that the multiple integral

ff"fMd“’l"'d‘"

shall be an invariant integral, it i8 necessary and syfficient that M be a multzplier.
It follows that if we make any change of variables,

Tt = $i (U1 Vgs*** Yn)s (i=12,...,m)
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in the equations (77), we obtain a new system,

dy, _dy, dYa
2 _J=_J= te e = — = H
(17) Y, ¥, Y, d;

and if M is a multiplier of the system (77), the n-fold integral

ff"f”"‘xd“s"'d’-

is an invariant integral of that system, and the n-fold integral which is obtained
from it by the same transformation,

D(w,z,- ,zl)
JI-fun S T gy Wb v

is evidently also an invariant integral of the transformed system (77°). Therefore

the expression
M"D(zl' L V) zl)

M =
' D(up Var* yn)

is & multiplier of the new equations (77’), as we have demonstrated directly.

Ezample. In order that the volume shall be an invariant integral of the
equations (88), M =1 must be a multiplier, which requires that we have

oX oY o Z
(86) Fr + e + = 2z =
This is the condition for the incompressibility of a fluid for which the equa-
tions (83) define a stationary flow.

IV. INFINITESIMAL TRANSFORMATIONS

34. One-parameter groups.* Every set of an infinite number of transformations,
of any nature whatever, affecting the n variables z,, z,, - - -, Z,, form a group if
the transformation obtained by carrying out any two transformations of this set
in succession belongs to the set. For definiteness let us consider two variables
z, ¥, and let T be the transformation defined by the equations

(86) z’:f(z,]/; a), ¥V =9¢(,v; a),

where a denotes an arbitrary parameter. If we regard z and y as the cotrdi-
nates of a point M in a plane, and z” and 7’ as the codrdinates of another point M,
the preceding equations define a point transformation. To each value of the
parameter a corresponds thus a definite transformation. Varying this pargm-
eter, we obtain an infinite number of different transformations. Let us suppose
that we carry out in succession two different transformations of this set, corre-
sponding to any two values a and b of the parameter. The first transformation
will carry the pair of values (z, ) over into the pair of values (z’, ¥’) given

*The theory of continuous gronps of transformations was developed by Sophus Lie
in a great number of papers and in his treatise, Theorie der Transformationgruppen.
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by the equations (86). The second transformation will then carry the pair of
values (z’, ¥’) over into a third pair (z”, ¥”) such that we have

(87) z” =f(3', v b)r V= ¢(§C’, v b)'

Let us replace z’ and y’ in these last two equations by their values (86). The
resulting equations,

(88) z’=F(z,¥; a,b), V' =®(@,y; a,b),

again define a point transformation depending upon the two parameters a and b.
We shall say that the set of transformations (86) form a continuous one-parameter
group if the new transformation (88) belongs to this set. It is necessary and
sufficient for this that the equations (88) be of the form

(89) '=fz,¥;¢), V' =0&v;c)
where ¢ is a value of the parameter depending only upon a and upon b ; that is,
¢ =y (a, b). The preceding definition evidently applies whatever may be the

number of variables, in particular if there is only a single variable.
The relation 2’ = z + a, or, any one of the pairs 8f relations

=z+a, ¥v=v+2a;
T =zcosa— ysina, Y =zsina + ycosa;
z’ = az, Yy =aly

represents a one-parameter group. On the contrary, the transformationsz’=xz+a,
¥’ = ¥ + a® do not form a group, for the transformation resulting from two suc-
cessive transformations, z” =z + a + b, ¥ =y + a3 + b2, do not belong to the set.

If in the equations (86), which deflne a group of transformations, we put
a = II(a), where a is a new parameter, it is clear that the relations obtained
again define a group. The same thing is true also if we make a change of vari-
ables, as we easily convince ourselves a priori. In fact, if a set of point trans-
formations in a plane is such that the transformation resulting from two
successive transformations belongs to the set, it is clear that this property is
independent of the choice of the codrdinates by means of which we fix the
position of a point in the plane. It is easy to verify this directly. Let us
suppose that we put z = Il(u, v), ¥ = II,(u, v), and let the inverse relations
be u = II-Y(z, ¥), v = I]!(z, y), so that we have identically

z =007z, ), Iz, »)], y=L[0" (@&, ), 07, ¥)].

By hypothesis, the transformations considered form a group, and the equa-
tions (89), where ¢ = y (a, b), are a consequence of the equations (86) and (87).
Let (u, v), (&, v’), (u”, v"’) be the pairs of values of the new variables which
correspond respectively to the pairs (z, v), (&', ¥’), (", ¥”'). We have

w =N"Y(2', y) = T~ f[II (4, v), I, (, v); a), ¢ [M(u,v), O, (%, v); a]}
(m) = F(u, v; a)q
v = Iy Yz, ') = 7Y F [T (u, v), 0, (y, v); a], ¢ [II (4, v), O, (4, v); a]}
=& (u, v; a);
and everything depends on showing that the equations (90) also define a group
of transformations. Now we have, for example, u”’ = F(u’, v’; b), or

w’ = DY f[A @, v), I, (&, v); b], o[ (&, v), I, (&, v’); ]}.
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Sinoe the equations (86) define a group, this value of u” is equal to
o-[f@, v'; b), ¢ @, v'; O] =0"[f(2, ¥; c), @ ¥; ©)];
that Is, to
o-Y £ [ (, v), Oy(u, v); c], ¢ [II (4, v), II,(u, v); c]}=F (4, v; c).

Similarly, we should find that v = & (u, v; ¢). Two groups of transformations
which are carried over one into the other by a change of variables are said to
be similar. For example, the two groups z’ = az, v = u 4 b are similar, for we
pass from one to the other by putting u = logz, b = loga.

We shall now determine all possible one-parameter groups, supposing that
the functions f and ¢ are analytic, and supposing also that the group contains the
identical transformation, that is, that for a particular value a, of the parameter
we bave f(z, ¥; a)) =z, ¢(z, ¥; ap) =7, whatever z and y may be.

In the equations of condition

(81) F@vid)=f@ v;0, ¢E\V;ibd)=9¢@v;c)
we can consider z, y, a, ¢ a8 independent variables, and b as a function of a
and ¢ deflned by the relation ¢ =y (a, b); 2’ and y’ are functions of z, y,

and a defined by the equations (86). Taking derivatives with respect to a, we
derive from the relations (91)

o LE T dd_, e ww wd_,
o’ da oy’ da b da o’ da oy oa b da

But db/oe is given by the relation oy /da + (oy/ab) (9b/da) = 0, and therefore
depends only upon a and b. Solving the preceding equations (92) for oz’/oa,
9y’/da, we obtain, therefore, relations of the form

o _ AT ,
3‘;—)‘(“7b)5(3’71b)| aa—x(arb)ﬂ(zay’rb)'

Now z’ and 7’ do not depend upon b ; the same thing is therefore true of A, ¢, 9
if they have been properly chosen. Therefore z’ and y’ are integrals of the
system of differential equations,
de’ _  dy

¢z Y) 2@, v)
which for @ = a, take on respectively the values 2 and y. Conversely, whatever
the functions £ (z, ¥), 7 (z, ¥) may be, the equations =’ = f(z, ¥, a), ¥’ = ¢ (, ¥, @),
which represent the integrals of the preceding system which reduce respectively
to z and to y for a particular value a, of the parameter, define a continuous group
of transformations. In the first place, it will be simpler to introduce a new
parameter,

(98) = A (a)de,

a
t= A(a)da,
%

which enables us to write the differential equations (88) in the abridged form
de' _  dy

—_— =dt.
@) @ ©

(94)
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The general integral of this system can be written, ag we have seen above (§ 81),

in the form
0@ v)=0h 0@, v)=t+C,,
where @, and 0, are definite functions of z’, ", and where C,, C, are two arbi-

trary constants. The solutions which take on the values = and ¥ for t = 0 are
given by the system of equations

(96) ﬂl(t', ¥) =0(z, v), @, y)= Q;(x, ¥) + t.

The preceding expressions, indeed, define a continuous group, for if we carry
out in succession the two transformations which correspond to the values ¢,
and ¢; of the parameter, the resulting transformation corresponds to the value

t, +t, of the parameter. The two transformations which correspond to the
velues t and — ¢ are the inverses of each other. If we have

z=fy;t, vV=0v;1)
we may write also
z=f(@,y; =), v=9¢&,v; _t)'
If we take for the new variables

u = 0y(2, ¥), v =y(Z, V),
the equations (85) become
(98) w=u, v=v+1;
and we say that the group is transformed to the reduced form. Every con-
tinuous one-parameler group is therefore similar to a group of translations.
Let us take, for example, the group z’ = az, ¥’ = a®y. Applying the general
method, we have

oz z 1=2ay=21.
an a oa a

The differential equations (93) are in this case

dz =-¢-1-"'L-=g£=dt,
2y a

where £ = log a. The finite equations of the group can be written in the form

Yy _ v ,

o Rl L logz’ =logz + ¢,
and they will be brought to the reduced form by taking for the new variables
log z and y/z2.

85. Application to differential equations. Let us consider a given differential

equation & o .
Yy d'y ¥\ -

07 F(Z’V’E‘E;'.."F)—O’
and a known one-parameter group of transformations of the form (86). Let us
suppose that the equation (97) is identical with the equation obtained by carry-
ing out on it the change of its variables z and y defined by the relations (86),
whatever may be the numerical value of the parameter a. If this is the case,
we shall say that the differential equation (87) admits the group of transforma-
tions (86). We can make use of this property to simplify the integration, In
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fact, let us suppose that we carry out a change of variables such that the equa~
tions which define the group in question are brought to the simple form »’ = u,
v = v + a. The same change of variables, applied to the proposed differential
equation, leads to a new differential equation of the nth order,

ofu v B, T dro\
°8) Y @ e

which does not change if we replace in it © by v 4+ a, whatever may be the
numerical value of the constant a. This can happen only if the left-hand side
& does not contain the variable v. If the equation is of the first order, we obtain
the general integral by a quadrature. If n > 1, we can lower the order of the
equation by unity by taking dv/du for the new unknown dependent variable.
Let us consider, for example, the homogeneous equation of the first order,

2-1()

This equation does not change if we replace z and ¥ by ax and ay respectively,
whatever may be the constant a. Now the formul® z’ = az, ¥’ = ay define a
group of transformations, which can also be written in the form

v =;-’. logy’ =logy + t.
Hence if we put y/z = u, log y = v, we are led to an equation that is integrable
by a quadrature (see § 3).

Let us now consider linear equations of the first order, and first of all the
homogeneous equation dy/dx + Py = 0. Since this equation does not change
when we replace in it ¥ by ay, whatever may be the constant a, we say that
it admits the group of transformations z’ = z, ¥’ = ay. Hence it will be inte-
grable by a quadrature if we take log y for the dependent variable.

Next, let

99) ¥+ Pr+Q=0

be the general linear equation of the first order, and let ¥, be a particular
integral, not zero, of the equation dy/dz + Py = 0. It is easily verified that
the equation (99) does not change if we replace ¥ by ¥ + ay,. Hence it admits
the group of transformations defined by the equations

,_ v_u
z =z, N + a.

Taking for the new dependent variable y/y,, the equation must reduce to an
equation integrable by a quadrature. We are led to precisely the calculations
of § 4, and it is easy to see in a similar manner that the different cases of reduction
of the order of the equation which have been indicated in § 19, for equations of
higher order, are essentially only particular cases of the preceding method,

These different methods, which appear at first sight as 8o many different
devices for solution, having no relation one to another, can thus be considered
from a common point of view by means of the theory of groups of transforma-
tions. To every continuous one-parameter group of transformations on the
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two variables ¢ and ¥ we can make correspond in this way an infinite number
of equations of the first order which can be integrated by a quadrature, and
equations of higher order whose order can be depressed by unity.

This fact may be of practical importance in the setting up of the equations
in certain problems. Suppose that it is a question of finding the plane curves
which possess a certain property, and that we know a priori a one-parameter
group (@) of transformations such that, if we apply any transformation of (@)
to a curve having the given property, the new curve also has the same prop-
erty. It is clear that the differential equation of these curves will admit the
given group of transformations. If, then, we choose a system of cotrdinates
(u, v) such that the equations of the group (G) shall become v’ = u, v’ = v + a,
the differential equation of the curves sought in this system of codrdinates will
contain only u, dv/du, d3v/du?, . - .. For example, suppose that we wish to obtain
the projections on the zy-plane of the asymptotic lines or the lines of curvature
of a helicoid, the axis Oz being the axis of helicoidal movement in the sliding
of the surface upon itself. It is clear that if a curve C of the zy-plane is a
solution of the problem, then all the curves which we obtain by making C turn
through any angle about the origin are also solutiohs. The differential equation
of these curves admits, then, the group formed by the rotations about the origin ;
the equations of this group in polar codrdinates are p’ = p, ' = w + a. With
the system of variables p, w, the differential equation will contain, therefore,
only p and dw/dp (see I, § 243, 2d ed.; § 242, 1st ed.).

So far we have supposed the group @ known. We are now led to examine
the following problem : A differential equation being given, to recognize whether
or not it admits one or more one-parameter continuous groups of trangformations,
and to determine these groups. This is a very important question, which cannot
be developed here in detail. We shall limit ourselves to a few particulars.

36. Infinitesimal transformations. Given a system of transformations on n vari-
ables, defined by the equations

(100) z;=ff(zll Tgy+ey Tn; Q) t=12...,n),

where the functions f; depend upon an arbitrary parameter a, we say again that
these transformations form a group if the transformation resulting from any
two transformations of the system carried out in succession itself belongs to
the system. As above, a group is said to contain the identical transformation
if, for some value @, of the parameter, we have

Si(@yy Zgy o+ oy Tn; Q) = T4y (t=12,.-4,m),

for all values of z,, Z,, - - -, Z,. It may be shown, as above, that such a group is
obtained by integrating a system of differential equations

oy Ao T T o
El(zh Tgy * "y zn) Eﬂ (zlv Tgy o2y z.) E'l(zb St zu)
Let
(102) z;"‘i(zn Zgy* =ty Tnj ?), (t=12-...,n),

be the integrals of this system which reduce to z,, Z,,--:, Z, respectively
for t = 0. The relations (102) define a continuous one-parameter group, the
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variable ¢ playing the part of the parameter. Indeed, we have seen (§ 31)
that the general integral of this system can be written in the form

Qy(z5, 23y s z,) = Cypyeevy
On-1(z;, Zayte e z,) = On_y, Qu (2], 23, ¢+ z;) =t+ C,
where 2;, {2, - - -, I, are n functions of the variables z;, which we have defined

exactly. The integrals which for ¢t = 0 take on the values Ty, Tgy---, Ty BTE
furnished, therefore, by the equations

n‘(zlv"'r 1.)=ﬂ;(3‘1,---, zll)v (i=11 2,“-,”-—1)’
nn(xic ey z,:):ﬂ..(itl,---, ) + ¢,

which are equivalent to the relations (102). In this new form we see immediately
that these transformations form a group.

Let F(z,, x,,---, ) be a function of the n variables z;; if we replace the
variables z; in it by the functions z{ given by the relations (102), the result
F(xy, 235+, %,) is a function of z,, z,, -+, Za, ¢, which for ¢t = 0 reduces to
F(Zyy Tgy -+, Za). Lot us (consider the problem of developing this function
according to increasing powers of {. We shall denote by F’ the result of
replacing z; by z; in F(z,, %,, -+, z,), and we shall put

(108)

X(f) =& (2, 2o, - ,:!:,.)——+ ---+E..(21,22,~--'$n) af

where f is any function of z,, z,, .- -, Z,. Similarly, replacing t.he variables z;
by z, we shall put
, ’ ’, 2 af’ ’, ’ ’
XS = k(@) T3 oy “7,.)5:; R AEERE 3 2N €I RREN %)g;'
‘With these preliminary definitions, we have, by the differential equations (101),
dF’ ’ » OF’ , , oF’
'_=El(zli cee, T )__’ + 0 4 E'l('tlv e, T )—-,=X'(F').
L " az; " dx)

Likewise we have

L A , (Jr X (R
Ty [X (F)]=X"[X"(F)],
and in general

PF _ xoF),

where X “(» (F’) denotes the result of the operation X’ carried out p times in
succession. Since, for t = 0, a7, 7, -, 7, reduce to T, Ty, - - -, Tn, it follows
that (dr F/dtP) o i8 equal to X(») (F), and the development of F’ is given by
the formula

F(@], -y @) = F(2y,+++, &) + tX(F)
2
(104) +£_‘x<2)(p)+ ...+5”_’!z(p)(p)+....
If we assume that the functipn F is regular in the neighborhood of the values

Z,, Z,, -+ -, T, the series on the right is convergent as long as |¢| is sufficiently
small. We have, in particular,

, 12 8
{105) z‘=z¢+%&+ E'IX(E‘HEt‘;X‘”(E‘)*'
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Let us give to ¢ an infinitesimal value 8.. Putting 3z, = z; — %, and neglect~
ing infinitesimals of higher order than the first with respect to 3¢, the preceding
formuls can be written in the form

(106) bz, =58, Sz,=8d, ..., Bz, =Lt

We say that these relations define an infinitesimai trangformation and that X (f),
or 2;(af/ex,), is the 8ymbol of this infinitesimal transformation. To every one-
parameter group corresponds an infinjtesimal transformation, and conversely.
If we choose at pleasure n functions, £, &, - - -, &, of z,, Z,, - - -, Zu, the result-
ing expression X (f) is the symbol of an infinitesimal transformation that
defines a continuous group whose finite equations would be obtained by inte-
grating the system of differential equations (101).

The introduction of infinitesimal transformations has made it possible to
apply the methods of the differential calculus to the theory of groups. Besides,
in many questions concerning groups it is the infinitesimal transformation
which ig concerned, as we shall see from a few examples.

Let us consider x,, Z,,---, T» a8 the cobrdinfites of a point in space of
n dimensions, and ¢ as an independent variable which denotes the time. If ¢
varies, the point with the cobrdinates z{, z, - - -, Z, describes in a space of
n dimensions a curve, or {rajectory, starting from the point (z,, z,, +- -, Z»). The
space of n dimensions, or at least a region of that space, is thus decomposed
into an infinite number of one-dimensional manifolds, and each point of the
given region belongs to a single one-dimensional manifold. We say that a
function F(z,,-++, Z») is an invariant of the group considered if we have

F(I{, vt :1:) =F(Zyy 5 Zu)y

whatever may be the value of ¢. It is easy to obtain all the invariants of a
group. In fact, dividing the two sides of the equation (104) by ¢, and supposing
F’ = F, we obtain the relation

-1
X(F)+.2t_x(z)(p)+ +%_!_X’p)(17')+... =0.

Since this equality must hold whatever ¢ may be, it is necessary in particular
that we have X (F) = 0. We say, in this case, that the function F admits the
infinitesimal transformation of the group. This condition is, moreover, suffi-
cient ; for if we have X (F)= 0, we also have X[ X (F)] =0, - .., and therefore
X (»)(F) = 0, whatever p may be. The only invariants of the one-parameter group
are therefore the integrals of the equation X (f) = 0.

Let us notice that if two groups have for infinitesimal transformations X (f)
and IILX(f) respectively, where II (z,, x,, ---, Z») 18 any function whatever,
these two groups have the same invariants, even though they are not identical.
If we apply to the same point the transformations of the two groups, this point
will indeed describe the same path, but with different velocities. Conversely,
if two groups have the same invariants, the two infinitesimal transformations
X (f) and Y (f) can differ only by a factor II(z,, Z,, -+, Z») Which depends
only upon &,, Z,, « - -, Z», for the two equations X (f) = 0, ¥ (f) = 0 must have
the same integrals.

‘We shall now introduce another important concept. Let

(107) z,=f@,y;a), ¥, =¢(@y;a)
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be a continuous group in two variables. If wé apply a transformation of this
group to all the points of a plane curve C, we obtain another plane curve C,.
Let ¢, ¥, -+, ¥™ be the successive derivatives of y with respect to z and
Y1y Yy + - -» ¥§™ the successive derivatives of y, with respect to z,; we have seen
(L, § 61, 2d ed.; § 35, 1st ed.) how to calculate these last successive derivatives
in terms of z, ¥, ¥’ + - -» ¥®. These calculations lead to formul@ of the form

=¥ @ v v;a),
(lw) 'I’a (Z, Vi y ’ V a)!

”&n) = v‘n (zv U Vs ¥Y™; a).

The relations (107) and (108) define also a group of transformations in n 4 2
variables, z, ¥, ¥, - - -, ¥®, which is called the extended group of the first. We
shall assume this fact, the proof of which presents no other difficulties than the
writing of rather long expressions. We shall merely show how the infinitesimal
transformation of the extengled group can be obtained. Let

£(z, v)% + n(z, v)%

be the infinitesimal transformation of the given group. We can write the
equations of this group in the form

L=z + 'E(au,u)+—(ea—’E Z’5)+---

1 a
(109) ¢ on
=y +in@ N+, (eaz+»5)+---.

and from them we derive

on an
dy + - ( dzr + — dll)
oy

dz+l(a‘dz+a‘dy)+---

’ '114
W=, =

The coefficient of ¢ on the right, after expansion in a single power series, is the
only thing we need to know. It is obtained by a division and is equal to

21, (22— 28 dr_ (%) (A"
" \oy oz/az  \oy) \az
The symbol of the infinitesimal transformation of the extended group is, there-

fore, forn =1,
01, (2126, 2t 4]
oz + &y oz 4 v P4
The method is a general one. If the coefficient of ¢ in the development of y{*~¥
isw(z, v, v, -, y»—D), we have for y{»

dy<-—1)+id,r+...
W= Taz+t(Raz s %a '
+1( +ay v)+---

of of
E(z' y)a—z + 1)(3, y)a—y + [
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and the coefficient of ¢ on the right-hand side is
de _ (3F 3 )
—ym (25 L 98 ,0),
v (4 B

Hence we can calculate step by step, to any desired value of n, the infinitesimal
transformations of the extended groups which are obtained from the given group.
We say that a system of differential equations

d_zl dz, de,
X, ):, =T E3,
admits the one-parameter group of transformations @ defined by the equations
(100) if it changes into a system of the same form,
d ’ d ’ ’
(111) .i}’:fi”:...:ﬂ",
‘xl Xa x-
when we take for new variables z{, 3, - - -, 2 instead of z,, z, .-, Zs, and if
this is true whatever the value of the parameter ¢ may be. Here and below,
the symbol X, denotes the same function of the variables z; that X; is of the
variables z;. In order that this be true, it follows from the relation which has
been established between the system (110) and the partial differential equation

af of _
X
-+ Frat

(110)

(112) xn=x2L of -+ X, 2L

that it is necessary and suﬂiclent that every transformation of the group @ shall
carry the equation
X(f) = 21 (T1s Tgy ~* q-’l")

Tl azi

over into a linear equation equivalent to X (f)= 0 for every value of the
parameter a. If f(z,, Z,, -+, Z») i8 an integral of X (f) =0, f(2], Z3, -+, 2.)
is also an integral of X’(f’) = 0; hence, if we replace z;, - -, Z,, by their values
given by the expressions (100), f*(z;, - - -, Z,) must also be an integral of X (f) = 0.
It follows that the necessary and sufficient condition that the system of differ-
ential equations (110) admit the group of transformations G is that every trans-
formation of that group shall change an integral of the equation X (f) = 0 into
an integral of the same equation.

Let
of

(113) Tm—e,_+e,—+ e

T

be the infinitesimal tra.nstormatlon of the group @. Replacing the parameter a
by the parameter ¢ defined above, we may write

Sy, Tay ey T2) =S (T, Zgy - ,z..)+ T(f)+ T[T(f)]+ vees

If f(z,, -+ %) i8 any integral of the equation (112), the same thing must be
true of f(z{, - - -, %,), and consequently of

S @3y ey 8 =S (Zyy 3 Za)s

TU)+  TITN]+ -

or of
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whatever the value of { may be. In particular, T(f) must be an integral of the
equation (112). This condition is sufficient. For, let f;, f;, -+, fa~1 be & system
of n — 1 independent integrals. If T'(f}), T'(f,), - - - T(fa—1) are also integrals,
the same thing must be true of T'(f), where f is any other integral. For we
hl"&f= n(fpfg’ . ‘sfn—l)v and therefore

= 2 g 2
TU) =57 TUD+ o+ o= T
Since T'(f) is an integral, the same thing is true of T'[T'(f)], and o on; the

same is therefore true of f(z;, 23, - - -, Z;).

Hence, in order that the system (110) admit the group G of transformations,
it is necessary and sufficient that, if f is an integral of X (f) =0, T'(f) shall also
be an integral. We say for brevity that the equation X (f)= 0 admits the
infinitesimal transformation T'(f).

Let us now take a differential equation of the first order,

dz _dy

(114) . TR
In order that the equation X (f)=.4af/éz + Baf/ey =0 admit the infini-
tesimal transformation § 3f/oz + 7 8f/dy, it is necessary that we have

ow ow ow ow
A—+B—=0 — — = I (w),
P + o ] £ 2z +n o (w)
where w{z, ¥) denotes an integral (other than a constant) of X (f)=0, and
where II(w) denotes an undetermined function of w. We derive from these

relations
ow BII (w) ow ATl ()
— —_— —_— = ——
oz Ay — B§ oy Ang-— B
whence,
dw _ Bdz— Ady

O(w) Be— An

It follows that 1/(Bt — An) is an integrating factor for Bdz — Ady. Conversely,
let ¢ (x, ¥) be a function such that its total differential is

Bdz — Ady
dp = ——=.
¢ Bt — Aq
Then we have, gimultaneously,
o9 o¢ ¢ 20
=A-—~-4+B—=0 T =§— —=1;
X@W=AZ+B =0 T@=t_+r, =1

hence T(¢) is also an integral of the equation X (¢)=0. We can state this
result as follows :

In order that the differential equation (114) admit the group of iransforma-
tions derived from the infinilesimal trangformation §af/oz + yaf/dy, it is necessary
and sufficient that 1/(Bt — An) shall be an integrating factor for Bdz — A dy.

This new method requires only the knowledge of the infinitesimal transfor-
mation of the group. As there exist an infinite number of integrating fac.
tors, we see that every equation of the first order admits an infinite number
of infinitesimal transformations.
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Let us return to the general case of the system (110). Let X(f)=0 be
the corresponding linear equation and T'(f) the symbol of an infinitesimal
transformation. Let us consider the equation

(115) ZN=X[TN]-TLX(N]=0,
where X [T'(f)] represents the result of the operation X ( ) applied to T'(f),
and where T[X (f)] has an analogous meaning ; Z(f) is still a linear homo-
geneous function in the derivatives of the first order gf/adx;, and it does not
contain any derivatives of the second order. To show this, it suffices to prove
that the coefficients of a derivative of the second order are the same in
X[T(f)] and T[X(f)]. Now the coefficient of 23f/az3 is X;¢;, and that of
o3f/ex,oxx is X & + Xiki in T[X(f)], and it is obvious that these coeffi-
cients are the same in X[T(f)]. The equation Z(f)= 0 is therefore an
equation of the same type as the equation X (f)= 0, which can be written
in a form exhibiting the coefficients explicitly :

@) z()=1xE) - TENZL + -+ (X - TEN L+ =0,

If now T(f) is an integral of the equation X (f) = 0, whenever f is an inte-
gral of the same equation, every integral of X (f) = 0 evidently satisfies the
linear equation Z(f)=0; we must have, therefore (§ 81),

117 XITN]— T[X(N]=p @1 2y -0 T X (),
where p is an undetermined function of z,, ,, « -+, Z2. Conversely, if we have
an identity of this form, every integral of the equation X (f) = 0 satisfies also
the equation X [T'(f)] = 0, and therefore T'(f) is also an integral of the equa~
tion X (f)=0. The necessary and sufficient condilion thal the linear egquation
X (f) = 0 admit the infinitesimal trangformation T (f) is expressed by the relation
(117), where p is any function of x,,Z,, -+, Ts. That relation is equivalent to
the (n — 1) distinct relations

X@)— T(X) _ X — T(X,) _ | _ X — T(X),

X, X, X,
Given a differential equation of the nth order,
dry dy daly d"—l u)
(18 = "’(‘”’ V&'

in order to determine whether it admits the group of transformations deduced
from the infinitesimal transformation ¢(z, y) &f/éx + % (2, ¥) af/dy, we need only
replace the equation (118) by a system of n differential equations of the first
order, taking for the auxiliary dependent variables the first (n — 1) deriva~
tives ¢, ¥”, +-+, ¥®—D, and then determine whether this system admits the
infinitesimal transformation of the extended group of G.

Let us consider, for example, the equation of the second order ¥ = ¢ (, ¥, ¥\
which may be replaced by the system

dz dy dy’
1 YR )
or by the linear equation

xm-a’+ v’+ ¢(x.v,lf)
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It will be necessary to determine whether this equation admits the infinitesimal
transformation
of

¢(z, y) = + 9(z, V) af

+(§_n ae)v,_g_z_ s o
ox  \oy Fre
On carrying through the ca.lcula.t.:ons, we find a condition which contains z, y,
and y’, and which must be verified for all values of these variables. The equa-
tion of the second order being given, if we wish to find the infinitesimal trans-
formations which it admits, we have at our disposal the unknown functions
E@, ) n(?c, ¥), which do not contain y’. Writing the condition that the preced-
ing relation is independent of y’, we may have, according to the given function
¢ (2, ¥, V'), & limited or unlimited number of equations which must be satisfied
by the functions ¢ (z, ¥) and 5 (z, ). In general these equations will be incom-
patible, and we see that an equation of the second order, taken arbitrarily,
does not admit any infinitesimal transformation. The same thing is true of
equations of higher order, and it is seen from this how Sophus Lie was able to
classify differential equations according to the number of independent infini-
tesimal transformations which they admit.

EXERCISES

1% Let M, be the greatest absolute value of f(x, ,) when z varies from z,
to ¢, + a. If the letters a, b, K, z,, ¥, have the same meaning as in § 80, the
integral of the equation 3’ = f(z, ¥) which takes on the value y, for z =z, is
continuous in the interval (z,, z, + p), Where p is the smaller of the two numbers
a and log(1 + Kb/M,)/K.

[E. LiNnDELSF, Jovrral de Mathématigues, 1894.]

[The inequalities
1 (z - 10)‘

|Un = Un—1] < MEn— —

are established step by step, as in § 27, and y, will remain between y,— b and
%o + b, provided that we have eX=—-xp <14 bK/M,.]

8. Find two first integrals of the simultaneous systems of differential
equations

@ Zrr@v-ve:r=0, Liv@u+s@z=o

— a3 — 23
®) E-vig =2 -V =
dy  _ dz _ —dz
v@+Y) @E—9Q@z+2v+2) z@+p)
8. The expression 1/[y — %f(y/z)] is an integrating factor for dy — f(y/z) dz.

4. The general form of the differential equations of the first order which
admit the infinitesimal transformation yaf/ox — z@f/oy is

(¢))]

zy’ - ] 2
o (z* +
" ( V).

Deduce from this an integrating factor.
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6. Find the general form of the differential equations of the first order which
admit the infinitesimal transformation af/6z + = (3f/0y); the infinitesimal trans-
formation z(af/ax) + ay (8f/oy).

8. Find a group of transformations for the differential equation
% = ¢ + ay),

where a is constant, and deduce from it an integrating factor.
7+, The differential equations of the elastic space curve,

”Izll - ztyﬂ —_ 6:’ — iﬁVQ
27y — g = EI/—' iﬁz|
zlyll — ylel = azl — a‘
where a, 8, & are constants, possess the two first integrals 23 + y% 4 22 = C,
B8(z% + y2)— 42z’ = C’. We then obtain z and y by the integration of a differ-

ential equation of the second order. .

[Heruite, Sur guelgues applications des fonctions elliptiques (p. 98).]



CHAPTER III

LINEAR DIFFERENTIAL EQUATIONS
I. GENERAL PROPERTIES. FUNDAMENTAL SYSTEMS

Linear differential equations have been studied more thoroughly
than any other class. They possess a group of characteristic proper-
ties which distinguish them sharply and at the same time simplify
their study. Moreover, they appear in a great number of important
applications of Analysis, and a preliminary study of them is very
useful before undertaking the study of differential equations of the
most general form. Except when otherwise expressly stated, we
shall study here only those equations whose coefficients are analytic
functions of the independent variable.

37. Singular points of a linear differential equation. A linear differ-
ential equation of the nth orde: is of the form

dy dry dy
(1) dz{+a1dxn_1 +"' +(I‘n-l:i;+a’ny+a‘n+1=0;

@, @, -+, a,,, being functions of the single variable z. Its inte-
gration is equivalent to that of the system

’d‘)n»]
_'{d.'t— + & Yn-1 +--+ 1Y,y +a,y + Ap41 = 07

@ Yav_,  an_ Boos _
dr Yo de Yo B de Yn—15

obtained by taking for auxiliary dependent variables the first n — 1
derivatives of y. Let us suppose that the coefficients a; are analytic
in a circle C, with the radius 2 and with its center at the point z,
and let y,, ¥, ¥, -+, "~V be a system of n arbitrary constants.
Applying to the equations (2) a general result established above
(§ 23), we see that the equation (1) has an integral analytic in the
circle C,, taking on the value y, for x =z, while its first n —1
derivatives take on respectively the values y;, yi,+ - -, y*=V forz ==,

We know also, from the general theory, that it is the only integral
of the equation (1) satisfying these initial conditions; we shall say
for brevity that it is defined by the initial conditions (z,, ¥, ¥s, ¥,

100
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<+ &), Let us now suppose at first, for definiteness, that the
coefficients a; are single-valued functions of , having in the whole
plane only isolated singular points. Let L be a path joining two
non-singular points «, and X, and not passing through any singular
point; the integral which is defined by the initial conditions (z,, y,,
Yo» -+ +» Y&~ V) is represented by a power series P(z — z,) convergent
in the circle ¢, with the center x, and passing through the nearest
singular point to z,, We can follow, by means of this series, the
variation of the integral along the path L as long as the path does
not go out of the circle €. If the path L leaves the circle C, at a
point , let us take a point z, on the path within the citcle €, and near
enough to « so that the circle C, with the center z, passing through
the nearest singular point does not lie entirely within the circle C,.
From the series P(x — x,) and from those which we obtain by suc-
cessive differentiations, we can derive the values of the integral and
of its first n — 1 derivatives at the point #,. Let y,, y{, -, %"~ be
these values; the integral of the equation (1), which is defined by
the initial conditions (z, y,, ¥3, + - +, ¥§*~ "), is represented by a power
series P,(x — x,) convergent in the circle C,. The values of the two
series P(x — z,) and P,(x — z,) are equal in the part common to the
two circles ¢, and C,, since they each represent an integral of the
equation (1) satisfying the same initial conditions. It follows that
the series P,(z — x,) represents the analytic extension in the circle
C, of the analytic function defined in the circle C, by the series
P(x — ;). If all of the portion of L included between x, and X
does not lie in the circle C,, we shall take a new point x, on the path
within €|, and so on as before.

At the end of a finite number of operations we shall certainly arrive
at a circle containing the point X. In fact, let S be the length of
the path Z and 8 the lower limit of the distance of any point of L
to the singular points. The radii of the successive circles used are
at least equal to §, and we can choose the centers of these circles in
such a way that the distance between two successive centers is greater
than §/2. After p operations the length of the broken line obtained
by joining these successive centers will be equal to at least p3/2.
If we have p3/2 > 8, the length of the broken line will be greater
than the length of L. Hence, after at most (p — 1) operations, we
shall have arrived at a circle containing all of the portion of L included
between the center of that circle and the point X.

Recapitulating, we see that we can continue the analytic exten-
sion of the integral as long as the path described by the variable
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does not pass through any of the singular points of the coefficients a,.
'We know, therefore, a priori, what are the only points which can be
singular points for the integrals of a linear equation. It may, how-
ever, happen that a point « is a singular point for some of the coeffi-
cients @; without being a singular point for all the integrals. In the
particular case where the coeflicients are all polynomials or integral
functions, all the integrals are analytic functions in the whole plane;
that is,they are integral functions and they may reduce to polynomials.

The reasoning may be extended also to the case where the coefficients a; have
any singularities whatever, it being possible for these functions to be multiple-
valued. If we start from a point z,, where these coefficients are analytic, and if
we cause the variable z to describe a path L, along the whole length of which
we can continue the analytic extension of the coefficients a,, we can like-
wise continue the analytic extension of the integrals along this path. The power
series which represent the integrals are convergent in the same circles as the
series which represent the coefficients.

These results are entirely in accord with those which we have deduced from
the method of successive approximations (§ 28).

38. Fundamental systems. Let us consider a linear equation which
is also homogeneous, that is, not containing a term independent of y,

da» ar-ly
@ FOH=224+aT Xy 40 Hiay—o,

where F(y) denotes no longer a function of the variable y¥ but the
result of an operation carried out on a function y of the variable z.
From the definition of this symbol of operation it is clear that, if
Y Ya» * * *» Yp are any p functions of z, and C,, C,, - - -, C, any con-
stants, we have the relation

F(Ciyy+ Coys+ -+ - + Coyp)=C,F(y,) + C,F(y,) + - - - +C, F(y,)-

If y,, ¥y « + +» Yp are integrals of the equation (3), then C,y, + C,y, +
.+ + C,y, is also an integral, whatever the numnerical values of the

constants C; may be. If we know » particular integrals v, y,, - - -, ¥
of the equation, we can therefore deduce from them an integral

1) y=Cy+ Cyy+--- + Cotfy
in the expression of which appear » arbitrary constants C,, C,, - - -, C,.

We cannot conclude from this that the expression (4) rea]ly rep-
resents the general integral of the equation (3); we must first assure
ourselves that we can dispose of the constants C,, C,, - - -, C, in such
a way that, for a particular value x, of x, different from a singular
point, y and its first » — 1 derivatives take on any values given in
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advance. For the sake of brevity, let us indicate by (), the value
which the pth derivative of the particular integral y, takes on at the
point z,. Setting the values of the integral y, and of its first n — 1
derivatives at the point z,, equal to these arbitrary quantities, we
obtain a system of n linear equations to determine the constants C,,
Cy -+ Cy. The determinant of the coefficients of these unknowns
must be different from zero. We shall denote by A(y,, ¥, - -+ ¥a)
the determinant whose elements are the functions y,, %y, * -+, ¥,
and their derivatives up to those of the (» — 1)th order:

Y Y *cc Ya
@ AGuwmesw=" B TR
ygn—l) y;n-l) “ee y'(ln—l)

If this determinant, which is an analytic fdnction of z in the whole
region in which the coefficients a, are analytic, is not identically
zero, let us choose for z, a point where this determinant is not zero.
We can then determine the constants C; so that y and its first » — 1
derivatives take on any initial values whatever for z,. Every inte-
gral of the equation (3) is therefore included in the formula (4).
‘We say, for brevity, that this formula represents the general inte-
grel of the equation (3). The integrals y,, v,, ---, ¥,, such that
the determinant A(y,, v, -+, ¥,) is different from zero, form a
Sundamental system.

If this determinant is identically zero, some of the integrals y,, v,,

-, ¥Yn can be deduced from the others. We shall say, in general,
that » functions y,, y,, - - -, ., of the variable z are not linearly
independent if there exists between these n functions an identity of
the form

(6) Cn+Cop+ -+ Coya= 0,

where C,, C,, - - -, C, are constants not all of which are zero. In order
that n functions y,, y,, - -, Y, shall not be linearly independent, it
is mecessary and syfficient that the determinant A(y, Y, -+, Ya) be
identically zero.

The condition is first necessary. For from the relation (6) we
obtain the » — 1 relations of the same form,

M P+ CfP + -+ Coy? =0, (p=12,---,n-1)

between the derivatives of the first order, of the second order, etc.,
of the functions y;. Since the coefficients C, are not all zero by
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hypothesis, the equations (6) and (7) cannot be consistent unless
the determinant A(¥,, ¥y, ** *, ¥a) i8 identically zero.

Conversely, suppose that A = 0, and suppose first that all the
firet minors of A relative to the elements of the last row are not
identically zero, for example, that the cofactor of %,

yl ys vt Y
8= yl ‘.'/n s Y

WD g g
is different from zero. Let 4 be a region of the plane of the variable
where the functions y, are analytic and where this determinant 8
does not vanish. Let us put

Yn =Ky, + Ky, + -+ Ky 1%y
8) .'l; = Kx?/x + sz; + te + K- 11'/-—1:
*)
y<-—a) = K ySn I) + K y(n—ﬂ) + + K _ly(n_—ﬂ)
These n — 1 equations determine K, K,, - - -, K, _, as analytic func-
tions of 2 in the region 4, since K, is the quotient of an analytic
function divided by the minor 8§ which is not zero in 4. These func-
tions K, - - -, K, _, satisfy also the relation

9 wWV=KE TP+ K+ + KD,
since A (¥, ¥, - - *» ¥») 18 zero at every point of 4. Differentiating
once each of the equations (8), and taking account of these same
relations and of the relation (9), we find

Ky + -+ + K, —1./,-—1 =0,

H

Kyt 4 - + Kiyyo® = 0,
and consequently Xj = K;=... =K, _;=0. The functions K, ...,
K,_, are therefore constants, and we have indeed a relation of the
form (6) between the n functions y,, y,, - - -, ¥,, where all the coeffi-
cients are constants and the coefficient ¢, is different from zero
Since this relation has been established in the region A4, it follows,
by analytic extension, that it holds in any region in which the func-
tions y,, y,, - - *, ¥. €xist and are analytic.
It will be noticed that the minor 8 is precisely equal to

AWy Yp ' ) Ynor):
If this minor 3 is identically zero without A(y,, ¥,, - - -, ¥a—s) being
also zero, a similar argument would show that the functions y,, g,
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«++3 Ya- satisfy a relation of the form (6), where C, =0, C,_; * 0
Continuing in this way, we shall therefore surely arrive at a relation
of the form (6), in which some of the coefficients may be zero. If,
therefore, we know n integrals of the equation (3) such that A (¥,, ¥,,
-+, ¥,) = 0, one at least of these integrals is a linear combination
with constant coefficients of the other integrals. It may also happen
that these » integrals reduce in reality to p independent integrals
[# <7 —1]. Inorder that this may be the case, it is necessary and
sufficient that all the determinants analogous to & which can be
formed with p + 1 of these integrals shall be zero, one at least of
the determinants formed with p integrals being different from zero.

The same lemma enables us also to prove that the general integral
of the equation (3) is represented by an expression of the form (4).
For, let (¥, ¥,,- - *» ¥.) be a fundamental system of integrals, and y
any other integral. From the (n 4 1) equations

F»=0, F@)=0 ..., F()=0
we derive, by elimination of the coefficients 2, 2, - - -, a,, an equation
of condition which is no other than

10) Ay, Y Yps "> Yn) = 0.

We have, therefore, between these n + 1 integrals, a relation of the
form
Cy + Cly1+ SO o C'-.y.=0,

where C, C,, C,,--., C, are constants not all of which are zero.
Finally, C, the coefficient of y, is certainly different from zero, since
the integrals v, ¥,, - - -, ¥, are linearly independent.

Every linear equation of the nth order has an infinite number of funda-
mental systems of integrals. In order to obtain such a system, we need only
take n integrals such that the determinant formed from the initial values of
these n integrals and their first n — 1 derivatives for a non-singular point

2, is not zero. If (y,, ¥y, - -+, ¥n) is a first fundamental system, the n integrals
Y,, Y,, -, Yy, given by the equations
Yf=c|'1v1+c£22/2+"'+c{uy-1 (i=1921"‘1n)

where the coefficients ¢ are constants, form a fundamental system, provided
that the determinant D formed by the n2 coefficients c; is different from zero.
We have, in fact, by the rule for the multiplication of determinants,

A(Yy, Yoo, X)) =D A(yy, Ygy o0y Un)-

It follows from this relation that the quotient [dA(yy, -« -, ¥a)/dz]/A is the
same whatever may be the fundamental system. We shall verify this by cal-
culating this quotient. For this purpose let us observe that the derivative of a
function F(z) is equal to the coeflicient of % in the development of F'(z + &) in
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powers of h. If we give to z an increment %, and if we replace each element.
of the determinant A by its development, retaining only the terms of the first
degree in %, we obtain the determinant

¥+ hyy Yo+ hyg .- Yo+ by
vi+ hyy vit by e Y+ MY

VeV R yPD Ry e gD 4 Ry®

The coeflicient of % is the sum of n determinants which are obtained by tak-
ing the coefficients of & in any row and the terms independent of A in the other
rows; n— 1 of these determinants, having two rows identical, are zero, and
there remains

Y Vs e YUn
QA(WYys Ygsoocs ¥n) _ | e |
dx Ty e L. gD
. ¥ g e y®

This result is true, whatever the functions y,, .-, ¥» may be; if these func-
tions are integrals of the equation (38), we can replace 3" in the last row by
—a "~V — ... — an¥,, and similarly tor the others. There remains, after
developing with respect to the elements of the last row and taking account
of the determinants which have two rows identical,
da
(11) = = - a,A.
The quotient which we wish to calculate is tberefore equal to — a,, and we
derive also from the preceding result the value of the determinant
- x
A= Aoe xo
where A, denotes the value of A for £ = z,. This expression for A shows that
this determinant is different from zero at every non-singular point, if it is not
identically zero — a result which we could also have obtained from the preceding
properties.
It should be noticed that every linear equation of which a fundamental
system of integrals is (v, 75,---, ¥a) can be written in the form (10)

A(yv Vi Ygr* vy yn) = 01
the coeflicients containing only the integrals y; and their derivatives. This

shows that any = linearly independent functions y,, ¥,,---, ¥» can always be
regarded as forming a fundamental gystem of integrals of a linear equation.

a,dx
)

39. The general linear equation. A non-homogeneous linear equation
can be written in the form

ar dr-t d
12) Fo)=3E+a 5%+ +aF+ay=r@),

where the term independent of ¥ has been isolated on the right-hand
side. We shall also consider the equation formed by replacing f(x)
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by zero; the resulting equation, F(y) = 0, is called the corresponding
homogeneous equation. If we know a particular integral ¥ of the
equation (12), the substitution y = ¥ 4 2z reduces the integration
of that equation to that of the homogeneous equation F(z)= 0 by
the identity F(Y + 2)= F(Y)+ F(z). The general integral of the
non-homogeneous equation is therefore represented by the expression

(13) y=Y+ C]?/l + Ca?/g + e+ Coya,
where y,, ¥,, « * +, ¥, are a fundamental system of » pe.rticu]ar inte-
grals of the homogeneous equation, and where ¢, C,,--., C, are

n arbitrary constants. It often happens in prwctxce that we can
easily obtain a particular integral of a linear non-homogeneous equa~
tion, and in this case we are led to the integration of the homogeneous
equation. The search for a particular integzal is facilitated by the
following remark, which we need only state: If f(x) is the sum of
»p functions f(x), £, (), - - -, £, (x), such that we know how to find a
particular integral of each of the equations

F(y)=/1=), F(y)=rs(=), . F@)=£4@),

the sum Y, + ¥, + ---+ ¥, of these p particular integrals is an
integral of the equation F(y)=f(x).

In general, ¢f we know the general integral of the homogeneous
equation, we can always obtain by quadratures the general integral
of the non-homogeneous equation (supposing, of course, that the
left-hand side is the same for the two equations).

The following process, due to Lagrange, is called the metiod
of the variation of constants. Let (y,, ¥,, -+, ¥,) be a fundamental
system of integrals of the equation F(y)= 0. Imitating as much
as possible the process employed for a linear equation of the first
order, we shall seek to satisfy the equation (12) by taking for y an
expression of the form

(14) y= C;:’l; + ngg'l' R Cnyu)
where C,, C,, --:, C, denote n functions of . We can evidently
establish between these n functions n» — 1 relations chosen at pleas-
ure, provided that they are not inconsistent with the equation (12).
If we put
yl ‘{+y,C;+-- +ylcl_0
(15) .'lxcl + %Cs + - + 3/;0 =0,

yiu—i)cf + ysa-l)cc + + y(n—l)c' = 0
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the successive derivatives of y up to the (» — 1)th derivative have

the values .\ _ ¢ g+ Cogi+ -+ - + Coti
(16) y= _C‘f/r +_C=31§' +.' <o Coyl,

y(-—ll) = C'xyin—l) + C’y;u—l) + ... C.y,(‘u—l)_

The first of the relations (15) has been chosen in such a way that
the first derivative y' has the same expression as if C, C,,.--, C,
were constants, and similarly for those that follow. The derivative
of the nth order has a less simple form :

YV =C " + Cogf® + - - - + Coyi
+UOC{H Y IC YL
Substituting the preceding values of y, ¥, ¥", - - -, ™ in the left-hand
side of the equation (i2), the coefficients of C,, C,,---, C, are re-
spectively F(y,), F(y,), - - -, F(¥,), and we are led to the new relation

(15 YWUCI+ YO0+ -+ YT VC = f(7),

which, together with the relations (15), enables us to determine
Ci -y Ca- We can therefore find C,, ¢, ..., C, by quadratures.

‘We can also make use of the following method, due to Cauchy.

Let (v, ¥gy -, ¥n) be a fundamental system of integrals of the equation
F(y) =0. Let us determine the constants Cy, C,, .-, C, 80 that the integral
Civy+ -+ Cays and its first n — 2 derivatives all vanish, while the (» — 1)th
derivative reduces to unity for a value a of z. The integral ¢ (z, ) thus obtained
depends, of course, upon the variable z and also upon the initial value a, and
satisfies the n conditions

(17) ¢(d, a) =0, ¢’ (tZ, a) =0, @ (d, a) =0, vy ¢n—1 (a, a') =1,
where ¢ (P (a, a) denotes the pth derivative of ¢ (z, @) with respect to z for the
value z = a. If we replace a by z in the preceding relations, which amounts
to a simple change of notation, they can also be written in the form

17) ¢(z,2)=0, ¢'(z,2)=0, ..., ¢®=D(z,z)=0, r-N(z,2)=1,

where ¢(P) (z, z) denotes now the pth derivative of ¢ (z, a) with respect to z, in
which we have replaced a by z after the differentiation. With this under-
standing let us consider the function represented by the definite integral

(18) Y= _L' ‘oz, a)f (a)da

with an arbitrarily fixed lower limit z,. Applying the general formula for
differentiation, and taking account of the conditions (17), we find successively

%: .l;s‘,(z’ a)f(a)da! ey %f: L"ﬂn-l)(;, a)f(a)dz’

%‘I = ;¢<-> @ a)f(a)da + f(2).
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Substituting these values of ¥, ¥, ..., ¥® in F(Y), we find
F(Y)=/1()+ j; O™ @, @) + 0,64-D (@, @) + +++ + aad (@, D)) S (@)dar.

The function under the integral sign on the right is identically zero, since ¢ (z, a)
is an integral of corresponding homogeneous equation, whatever may be the
value of the parameter a. From this it follows that the function Y represented
by the definite integral (18) is a particular integral of the non-homogeneous
linear equation. It will be noticed that this integral, as well as its first (n — 1)
derivatives, is zero for the lower limit z,, which is supposed different from a
singular point.®

The application of this method to the equation dry/dzs = f(z) leads to
precisely the result obtained above (§ 18).

40. Depression of the order of a linear equation. If we know a certain
number of particular integrals of a linear equation, we can make use
of them to diminish the order of the equation. Let us consider first a
homogeneous equation of the nth order,and Itt y,, v, - - -, %, (P < )
be linearly independent integrals of that equation. The substitution
y = y,#, where z indicates the new dependent variable, reduces the
proposed equation F(y)= 0 to a new equation of the same type in
2, for the expression for any one of the derivatives dPy/da® is itself
linear with respect to # and to its derivatives. If y, is an integral
of the equation F(y)= 0, the new equation in # must have 2 =1
for a solution, which requires that the coefficient of 2 shall be zero;
this fact is verified at once by calculation, for the coefficient of z is
precisely F(y,). The equation in z is therefore of the form

-1z

(19) yl dzn+bldxn—l + +b" —0

*]1t is easy to verify that the method of the variation of constants and Cauchy’s
method lead to the same calculations. In fact, the function ¢ (2, @) of Cauchy is of
the form

D@ )= (V)Y (X) + P (DY (@) + -« + Pn (W) yn (2),
where the functions ¢; (@) are determined by the conditions
¢1 (a) n (d) +eeed ¢-(a') yn (@) -0.

4) ¢; (a) v"“” (d) et ¢- (@yy=? (a)-O.
SL(@ YD (@) ++ + Pu (@) YV (@) =1,
and the particular integral (18) has the value

Y=y (z)j:‘ﬁl (@ f(@)da+-- -+y.(z)_/:¢.(a)f(¢)da.

But if we compare the conditions (4) with the relations (15) and (15") which deter-
mine the C' in the method of the variation of constants, we see at once that we have
C; (z)=i (z)j(z). and therefore the first method gives us a particular integral by
the same quadratures.
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where b, b,, - - -, b,_, are functions of z. This equation reduces to
a linear equation of order n — 1,

ar ar-
(20) P S s S SRY

by putting v =dz/dz. If y, y,, -, y, are p integrals of the equa-
tion from which we started, the equation (19) has the p — 1 integrals
Yo/¥u * * *» Yo/Y,, 80d therefore the equation (20) has the integrals

(@) o &)
dz\y,)’ T dx\y,

These p — 1 integrals are linearly independent; otherwise there
would exist a relation of the form
< (v, < (Yp
Caa;' {y‘) -+ C, d-—m( >=0,

where C,, C,, - - -, C, are constants not all of which are zero, and we
could conclude from it, by integration, the existence of a relation of
the same form, C,y, + -+ - 4+ C, ¥, + C,y, = 0, where C, is a new con-
stant. If p > 1, the application of the same process leads from the
equation (20) to a new linear equation of order n» — 2, and so on.
The integration of a linear homogeneous equation of which p inde-
pendent particular integrals are known reduces, therefore, to the inte-
gration of a linear homogeneous equation of order n — p, followed by
quadratures. When p = n — 1, the last equation will also be inte-
grable by a quadrature.

Similarly, if we know p integrals, y,, v,, - - -, ¥,, of a non-homoge-
neous equation, such that the p — 1 functions

ya_yp R ] yp"i‘/;
are linearly independent, the substitution ¥ = y, + # leads to a homo-
geneous equation having the p —1 integrals y,—y,, -+, ¥, — 7,
It is therefore possible to reduce this equation to a linear homogene-
ous equation of order n — p + 1.
Consider, for example, the linear equation of the second order,

@1 Fly)y= y+pdz+qy 0,

and let y, be a particular integral of this equation. If we puty = g2,
we find

d d d d?
w=h&trL &

% +2~¥-d'+z£&.

Ngd T dx T P
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and, substituting in the equation (21), we find, since the coefficient
of z is zero,

d'z d dz
22) .%gg+(2f+py)——-0
Putting dz/dx = u, this equation can be written in the form
du
(228 + 3/‘);— =0;
whence, by integratxon,

x
Logu+fpdz+Logy}=LogC,
x5

or

A second quadrature will give z and conseq.uently y. We see that
the equation (21) has the integral y, given by the expression

*da - [ pa=
(23) y2=y1f Fe e
x, 1

which is independent of y,. The general integral of a linear homo-
geneous equation of the second order is therefore obtained by two guad-
ratures when we know a particular integral *

This property is a mark of similarity between the linear equation
of the second order and Ricecati’s equation (§ 7). There exists, in
fact, a very close relation between these two kinds of differential
equations. If we depress the order of the homogeneous equation (21)
by the process of § 19, by substituting

y=e f sdzr

we are led to a Riccati equation,
(24) +2+pr+qg=0.

* We can derive from these results a very simple proof of an important theorem
of Sturm. Let us suppose that the coefficients p and ¢ are continuous real functions
of the real variable z in the interval (a, b), and let z,, z; be two consecutive zeros of
a particular integral y;(x) in the interval (a, b). If yg(x) is another particular inte-
gral independent of y;(x), the formula which gives u can be written

dz(f/:) n’ _f "

which shows that the quotient y3/y, varies always in the same sense when = increases
from 2y to z;. Now this quotient is infinite for z =2, and for z=z, ; hence it constantly
increases from - to +w or decreases from + to —%. TRe equation ys(x) =0 has
therefore one and only one root in the interval (zo, 2y)-
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be another polynomial of order m(m =n). We can find a third polynomial @ (y)
of order n — m such that F(y) — G[F;(y)] is at most of order m — 1 (a poly-
nomial of order zero is of the form ay, where a is a function of z). Let us pus

dan— dn—m-1y
d.’b" "‘+)\1d2'/‘ m—1,

The coefficient of dry/dz» in G[F,(y)] is N b,, and if we take A, = a,/b,, the
difference F(y) — A,dn—m[F,(y)]/dzr—™ will be at most of order n — 1. Let a;
be the coefficient of d®—1y/dzn~1 in this difference. If we take \; = a;/b,, the
difference

G =1 FENE

Hw—M~ [1@]

dzn—m

R0~ A s
will be at most of order n — 2. Continuing in this way, we see that we can
determine, step by step, the coefficients Ny, A, «++, Aya_m in such a way as to
obtain an identity of the form

(28) F@y)— G[F, ()] = F ),
where F, (y) is at most of order m — 1. This operation is entirely analogous to
the division of one algebraic polynomial by another.

Now suppose that we wish to obtain the integrals common to two linear
equations

(29) Fyp=0, F=

The identity (28) shows that these integrals are the same as the integrals
common to the two equations F,(y) = 0, F,(y) = 0. If F,(v) is not identically
zero, the same operations can be repeated on F,(y) and F,(y), and so on
until we arrive at two consecutive polynomials, F;_,; (¥) and Fi(¥), such that
Fir-1(¥) = Gi-1([Fr(y)]. This last symbolic polynomial Fi(y) is the analogue
of the algebraic greatest common divisor: all the integrals common to the two
equations (29) salisfy the linear equation Fy(y) = 0, and conversely. If Fi(y) is
of the degree zero, the two equations have no other common integral than the
trivial solution 7 = 0.

If in the relation (28) F,(y) is identically zero, the equation F(y) = 0 has
all the integrals of F, (y) = 0 Conversely, in order that F(y) = 0 shall have all
the integrals of F‘(y) =0, it is necessary that F,(y) be identically zero, for a
linear equation of order not greater than m — 1 cannot have all the integrals
of a linear equation of the mth order. Hence in this case we have identically

F@) = G[F(»)],

and if we put F(y) = z, the integration of F(y) = 0 is reduced to the successive
integration of the two linear equations

G@=0, F @)=z
of orders n — m and m, of which only the second is non-homogeneous.

We can deduce from this observation another solution of a problem already
treated. Suppose that we know p independent integrals ¥y, ¥g, -+, ¥p (P <n)
of F(y) =0. We can form a linear equation of the pth order having thesr p
integrals (§ 88). Let F,(y) = 0 be this equation of the pth order; then we have
iaentically F(y) = G[F;(y)], and if the equation G(2) =0 of order » — p has
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been integrated, we can integrate F,(y) =z by quadratures alone, since we
know the general integral of F,(y) = 0. The reduction is the same as by the
first method, but the new process is more symmetric.

Appel, Laguerre, Halphen, E. Picard, and many others after them have ex-
tended to linear equations the theory of symmetric functions of the roots, the
theory of invariants, and the very fundamental work of Galois relative to
the group of an algebraic equation. The theory of invariants is founded on the
easily verified fact that a linear homogeneous equation is changed into a new
equation of the same kind by every transformation of the type

z=r@t), wv=z¢(),

where ¢ is the new independent variable and z the new dependent variable,
whatever the functions f(t) and ¢ (t) may be.

We can sometimes make use of this transformation to simpplify a linear equa-
tion. For example, if we wish to make the coefficient of the derivative of
order n — 1 disappear, we find that it suffices to put

Y ==ze :f,dz ‘

retaining the variable z. Since we have two arbitrary functions f and ¢ at our
disposal, it would seem that we could take advantage of them to make two
coefficients disappear; but this reduction, although theoretically possible, is
illusory in most cases. For example, we can always choose the functions f and
¢ s0 as to reduce any linear equation of the second order to the simple form
z” = 0, but the actual determination of these functions presents the same diffi-
culties as the problem of integrating the original equation.

42. The adjoint equation. Lagrange extended the theory of integrating factors
to linear equations in the following way. Let F(y) be a linear function of y
and of its first n derivatives,

Fy) = agy™ + a, gD + -+ + @x_1¥ + u¥,

where a,, a,, - - -, an are any functions of z, and where ¢/, y”, .- ., y™ denote
the successive derivatives of y. Let us try to find a function z of z such that
the product zF (y) shall be the derivative with respect to  of another function
linear in ¥ and in its derivatives up to those of order n — 1. The general for-
mula for integration by parts (I, § 87,2d ed.; § 85, 1st ed.), applied to each of
the terms of the product zF (y), gives us

dz’.(fo z)]

(30) + d‘i alzy(n—ﬂ)_ _(alz)y(ll—t) + - F v__z(ﬂﬂ]

zF(y): .i aozy(l—l)__d..(aoz)y(n D4 ety

+£~[a--1zu] + yG(z),

where we have put 4
dn(a,2) _,a"—1(a,2) (An-12)
(31) G(z)=(—1)-T$z:—-—+(—1)n 1-—dz7_41—+---———a——+a.z.
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If.we denote by ¥ (, z) the expression which appears on the right-hand side
of the equation (80) which is bilinear with respect to ¥ and z and to their
derivatives, we can write that equation in the abridged form

=) F ) -ve @) = 2 [¥ (2],

so that for all the possible forms of the functions y and z the binomial
2F (y) — ¥ @ (2) is the derivative of ¥ (y, z). If we now take for z an integral of
thn equation @ (z) = 0, the product 2F'(y) is the derivative of an expression of
the same form, linear with respect to y, %/, :--, y®»—1, and the equation
F(y) = 0 is equivalent to a linear equation of order n — 1,

(88) ¥ (@, 2)=C,
which we obtain by replacing in ¥ the function 2z by the integral in question.
Now the equation G'(z) =0 is likewise & linear equation of the nth order; it
is called the adjoint equation of F(y) =0, and the symbolic polynomial G (z2) is
called the adjoint polynomial of F ().

‘We see, then, that if we know an integral of the adjoint equation, the inte-
gration of the given equation is reduced to the integration of a linear equation
of order n — 1 whose righi-hand side is an arbitrary constant. If we know p
independent integrals, 2,, z,, - - «, 2, of the adjoint equation, every integral of
the given equation satisfies p relatious of the form

B4 Y@w=z)=0, ¥ (¥, 2) = C,, sty ¥ (¥, 2p) = Cp,
where C,, C,, -+, Cp denote p constants. Eliminating the derivatives y(r—1),
y®=9 ... yw—p+D from these p equations, we obtain a linear equation of
order n — p whose right-hand side depends upon the p arbitrary constants C,,
Gy, + ++, Cp. In particular, if p = n (that is, if we know the general integral of
the adjoint equation), we can solve the n equations (84) fory, ¢, - - -, -1, and
'we can obtain the general integral of the given equation without any quadrature.

There exist between the integrals of the two equations F(y) =0, G(z) =0
some remarkable relations, which we cannot develop here.* We shall only show
that there exists a reciprocal relation between these two equations. More pre-
cisely, if @ (z) is the adjoint polynomial of F(y), then, conversely, F(y) is the
adjoint polynomial of G(2). Forif F,(y) denotes the adjoint polynomial of @ (z),
we have a relation between F,(y) and G (z) of the same form as the relation (82),

@) Y6 (2) — 2F\) = 2 (¥, 2).
Adding the relations (82) and (32"), we find
@)~ F@)] = £ ¥ @, 9 + ¥, 2],

It F(y) — Fy(y) were not zero, the product z[F (y) — F,(y)] would be the deriva-
tive of a function containing 2z and some of its derivatives. Now the derivative
of a function containing 2, 2, - -+, 2(» contains at least one derivative of z,
namely, z(» +1). The preceding relation is therefore possible only if F,(y) is
identical with F(y).

* See DARBOUX, Théorie des surfaces, Vol.II, Bk. 1V, chap. v. See also Exercise
17, p. 171, at the end of this chapter.
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II. THE STUDY OF SOME PARTICULAR EQUATIONS

43. Equations with constant coefficients. Linear differential equa-
tions with constant coefficients were integrated by Euler. Gonsider
first a homogeneous equation

(35) F(y) =y(”)+ a’ny(-—l)+ ERE X —1y’+ Yy = 0;

where a,, a,, - - -, a,are any constants. By the general theory (§ 37)
none of the integrals of this equation have & singular point in the
finite plane; that is, they are integral functions of x. Let

x z? ™
(36) y=cteytegit o toaq+--.

be the development in series of an integral. The series which repre-
sent the successive derivatives have an analogous form. Replacing y
and its successive derivatives by their developments in series in the
left-hand side of the equation (35), and equating to zero the coefficient
of any power of z, say x?, we obtain the following relation between
n + 1 consecutive coefficients :

BT iyt @ Casp 1+ @iyt + B 1G4+ 2,0, =0,

If we substitute in it successively p =0, 1, 2, . . ., we can calculate,
step by step, all the coefficients ¢,, ¢, ., « - +, in terms of the = first
coefficients ¢, ¢,, - -+, ¢,_,, which may be taken arbitrarily. The
series (36) thus obtained is convergent in the whole plane and repre-
sents the integral which for # = 0 is equal to ¢,, while the first n —1
derivatives take on respectively the values ¢, ¢,, -+, ¢,_, forz=0.
We shall show that this integral can be expressed in terms of expo-
nential functions when it does not reduce to a polynomial.

The equation (37) is a recurrent formula with constant coefficients
which connects the » + 1 consecutive coefficients. Now it is easy to
find particular solutions of that equation. For this purpose, let us
consider the algebraic equation

(38) f('r)=1“+alr""‘+a21“"+ it a, yr+a, =0,

which, for the sake of brevity, we shall call the auxiliary equation,
-the left-hand side f(r) being the auxiliary polynomial. If r is a root
of this equation, it is clear that the relation (37) is satisfied, what-
ever may be the value of the integer p, by putting ¢, = . The
particular integral thus obtained is equal to ¢, and we see that e™
8 a particular integral of the equation (35) if r 8 a root of the
auxiliary equation f(r) = 0. The verification is immediate, for if we



118 LINEAR DIFFERENTIAL EQUATIONS (111, § 48

replace y by ¢~ in the left-hand side of the equation (35), the result
of the substitution is €™ f(r).

If the equation (38) has » distinct roots », 7, - - -, 7., We know n
particular integrals en®, €17, .. ., ¢’»*, and therefore an integral

(39) y = C,&"* + Cpe"r* + - - - + C, &',
the expression for which contains » arbitrary constants C,, C,, - - -, C,.

This expression represents the general integral, for the determinant
A(en?, €%, - « -, ¢n") can be written in the form

1 ” T e r'l"'i
-1

[T I SR B S
1 T 73 m-1

and the determinant on*the right is, except for sign, the product of
the differences »; — 7.

Before studying the case in which the auxiliary equation has
multiple roots, we shall prove a lemma. Let us make the substi-
tution y = ¢**z in the equation (35), where @ is any constant and =
the new dependent variable; by Leibnitz’s formula we have

Yy = e (az + 2'),

..,
(40) y‘”:e“(a"z-{- }T,d"lz'—l-'p—(‘l;—'——ll“’_’z"-i‘“'+2(’))’

Substituting these values of y, %', %", ... in the left-hand side of
the equation (35), e** appears as a factor, and we have
F(e=z)= =G (2),

where G(#) is a linear expression in 2, 2',..., 2™ with constant
coefficients. In order to calculate the coefficients of G (2), let us
observe that if we replace in ¥ (y) the indices which indicate differ-
entiation by exponents, and y itself by y° =1, the result obtained is
identical with f(y). If we carry out the same transformation with
the function z, the formule (40) may be written symbolically

Ly = ey
hence G(z) can also be written, in the same symbolic notation,

JS(a + z), and, replacing the exponents of z by the indices which
indicate differentiation, we see that the new equation in 2 is

(41) F(e=z)= e“{f (@2 +Sf"(@)='+ %—T) 2.+ ’ﬁ}u@' z<->] =0
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Now let 7 be a p-fold root of the auxiliary equation; if we replace ¢
by that root » in the equation (41), the coefficients of #, 2/, 2", . . ., 2=
in this equation are zero, and we obtain an integral by taking forz a
function whose pth derivative is zero, that is, an arbitrary polynomial
of degree » — 1. Consequently, if » is @ p-fold root of the auxiliary
equation, to that root corresponds p particular independent integrals of
the linear equation (85), €™, ze™, ..., 2P ~1¢™=,

Let the & distinct roots of f(r)=0 be =, »,, ..., 7, and let their
respective orders of multiplicity be denoted by u,, s,, « - -, sy (Bpty= n).
¥rom these roots we can form 7 particular integrals of the linear
equation. These n integrals are independent, for any linear relation
with constant coefficients between these » integrals would lead to an
identity of the form

17, (2) + Ev5, (@) + - - + ERp (@)= 0,
where ¢,, ¢,,--:, ¢, denote polynomials not all of which vanish
identically. Such a relation is impossible if the Z numbers »,7,, - ..,
r, are distinet. For, let n, n,, .- ., n, be the respective degrees of
these polynomials. It is understood that any term in the identity
is simply omitted if the corresponding polynomial is zero. Dividing
by en*, we can again write this relation in the form

é,(2)+ e~ (@) + « -« + 6B, (z) = 0.
Differentiating both sides of this equation, we have
@)+ € [$ @)+ (= ) B @]+ =0,
The degree of the polynomial which multiplies ¢":~"0= is again
equal to n,, and the polynomial does not vanish; and similarly for
the others. After having differentiated (», + 1) times, we shall have,

therefore, a relation of the same form as the relation from which
we started, but with one term less,
e, (2)+ e Y () + « - - + enTyY, (x) = 0,
where the £ — 1 numbers s, - - -, 3, are different, and where y,, ¢,,
+ + +, Y are polynomials of degrees n,, #,, - - -, n, respectively. Continu-
ing in this way, we arrive finally at a relation of the form e (z) =0,
where 7 () is a polynomial not identically zero. But this is evidently
#absurd. The general integral of the linear equation (35) is therefore
represented by the expression
42) y=e"zpu,-l+9"1pp,-x+ cor 4 €¥P, 4,

_ where P, _;,:+, P, are polynomials with arbitrary coefficients,
of degrees equal to their subscripts.
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If the auxiliary equation has imaginary roots, the general integral
(42) contains imaginary symbols, but we can make these imaginaries
disappear if the coefficients a , a,, - - -, @, are real. For in this case,
if the equation f(r) = 0 has the root a + Bi of multiplicity p, @ — Bi
is also a root of the same degree of multiplicity. The sum of the two
terms of the formula (42) coming from these two roots can be written

e**[(cos B + i sin Bz) ® (x) + (cos Bx — i sin Bx) ¥ (z)],
where @(z) and ¥(x) are two polynomials of degree p —1 with
arbitrary coefficients, or in the equivalent form

¢*=[cos Bxd, (x) + sin Br¥ ()],
where ®, and ¥, are also two arbitrary polynomials of degree p — 1.

Note. In order to express the general integral of the equation (35) in terms
of exponential functions, we observe that it is first necessary to solve the equa~
tion f(r) = 0. If this equation is not svlved, the recurrent relations (87) enable
us always to calculate, step by step, as many as we wish of the coefficients of the
power series which represents the integral corresponding to the given initial
conditions.

We can determine in advance the number of coeflicients which it suffices to
calculate in order to obtain the value of the integral with a certain degree of
approximation. Let A be the largest of the numbers 1, |a,|, - -, |@x|, and B the
largest of the numbers |c,|, |c,],-+-, |a—1]. It is easy to prove, step by step,
that we have |¢c, | < B(An)»+1. The abselute value of the remainder of the
series which represents the integral, commencing with the term in z» +», is there-~
fore less than the value of the series

[z st ]
(n+p)! (n+p+1) '
where p =[x, and consequently less than
B(dn)p+1ipntp
(n+p)!
Consider now a non-homogeneous linear equation with constant
coefficients. 'We can avoid the use of the general method and find
a particular integral directly if the right-hand side, ¢ (), is a poly-
nomial. For if the coefficient a, of 7 in the equation
'y 'y
@z T M
is not zero, we can find another polynomial of degree m,
Y= ;I/(:zz) = o™ + cl:l,'""l + e,
which, substituted for y in the left-hand side of the preceding
equation, gives a result identical with ¢ (x). The m + 1 coefficients

ednp,

d
+:--+t:l.,,_lﬁ—}—an]/:box"-}-blz""‘-k...
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Cgs €33 Cgs  * 5 Gy are determined, step by step, by the relations
a,c,=b,, a,c, + ma,_,¢,=b,,
a"502+ (m - 1)“"‘-“’1 + m(m - l)a‘l—ﬂca = bg’ T b ]

where a, is different from zero by hypothesis. This computation is
not applicable when a, = 0. More generally, suppose that the deriva-
tive of the lowest order which appears in the left-hand side is the
derivative of the pth order. Taking for the depsndent variable
z = dry/dz", the given equation is transformed into a linear equation
of order n — p, where the coefficient of 2z is not zero. According to
the case which has just been treated, this equation in 2 has a poly-
nomial of the mth degree for a particular integral. Hence one par-
ticular integral of the equation in y itself is a polynomial of degree
m + p. The coeflicients of this polynomial can again be determined
by a direct substitution. It should be noticed that the coefficients of
a1, x»=2 ..., z, and the constant term are arbitrary.

If the right-hand side ¢ (x) is of the form e=* P (x), where a is con-
stant and P (x) denotes a polynomial, we reduce this case to the
preceding by putting ¥ = ¢**z, which leads to the equation

(@) d*= r=D(a) d*—n dz

43 f(—n'tl o _(L:_:_Jl)_‘l Foamites + f'(«) 7z + f(a)z = P(x).
This equation has for a particular integral, as we have just seen, a
polynomial whose degree we can determine a priori; the equation
in y has therefore a particular integral of the form e*Q(x), where
Q(x) also is a polynomial. Suppose in particular that P (x) reduces
to a constant factor . 1f « is not a root of the auxiliary equation,
the equation (43) has the particular integral 2 = ' /f(), and the equa-
tion in y has the particular integral Ce™=/f(«). If « is a multiple
root of multiplicity p of the auxiliary equation, the equation (43) is
satisfied by putting dr
SO () dxP =plC,

Cx?
o)’

and consequently the equation in y has the particular integral
Cz?e*[fP (a). By virtue of a general remark (§ 38) we can there-
4%ore find a particular integral directly whenever the right-hand side

18 the sum of products of exponentials and polynomials. This is the

case in particular if the right-hand side is of the form P (x) cos ax

or P(x) sin ax, for we need only express cos axz and sin ax in terms

of ¢ and of e¢~°#. Having once recognized by the preceding

or

R =
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consid#rations the form of a particular integral, it is not necessary
to pas# through all the indicated transformations in order to calculate
the ceefficiegts upon which it depends; it is often preferable to
substitute directly in the left-hand side of the given equation.

Ezample. Let it be required to ﬂnci the general integral of the equation
4
(49) F(v)=%x—'-:—v=a¢¢+be’=+csinz+gcossz,

where a, b, ¢, g are constants. The auxiliary equation 7 —1 =0 has the sim-
ple roots 1, — 1, 4 4, — i; the general integral of the homogeneous equation is
therefore

(45) y = C,e* + Cge~* + Cycosz + C,sinz.
We must next find & particular integral of each of the four equations obtained
by taking successively for right,-hn.nd sides ae, be3, ¢ sin z, g cos 2z. Since unity
is a simple root of f(r) =+ — 1 =0, the first of these equations has the particular
integral azer/f'(1) = aze’/4 Since 2 is not a root of the equation f(r) = 0, the
second equation has the particula.r integral be?x/f(2) = be2x/16.

In the third equation, F(y) = ¢ sinz, we can replace sin z by (¢= — e~ ) /24,
and we have to seek a particular integral of each of the two equations

Fo)= _en, F(y)_—ce—n

Now, since + i and — { are simple roots of f(r) = 0, we know, a priori, that they
have respectively two particular integrals of the form Mzer, Nxe—=', The sum
of these two integrals is of the form z (m cosz 4 = sinz), and we can determine
the coefficients m and n by substituting :n F(y) and equating the result identi-
cally to csinz. This method avoids the use of the symbol i. It turns out that it
is necessary to take m = ¢/4, n = 0. We find similarly that the last equation
F(y) = g cos2z has the particular integral g cos2z/16. Adding all these par-
ticular integrals to the right-hand side of the equation (46), we obtain the general
integral of the given equation (44).

44. D’Alembert’s method. A large number of methods have been
devised for the integration of linear equations with constant coeffi-
cients, particularly in the case where the auxiliary equation has mul.
tiple roots. One of the most interesting, which is applicable to many
questions of the same kind, consists in considering a linear equation,
in which £(r) = 0 has multiple roots, as the limit of a linear equation
in which all the roots of f(r) = 0 are distinct. In general, let

-1

(46) F@)= %’;’ +a, ‘z,_’{ +oota,y %ﬂ +a,y=0
be a linear equation, where the coefficients a,, a,, - - +, a, are functions
of = which depend also upon certain variable parameters a,, a,,: - -, .
Suppose that there exists a function f(r, ) having the following prop-
erty: for ¢ values of r, depending upon the parameters a,, a,, - - -, a,,
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and in general dlstmct, the function f(z, ) of x is an integral of the
equation (46). Let r, -y 7, be these ¢ values of  such that the

fanctions J(=, "1): f (=, ), Tty S (=, "q)

form ¢ independent particular integrals of the equation (46), whatever
the values of the parameters ¢, a,, - - -, a, may be. If for certain par-
ticular values of these parameters the ¢ values iy Tgs * * 5 Tg @re 0ot
distinct, the number of the known integrals is diminished. Suppose,
for example, that », becomes equal to r,. If », is different from r,
the equation has the two integrals f(z, »,), f(«, r,), and consequently

fﬁx’ Tﬂ)_.fgz) 1‘12
r,— T

is also an integral. Now, if », approaches », the preceding function
has for its limit the derivative [ f;(x,7)],. If a third root r, becomes
equal to r, we take, similarly, supposmg first that 7 dlﬁ'ers a little
from 7, the integral

(.l', a) f(IJ 1) (7‘ - 7'1) [f(x! 'r)]rl
(ry—m)*
and this integral has for its limit [ f/;(z, 7)],,/2 when r, approaches »,.
This rea.sonmg is perfectly general: if, for certain values of the par
ameters a,, - - -, a,, k& of the roots are equal to r, the corresponding
equution (46) has the & particular integrals

rarn (F)y GHy o0 G

In the case of a linear equation with constant coefficients the
parameters a,, @y -, @ Are the coefficients themselves, and the
function f(x, ») is ¢~ This leads again to the results which we
obtained before directly.

45. Euler’s linear equation. The linear equation
Sy I dy
47 = " + 4.z d.’l‘" =1
where A,, A, ---, 4, are constants, reduces to the preceding by the
change of variable* z = ¢'. Since dt/dx = 1/x, we have
dy dydt 1dy &Py l(d’u d1/

Az dtds =z dt  dx' \de? at

+oo Az o+ A,y =0,

*The general theory (§ 37) tells us that the integrals of the equation (47) can have
no other singular poiut than z=0. Now et cannot be zero for any valne of ¢. The
. integrals obtained by the change of variable x = ef must therefore be integral functions.
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and we easily verify, step by step, that the product z*[dry/dx?] is
a linear expression with constant coefficients in dy/d¢, d/dt’
+«+, dPy/dt?. The given linear equation is therefore transformed by
this change of variable into an equation with constant coefficients.

To obtain the general integral of the equation (47), it is not
necessary to carry out the calculations of this change of variable,
for we know that the transformed equation has integrals of the
form ¢*. The given equation has therefore a certain number of
integrals of the form (¢*)” = a”. Replacing y by «” in the left-hand
side of the equation (47), the result of the substitution is 27f(r),
where

JO=r@=1--.(r—n+1)
+Ar(r—1)--(r—n+4+2)4 .-+ A, r+ 4,

If the equation f(r)&= 0, which here plays the same role as the
auxiliary equation, has » ddstinct roots », 7, ..., n,, the general
integral is

Y= C’lxﬁ + (‘2;1;": 4+ - Coxm,
If » is a multiple root of multiplicity u of f(r)=0, to that root
corresponds, by D’Alembert’s method, the u particular integrals

0 o*—1yr
Z', E‘ (.l:') =x LOg T, ey, -—a—;‘—_—_—‘-

The general integral of the equation (47) is therefore in all cases
(48) y=znP, _;(Logx)+ -+ + 2* Py, (Logx),

where 7, 7, - - -, 7, are the k distinet roots of f(r) = 0, where u, u,,
-+ -, My are their orders of multiplicity, and where P, _, (Logx) is
a polynomial in Log = with arbitrary coeflicients of degree u; — 1.
If, in the equation (47), we replace the right-hand side by an
expression of the form x™Q(Log x), where Q denotes a polynomial,
it can be shown, as in the case of the equations with constant coeffi-
cients, that the new equation thus obtained has as a particular inte-
gral an expression of the same form, whose unknown coefficients

can be calculated by a substitution.

=" (Logx)* 1.

48. Laplace’s equation. We can sometimes represent the integrals of a linear
equation by deflnite integrals in which the independent variable appears as a
parameter under the integral sign. One of the most important applications of
this method is due to Laplace and affects the equation

#9) F@)=@+b) T+ @+ T Lt ot (ot tad)y =0,
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whose coefficients are at most of the first degree. Let us try to find a solution
of this equation by taking for y an expression of the form

(50) v= f(  Ze=d,

where Z is a function of the variable z and where L is a definite path of inte-
gration independent of z. We have, in general,

dry
—_— Zzp
dxr ‘/(.L) zesdz,

and, replacing y and its derivatives in the left-hand side of the equation (49) by
the preceding expressions, we find

51 F(y) = Ze=x(P
1) W)= [, Ze=(P + Q) dz,
where we have set, for brevity,

P=ay2"+a;2" =14 «o- 4 Gy 2 + @,
Q=boz”+blz'_1 + oot ba1z + bn.

The function under the integral sign in the expression (51) is the derivative
with respect to z of Ze*x @, provided that we have

(62) 1’%3—) =2ZP, or % [Log(2Q)] = %.

We derive from this condition
1 .L"Z ds
Z==e¢)%

where the lower limit 2, does not cause Q(z) to vanish. The function Z having
thus been determined, the definite integral (51) is equal to the variation of the
auxiliary function

+p
V=e=2Q= u+fzo [

along the path L. It will suffice, therefore, in order to obtain an integral of
the given equation (49), to choose the path of integration L in such a way that
the function V takes on the same value at the end as at the beginning, and so
that the integral (50) has a finite value different from zero.

Let a. b, c, - - -, I be the roots of the equation Q(z) = 0. The auxiliary func-
tion V is of the form

(68) V=extR@(z—a)c(z—b)B...(z— A,

where R(z) is a rational function whose denominator has no other roots than
the roots a, b, ¢, ---, l of Q(z), and of a multiplicity one unit less. Let A, B,
C, ... denote loops described about a, b, ¢, ---, in the positive sense, starting
from an arbitrary initial point, and let 4..4, B_1, C-1, - - - denote the same loops
described in the opposite sense. The function ¥V is multiplied by e2wie when 2
describes the loop A4, and by e~27« when z describes the loop 4.1, and simi-
larly for the others. It follows that if we make the variable z describe the
loops A, B, A_1, B-1 in succession, the function V takes on again its initial
value. The definite integral (50), taken over this path ABA-1B-1, is not, in



IEB‘ by LINEAR DIFFERENTIAL EQUATIONS [ §46

i zero. It gives a particular integral of the given equation. By associat-
ing the'p points a, b, ¢, - -+, I in pairs in all possible ways, we obtain p(p —1)/3
integrsls, which in reality reduce to p — 1 independent integrals.

‘We do not find » particular integrals in this way. In order to obtain others,
we muy look for the paths L having their extremities at certain of the singular
pointsa, b, ¢, - - -, L and such that the function V vanishes at the two extremities.
aisa nhnple root of Q(z) = 0, the function Z contains the factor (z — a)=-1,
and it will be poseible for the integral (50) to have a finite value when one of the
extremities of the path L is at the point a only if the real part of « is positive,
and in this case V' does approach zero at the same time as |z — a|. If a is an
m-fold root of Q(2) = 0, the rational function R (z) contains a term of the form
Ap—3y/(z — a)»—1, In order to determine the behavior of the absolute value of
¥ in the neighborhood of the point z = a, we need only study the absolute value
of the following important factor : P

&mm @_ayﬁﬁﬁﬁ
z—a=p(cosp +18ing), An-1=A(cosy+isiny), a=da + ai,
we may write the absolute value of this factor in the form
€ a"’b pa’ gAp ™ coal¥ —(m ~ 1) ],

In order that ¥V shall approach zero with |z — a|, it will sufice to make z de-
scribe a curve such that the angle ¢ which the tangent makes with the real
axis satisfles the condition cos [y — (m — 1) ¢] < 0. For example, we may take
¢ =[y+(@k+1)7]/(m —1). If the angle ¢ has been taken in this way, the
product Ze** also approaches zero with |z — a|. Proceeding in the same way
with the other points b, c, -- ., |, we see that we can determine new paths L,
closed or not, giving other particular integrals.

Finally, we can also take, for the paths of integration, curves going off to in-
finity. We are again led to determine a path L having an infinite branch such
that the function V' approaches zero when the point z goes off indefinitely on
this branch. If, for example, the rational function R (z) is zero, and if the angle
of z lies between 0 and /2, it will suffice to make z describe an infinite branch
asymptotic to a line that makes an angle of 8 7/4 with the real axis.

Leaving these general considerations,* let us consider in particular Bessel’s
equation,

(64) +(2n+1) +zy =0,

d’
dzﬁ
where n is a given constant. We have here

P=(2n+1)z, Q=1422
and consequently ) ’

1
Z=(1+2)" V=e=(l428) "3
Thedeﬁniteinoegml
i) 14223
(65) "=-£m’"( +29)" 2z

-

v * See an important paper by Poincaré in the American Journal of Mathematy ss,
ol. VII. .
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is therefore a particular integral of the equation (54) if the function

1
e=(1 4 293

takes on the same values at the extremities of the path of integration. We can
first take a succession of two loops described, the first in the positive sense
about the point z =+ {, the second in the reverse sense about the point 2=—1.
For the second path of integration we can take next a curve surrounding one
of the singular points + ¢ and having two infinite branches with an asymptotic
direction such that the real part of zz approaches ~ w.

The real part of the constant » may be supposed positive or zero, for if we
put y = z—32nz, the equation in z does not differ from the equation (54) except
in the change from n to — n. When this is the case, we can also take for the
path of integration the straight line joining the two points + 1 and — 4. More-
over, the integral thus obtained is identical with the first except for a constant
factor. In order to reduce this integral to the usual form, let us put z = it, It
then takes the form

+1 a1l
_ —y2
v=[ e=(-m"ia,

(56) v=ftlcoszt(l—t=)'_;dt.

The remarkable particular case in which n is half an odd number deserves
mention. If n is positive, the integral (56) always exists and can even be cal-
culated explicitly, since n — 1/2 is a positive integer. But if the path L is a
closed curve, the definite integral (56) is always zero. It seems, then, that in this
case the application of the general method gives only one particular integral.
However, in this apparently unfavorable case we can express the general inte-
gral in terms of elementary functions. For, let us make the inverse transfor-
mation to the preceding, so that n shall be half of a negative odd number. Then
n —1/2 is a negative integer, and the definite integral (565), taken along any
closed curve, is a particular integral of the linear equation (54). Taking for the
path L a circle having one of the points + { for center, we see that the residue
of the function

e(1 + z’).—;'

with respect to each of these poles is an integral of the linear equation. Now,
it is clear that the residue with respect to the pole z =+ i is the product of &=
and a polynomial, and, similarly, that the residue with respect to the polez =~ 4
is the product of e~ and a polynomial. These two particular integrals are
independent, for their quotient is equal to the product of e?i* and a rational
function. It is clear that their sum is a real integral, as is also the product of
their difference and i.

Note. The linear equation with constant coefficients is a particular case of
Laplace’s equation, which is obtained by supposing all the coefficients b zero.
If we suppose also a, =1, we have Q(z) = 0, while P(z) reduces to the auxil-
iary polynomial f(z). The general method appears to fail, since the expression
for Z becomes illusory. But it requires only a little care to recognize how the
method must be modified. In fact, the reagoning proves that the definite integral
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Zeﬂdz is a particular integral of the linear equation, provided that the defi-
niue integral f;, 4/ (z) e~ dz, taken along the same path L, is zero. Now, if we
take for L a closed curve, it is sufficient that the product Zf(z) be an analytic
function of z in the interior of this curve. If, therefore, II(z) denotes any
analytlc function in a region R of the plane, the definite integral

e )
oS (@)

taken along any closed curve L lying in this region, is a particular integral of
the linear equation with constant coefficients. We see how this result, due to
Cauchy, is thus easily brought into close relation with Laplace’s method.

As a verification, it is easy to find the known particular integrals. Letz =a
be a p-fold root of the auxiliary equation f(z) = 0. Let us take for the path of
integration a circle about a as center not containing any other roots of f(z) = 0,
and let II (z) be an analytic function in this circle. The residue of the function
11 (z) e=2/f () or L (z) e*=/[(2 — a)2f; (2)] is equal to the coefficient of 27 —1 in the
development of the product, .

e*
a —_—
O(a+ h)eﬂfl(u+ )

according to powers of k. If we have

II(a + &)
T = A 4+ AR+ Ay hr-14 .
F@+h) [ 1 -p
the coefficients 4, 4,, - - -, 4p 1 are arbitrary, since the function II(z) is any

function analytic in the neighborhood of the point a. The residue sought is
therefore equal to

gr-1 zp—13
o + 4 coedt Ay
[ GoniT Mot

that is, to the product of the exponential e2* and an arbitrary polynomial of
degree p — 1. This agrees with the result already known.

III. REGULAR INTEGRALS. EQUATIONS WITH
PERIODIC COEFFICIENTS

Aside from the very elementary cases which we have just treated, it is, in
general, impossible to determine, simply from the form of a linear equation,
whether the general integral is algebraic or whether it can be expressed in terms
of the classic transcendentals. Mathematicians have therefore been led to study
the properties of these integrals directly from the equation itself, instead of
trying to express them (somewhat at random) as combinations of a finite num-
ber of known functions. We have already seen (Chap. 111, Part I) that the
nature of the singular points of an analytic function is an essential element
enabling us In certain cases to characterize these functions completely. We
know a priori (§ 37) the singular points of the integrals of a linear equation.
‘We shall now show how we can make a complete study of the integrals in the
neighborhood of a singular point in a special case, which is nevertheless rather
general and very important.
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47. Permutation of the integrals around a critical point. Let a be an isolated
singular point of some of the coefficients p,, p,, - - -, P of the linear equation

dn—-1 d
- 4 '+P--1-1+P-ﬂ==0~

67 F@) -— + Pt -

We shall suppose also that the coefficients are single-valued in the neighborhood
of a. Let C be a circle with the center a in the interior of which p,, Dg, -+, Pa
have no other singular point than a and are otherwise analytic. Let z, be a
point within C near a. All the integrals are analytic in the neighborhood of the
point z,. Let y,, ¥,, -+ -, ¥u b@ n particular integrals of a fundamental system.
If the variable = describes in the positive sense a circle passing through the
point z, about a as center, we can follow the analytic extension of the integrals
Y1s ¥y * * *» Yn along the whole of this path, and we return to the point z, with
n functions Y,, Y,,--+, ¥, which are again integrals of the equation (87),
where Y; indicates the function into which y; passes after a circuit around
the point a in the positive sense. We have, therefore, since Y,, ¥g,:--, ¥,
are integrals of the equation (57), n relations of the form

Yi=apvn+ @pte+ -+ G1atn,
(58) Y, —a,,y,+a,,y, --+aa.1/..

R
Y.. = a.1y1+ naY2+ ¢+ Ana¥n,

where the coefficients a; are constants which of course depend upon the fun-
damental system chosen. It is easy to obtain the value of the determinant D
formed by these n2 coefficients. For we have, by § 88,

x
- ar
A(¥1s Ygy -+ s Un) = Ce L‘ 7

If x describes the circle ¥ with the center a in the positive sense, y; changes
into Y,; hence we have
f D, dx

A(Yy, Yyyoooy Yo) =AWy, Ygs* s Un) €
But the quotient of the two Wronekians is equal to D (§ 88), so that D = e~2™iR,
where R indicates the residue of p; with respect to the point a. This determi-
nant is therefore never zero.

Since the coefficients in the equations (568) depend upon the fundamental
system chosen, it is natural to seek a particular system of integrals such that
these expressions are as simple as possible. T.et us seek first to determine a
particular integral ¥ =\, %, + Ny + - - - + Aa¥n, such that a circuit around the
point a reproduces that integral multiplied by a constant factor. It is necessary
for this that we have U = su, where U is the value of u after the circuit, and
where s is a constant factor, that is,

M(ay Yy F G+ - F Cantn) + -
+ M(Ba1¥1 4+ Gmavat oo+ Am¥n) — 81+ oo+ Maa) =0

Such a relation cannot exist between the n integrals unless the coefficienta
of ¥;, ¥g -+, Va 8ll vanish separately. The n 4+ 1 unknown coefficients
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Ap Ay, +' -, An, 8 ust satisfy the n conditions

M(ay — 8) + Ngayy F oot MGy =0,
(59) Ay @yg +)‘|(“u"‘")+"‘+\~¢-2 =0,

DR ) L )

M dia + Mage + <+« + Aa(Gun — 8) = 0.

Since the quantities A, Ag, + -+, Ay cannot all be zero at the same time with.
out having u = 0, we see that 8 must be a root of the equation of the nth degree,

@y — 8 an mee Gn1
(60) Fg=| ™ mTr T % e,
Qin Ogn o Oy — 8

which we shall call the characteristic equation ; according to a remark made a
moment ago, this equation cannot have the root s = 0, for the determinant D
of the n? coefficients ay would be zero.

Conversely, let s be a rdot of this equation ; the relations (58) determine
values for the coefficients A\; not all zero, and the integral u =X\ 7; 4+ «-- + Na¥n
is multiplied by s after the circuit around the point a. This being the case, let
us suppose first that the characteristic equation has n distinct roots s, 85, - - +, 3.
‘We shall have n particular integrals u,, u,, - - -, s such that, after the circuit in
the direct sense around the point a, we have

(61) U, =8y, U; = su,, et Up = 8p,

where U; denotes the final value of u; after the circuit. These n integrals u,, u,y,
«vsy Uy Jorm a fundamental system. For, suppose that we have a relation of
the form

(62) Ciuy + Caug+ -+ + Caun =0,

where the constant coefficients C,, C,, - - -, Cy are not all zero. After one, two,
«««, (n = 1) circuits, we should have the relations of the same form,

Ci8uy  + Cp8u;  + oo+ Cutaus =0,
Cisiy; +Cp8juy,  + .- -+ Cuslun =0,
e e e e e e e e e ey,

(68) .
Ci81"u + Gy}~ lup 4 o + CaS " uy = 0.

The linear relations (62) and (63) can be satisfled only if we have at the same
time C,u; =0, -+, Cay = 0, since the corresponding determinant is different
from zero. .

It is easy to form an analytic function which is multiplied by a constant
factor 8 different from zero after a circuit around the point a. In fact, the func-
tion (z — a)” or erLog(=—a) js multiplied by e2#ir after such a circuit, and if we
determine r by the condition r = Log (s)/2 i, this function (z — @) is indeed
multiplied by s after a circuit around a. Every other function u having the
same property is of the form (z — @)"¢ (z — a), where the function ¢ (z — a) is
single-valued in the neighborhood of the point a, since the product u(z — @)=+
comes back to its initial value after a circuit around the point a. The Integral
¥ is therefore of the form

w= (2~ rer(z— a),
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where 1 = Log (s:)/2 % and where the functions ¢ sre single<valued in the
neighborhood of the point @. In a circle C with the radius R about the point ¢
8s center and in which the codfficients p,, .- ., ps are snalytic except at the
point a, the integral us cannot have any other singular point than a. The same
thing is therefore true of the function ¢ (z — a), and the point a is an ordinary
point or an isolated singular point for that function. We can dismiss the possi-
bility that g is a pole. In fact, if the point a wers a pole of order m, since the
exponent r; is determined except for an integer, we can write

U = (z = a)v=™[(z — a)*u(z ~ a)],

and the product (z — a)™¢(z — a) is analytio for ¢ = a. If the point a is not
an essentially singular point for ¢z(z — a), we say that the integral is regular for
z=a. We can then suppose that the function ¢.(z — @) has & finite value,
different from zero, for z = a.

48. Examination of the general case. It remains to examine the case where the
characteristic equation has multiple roots. We shall show that we can always
find » integrals forming a fundamental system and breaking up into a certain
number of groupa such that if y,, y,, -+ <, ¥p denote the p integrals of the same
group, we have, after a circuit in the positive sense around the point a,

(84) Y, =eyy, Y, =3+ %), ) Yo =3(p-1+ 7).

The different values of s are the roots of the characteristic equation, and to the
same root may correspond several different groups. If the n roots are distinet,
which is the case we have just examined, each group is composed of a single
integral.

The problem reduces in reality to showing that we can reduce the linear sub-
stitutions defined by the equations (68) to a canonical form such as we have
just indicated by replacing v, ¥y, - * *, ¥n by suitably chosen linear combinations
of these variables. Assuming that the theorem has been proved for the case of
n — 1 variables, we shall show that it is also true for n variables.

From what has been shown in the preceding paragraph, we can always find
a particular integral u such that we have U = uu. Replacing one of the inte-
grals, y, for example, by this integral u, the expressions (568) take the form

U = pu,
) Y, =bgu+ bygyg + - + ban¥ns

L I T ) .y

Yo=bpu+ bugg+ ++* + dun¥n.

If In the last n — 1 expressions we neglect the terms b,u, . - -, byu, these equa~
tions define a linear substitution carried out on the n — 1 variables yg, /g, *y ¥a-
The determinant D’ of this substitution in n — 1 variables is not zero, for the
determinant D of the linear substitution in n variables is equal to xI’ and can-
not be zero. Since the theorem is assumed to bold for n — 1 variables, we may
suppose this auxiliary substitution reduced to the canonical form. This amonnts
to replacing yg, Yg, **» ¥a bY n — 1 linearly independent combinations g,, 2,,
veey By such that the equations which define the linear substitution

Yo apy + o+ DiaTa (=13,88v,,n)
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are repiaged by a certain number of groups of equations such as
Z, =82, 2,=8(z+12) “vy Z, =8(zp—-1+ %).

If we carry out the same transformations on the equations (85), it will be
necessary to add to the right-hand side of the preceding relations terms con-
taining u as a factor. In other words, we can find n — 1 integrals that form withu
a fundamental system, and that separate into a certain number of groups such
that we have for the integrals z,, z,, - - +, z, of a single group

60) Z,=s8z,+ Kju, Zy=8(z;+2)+Kgu, -+, Zp=8(zp-1+2%)+ K4y,

where K, K;, -+, K, are constants. We shall first try to make as many a8
possible of these coefficients disappear. For this purpose let us put

v, =2z, + \u, Uy = Zg + AU, ceny Up = 2p + NpU,

where A, A,, - - -, A, are p constant coefficients. An easy calculation shows that
we have for these new integrals
(67) Ul = 8u, + [Kl + (”' - 8) )‘1] u,

U, =81+ )+ [Ki+ (& — 8) N — 8N 1] u. (i>1)

If 4’— 8 is not zero, we can choose A, \,, - - -, A, in such a way that the coeffi-
cients of u on the right are zero, and we have for the new integrals u

U, = su,, Uy = s(uy + uy), IEEN Up = 8(up—1 + up).

The substitution to which this group of integrals is subjected after a circuit
around a is of the canonical form. If u =8, since 8 cannot be zero, we can
choose A\, Ay, +++y Ap—1 in such a way as to make the coefficients of u in the
expressions for U,, Uy, - -+, Up disappear. But we may have several groups of
variables z, subjected to a transformation of the canonical form for which the
value of s is equal to x Suppose, for definiteness, that there are two such
groups, containing respectively p and ¢ variables. After the preceding change
of variables the substitutions which these two groups undergo are of the form

@) U, =su + Ky, U, = 8(uy + w), sy Up =3(up + up—1),
(1) U] =suj+ Kju, U;=s(uz+u)), ---, Uj=8@f+u;_y.

I K=K, =0, we have three groups of integrals, u, (i, ug, ««+, up)y (%], ug,
-+, u,), subjected to a substitution of the canonical form. If we suppose that
p = q, and if K, is not zero, by putting v, = «; - K{u,/K, the second group
of integrals is replaced by a group of g integrals v, which undergo a substitution
of the canonical form. Next, putting u, = K, u/s, the (p + 1) integrals u,, u,,
«++, up form a single group which undergoes a transformation of the canonical
form. If X, = 0, while K is not zero, putting u; = K;u/s, We have two groups
of integrais, (uy, Uy, - - -, Up), (%g, Uy, * - -, &,), Which undergo a substitution of the
canonical form. The theorem stated is therefore true in general.*

*For & full treatment of the application of Weierstrass’s theory of elementary
divisors to linear differential equations the paper by L. Sauvage (4Annales de ¥ Ecole
Normale supérieure, 1891, p. 285) may be consulted.
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40. Formal exzpressions for the integrals. It remains for us to find a formal
expression which will show clearly the law of permutation of the integrals of
the same group after a circuit around the point a. Let ¥1s Ygy * * *» Yp be & group
of integrals which undergo the permutations (64). Let us put yz = (z — @)" 2,
where r is equal to Logs/2wi. The p functions z,, 2, -, 2, must be such
that we have

Zl=zl, ZQ=21+2" seny Z,=z,_1+z,.
Hence the function 2, must be a single-valued function ¢,(z — a) in the neigh-
borhood of the point a. As to the function z,, we derive from the preceding

equalities Z,/Z, = 2,/2, + 1; hence the difference z,/z, — Log(z — a)/2 i is &
single-valued function y,(z — a), and we have also

zZ, = ﬁ“’s(z — Q)¢ — @) + ¢, (z —a),

where ¢, (z — a) is another single-valued function. Letusputt = Log(z— a)/2 =i
and consider the general case. When « describes a loop in the positive sense
around the point a, ¢ increases by unity, and z,, &, -+, 2,, considered as func-
tions of t, must satisfy the relations

(68) z (¢ + 1) = 2,(¢), Z3(t + 1) = z,(¢) + 2,(2), Tty

zp{t + 1) = 2p(t) + 2p-1(0)-

In order to find the most general solution of the equations (68), we may
remark that these relations can be satisfied by taking 2z, =1, z, =1¢, and by
choosing for z,(¢) a polynomial of degree i — 1 in ¢ whose coefficients are deter-
mined step by step. The calculation is facilitated by observing that the relation

zi(t + 1) — zi(t) = z =1 () (i=38)
is satisfied for £t = 0, 1, 2,..., ¢ — 8 if we take for z;(?) a polynomial of the
form K t(t—1)...(t— i + 2). In order that it may be satisfied identically, it
will suffice if it is satisfied by another value of ¢, for example, by ¢t = i — 2, since
the two sides are polynomials of degree i — 2 in £. We thus find the condition
{i—1)K, = K;_1, whence we derive Ky =1/(i —1)!. We therefore obtain a
particular solution of the equations (68) by putting
tt—1)---(t—1i+4 2)

(i—1)!

In order to obtain the general solution, let us indicate by ¢z(f) functions such
that ¢x(t + 1) = ¢x(t). The first of the equations (68) shows that z,(f) is a func-
tion of this kind, say ¢,(f). The second shows, similarly, that the difference
2,(t) — 64(1) z,(¢) does not change when we change ¢ to ¢ + 1; hence z,(f) is of
the form z,(t) = ¢,(t) + 6,¢,(t). We can continue the reasoning step by step.
Suppose that we have shown that 2, _4(t) is of the form

Ze—1(8) = Pk —1(0) + Oy pr—2(t) + - -+ + Or—19,()- (k=8,4,..4,1)
The general relation z¢(t + 1) — z(f) = z;—1(t) shows that the difference
2(t) — O pi ~1(8) — Bapi—2(t) — -+ - — Bia(0)
does not change when ¢ changes to ¢ + 1 ; hence the function 2(?) is of the form
zi(t) = ¢i(t) + O3 —2(D) + « - - + 1o, ().

01 =1, 0.(t) =

(=2, 85"'1p)
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Combining these results, the general solution of the equations (68) is given by

%, () = ¢,(t)
Z3(t) = a1 () + #g(0),
(69) 2(t) = 838, (6) + G5 85(%) + 4(0),
e e e e e e e s w s ey
() = Op (&) + Op—105(t) + -+ - + 0385 -2(0) + &5(0),
where the functions ¢,, ¢,, +++, ¢ do not change when ¢ is changed to ¢ + 1.
Let us return now to the variable z, and let us indicate by 6;[Log (z — a)]
the polynomial in Log (2 — a) obtained by replacing ¢ by Log(x — a)/2=i in
6.(t). We see that the p integrals y,, v, « - -, ¥ of the group under considera-
tion, which undergo the substitution (64) after a circuit in the positive sense
around the point a, are represented by formal expressions of the following type:

nh= (-~ "')"bl(z -a),
(10) v. (2 — a)y [6,{Log(z — a)} #,(z — a) + &,(z - a)],
. o oy
Ur "("’a)'fep{LoS(-T"a))’1(3—'1)"'0;-I{Log(z- a)}®y(z—a)+ -],

where &;(2 — a), ®,(z — a), -+, ®y(z — a) are single-valued functions in the
neighborhood of the point a.

It will be observed that all the integrals of this group can be deduced from
the last of them, y,, which is of the form

Yop=@E—a)y[yx—a)+y¥(c—a)Log(x—a)+ ---
+ ¥p-1(z — a) {Log(z — a)}? 1],
where ¢, ¥y, « « *, ¥p -1 are single-valued functions in the neighborhood of the
point a, the last of which, v, -3, is different from zero. From the relations (84)
we have

Y,
Vp-!-—--'—’—l’n

and consequently y, .1 18 the product of (z — a)* and a polynomial of degree
p — 2 in Log (z — a), the coefficients of which are single-valued functions in
the neighborhood of the point . In the same way we derive y,_s from y,_,,
and so on,

If the point a¢ is not an essentially singular point for any of the functions
®,, ®;,-+-, p, all the integrals of the group considered (70) are said to be
regular for & = a. By the remark made on page 181, we can then suppose that
all the functions &:(z — a) are analytic for z = a, replacing r, if necessary, by
another exponent which differs from it only by an integer.

80. Fuchs’ theorem. The determination of the numbers s,, 8, + - +, 8a, OT, What
amounts to the same thing, the corresponding exponents r,, 75, -+, 7y, is in
general a very difficult problem. We can obtain these exponents r; by algebraic
calculations whenever all the integrals of the equation considered are regular
in the neighborhood of the point a. This results from an important theorem due
to Fuchs : In order that the equation (57) skall have n independent integrals, regular
in the neighborhood of the point a, & 18 necessary and syfficient that the coefficient
poof dn—iy/dzs—¢ in this equation be of the form (z — a)~¢Py(z), where the func-
tion Py(z) is analytic in the neighborhood of the point a.



1, § 80 ' © REGULAR INTEGBALS <= 185

It Py(a) is not zero, the point a is & pole of order 4 fo p;; but if Pi(a) =0,
the point & is a pole of order less than {. It may even happen that the point o
is an ordinary point for some of the coefficients p;. The preceding conditions
may be restated ws followa: The linear equation must de of the form
an—-1y
dzn—1

+e-aPa@) P + Py =0,

where Py, Py, ..., P, are analytic functions in the neighborhood of the point a.

We shall develop the proof only for the case of an equation of the second
order, and we shall suppose, for simplicity, that @ = 0. In this particular case
the first part of Fuchs' theorem may be stated as follows: Every equation of
the second order, which has two independent and regular integrals in the neighbor-
hood of the origin, is of the form

&) DY+ 2P@)Y + Q@)Y =0,
where P (z) and Q(x) are analytic in this neighborhood.

It the corresponding equation in & (60) has two distinct roots s, a;, the equa-
tion (72) has two regular integrais of the form

@ % = 2Z"¢,(2), Vg = Z'1¢y(2),
where the exponents r,, r, are different and where ¢,(z), ¢,(z) are two analytic
functions which are not zero for z = 0. If the equation in s bas a double root,
without causing the appearance of logarithmic terms in the expression for the
general integral, we have again two particular integrals of the preceding form,
where the difference r, — r, is an integer. We can always suppose that that
difference is not zero; for if we had r, = r,, we could replace y, by the com-
bination ¢,(0) y; — ¢,(0) 7, , which is divisible by 21 +1, Finally, if the expression
for the integral contains a logarithmic term in the neighborhood of the origin,
we can take a fundamental system of the form

an N=2"10@) ¥ =2"[9(2) Log @) + )],
where ¢,(z) is an analytic function which is not zero for z = 0, and where y,(z)
is a single-valued function in the neighborhood of the origin, which may have
the point z = 0 for a pole. We have to show that every equation which has two
independent integrals of the form (I) or of the form (II) in the neighborhood
of the origin belongs to the Fuchs type. The direct verification does not offer
any difficulty, but we can abridge the work as follows : If we put y = 2"1¢,(2)u,
the linear equation in u obtained by this transformation has a general integral
of one of the forms

u = C; + Cyzfrw (z), u = C, + Cy[Log(z) + w(z)],
where (z) is analytic for z = 0 or has this point for a pole. This equation is
of the form (72), for the derivative u’ is of the form
= C,z“ $(@),

where $(z) is an analytic function which is not zero for = 0. The lineaz
equation in u is therefore v u . PE)

CAEANTCN

(z-—a)ﬂg+(z—a)--lf'l(z) 4o

(1)
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which is of the Fuchs type. Now it is easy to see that this type is preserved
after a transformation such as y = z"1¢,(z)u. The first part of the proposition
is therefore established.

In order to prove the converse, let us substitute for y on the left-hand side
of the equation (72) a development of the form

(73) Y =CoZ" + clz"+1+---+c.z'+ﬂ+---, (coggO)

and let
P@)y=ay+a,z2+--., Q@)="by+ b,z + -
be the developments of the functions P and Q. The coefficient of 2~ in the
resulting equation is
[r(r—1) + a,r + by c,.

Since, by hypothesis, the first coefficient ¢, is not zero, we must take for r one
of the roots of the equation of the second degree

(74) D(r)y=r(r—1)+ ayr + b, =0.
Having taken a root of thig equation for r, we can choose ¢, arbitrarily. Let

us take, for example, c, = 1. Similarly, the coefficient of z~+» after the sub-
stitution is

Glr+p)r+p—1)+ ay(r+p)+ 0]+ F=c, D(r + p) + F,

where F is a polynomial with integral coefficients in ¢, ¢,y - -+, Cp—1, @y, Ggy - =
@p, by, by, +++, b,. Putting successively p =1, 2, 8, ..., we shall be able to cal-
culate, step by step, the successive coefficients c,, c,, - -, ca, unless D(r + p) is
zero for a positive value of the integer p, that is, unless the equation (74) has a
second root 7 equal to the first r increased by a positive integer. Discarding
this case for the moment, we shall obtain a particular integral represented by a
series of the form (73), the convergence of whi¢h will be demonstrated later.
If the equation D(r) = 0 has two distinct roots r, 7, whose difference is not an
integer, the preceding method enables us to obtain two independent integrals,
and the general integral is represented in the neighborhood of the origin by the
expression

(75) v =C,w¢ (@) + C,zy (2),
where ¢(z) and ¢ (z) are two analytic functions which do not vanish for z = 0.

This is no longer the case if the twu roots of the equation (74) are equal or
if their difference is an integer. Let r and r — p be these two roots, where p is
o positive integer or zero. We can always obtain a first integral of the form
¥, = 2" ¢(z). A second integral y, is given by the general formula (28), which
becomes here

dz — :"+¢+ z4e--)dx
y,:a:"¢(z) me f(z: 1T %y ) .

The sum of the roots of the equation (74), or 1— a,, is equal in this case to
2r — p; hence ¢, = p + 1 — 2r, and accordingly

G aram ) G,

where 8 (z) is a regular function in the neighborhood of the origin, which is not
zero for z = 0. The second integral y, can therefore be written in the form
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T (2)dx
="¢ () f (,L '
where T'(z) is an analytic function which is not zero for z = 0,
If 4 is the coeficient of z» in T'(z), we see that the integral y, is of the form

v=ze@[4Logz+ 2] —or-sy ) + Az e (o) Loge,

where y (z) denotes a new analytic function in the neighborhood of the origin.
This result agrees precisely with the general theory. As a particular case, it
may happen that we have 4 = 0; the general integral does not then contain
logarithms in the neighborhood of the origin. But since 7'(0) is not zero, it is
to be noticed that this case never arises when p = 0, that is, when the equation
(74) has a double root.*

To complete the demonstration, it remains only to prove the convergence of
the series (78) obtained by taking for r a root of the equation (74) such that the
second root v’ is not equal to r increased by a positiye integer. To simplify the
proof, we may suppose that » = 0 and that the second root ¢ is not equal to a
positive integer ; for if we put y = z¢z, the equation analogous to D(r) = 0 for
the linear equation in z has the roots of the equation (74) reduced by x. We shall
suppose, therefore, that such a transformation has already been made, so that the
equation (74) has the root r = 0 and that the second root is not a positive inte-
ger. For this it is necessary that b, be zero. Modifying the notation somewhat,
and dividing all the terms by z, we shall write the equation (72) in the form

(76) 2t agy =2y (@ + gzt )+ YO+ Bzt o),

where the coeficients a,, b, a,, - - - aTe not the same as before. We are to prove
that this equation (76) has an analytic integral in the neighborhood of the origin,
which does not vanish for z = 0, provided that 1 — a, is not a positive integer.
Now, if we try to satisfy this equation formally by a series of the form

(17) yv=14cz+ - -+ crx"+ -
we obtain successively relations between the coefficients of the form

(18) {Mn{"’_ 1+ ay} = Pu{ay, Ggy -+, by, by, -+, by, €14 Cqy vy a1}y

n=1,2,..7

where P, is & polynomial whose coefficients are all real positive numbers. By
hypothesis, the coefficient n — 1 4 a, does not vanish for any positive integral

*Let us suppose that the functions P (z) and Q(z) in the equation (72) are even
functions of x, and that the difference between the roots of D (r) =0 is an odd integer
2n+1. In this case the logarithmic term always disappears in the integral y;. In
fact, if we take for the independent variable ¢= z%, the equation (72) is replaced by
an equation of the same form,

a2) uﬂ +2z[l+P(\/;)]d”+Q(\f)v-0

and the roots of the equntlon analogous to D (r) =0 are, as is easily verified, balf of
the roots of D (r)=0. Bince their difference is not an integer, it follows that the
general integral of the equation (72) does not contain any logarithmic term in the
neighborhood of the origin. The same thing is therefore true of the equation (72).
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value of . We can therefore determine a positive number « such that we haves,
for every positive integral value of n, |n — 1+ 4y|> & (» + 1), since the quotient
(r — 1 + ay)/{n + 1) approaches unity as » becomes infinite. Let us replace, on
the other hand, the coefficients of zy’ and y on the right-hand side of the equa~
tion (76) by dominant functions, and let us consider the auxiliary equation

(719) wp@Y”"+2Y)=2Y(414+ 4,2+ - )+ Y (B, +Bz+ +-).
If we attempt to satisfy this new equation by & series of the form

(80) Y=14Ciz+4 - -+Coz*+ -+,
we are led to the relations analogous to the relations (78),
(81) 11#0.(11 + 1) = P"(A'l! A,,- h } Bn Bm b ] Gn "ty on-l)-

If we compare the expressions which give the values of the coefficients ¢, and C,,
Pa(@yy Ggy ooy by, b5y 2005 Cy00 1y cu—l). C.= Py(4,, 4,,---, Cu-1)

= -n(n—l;l- a,) nu(n + 1) !
the conditions 4;=|a;|, B;==|bi|,|n — 1 + ay| = u(r + 1) show successively that
el <Gy lesl<Cyy  veey [Ca]<Caj

hence it will suffice to show the convergence of the auxiliary series or to show
that the equation (79) has an analytic integral, in the neighborhood of the origin,
not vanishing for z = 0. If we take for the dominant functions an expression
of the form M/(1 — z/r), the auxiliary equation (79) can be written
Y’ +2Y M 1
2+ Y  p

» 1~ ;
whence we derive, by a first integration,
Mr
Y 4 Y = 0(1- ir’) -
and then

Mr
:r:cf’(l_f) “dz 4 0.
[ T,

We have only to take ' = 0, C =1 in order to have an analytic integral, in the
neighborhood of the origin, not vanishing for 2 = 0.

Eztension to the general case. The proof of Fuchs' theorem for the general
case can be based on the same principles by showing that if it is true for an
equation of order (n — 1), it is also true for an equation of order n.

If the equation (57) has n particular integrals separating into a certain num-
ber of groups of the form (70), it has at least one particular integral of the form
(z — a)r ¢ (x — a), where ¢ (z — a) is an analytic function in the neighborhood
of the point a, which does not vanish for z = a. The substitution

v=E—a)re@—a)u
will lead to a linear equation in u which has the particular integral u=1;
hence the derivative u” satisfies a linear homogeneous equation of order » — 1.
The theorem being supposed true for a linear equation of order n — 1, this

equation in ¥’ is of the Fuchs form ; the same thing is evidenuy true of the
equation in w and therefore of the equation in y.
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Conversely, let us consider an equation of the form (1), in which a =0,
This equation is formally satisfled by a series of the form

V=0 + e tlg o, - (cg0)
where r denotes a root of the fundamental characteristic equation

D(ry=r(r—1)-c.(r—n+1)
(82) { +P(0)r(r—=1) e (r=n42)+ ... 4 P,(0)=0

such that no other root of this same equation is equal to r increased by a posi-
tive integer. In order to establish the convergence of this series, it is emsy to
show, by an artifice analogous to the one employed for n = 2, that it suffices to
prove that a linear equation of the form

dn M dr-1

—_— =1 V) = e
dz"(z' ) T den—1

(z-1Y)

has an anhlytic integral in the neighborhood of the origin not vanishing for
z = 0. Now this equation has the particular integral (§§ 18 and 39)

o (T——%Tz-_:' f;z(z —f)n-2 (1 _ ;)—"dt,

which actually satisfies thé& }:receding condition. If the equation (82) has n
distinct roots, r,, 7, - - -, 7a, Such that none of the differences r; — r is equal to
an integer, the general integral of the linear equation is of the form
v =Czn¢, (&) + C;27¢3 () + - -+ + CnZ™=pn (T),

where ¢,, ¢y, * -+, ¢, are analytic in the neighborhood of the origixi. 1{ the
equation (82) has equal roots or, more generally, roots such that some of the
differences r, — r; are integers, these roots separate into a certain number of
groups, the difference between two roots of the same group being an integer,
while the difference between two roots of different groups is never an integer.
Let r be the jargest root of one of these groups. We have just seen that the
equation (71) has a particular integral of the form zr¢ (z), where ¢ (z) is an
analytic function in the neighborhood of the origin and such that ¢ (0) is not
zero. By putting y = z"¢ (z) u, then du/dz = v, we are led to a linear differ-
ential equation of order n — 1 in v, which is again of the Fuchs form. The
theorem being supposed true for an equation of order n — 1, that equation in v
has n — 1 particular independent integrals of the form

v =27y (z) + ¥, (@) Logz + - - - + ¥, () (Log 2)7),
where ¥, ¥,, **+, ¥q are analytic functions for z = 0. If a is not an integer,
we easily see, by a succession of integrations by parts, that [vdz is an expres-
sion of the same kind as v. If « is an integer, [vdz containsalso a logarithmic
term
C(Logz)1+1,

where C is a constant coefficient. Fuchs' theorem is therefore true for an
equation of the nth order.*

® For greater detail see the paper by Fuchs in Crelle’s .Journal or the thesis of
Jules Tannery (Annales de ' Ecole Normale, 2d series, Vol. IV, 1875).
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51, Ganss's equation. Let us apply the general method to the equation

(83) zQ=-2) ' +[v—(a+B8+1)2]y — afy =0,
where a, B, ¥ are constants. The singular pointe in the finite plane are z =0
and £ = 1. The characteristic equation for the point z=0isr(r + y—1)=0,
and its roots are r =0, r =1—+. If vy is not zero nor equal to a negative
integer, it follows from the preceding theory that the equation has an analytic
integral in the neighborhood of the origin corresponding to the root r = 0. In
order to determine this integral, let us substitute in the equation the series

y=cy+ &+ oo +CaZ®+ ¢+
and equate to zero the coefficient of z»—1. This gives a recurrent relation
between any two consecutive coefficients

ny+n—1Nea=(a+n—1)B+n—1)ca-1;
hence the analytic integral is the series

PRV SO 1G22 \VICES (WP
F(a,ﬂ,-y,z)_}+]-7z+ 1.2.v(v + 1) [ SREEN

which is called the Aypergeometric series. This series is convergent in the circle I'y
with unit radius about the origin as center. In order to obtain a second integral,
let us make the transformation y = z1—Yz. This leads to an equation of the
same form,

(84) {z(l—z)z"+cz—-r—(a+a+s—2~f)z]z'

—(a+1—7)B+1—v)2=0,

which differs from the first only in the substitutionof a+1—+v, 8+ 1—v,2—7v
for a, B, v respectively. If 2— v is not zero nor equal to a negative integer,
the equation (83) has therefore the second integral zi\~YF(a+ 1—v, 8+ 1—4,
2 — v, ) ; and if ¥ is not an integer, the general integral is represented in the

circle T'y by the expression

(86) y= CIF(a’pl 72O+ Ce-vYF(a+1l—v,B+1—7v,2—7,2).

If v is an integer, the difference between two roots of the characteristic
equation is zero or equal to an integer, and the integral contains in general
a logarithmic term in the neighborhood of the origin. We shall study only the
case where v = 1. The two integrals

F(a, B, v, 2), zl—yF(a+1—T,ﬂ+l—‘y,2—‘y,z)
reduce in this case to the single integral F(a, 8, 1, z).

In order to find a second integral, let us first suppose that vy differs but little
from unity, say vy =1— h, where X is very small ; then the equation (83) has the
two integrals

F(a,ﬂ,l-—h,Z), z‘F(d’+h,ﬁ+h,1+h,3),
and consequently the quotient
*F(a+h, B8+ h 1+ h 2)—F(a, B, 1—2,2)

i h
Is also an integral. As % approaches zero, this quotient approaches as a limit the
derivative of the numerator with respect to k at the point h = 0. The deriva-
tive of the factor z» gives us a logarithmic term which, for & = 0, reduces to
F(a, B8, 1, z) Logz. To find the derivative with respect to 4 of any coefficient
in the two series, such as the coefficient
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(a+h)(a+h+1)---(a+h+n—1)(ﬂ+h)(ﬁ+h+1)---(p+h+n-1)
nl 1+ h)@+h)...(n + h)

it is convenient to calculate first the logarithmic derivative. We find thus a
new integral which has the form

WI(Z) - F(av 81, 3) LOS:I!
(86)

424, 2@+ @tn—DpE+Y - Ein=1)

(nl)ﬁ
where we put
_1 1 1 1 1
Ap=— 4 —— e e L. —_—
T a a+1+ a+n—l+ﬂ+ +p+n—l

1
-9 L A
(1+2+ +u)

We might study in the same way the integrals of Gauss’'s equation in the
neighborhood of the point z =1, but it suffices simply to notice that if we
replace z by 1— z, the equation does not change in form, but v is replaced by
a+ 8+ 1—1+. The general integral is therefore 'represented in the circle I'y
with unit radius about the point £ =1 as center by the expression

y=ClF(a,p,a+ﬁ+l—7, l—I)
+Cy(1—2)y-¢-BF(y—a,vy—B,v+1—a—8,1-2),
provided that y — @ — 8 is not an integer.

In order to study the integrals for values of z of very large absolute value,
we put z =1/t, and we are then led to study the integrals of a new linear
equation in the neighborhood of the origin. The integrals of this equation
are likewise regular in the neighborhood of the origin, and the roots of the
characteristic equation are precisely a and 8. If we substitute simultaneously
z=1/t, y ==z, the equation obtained is again of the form (83), but g8 is
replaced by a +1— v, and ¥ by a +1— 8. Gauss’s equation has therefore
the integral

z—tF(a:, a+l-—1, a+1—ﬂ,}:)-

By symmetry it has also the integral obtained from this one by interchanging
a and B, and therefore the general integral is represented in the region exterior
to the circle I'y by the expression

1 1
y=Cz~<F (@ a+1-ma+1=p)+Ca-BF(8+1-708+1-a ),
provided that a — g8 is not an integer.

Note. Every linear equation of the form

(87) (x—a)(z—by” + (ke + m)y + ny =0,

where a, b, [, m, n are any constants (a s b), reduces to Gauss’s equation by the
change of variable z = a + (b — a)t. For, to identify the resulting equation
d?y la + m !
t(1—1t)— e
(88) a-0g¥ - (32
with the equation (83), we need only put y =~ (la + m)/(b — a), and then
determine a and 8 by the two conditions a + 8+ 1=1, ag=n.

+u)ay-—ny=0
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58. Beasel’s equation. Let us consider in particular the equation
(89) 1=y + (¢ — W)y —ay =0,

which has the two singular points z = 0, £ = 1/k, and which can be reduced to
Gauss's equation by the change of varlable kz =¢. If we make the parameter k
approach zero while a, b, ¢ approach finite limits 4, B, C, the singular point
x = 1/k goes off to infinity, and we obtain at the limit the linear equation

(90) 2y’ + (C — Ba)y’ — Ay =0,

whose only singular point at a finite distance is the point z =0. If B is not
zero, replacing Bz by z we are led to an equation of the same form, where
B =1. Likewise, if B =0 and 4 is different from zero, we can suppose A =1.
Finally, disregarding the trivial case 4 = B = 0, the equation (90) can be
replaced by one of the two forms

(e1) '+ (y—2)y — ay=0,

(92) LW +w—y=0.

Studying the integrals of these two equations in the neighborhood of the
origin, a8 we have done for Gauss's equation, we are led to introduce the two

series
@ - _a a(a+1)
@2 1+1.~,z+1.2.1(7+1)

] Y]
TZoaGrD T
which may be considered as degenerate cases of the hypergeometric series. If
we replace in F(a, B, v, z) the variable z by kz and g by 1/k, the coefficient
of z» in F(a, 1/k, v, kx) approaches the coefficient of z~ in G(a, v, z) as k
approaches zero. Similarly, the coefficient of z» in F(1/k, 1/k, v, k3z) approaches
the coefficient of z» in J (v, ) as k approaches zero.

If v is not an integer, the general integral of the equation (81) is given by
the expression

224 ..,

J('y,z)=1+$z+

(08) y=0,G(a, v, 2)+ Cy2'~7G(a+1—1v,2—¥,2).
Likewise, the general integral of the equation (92) is
(94) y=C,J(y, 2) +C;z'~VJ (2 — v, 2).

These formule are valid in the whole plane.

If v is an integer, the general integral of the equation (92) always contains a
logaritbmic term. For example, if ¥ =1, we obtain an integral different from
J (1, z) by finding the limit for & = 0 of the quotient

AJ(1+ h, 2)— J(1— h, 2)
h ,
w&“ gives for the general integral

4+ 1 1
v=0,J(1.z)+0,[J(1, z)mz_22<1+§+ +;)(,%’]

i

‘Wi can reduce to the form (92) a certain linear equation which appears
in a farge number of questions of mathematical physics. Let us put in the



311, § 53] REGULAR INTEGRALS 148
%

equation (62) @ =~ $3/4; replacing ¥ by n + 1, the equation obtained is iden-
tical with the equation already studied (§ 46),

v
dtl
If, in this last equation, we put y = {—»z, we obtain a new form of Bessel's
equation,

(96)

(96) +(2n+l) Yr=o.

d’z
d‘!
The three equations (92), (05), (96), where y = n + 1, are therefore absolutely
equivalent to one another. If n is not an integer, the preceding development
shows that the general integral of Bessel’s equation (96) is

b
z =c,v-.r(n+ 1, —.‘;)+ c,c--J(l— n — i_’).

+t-——+ (2 —n)z=0.

We have shown above (§ 46) that if » is half an odd integer, the general integral
of the equation (856) can be expressed in terms of elementary transcendental
functions. Hence the transcendental function J (v, z) is expressible in terms of
exponential functions if v is half of an odd integer.

Note. The equation studied by Riccati,
d
) E:-‘+Au’-Bzﬂ=0.

where 4, B, m are given constants, can also be reduced to any one of the
equivalent equations (92), (95), (96). Indeed, we have seen (§ 40) that the gen-
eral integral of the equation (87) is 2’/4z, where z is the general integral of
the linear equation
(98) dz_ ABzmz =
dz?

If we make the change of variable z = A%, where A and x are two undetermined
quantities, the last equation becomes

(99) t%:—(p—l)%—AmeHu’t(""H)F—lz:O.
In order to identify this equation with the equation (95), we need only take
u = 2/(m + 2), and determine A by the condition ABA»+3u3 = — 1, The cor-
responding value of n is — /2 or — 1/(m + 2). We can therefore express the
general integral of Riccati’s equation (97) in finite terms whenever 1/(m + 2)
is half of a positive or negative odd integer 2i + 1, that is, whenever m is equal
to — 4i/(1 4+ 21), where i denotes a positive or negative integer.

53. Picard’s equations. Given a linear differential equation with coefficierts
analytic except for poles, we can determine by Fuchs’ method whether the
general integral is itself an analytic function except for poles. For this % is
necessary and sufficient: (1) that the integrals shall be regular in the nellgh-
borhood of each of the singular points; (2) that all the roots of the churue-
teristic equation, relative to each of these singular points, shall be in H
finally, (8) that all the logarithmic terms shall disappear from the expr
for the general integral in the neighborhood of a singular point.
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Suppose that all these conditions are satisfied. The general integral is then
& single-valued analytic function except for poles in the whole plane. If the
coefficients of the equation are rational functions, there are only a finite numn-
ber of singular points @,, Gg, -+, @y. In order for the general integral to be a
rational function, it is sufficient that the equation obtained by putting £ =1/¢
ghall itself have all its integrals regular in the neighborhood of the point ¢ = 0,
since the general integral is single-valued and therefore cannot contain log-
arithmic terms nor fractional powers of . 1f this last condition is satisfied, we
can obtain the general integral by equating coefficients according to the method
of undetermined coefficients. In fact, let — m; be the smallest root of the char-
acteristic equation relative to the point z = @;, and N the smallest root of the
characteristic equation relative to the point ¢ = 0 for the transformed equation.
It is clear that the product of any integral ¥ and the expression

(3 —_— a,)"'l (.1! —_— an)"l. cee (z — Qy)™»

is a rational function having no poles in the finite portion of the plane. This
product is therefore a polynomial P (z), whose degree is at most equal to
L

m +my+---4my,—N.

Since we know an upper bound for the degree of this polynomial, the coefficients
can be determined by replacing y by an expression of the form P(z) Il (z — a,)— ™,
where P (r) is the most general polynomial of this degree, in the left-hand side
of the given equation, and then equating the result identically to zero.

Picard has given another very important case where the general integral can
be expressed in terms of the classic transcendental functions. Given a linear

differential egquation, whose coefficients are elliptic functions of the
mdependent variable with identical periods, if its general integral is an analytic
JSunction ezcept for poles, that integral can be expressed in terms of the standard
transcendental functions of the theory of elliptic functions.

For simplicity in writing, let us develop the proof for an equation of the
second order only. Let f(x), f,(x) be two independent integrals of a linear
homogeneous equation ¥ 4 p (r)y’ + ¢ (x)y = 0, where p (£) and ¢ (z) are elliptic
functions with the periods 2w and 2 w’. By hypothesis, f1(z) and f,(z) are single-
valued functions analytic except for poles. Since the given equation does not
change when we replace z by z + 2 w, f;(* + 2w) and f,(z + 2 w) are also inte-
grals, and we have the relations

(100) fl(z +20)= qfl(z) +bf2(z)l fz(z +2w)= cf](z) + dfs(z),
where a, b, ¢, d are constant coefficients whose determinant ad — bc is not zero.
For if we had ad—bc=0, we could derive from (100) a relation between f;(z+ 2 w)
and fy(z + 2w) of the form C.f (¢ + 2w) + C,f,(z + 2w) = 0, where C, and C,
are constants not both equal to zero. This is impossible, since f, and f, are two
independent integrals. For the same reason, we have another system of relations

4101) Sz + 20) = a1 (7) + VN(z), Sz + 20) = cfy(2) + dNy(2),

where a’, V', ¢/, d’ are constant coefficients, and a’d’ — b’¢’ is not zero. Let us try
to find, asin § 47, an integral ¢ (z) = M,(Z) + wf3(z) such that ¢ (z + 2 w) = 3¢ (z).
We have for the determination of A, , 8 the two equations

Na— 8) + pc =0, A+ ud—28)=
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whence we derive the equation of the second degree for s,
F)=—(a+ds+ad—bc=0.

If this equation has two distinct roots s,, &,, there exist two independent inte-
grals ¢,(z), ¢g(z) such that we have

(102) H(T+20)=89,&),  Bg(x + 2 w) = 8,(2),
and the relations (101) can be replaced by the two relations of the same form
(103) ¢,(z+ 20) = ke (2) + pg(2),  @y(z + 2 ) = Mm@y (2) + npy(2)-

By means of the relations (102) and (108), we can now obtain two different ex-
pressions for ¢,(z + 2w + 2 w’) and ¢4(z + 2w + 2w’). We have, on the one hand,

$1(Z + 20+ 20) = 8,4, (2 + 20) = 8,%9,(2) + 8,1¢,(2).
On the other hand, proceeding in the inverse order, we may also write
61T+ 20 + 20') = k(2 + 20) + Ipy(Z + 2w) = k8,0,(2) + Ly, (2).

Since these two expressions must be identical, we have ! = 0, for 8, — s, is not
zero, Similarly, by considering the two expressions for ¢,(z + 2w + 2w’), wWe
find m = 0. The integrals ¢,(z), ¢,(z) are therefore analytic functions except
for poles, which reproduce themselves multiplied by a constant factor when the
variable z increases by a period ; these are called doubly periodic functions of the
second kind. Every function ¢ (z) analytic except for poles which possesses this
property can be expressed in terms of the transcendental functions p, ¢{, o, since
the logarithmic derivative ¢’(z)/¢ () is an elliptic function, and we have seen
that the integration does not introduce any new transcendental (II, Part I, § 75).
Moreover, we can prove this without any integration. Let ¢ (z) be an analytic
function except for poles such that

pE+20)=up@), o +20)=wp().

Consider the auxiliary function y (z) = eP*¢ (x — a)/o(z), where a and p are
any two constants. From the properties of the function & (see Vol. II, Part I,
§ 72) we have

Y@+ 20)=ae-mmy(@), (@t 2w)=der-trey (@),
In order for the quotient ¢ (z)/y (z) to be an elliptic function, it is sufficient that
2wp — 2 an = Log g, 2w’p — 2an” = Logw'.

These relations determine p and a (II, Part I, p. 161). Itshould be noticed that
we can take a = 0 if Log x and Log u’ are proportional to the corresponding
periods 2w, 2 w’.

Let us now turn to the case where the equation F(s) = 0 has a double root s.
We can find (§ 48) two independent integrals ¢, (), ¢,(z) such that

(104) (T + 2 w) = 8¢, (2), (T + 2 w) = 8¢,(z) + Coy(2).

If C = 0, all the integrals of the equation, and in particular f,(z) and f,(z), are
multiplied by 8 when &£ is increased by 2w. Assuming C' =0, let ustrytofind a
linear combination \f,(z) + u/,(%) which reproduces 1tself multiplied by & when
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x lnct%l by 20, Starting from the equations (108), we find two independ-
ent inkegrals ¢,(z), ¢4(z) such that either

#;(2 + 20) = 89,(2), $4(z + 20 = 8;04(2)

(2 + 2w') = 8'¢y(2), Pg(T + 20) = 8¢y(2) + C'y(2),

whers C’ is not zero. In the first case the integrals ¢,(x), ¢.(zr) are again
doubly periodic functions of the second kind. In the second case the integral
¢,(z) alone is a doubly periodic function of the second kind. As for the inte-
gral ¢,(z), the quotient ¢,(z)/#,(z) increases by a constant C” when z increases
by 2", and it does not change when z increases by 2w. Now the function
A¢(z) + Bz, where 4 and B are two constant coefficients, possesses the same
property, provided that we have

249+ 2Bw =0, 24y + 2Bw = C".

The difference ¢,/¢, — A (z) — Bz is therefore an elliptic function.

1f the coefficient C is not zero in the equations (104), we have relations between
the integrals ¢,(z), ¢, (2), ¢,(z + 2¢’), #,(z + 2w’) of the form (103), and we
can again deduce from them two different expressions for ¢,(z + 2w + 2 w’)
and ¢, (¢ + 2w + 2w’). By writing that they are identical, we obtain the con-
ditions l = 0, ¥ = n. The integral ¢,(z) is again a doubly periodic function of
the second kind, while the integral ¢, (z) satisfies the two relations

3@+ 20) ¢z<z>+, $,@+20) _ 9,@)
9@ +20) 9,@) #Z+20) 9,(2)

Let us determine just as before the two coefficients A and B in such a way
that 249 + 2Bw = C/3, 249" + 2 Bo’ =m/k. Then the difference

¢2(2)
@ ()
is again an elliptic function. We see, therefore, that the general integral is in

all cases expressible in terms of the single transcendentals ez, p (z), {(z), ¢ (2).
Let us consider, for example, Lamé's equation

— Af(e) -

(105) — [+ 1)p@E) + Ay =0,

@y
dx?
where n is an integer and A is an arbitrary constant. The integration of this
equation by Hermite was the starting point for the preceding theory. The gen-
eral integral of this equation is a function analytic except for poles. In fact,
the only singular points are the origin and the points 2mw + 2m’w’. In the
neighborhood of the origin the integrals are regular, and the roots of the char-
acteristic equation are ¥ =— n, ¥’ =n 4 1. Their difference is an odd integer,
and the coefficient of y is an even function; therefore the expression for the
general integral does not contain any logarithmic term (see ftn., p. 187).

564. Equations wlth‘perlodic coefficients. In many important questions of
mechanics, linear equations with periodic coefficients occur. We ghall indicate
rapidly their more important propertles. Let

dry

(108) e P R

+...+p.y 0
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be & lnear equation whose coeficients are continuous functions of :E real™

variable ¢, having & period w, which we may always suppose positive. If the
integrals ¥,(), ¥5()y++*» ¥a(!) form a fundamental system, it is clear that
N+ @), y(t+ w), -+, ¥n(t + ) are also integrals of the equation (108),
since that equation remains unchanged when we replace ¢ by ¢+ «. Hence
we have n relations of the form

(107) %t + w) = aaya(f) + dsva(t) + - -+ + G ya(0). (=1,2.++1n)

The determinant H of the coefficients ay is different from zero. For, by
repeating the reasoning of page 129, we find that this determinant has the value

(108) H= e_f° p‘m.

The equations (107) define a linear substitution with constant coefficients,
whose determinant is not zero. We are therefore led to a study entirely similar
to the one which has already been made in detail in §§ 48, 49, Instead of
making the complex variable z describe a circuit in the positive sense around a
singular point a, the variable ¢ describes a segment of the real axis of length w.
It follows from that study that we can always choofe a fundamental system of
integrals such that the relations (107) reduce to a simple canonical form. The
actual formation of this system depends first of all on the solution of the
characteristic equation

ay—8 13 o (TN
(109) Fio)=| ™ AL Y )
1 Gus R

All the roots’of this equation are different from zero, since their product is
equal to the determinant H, whose value we have just written down. 1f the
n roots of that equation are distinct, there exists a fundamental system of
integrals such that the equations (107) take the form

(110) Vl(t + “') = "17/1(‘)1 ooy Un(t 4 @)= 8 Un(t)

If the equation (109) has multiple roots, we can always find a fundamental
system of integrals which separate into a certain number of groups such that
the p integrals y,, ¥,, -+ *, ¥p of the same group satisfy relations of the form
Yt + w) =3y, (),

(1) Vot + w) = 8[y5 (&) + v, ()],

Up 6+ 0) = 3[up ()+ 51 0],

In order to find expressions for these integrals, let us seek first the general ,

form of a single-valued continuous function f{f) such that f(¢t + w) = qf(t),‘,‘
where the factor 8 is not zero. Let a be a determination of (1/w)Logs. It is
clear that the product f(f)e~ ot has the period w; hence f(f) is of the form
J(t) = ex* ¢ (t), where ¢ (¢) is a continuous function with the period w. Accord-
ingly, if s is a root of the characteristic equation, we shall put a; = (1/w) Log s;.
The constants ay, which are determined except for multiples of 27V —1/w,
are called the characteristic exponents. The real parts of these exponents, which
are determined without ambiguity, are called the characteristic numbers. If the
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equation (109) has n distinct roots 8,, s, - - -, 8,, the equation (106) has then n
independent particular integrals of the form

(112) yy=enie; (),  Yy=entgy(l)y, o0y  Un=e€'u(l),
where a;, a,, : - -, @» are the characteristic exponents, and where ¢,, ¢;, -+ +, ¢u
are continuous functions with the period .

In the general case it is evidently sufficient to find expressions for the
integrals of a group which satisfy the relations (111). Now if we substitute in
these relations y; = e**z;, where « is equal to (1/w)Log s, they become

7+ ) =2,(),
111) Z(t + ) = 2, () + 2, ¢t),

2p(t+ @) =2, () + 2p-1(1)-
‘When ¢ increases by w, the variable ¥ = t/w increases by unity. Taking 7 for a
new variable, the problem is reduced to one solved above (§ 49). If we set

tt—w) oo (t —iw+ w)

PO = P E=12,--+)
the general expressions for the functions y,, ¥,,-- -, ¥, are
Vy=e"¢(t), v =e [P0 () + b (D] .-
(118) < yi(®) = e [Po_1(t) $1(t) + Pe_a () 5 () + -+ - + Py (&) e—1() + ()],
(i=1,2,...,p)

where ¢,, ¢, -, ¢, are continuous functions with the period w, the first of
which, ¢,(f), is not zero. We see again here, as in § 49, that all these integrals
can be deduced from the last one of the group. For z,_;(t) is equal to the
difference z, (¢ + w) — 2, (¢), and, similarly, z, 3 (¢) = 2 -1(t + w) — 2p-1(¢), and
%0 on. We can therefore write the equations (118) in the form

¥p() =exzp(t),
Yp-1(8) = e2¢A,(2,),
(114) Yp—a(t) = et A5 (2p),
AU
where A,(zp), A;(2), -+ - indicate the successive differences of z,(f) when we
change ¢ to ¢t + w. Let us observe that z,(t) is a polynomial in ¢ of degree p —1,
whose coefficients are periodic functions of ¢. The successive differences A,(z,),
A, (2p), - « - are therefore polynomials of the same kind with decreasing degrees,
the pth difference being zero. Let us indicate by Dz,, D?zp,..., Dz, the suc-
cessive derivatives of z, taken with respect to ¢, considering the coefficients of
this polynomial as constants. From the theory of finite differences, we know
§‘Mt the successive differences A,(zp), 4;(2p), - are linear combinations with
mmeﬁcal coefficients of the derivatives Dz,, D3z,, ..., D'z,, and conversely.*

e o s ey
= e*4,_1(2p),

*%ithout resorting to this theory, we may observe that Taylor's formula gives us,
ctepb!ltep. Ai(zp)mwiDizp+ -+ -,

Mrbere the terms not written contain only the derivatives Dt+1,.... We can there-

express, conversely, the derivatives Dizp as linear functions of the differences

A, Besr, oo
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We can therefore replace the system of integrals (114) by the equivalent system

Yo(t) =exz(l),

Yp—1(f) = extDz,,
(116) Yp_a(t) = ex D2z,

Yi() =extDr-ig,

Note 1. The integrals of the group (118), corresponding to the characteristic
exponent a, approach zero when ¢ becomes infinite passing through positive
values, if and only if the real part of « is negative. In order that all the inte-
grals of the equation (106) shall approach zero as ¢ becomes infiuits, it is there-
fore necessary and sufficient that all the characteristic numbers shall be negative,

or, what amounts to the same thing, that the absolute value of each of the roots
of the equation (109) is less than unity.

Note 2. 1f s is a real positive root of the equation (109), it is natural to
take for a the real determination of (1/w)logs. If the coefficients of the equa~
tion (106) are real, the same thing will evidently "be true in this case of the
integrals g, ¢y, ¢+ ¥p of the group (113) and consequently of the periodic
functions ¢, (), ¢q(t), :--.

Let 8 =X+ 4V —1 be a p-fold root of the equation (109), where x 0, and
let @=a’+ @V — 1 be a corresponding determination of the exponent @. To
the group of Integrals (118) we can adjoin a conjugate group obtained by replac-
ing @ by @ — a” V'~ 1 and the functions ¢:(¢) by the conjugate functions. It is
clear that by combining these 2 p integrals linearly in pairs we can derive from
them a system of 2p real integrals,

Finally, suppose that s is a real negtive root. Then we can write the value
of a = a + (w/w) V'~ 1, and to that root corresponds a particular integral of
the form

y=est (coa-‘:-"! +V=Tsin T’:") O +V=1y,0),

where the functions ¢, and y, are real and periodic. If the coefficients of (106)
are real, it is clear that the real part and the coefficient of v/ — 1 must each
satisfy separately the linear equation. We would proceed similarly with the
other integrals of the group (113) if p is greater than unity.

Moreover, the case where s is real and negative reduces to the case where s
is real and positive by considering the period 2w instead of the period w. It is
clear, in fact, that if an integral is multiplied by s when we change ¢ to ¢ + w,
it will be multiplied by s? when we change t to ¢ + 2 w.

Note 8. When the coefficients p; are analytic funetions of the complex vari-&f
able t =’ 4 ¢V — 1, analytic in the strip R included between the two parallels*
to the real axis ¢ = &, the integrals of the equation (106) are analytic func-'
tions in the same strip. The reasoning used under the supposition that the
variable ¢ moves along the real axis applies without modification to the case
in which that variable moves in the strip R. It follows that the functions ¢;(Z),
which appear in the expressions of (118), are periodic analytic functions in the
strip R. They can therefore be developed in series of sines and cosines of
multiples of the angle 2 7t/w (see Vol. II, Part I, § 66).
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88, Characteristic exponents. The investigation of the characteristic exponsnta
18 in general very difficult.* The solution of this problem evidently reduces to
the determination of the coefficients au which appear in the equations (107),
which, in turn, is equivalent to the following : knowing the initial values, for
t =t,, of the n integrals y,, ¥,, - - -, y» and their first n — 1 derivatives, to find
the values of these integrals and of their derivatives for ¢ =, + «. The coeffi-
cients a, are then obtained by the solution of the n Bystems of linear equations

Vi(to + w) = an (o) + aiaya (bo) + « - - + din¥a (o)
(116) UP (fo + ©) = any{P (to) + - -+ + VP (&)
®=1,2...,a—1) @=1%...,7)

We cannot in general solve this last problem except by the use of general
methods, for example, by successive approximations. Let us replace p; by Ap; in
the equation (108), where A denotes a variable parameter, and then develop in
powers of A the integral of that equation which together with its first (n — 1)
derivatives takes on preassigned values independent of A for ¢ = ¢,

(117) 1I=f¢(l)+ Vl(t)"" "'+ x'.fn(‘)"" ety
where f, (f) is a polynomial in ¢, of degree n —1 at most, which can be written
down immediately from the initial conditions. Substituting this value of y in

(108), we see that the other coefficients f;(t),f; (¢), - - - are determined, step by step,
by relations of the form

e RN AUR

in which the right-hand sides depend only upon the functions f,, £, - - -, fi~1,
and upon their derivatives. Moreover, these coefficients, together with their first
n — 1 derivatives, must vanish for¢ =t,. Hence these coefficients can be found
by quadratures. We have already noticed (§ 28) that the series obtained is con-
vergent for any value A. If we put A =1 in the relation (117) and in ull those
which we obtain from it by differentiation, we shall have the developments of
the integral under consideration and of its derivatives in series which are con-
vergent for all real values of £. Hence we can obtain in this way the guantities
(¢, + w), ¥{P(t, + w) which appear in the equations (116), and consequently
we can determine the coefficients ay.t

Ezample. Let us consider, for example, the equation
d2
(118) S =POw

where p(f) is a continuous function of ¢ with the period w. The product of
the roots of the characteristic equation is here equal to one, by formula (108).

* When the coefficients p; are analytic integral functions of the complex variable ¢,
the change of variable e37#/~ =z replaces the given equation by a linear equation
whose coefficients are single-valued in the neighborhood of the origin, and we are led
to study the law of the permutation of the integrals when the variable z describes
a loop around the origin. But the equation thus obtained is mot in general of the
Fuchs form.

11f we allow the parameter A\ to have any value, it follows, from the process used
above, that the coefficients aw, and consequently the coeficients of the characteristic -
equation, are integral functions of this parameter.
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That equation is therefore of the form
(119) #—A3+1=0,

In order to determine the coefficient A, let us denote by f(f) and ¢ (i) the inte-
grals of the equation (118) which satisfy the initial conditions £(0) =1, #(0) =0,
#(0) =0, ¢’(0) = 1. From the relations

JE+ w)=ay f () + a,50(0),
¢+ )= aq, S (1) + ag9 (¢),
¢t + w) = ay () + ag (D),
we d?rive, by putting £ =0, a;, =f(w), 8,3 = ¢'(w). The characteristic equation
in this special case is (@yy = 8) (Ggg — 8) — B 39, = 0, :
whence 4 = a,, + @y, =f(w) + ¢’'(w).
If we now replace p () by Ap(t), we obtain the developments of the integrals
J(®), ¢ (¢) in the form
FO=1+ MO+ -+ WH(O+ -
PO=t+ A+ -+ Mgl + -1,
where the functions f, and ¢, together with f; and ¢_, vanish for¢ = 0. Substi-

tuting these developments in the two sides of the equation (118), after having
replaced » by Ap, we find

d2fu
57 =POfa-1(0),
whence we derive the recurrent relations

r0=faf 20600 s60=[2f 2000,

which enable us to calculate step by step all these functions by starting with
So(®) =1, ¢y (t) =t. It follows that we may write

d%¢n
dts

=pO) ¢x-1(),

+
(120) A=243 [fa(w) + 5 )]
n=ml
If the function p (f) is never negative, we see at once that all the functions
Ju(t)y &n(l), ¢, (2) are positive for ¢ > 0. It follows that 4 > 2, and the equa-
tion (119) has two real and positive roots, one greater and the other smaller
than unity. The conclusion is much less evident in the other cases. 1f p(f)
never takes on a positive value, it follows from a thorough study made by
Liapunof * that the absclute value of A is less than 2, if the absolute value of

w
ds
0 _!; )
is less than or equal to 4. The equation (119) has in this case two conjugate
imaginary roots, the absolute value of each of which is unity.

#L1APUNOF, Probléme général de la stabilité du mouvement (Annales de la
Faculté des Sciences de Toulouse, 2d serles, Vol. IX, p. 403). On the general theory
of linear equations with periodic coefficients, in addition to the preceding paper, see
also Floquet's Annales de 'Ecole Normale supérieure, 1883, and Poincaré’s Les Méthodes
nouvelles de la Méchanique céleste (Vol. 1, chap. iv).
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IV. SYSTEMS OF LINEAR EQUATIONS

56. General properties. Most of the theorems established for a
linear equation can be extended without difficulty to systems of
linear equations in several dependent variables. We shall assume
in what follows, as we may without loss of generality, that these
equations are of the first order (§ 22). Let y,, ,,- -, ¥, be the n
dependent functions, and = the independent variable. It follows
from a gemeral theorem (§ 37) that the integrals have no other
singular points than those of the coefficients. If we assign the
initial values 2%, 32, - - -, 32 for a point z = &, which is not a singu-
lar point, we can follow the analytic extension of these integrals
along the whole of any path starting from x,and not passing through
any of these singular points, which are known in advance.

We shall suppose, only for simplification in writing, that we have
a system of three equations with three dependent variables. Let us
consider first the system of three homogeneous equations,

%+ay+bz+cu=0,
(121) :—: +ay+bz+eou=0,
%;—‘--f-a,y+b,z+c,u=0,

where a, b, o, - - - are functions of the single variable z. If we know
a particular system of integrals (y,, #,, ,), the functions (Cy,, C#,,Cu,)
also form a system of integrals for any value of the constant C.
Similarly, if we know two particular systems of integrals, (¥, #,, »,)
and (y,, #,, %,), we can derive from them a new system of integrals
depending upon two arbitrary constants,

Ci% + CoYy Ci# + Cgy, Cyuy + Cyuy
Finally, if we know three particular systems of integrals,

<.7/v z, u), Wy 24 w0, Wy 2 Uyp)s
the equations

(122) £ = C2z, + Cpz, + Cy2,,

u = Cy, + Cyu, + Cyu,
represent also a system of integrals, where C,, C,, C, are arbitrary con-

stants. In order to assert that the expressions (122) represent the
general integral of the system (121), we must make sure that we can

{y =C4 + Coyy + Cyyy
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choose the constants C, C,, C, in such a way that, for a given point
x = x, not a singular point, y, #, % take on any preassigned values
Yo» %y U, whatever. In order for this to be true, it is necessary and suf-
ficient that the determinant of the nine functions y,, #,, v; (¢=1,2,3),

Y ® Y
A=y, =z wu,
Yo % Y%

shall not vanish identically. If this is true, we shall say that the set
of three particular systems of integrals form a fundamental system.

If A vanishes identically, the three particular systems of integrals reduce to
two, or even to a single system. Suppose, first, that not all the first minors of A
vanish simultaneously, for example, that the minor 8=y, z, — 3,2, is not identi-
cally zero. Let 4 be a region of the plane where 3 does not vanish. We shall
determine two auxiliary functions K, and K,, analytic in the region 4, such
that we have

(128) vs =K, v, + Ky, zg =K,z + K;z,,

and since the determinant A is zero, these functions K, and K; also satisty
the relation

(124) uy =K u, + K,u,.

If we replace y, z, and u in the first two equations of the system (121) by the
preceding expressions for y,, 2, uy, observing that (y,, 2;, %) and (y,, 2,, %)
form two particular systems of integrals, we obtain, after simplification, the
equations NWE +y,K,=0, 2z, K| +2,K,=0,

from which we derive K{ = K;=0. The functions K, and K, are therefore
constants, and the relations (128) and (124) remain true in the whole region
of existence of the functions yi, z:, u. It follows that the system of integrals
(Vs 25 Ug) i8 & combination of the other two.

If all the first minors of A vanish identically, the three systems of integrals
reduce to a single system. Since the elements of A cannot all vanish simul-
taneously, let us suppose that y, is different from zero, and let us put y, = Ky,.
From the relations y,z, — 2,9, = 0, ¥, %3 — u, ¥, = 0 we derive also 2z, = Kz,,
u, = Ku,. Replacing y, z, u in the first of the equations (121) by Ky,, Kz;, Ku,
respectively, there remains y, K’ = 0. Hence K is constant, and the system
(¥q) %4, Ug) differs from the system (y,, z,, %) only by a constant factor. Similarly,
the third system of integrals is identical with the first. It should be observed
that y,, ¥,, ¥; are not necessarily linearly independent ; for example, one or
two of these functions may be zero, but not all three may be zero.

The value of the determinant A may be calculated as follows. The derivative A’
is the sum of the three determinants

A Vo5 oY N % “£
A=l 2 Ul+|v 23 W+l & W
Vs %y Y% Vs %3 U Vs %3 U
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Replacing the derivatives y, z;, u; by their values obtained from the equations
(121), these three determinants reduce, respectively, to — aA, — b A, — ¢,A.
‘We have, therefore, the relation A’ =— (a + b, + ¢;)A, and consequently

(125) A(z) = Az e e @b+ e

When we know the general integral of the homogeneous system
(121), we can deduce from it by quadratures the general solution of
the non-homogeneous system

d —

% 4 ay + bz + cu = f,(z),

d —
(126) c—li +a,y + bz + oju = f,(),

d =

d: +ay + b,z + qu = fi(2).

Indeed, if we make the change of variables defined by the equations
(122), ¢,, C,, C, being considered as new dependent variables, the
system (126) is replaced by the following system,

512 4y, 20 4y L ),
(127) £ 045,20 0 ),
ul% + u,-d(—l%- + %, d—dxc-'-' = fi(2),
which is integrable by quadratures, for we derive from it
o x, (=123

Let us also observe that this transformation is unnecessary whenever
we can determine directly a particular system of integrals (¥, Z, U)
of the equations (126). In order to obtain the general integral
of these equations, we need only add ¥, Z, U, respectively, to the
right-hand sides of the equations (122) which represent the general
integral of the homogeneous system (121).*

* A method analogous to that of Cauchy (§ 39) may also be employed. Let
y=9i(x,a), z=y¥i(z,a), u=~wni(z,a) (i=1,2,3)

be three systems of integrals of the homogeneous equations (121), satisfying, respec-
tively, the initial condition

$(a, a)=1, ¥ (a, a)=0, m(a, a)=0,
#(a, a)=0, Ygla,a)=1, m(a,a)=0,
#(a, @)=0, yy(a,a)=0, =m(a,a)=1l
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When we know one or two particular systems of integrals of the
equations (121), we can lower the order of the system by one or two
units. Suppose, first, that we know a single system of integrals
¥y #p w,), where the function y, is not zero. The change of
dependent variables

y=y7%, z2=e Y+ 2, v=u Y4 U

leads to a linear system of the same form which must have the par-
ticular system of integrals ¥=1, Z=0, U=0. Therefore the
coefficients of ¥ in these new equations must be zero. In fact, the
transformed system is

y‘dz +bZ+cU=0

(128) 22+ sz 40 0=0,
-%’+u‘a—+b,z+c,u=o.

If we replace dY/dx in the last two equations by its value derived
from the first, we obtain a system of two linear homogeneous equa-
tions in the two dependent variables Z and U. After integrating
this system ¥ can be obtained by a quadrature.

Suppose now that we know two independent systems of integrals,
@ 2 %) (Y35 %, %,). Since the three determinants

Y133 — Ya?p Y U = YUy 2 Uy — &Y,

do not vanish simultaneously, as we have shown above, let us sup-
pose that y 2, — y,2, is different from zero. The transformation

y=yY+y,2Z, zr==zY+r2, v=uY+uZ4U,

where ¥, Z, U are the new dependent variables, leads to a linear
system of the same form having the two particular systems of

It is easy to see that the functions
Yo U@ 0 2 +4@ 6 D e @ ba(a, i,
d "fz L@ ¥ & @) +£3(@)¥s (2, @) +/3 (@) ¥ (=, @)]da,
v 'f:W“’ (2, @) +/3(Q) w5 (2, @) +/f3 (@) 7y (=, @)]da

form a system of integrals of the non-homogeneous equations (126).
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integrals (¥, =1, Z,=U,=0), (¥,=0, Z,=1, U, = 0). The coeffi-
dients of ¥ and Z in the equations of the new system must therefore
be zero, and this new system has the form

“%+AU=0, %f+4lv=o, ‘%’+A,U=-o,
as is easily verified. It is clear that this system is integrable by
quadratures, gince the last equation contains only U.

The preceding methods may be extended to systems of » linear
equations with n dependent variables. In order to obtain the general
integral of such a homogeneous system, it is sufficient to know =
particular systems of integrals which form a fundamental system.
If we know p independent systems of integrals (p < n), the integra-
tion reduces to that of a system of the same form with n—p
dependent variables anfl to a number of quadratures. Finally, the
general integral of a non-homogeneous system can be obtained by
quadratures if we know the general integral of the corresponding

homogeneous system.

5%. Adjoint systems. Given a linear homogeneous system with n dependent
variables,

d ,
(129) £=mm+---+aum+---+mun. G k=1,2,-.4y7)
the linear system
a4y,
(130) f‘f=—aﬁYx—-~-—au7h—---—aan-.

which is obtained from the first by replacing ¥: by Y3, and by changing the
rows into columns in the determinant of the coefficients aix, after having changed
the sign of each element, is called the adjoint of the first. It is evident from the
definition itself that this relation is a reciprocal one between the two systems.
The integration of one of the systems (129), (130) involves that of the other. In
fact, let (y;, ¥3, -y ¥a) and (Y, Y,, - -+, Y,,) be any two particular systems of
integrals of the two adjoint systems. From the relations (129) and (130) we have

%(Y,vl+l’,v,+ coo 4 Yayn) =2Yi(a-’l1/1 + oot anvet oo+ Qnin)

+ D vi(—auYi— e — 0 Ve— e —am¥a)
i
If we permute the indices i and k in the second sum, we see immediately that
the coefficient of Y;y; on the right-hand side is
ik — g =0,

and the right-hand side is identically zero. We have therefore the relatfon
between these two particular systems of integrals

Q81) W+ XYyt -+ Yam=0,
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where C denotes a constant. The knowledge of a particular system of integrals
(Y32 Y3y <+, Y,) of the equations (180) furnishes therefore a first integral of
the system (128), which is linear with respect to the dependent variables y,, y,,
+es, ¥n- If we know the general integral of the adjoint system (180), the gen-
eral integral of the given system (129) is represented by n relations of the form
(181), where we take successively, for Y;, ¥,,..., ¥,, a set of » independent
systems of integrals of the equations (130).

Particular attention has been paid to linear systems which are identical
with their adjoint. In order to have this case, it is necessary and sufficient
that the determinant of the ay be a skew symmetric determinant ; that is, that
we have ag + an = 0, whatever may be i and k, and consequently ay = 0. If
W3y Vgy =+ *y Vn) a0d (24, Zg, + - -, Za) aT6 two particular systems of integrals, the
velation (181) becomes

V1%, + YaZg + ot YnZn = oonst.;
and if the two systems are identical, we have also
vi+vi+ .-+ y: = const.

The integration of a linear system of the third order identical with its
adjoint leads to the integration of a Riccati equation (§ 31, Ex. 2). The inte-
gration of a system of the fourth order of that kind leads to the integration of
two Riccati equations (see Ex. 15, p. 170).

58. Linear systems with constant coefficients. If all the coefficients
a, b, ¢, - - - of the equations

d
d—Z+ay+ bz 4+ cu = 0,
d

(132) zz—+aly+blz +eu=0,
d
25+a,y+b¢z+o,u=0

are constants, the general integral can be found by the solution of
an algebraic equation. For let us try to satisfy these equations by
taking for y, 2, © expressions of the form

(133) y=ae",  z=feT,  u=yeT

where a, B8, y, r are unknown parameters. Substituting these func-
tions for y, 2, « in the left-hand sides of the equations (132), and
suppressing the common factor e™, we find the conditions

(a+r)e+ b8+ cy=0,
(134) {ala +G,+r)B+ey=0,

ag+b8+(c,+7r)y=0,
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which must be satisfied by values of @, 8, y which do not all vanish.
For this it is necessary and sufficient that » shall be a root of the
equation of the third degree,

a+4r b ]
(185) F(r)= b +r ¢ |=0,
a, b, o +r

which is called the auxiliary equation. Having taken for » a root of
this equation, the relations (134) are consistent and we can deduce
from them values for a, B8, y, at least one of which is not zero.
To every root of the equation F(r) =0 corresponds therefore a
particular system of integrals of the form (133); there may even be
several, as we shall see presently. If the auxiliary equation has
three distinct roots r,, 1, r,, each one furnishes a particular system
of jntegrals. These three systems are independent, for, if they were
not, we could express ¢+ as a linear combination with constant
coefficients of ¢ and of ¢'<, which would be absurd. We can there-
fore, in this case, obtain the general integral of the system (132)
after we have solved the equation F(r) = 0.

It remains to treat the case in which the auxiliary equation has a
multiple root. Let us denote by f(r), ¢(r), ¢y (r) the three cofac-
tors of the auxiliary determinant corresponding to the elements of
the same row, for example, the first. The last two equations of
the system (134) are always satisfied for any value of » by taking
for a, B, y quantities proportional to these cofactors; if = is a root
of F(r) = 0, these values of a, B, y also satisfy the first of the equa-~
tions (134). It follows from this that if » is a root of F(r) =0,
the functions

y=f(r)e, z=¢(r)e7, u=y(r)e™
form a particular system of integrals. Now let us suppose first that
the equation F(r) =0 has two roots, », and r,, whose difference is

very small. Each of them furnishes a system of integrals, and the
functions

Lree—f(r)ee  $(r)e*—¢(n)e™  y(n)ev —y(r)e

are also integrals. If we now let », approach », and pass to the limit,
we may conclude that if 7, is a double root of F(r)=0, the two
groups of functions,

(I) Y= f(rx) ", & =¢ (1") e, v, =y (r) e,

-
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"= O s B 2 [$Omry

an )
U = 5; [W(f)ﬂ"],_,,,

form two systems of integrals. Bimilarly (see § 44), if the equation
F(r) = 0 has a triple root »,, we can add to the preceding two groups
the group of three functions,

17, Lo MR A YOP W

() »
Uy = ] v(» Gn]r-r"
which form a third system of integrals.

Let us now consider first the case wherd the equation F(r)=0
has a double root », and a simple root r,. If the double root r, does
not cause all the first minors of the auxiliary determinant to vanish,
we may suppose that at least one of the cofactors f(r), ¢ (), y(r)
is not zero, for we can evidently replace, in the reasoning which pre-
cedes, the first row by the second or the third. Suppose, for example,
J(r) + 0. The two systems of integrals (I) and (II) are independ-
ent, for y, is equal to the product of ¢+ and a binomial of the first
degree zf'(r,) + /(r,). As for the simple root r,, it furnishes a third
system of integrals which, for the same reason as above, is not a
linear combination of the first two.

The reasoning fails if the double root », makes all the first minors
vanish, for the system (I) reduces to the trivial solution

n=r=u=0

But in this case the three equations (134) reduce to a single equa-
tion when we replace in it » by »,. If, for example, ¢ is not zero,
they reduce to the single equation (a 4 r)a + 58 + ¢y = 0, and we
can take the two constants @ and B arbitrarily. If we take, first,
(@a=1, B=0), then (¢ =0, 8=1), we obtain two independent
systems of integrals of the form (133). A4 doubls root of F(r)=0,
therefore, always furnishes two partioular independent systems of
integrals.

Suppose, finally, that F(»)= 0 has the triple root » =, If this
root », does not cause all the first minors of the determinant to
vanish, we may suppose, for example, that f(»,) is not zero. The

three particular systems of integrals (I), (II), (1II) are independent,
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for the coefficients of ¢'* in y, y,, v, are respectively of degrees
0,1, 2 in =z

If the triple root r, causes all the first minors of the determinant
to vanish, we can determine first of all two independent systems of
integrals of the form (133), as we have just explained in regard to
the case of the double root, and we can then obtain the general
integral if we can find a third system independent of these two.
Developing the expreasions in (III), and noting that

r)=¢(r)= =0,
we find Fr)=¢()=y(r)

Y= 22 )+ L)) g = [228'(r) +4"(r)],
u, = e [2ay'(r) + ¢ (r)],
and this system of integrals is certainly independent of the first
two unless we bave at the same time f'(r) = ¢'(r) = ¢'(r,) = 0.
Hence we obtain in this way a new system of integrals, unless the

triple root r, also causes the derivatives of all the first minors to
vanish. Now this cannot happen, as we see at once, unless we have

b=0=a,=0,=a,=4,=0, a,=b1=c,=—r‘,

and the system (132) reduces to three identical equations,

%— y=0, d—z-—r‘z=0, Q—r‘u=0.

dx dx
In this case, which may be considered as a limiting case, the three
equations (134) are satisfied identically, when we replace » by », in
the expressions of (133), for any values whatever of the parameters
a, B, y- Summing up, to a triple root of the auxiliary equation there
always correspond three particular independent systems of integrals.

Generalization. Bimilarly, a system of n linear equations with constant
coeflicients

d
T Guvy 4 Gty + e+ Gnba =0,

T+ GVt + Gualad oo+ Guatn =0,
may be integrated by finding particular systems of integrals of the form
(187) h = a, ¥, Vg = @™, seey Yn = ane’™,

where a,, @, --*, @a, r are unknown constants whose values are to be deter-
mined. We are thus led to n equations of condition



1, § 50] SYSTEMS OF LINEAR EQUATIONS 161

@y+na+aga; 4 -+ anan=090,
(138) A5y + (Agg + T)g + + - - + Buaa =0,
e e e e e v e o o e ey

Un1 @1 + Anz @3 + <+ + (Gua + ) A0 = 0,
which give for the unknown quantity r the auxiliary equation

ay+r Ay see Q1w
(139) Fiy=| % Gatr -0 da |

Qny Ong et Gt

If this equation has » distinct roots r, ry, « - -, 7o, We obtain by this method
n particular systems of integrals of the form (187) and, consequently, the gen-
eral integral. If there are multiple roots, the discussion is somewhat more
complicated. Let r; be a p-fold root; to obtain from this root particular sys-
tems of integrals of the equations (136), we may proceed in two ways. On the
one hand, applying d’Alembert’s method, as in the case of three equations, we
can obtain p systems of integrals corresponding to that root. These integrals
will be independent only if », does not make all the first minors vanish. On the
other hand, if r, makes all the minors formed from n— g + 1 rows of the deter-
minant vanish, without making all those of n — ¢ rows zero, that root furnishes
g systems of integrals of the form (187), for the n equations (1388) reduce to
n — ¢ independent equations when we replace r by r,. Combining these two
methods, we find that they always furnish p independent systems of integrals.

Practically we can obtain all these systems by equating coefficients. In fact,
by the combination just mentioned we should obtain a system of integrals
depending upon p arbitrary constants, which is of the form

, = =P (), Yy = €= Py(x), -+, Yn=erTPy(z),

where P,, P,,---, P, are polynomials of degree » — 1 or of lower degree. If
we leave the coefficients of these polynomials as unknown, and if we substitute
in the given equations, we shall obtain a certain number of relations between
these coefficients, which enable us to express all of them in terms of p of them,
which may be taken as arbitrary constants.

59. Reduction to a canonical form. Every linear system with constant coefli-
cients can be reduced to a simple canonical form the integration of which is
immediate.

Let us write this system under a slightly different form,

Y1=Gy ¥+ Gy + - + Gatn,
Yo =GV + GV + + -+ + Gan¥n,

e s & s e e e s 8 s =y

(140)
Y=V + Gna¥g + +*+ + CunVn,

where y; denotes dy;/dz. If we take n dependent variables, Y,, ¥, «--, ¥g,
linear in terms of y,, ¥g,***, ¥n,

(141) Fi=bay, + -+ + biates E=1,%---,%)
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wh&e fﬂ\e coefficients by are constants whoee determinant is different from
#ero, the gystem (140) js replaced by a system of the same form,

Y; = Anyl + AuYg + et AIAYM
(42) YVi=dy Y, 4 Y, + <o o AgeYy,

Y;='Ally1 + AﬂY|+ IEER AuYno
obtained by mplwing the variables y,, ¥, - - -, ¥a, in the expressions for ¥7,
Y"=b‘ly;,+ "'+bh2/;=bll(aull| + oot Gln) F -
+ bm(aﬂly‘ + + o+ Qua¥n),
by their values given by the equations (141). If we consider the equations (140)
88 a linear substitution carried out on the variables y,, ¥,, - -+, ¥n, and Y,, Y,,
+++, Y, a8 n new variables, the preceding calculations are precisely those which
we must make in order to find the new linear substitution on the variables
Y,, Y,, -+, ¥,, which corresponds to the linear substitution (140). Now we
have seen that by suitably choosing the variables Y; (§ 48) we can reduce every
linear substitution to a simple canonical form.* In this canonical form the
variables separate into a certain number of distinct groups, such that the

substitution which the p variables Y;, ¥,,---, Y} of the same group undergo
is of the form
(48) Y=Y, Y;=s(Y;+7¥,), - Y;=3(Yp_1+ ).

We can therefore, by a suitable change of variables of the form (141), always
reduce the integration of the system (140) to the integration of a certain num-
ber of systems of the form (148), where Y; = dY,/dz.

The integration of this system is immediate, but it is preferable to employ a
somewhat different canonical form. For this purpose let us set ¥; = 82(s 3 0).
The system (143) becomes

dz dz dz,
(144) '&;!:ul- Td'z'!=‘zﬂ+z1’ Ty ‘d_:=up+lp_1.

This new canonical form is unchanged if we multiply all the dependent vari-
ables by a factor e\=, except for the change of 8 to 8 4+ A ; and it is applicable
also to the case where the auxiliary equation has zero for a root,
The general integral of the system (144) is represented by the equations
“e-S:C 2i—1 +C zi—-2
g=-n1 " =2

or by equivalent equations obtained by solving for the conatants C;

+ -+ Cic1z 4+ C; (i=112v""p)

2
(145) z,e-==0C,, (23 — 22)) e~ = C,, (zl —xzy + %21>8‘“= Oy,

=1
=1yt

a?
{ﬂ—M—x-Fé—lzt-z— oo (= 1)1 z,}eﬂr: C (=1,2,-..,p)

* We supposed before that the determinant of the substitution was not zero,
whereas the determinant formed by the coefficients ay may be zero. But if we
change y¢ to eA= 2, the coefficients ayy, dgy, - - -, ann are diminished by A, while the
aw’s, where i 3 k, do not change. We can therefore always choose \ in such a way
that the determinant of the now cosfficients shall not be zero,
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B0. Jacobi’s equation. Let us consider again a system of three
linear equations with constant coefficients, which we shall write in
the form :

dz
a;—ax+by+cz,

d
(146) Eg =az+by+ogz,

dz
= a,x + by + o,

where ¢ denotes the independent variable. Let us add these three
equations, after having multiplied them respectively by ydz — zdy,
zdx — xdz, xdy — ydx. The relation obtained is

(147) {(‘” + by + c2) (ydz — ady) + (a,@ + b,y + ¢,%) (xdx — adz)
+ (a,x + by + ¢,2) (xdy — pix)= 0

and it is homogeneous in x, y, 2. Heuce it can be replaced by a rela-
tion between z/z and y/z. Indeed, if we put * = Xz, y = ¥z, and
divide by 2% this relation takes the form

—(@X +0Y +0)dY + (a, X + b, Y + ¢)dX

(148) +(a,X + b, Y + ¢) (XdY — ¥YdX)= 0,

which is exactly Jacobi’s equation (pp. 11 and 32).

Let £ =f(t), y = ¢ (¢), =y (?) be a system of integrals of the
equations (146). As ¢ varies, the point whose homogeneous covrdi-
nates are x, y, # (and whose Cartesian coérdinates are X = z/z,
Y = y/z) describes a plane curve I" which is, by the preceding argu-
ment, an integral curve of Jacobi’s equation (148). The integration
of Jacobi’s equation therefore reduces to the integration of the sys-
tem (146), that is, to the solution of an algebraic equation of the
third degree, as we have already seen.

If the auxiliary equation has three distinct roots s,, s,, 35, the general inte-
gral of the system (146) is, according to the preceding paragraph, of the form

I Pe-nt = Cy, Qe~*%t = C,, Re—rst = Cy,
where P, @, R arc three linear homogeneous functions of z, y, z. It is easy to

derive from these equations a homogeneous combination of degree zero which
does not contain the variable ¢,

(@) Py-,Qn-4Ry-4 = K,
which is the same result that we obtained before by another method.

The case in which the auxiliary equation has a double or a triple root
can also be easily treated. The equations representing the general integral form
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If we take the functions £ for new dependent variables, it is clear that the
system (140) Is replaced by a linear system of the same kind as the first. We
have, in fact, dz ., ,
o Stantbant -

or, replacing ¥{, Up * + +» ¥a DY their values obtained from the equations (140),

£=¢cﬂh + eyt -+ Ca¥n

where the coefficients ¢, have the same properties as the coefficients ag. We
have now only to'replace y1, ys, - - -, ¥a in these last equations by their expres-
sions in terms of the new dependent variables 2, 23, - - -, Zs Obtained from the
equations (162).

If it is possible to choose the coefficients by of the transformation in such a
way that the new system will be a system with constant coefficients, the system is
said by Liapunof to be reducible. See page 242 of his paper cited in the footnote
on page 151.

Every system whose coeffictents are real, continuous, and periodic functions, with
the same period @, is reducible.

In fact, let us consider the adjoint system, which is also a system with
periodic coefficients. Let s be a root of the characteristic equation and a the
corresponding characteristic exponent. We shall suppose, in order to consider
the most general case, that to this exponent a corresponds a group of p par-
ticular systems of integrals of the form previously considered. This group will
therefore furnish (§ 57) p linear first integrals of the given system, which will
be of the form

et(z21y1 + 2ay2 + + - + Za¥n) = Cy,
e"(mDZ1 + hDZ: + + vnDz.) = Cy,
. o .

e"(v:D’—1zx + v:DP ‘122 + + v.DP"‘z.) Cp,

where z,, 23, - - -, 2« &re polynomials in ¢, of degree p — 1 at most, with periodic
coeficlents, and where the derivatives D! are taken regarding these coefficients as
constants. Arranging these first integrals with respect to ¢, we may write them
in the form

ot vy, v,|=c

[(p—l)l ot E ]‘ b

(159) e Tt e]=c
o=~ G- * »

e“Yl-:_:C’,:

where Y3, Y3, - - -, Yp are independent linear combinations of yi, ya, « - +, ¥» With
periodic coefficients. For if they were not independent, we could derive from
the equations (158; a relation between the arbitrary constants Cji, Ca, » Cp
and the variable . If we take the linear combinations Y, Yj,-- Y,, for
dependent variables, the relations (158) represent precisely the genera.l integral
of the linear system of equations (§ 59),

ay,

E—=—¢Yx, ‘%—3=-—a1’.+1’,, ceey 11_1_72 =—a¥p+ Ypo.

(164) 3t
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Proceeding simitarly with all the groups of first integrals furnished by the groups
of integrals of the adjoint system, we sse that the given system is transformed
into a linear system with constant coefficients by means of a transformation of
the form

(156) Yi=duvr+ disva+ -« + dinln,

where the coefficients ¢, are periodic functions with the period w.

The reciprocal of the determinant D of the ¢u's is bounded for ¢ > {,, for
we shall show that D does not vanish for ¢ > ¢,. Indeed, if we consider n inde-
pendent systems of integrals (¥y, -« -, Va:) Of the first system and the corre-
sponding n systems (Y7, - - -, ¥y) of the transformed system, the determinant .D
is equal to the quotient obtained by dividing the determinant of the ¥u's by
the determinant of the yi’'s, and we know that these last two have finite values
different from zero for all finite values of ¢. It follows that the absolute value
of D remains greater than a certain positive minimum for all values of ¢
between ¢, and ¢, + w.

In order to complete the proof, we may suppose that the characteristic equa~
tion of the adjoint system has no real negative roots; for, by § 64, any root is
replaced by its square if we consider the period 2w instead of the period w.
If the characteristic equation has only real positive roots, we may evidently
suppose that all the functions ¢; which appear in the equations (165) are real.
‘Then that transformation actually satisfies all the required conditions. More-
over, all the characteristic exponents are real, and the transformed system has
real coefficients. But if the characteristic equation of the adjoint system has
conjugate imaginary roots, to each group of p linear combinations, such as
Y,, Y,,-++, Yp, in which appear imaginaries we can associate the group
formed by the conjugate imaginaries. Hence, combining them in conjugate
pairs, it is clear thut we again obtain & system with real constant coefficients
by means of a transformation of the desired form with real coefficients.

EXERCISES
1. Integrate the linear equations

YV —2y” 4 y = Ae® 4 Be—= 4 Csinz 4 Dcosz, VD4 Yy =¢e
V'—y'+y —y=2e—4dcosz,

Y’ =8y + 2y =(az + b) e + ce— 22,

2y —Qzy”’ + 89y’ =1+ 22+ 82z%Logz,

2y’ — 22y + 2y =22+ pz + ¢,

2y — 3%y + Tay’ — By =2* — 22,

" ’ =z2 "'___E_Z__
By Sz + 4y =22+ [ T
8y’ — Dz2y” + 8Tzy’ — 64y =z*[a + » Logz + c(Logz)T],
22y + 22y’ —~ 2y =z cosz — ginz,
22y + 8zy’ + vy =JS(x).

If f(z) is analytic in the neighborhood of the origin, prove that this last equa~
tion has a particular integral analytic in the same neighborhood.
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2. Integrate the systems of linear equations

dy dz dz dz _ dz dy , _ ..
(ﬁ) 'd—iy'—a+3=oq E_'a't""y"'of E‘a""'z—o:

a2
(B) %.2+52+7=00821, a—:—,—z+8y=0;
d3y dy , dz _
oy
2—:+%+8g+2y+8z=e—';
dz dy dz
—_— — Emz= — —2=0:
(%) dt+v z2=0, ) z2=0, dt+z z ;
dz d dz
(e) E+z-—y=0, -d—:/+1/—-4z=0, -E+4z—z=0;
%—8y+8:—4u=0, :—:+y—5z+2u=o,
0] o
az—+8y—14z+6u=0;
Y=A+)y—2z4+2(1-Nu=0,
(n) Z+MW+z+20—1u=0,
W+ MW+ E@AN=1)u=0.

3. Find the general integral of the equation
@z + 1)y + (42— 2)y’'— By =(622 4+ 2 - 8)e*

from the fact that the homogeneous equation has a particular integral of the
form ez, where m is & constant. [Licence, Caen, 1884.]

4. Prove that the differential equation
@ -1y =n(n+1)y,

where n is a positive integer, has a polynomial P(z) for integral. From this
prove that the same equation has a second integral

Pic(i2)

where Q is also a polynomial. [Licence, Paris, 1890.]

5. The linear differential equation
=@+ p+ )V +uy=0,
where x and » are two positive integers, has a polynomiai y, = P(z) as an inte-

gral. Hence prove that it has a second integral ¢, = e2Q(x), where Q(z) is also
& polynomial, [Licence, Paris, 1908.]

8. Find the necessary and sufficient condition that the linear equation
v” 4 pv’ + qv = 0 may have two independent integrals, y,, y,, which satisty
the relation 313 = 1. Assuming that p =—1/z, find the coeficient ¢ and the
general integral. [Licence, Paris, 1902.]

7. Derive the formula (28), p. 111, from the formula (11), p. 106, which
gives the value of the determinant A(yy, ¥a, «++, ).
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8. Bessel’s equation,
'+ 2(m+ 1)y +ay =0,

has a8 a particular integral the function represented by the definite integral
1
n=[ (- )mcsazd,
provided that the real part of m is greater than — 1. If m is a positive integer,
that integral is of the form (see Vol. I, end of Chap. V, Ex. 20, 2d ed.; Ex. 21,
1st ed.) 2.4.6...2m(Usinz + V cosz),

where U and V are polynomials in 1/z whose coefficients are all integers, and
the general integral is

y=C(Usinz + Vcosz) + C’(Vsinz — U cosz).
[HerMIiTE.}
9. The integration of the system of linear equations

dy dz
a—z-+ay+bz=0, E+a‘y+.b,z=0,

where a, b, a,, b, are any functions of z, reduces, on putting y = ¢z, to the
integration of ‘Riccati’s equation,
Lrvt@—b)t—an=o,
and to the calculation of f(a + b,)dz (see ftn., p. 112).
10. The ratio z of two independent integrals of the linear equation
vV'+ov+qy=0
satisfies the differential equation of the third order,

z” 8 /z\3 1 ,
‘—;——(—,)"—‘211—5?’—?-

z 2\z
11. Given the differential equation
(E) z(y” —¥')— ay =0,

where a is constant, how must we choose the path of integration L so that the
function y () represented by the definite integral

v () =_£L)e'-=z°—l(z —1)~e-1idz

shall be a particular integral of (£)? Show that the equation (E) has a par-
ticular integral, which can be expressed without any sign of quadrature, when
a is an integer. Deduce from it the general integral, and express it in terms

of the smallest possible number of transcendentals.
[Licence, Paris, July, 1908.)

12. Determine the two functions P({) and Q(¢) so that the function y
represented by the expression

y=@-a [ r0POa+e-b [ 700

shall be an integral of the differential equation y” =f(z) for all possible forms
of the function f(z). [Licence, Paris, October, 1807.]
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18. The general integral of the linear equation
o’ + [n+2P@))V + 2 t1Q()y =0,

where P(z) a.nd’Q(z) are analytic in the neighborhood of the origin, is single-
valued in this neighborhood. The letter » denotes an integer greater than unity.

14*. Every equation of the form

r-rﬂ T —IQ,(z)d“ 4

T+

+z&—,—x(z) w“ L. ,(z)— +- +Q@@Y=0,

where Q;, Qs - -+, @ are analytic functions in the neighborhood of the origin,
has an analytio integral in the same neighborhood ; and the value of the inte-
gral, as well as the values of its first p — 1 derivatives, inay be arbitrarily chosen
for z = 0, provided the equation

C=p) - C—n+D+QOC—p) - (r—n+2)+ -+ Q-p(0) =
has no integral root greatér than p — 1.
[E. GoursaT, Annales de ' Ecole Normale, 1888, p. 2665.]
Note. By an artifice analogous to the one which was used in § 50, we are led
to prove the proposition for an equation of the form

dru M [(dr-1y du
o=@t g )
r
where we have put an-ry

U=y+yY + -0 -fan—>

-7
16+, Let = be a system of four linear equations identical with ita adjoint
(p. 156)

d
(B) sz:aﬂ!lr-l' WaYs + GsVg + GiaY,. (¢=1,22384) an+an=0

This system has the first integral 3§ + 3 + 3+ 3= C. If we suppose C'=0,
the preceding relations are satisfied by putting
=plr—§&, w=pl+E), y=pil—f), y,=piln+8.
Substituting these expressions for y,, y,, ¥, ¥, in the equations (Z), we obtain
the system of three equations

s%‘.—.(anua.-)(n—a + 2iags + (aas + fae) (0 + 9),
27" = (t1s + ags) (1 4+ %) + t(a1s + aa¢) (1 — 7%) + 2i(qs + ar4) m,
3 =(am + aw) (1 + &) + {(aa1 + aa2¢) (1 — £3) + 2 (ass + an)é,

of which the last two are Riccati equations. Let 4y =f(z, C,), § = ¢ (z, C,) be

the general Integrals of these two equations; then the general integral of the
equation in p is given by the equation

AT

aC, aC,

(E. Gounsar, Comples rendus, Vol. CVI, p. 187, and Vol. CXLVIII, p. 612.]

=0, ¢
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j;"(a)“l!;.¢’(z)dzf“.£.¢’(=)“f-.f(t)a
=F-9 J;, o) = o )21 () dy,

In which the left-hand side contains n integral signs, by proving that the two
sides are particular integrals of a linear differential equation of the nth order
satisfying the same initial conditions.

17*. Prove that the integral ¢ (z, a) of the linear equation F'(y) = 0 (p. 108),
considered as a function of the variable a, is an integral of the adjoint equation
G (z) =0 after having replaced z by a.

Note. ,t is seen that the integral of the equation F(y)= 0 which, with its
fiist (n — 1) derivatives, takes on the same values for ¢ = z, as a function # (z)
and its first (n — 1) derivatives, has the form

y=7@)- [ F@ee a)la,

where z = w(a). The integral on the right must depend only upon = (2), = (z,),
(Zo)y + + 1, T®=1(z;). Now we can also write (§ 42)

L )¢ (z, a)da = (¥ [z, ¢(z, @)]}°=" — f' “2G[e (2, @)]da,

0 l’-lo
and it is clear that the preceding condition is not satisfled unless we have
@[¢(z, a))=0. It follows readily that the functions ¢;(z) defined by the
equations (4) (ftn., p. 109) form a fundamental system of integrals of the
adjoint equation,



CHAPTER IV

NON-LINEAR DIFFERENTIAL EQUATIONS
I. EXCEPTIONAL INITIAL VALUES

The proof which has been given for the existence of integrals
that take on given initial values really supposes that the right-hand
sides of the given system of equations are analytic in the neighbor-
hood of these initial values (§ 22). Restricting ourselves to the case
of a single equation, we shall examine some simple cases in which
that condition is not satisfied.

63. The case where the derivative becomes infinite. Let us consider
an equation of the first order,

@ 3t o),

where the right-hand side f(z, y) becomes infinite for the pair of
valpes ¢ =z, y =y, in such a way that its reciprocal

S y) = S (xl, ¥)

is analytic in the neighborhood of this pair of values. We can write
the preceding equation in the form
dx 1
@ &~ Fy  HE9
regarding y as the independent variable and x as the dependent
variable. But since the right-hand side £, (, y) is analytic by hypothe-
sis for z = z,, y = y,, Cauchy’s theorem applies to the equation (2).
Hence there exists an integral, and only one, which approaches x,
as y approaches y,, and that integral is analytic in the neighborhood
of the point y,. The development of & — z, in a power series accord-
ing to powers of y — y, necessarily commences with a term which
is at least of the second degree, since dx/dy or f,(z, y) is zero for
z =z, y = y,, for otherwise f(z, y) itself would be analytic. Let
this development of z — x, be .
® z-zo-A-(y—yo)m'*'AnH(?/“%)"“"""‘-
(m=24,%0)
"172
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From the equation (3) we derive a development for y¥ — y, according
to powers of (x — z,)'™ (see II, Part I, § 99),
1 3
) Y— Y= —z)™+ al@ — )" +---. (a,+0)
It follows that the equation (1) itself has this one and only this one
integral of the form (4) which approaches y, as x approaches x,, and
the point x, is an algebrato critical point for this integral.®

64. Case where the derivative is indeterminate. The complete dis-
cussion of all the cases in which the derivative becomes indeter-
minate is much more complicated. Let us take first the equation
studied by Briot and Bouquet,t

b)) z—lby=azx+al+azytay+---=¢(xy),
where the right-hand side is analytic in the neighborhood of the
point & = y = 0, and let us try to determine whether there exists an
analytic integral which vanishes with x. For this purpose let us
substitute for y, in both sides of the equation (5), a power series

(6) y=cx+er+ - --+eox+--..

After the substitution the coefficient of 2" on the left-hand side is
(n — b)e,, while the coefficient of z* on the right is a polynomial,
Pu(a'm! @gpy * "y Qonj Cpy = *y Ca_1)
whose coefficients are all positive integers, and which contains only
the coefficients ¢,, - - -. ¢,_;, and some but not necessarily all of the
coefficients a,, for which ¢ 4- 2 = n. We therefore obtain a recurrent
relation for the coefficients of the series (6):
(7) {(” - b)“'u = Pu(am’ Qogy * " *y Aoy Cyy Ogy ° * °y Cu1)-
(n=1, 2,.. )
This enables us to calculate these coefficients successively, provided
that b is not equal to a positive integer. Let us first set aside this
supposition. The relation (7) gives us

%y , c=am+ancx+aon"§’ v
1 1-—-90 2 2—0 ’

* In geometric language, we can also say that through the point (2, y,) there
passes one and only one integral curve, on which the point (o, ¥) is an ordinary
point, and the tangent at this point is the straight line 2 = 2,. In stating the theorem
we have tacitly assumed that the function fy(z, y) does not vanish for z =z, for all
values of y; for in this case the integral of the equation (2), which takes on the value
2, for y = y,o, reduces to = x,, and the equation (1) has no integral which approaches
¥o 88 x approaches ;.

t Journal de I Ecole Polytechnique, Vol. XXI, 1856.
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sad sé on in this way. The value of the series (6) certainly repre-

sents gn integral of the equation (5) vanishing with =, provided that

tthe series has a radius of convergence different from zero. In fact,

the operations by which we have obtained the coefficients of this

geries are then valid (I, § 192, 2d ed.; § 186, 1st ed.).

In order to prove the convergence of this series, let us observe
first that if we give to n all the integral values 1, 2, . . ., to infinity,
the fraction 1/(n — b), which cannot become infinite, approaches
zero. The absolute value of that fraction has therefore a maximum
1/B, and we have for every value of the integer n, |[1/(n — b)| = 1/B.

On the other hand, let

®(z, Y) =A@+ A 2" + A 2V + A Y 4 o Ag@ ¥ 4 oo
be a dominant function for ¢ (z, ), having no constant term nor any
term in Y. We might tuke, for example, a function of the form

(s, Y)=————£———-—M—M—§:

(--3)

but it is really not necessary to specify it completely in order to
carry through the proof. The auxiliary equation

®) BY =3(z, ¥)
has, by the general theorem on implicit functions (I, § 193, 2d ed.;
§ 187, 1st ed.), an analytic root vanishing with @. Let

9 Y=Cz+Cx®+...4Coz"+---
be the development of this root in a power series. In order to cal-
culate the coefficients C;, we can substitute this development for ¥
in the two sides of the relation (8). This gives the recurrent relation

10 BC, = Pn(A;o) Agy ooy Agpy Cpy Cgyevvy Cuc1)s
where P, denotes the polynomial which appears in the relation (7),
in which e, bas been replaced by 4, and ¢, by C,.

But from the very way in which we have chosen the constant B
and the function ®(z, ¥), we have the inequalities

1 _1
n—8 &

|ea|=4a,
It follows that if we have
lal<Cy le) <Cp o+ [Cama|<Caly

we have also |¢,| < C,, since all the coefficients of the polynomial P,
are positive integers. Now we have |a,| < 4,,, and, consequently,
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le,] < C,. Reasoning step by step, we conclude that the series (9)
dominates the series (6). The latter is therefore convergent in the
neighborhood of the origin. Summing up, if the cogfficient b of y in
the equation (B) is not equal to a positive integer, that equation has
one and only one analytic integral that vanishes with x.

In order to finish the study of the analytic integrals which vanish with z,
we must still examine the case where b is equal to a positive integer. Suppose
first 5 =1; the first of the relations (7) reduces to a,, = 0. If a,, is not zero,
then there is no analytic integral fulfilling the condition. If a,, is zero, setting
¥ = Az, we are led to an equation,

(11) N=y(@ ) =G+ AN+ G\ 4 -0,

where the function y (z, ) is analytic, provided that [z|<r, [\|[<A, r and A
being two suitably chosen positive numbers. Now this equation (11) has an
infinite number of integrals which are analytic ih the neighborhood of the
origin, for we can choose arbitrarily the value A, of A for = 0, provided that
we have |\,| < A. Hence in this case the equation (5) has an infinite number
of analytic integrals vanishing with z.

If b is equal to a positive integer greater than unity, the coefficient of z in
the development of an analytic integral vanishing for z = 0 must be equal
to a,,/(1 — b), and the transformation y = a,,z/(1 — b) + Az leads to an equation
of the same form in which the coefficient of A Is equal to (1~ b):

IN = (b—1)N=az + agz? + a A + - -

By a succession of similar transformations we reach the case which has just
been treated., Consequently, if the coefficient b is equal to a positive integer,
the equation (5) has no analytic integral vanishing with z, or it has an infinite
number of such integrals.

Briot and Bouquet also investigated whether there existed non-analytic inte-
grals approaching zero with z, and proved that the equation (5) has an infinite
number of such integrals when the real part of b is positive. We can easily
establish this theorem by means of the method of successive approximations.
Let us first point out that if the real part of b is positive, we may, without
lack of generality, suppose that the real part R (b)) >1. In fact, if we make
the change of variable z = z», where n is a positive integer, the equation (5)
is replaced by an equation of the same form in which b is replaced by nb,
We shall suppose, then, that we have R (b) > 1, and that b is not an integer,
As we have just seen, the equation (5) has an analytic integral y,, which
vanishes for £ = 0. Hence, setting ¥y =y, + u, the equation (5) becomes

zu’ — bu = ¢ (2, y1 + ©) — ¢ (z, 1) = WY (T, ¥).

Since tha function ¢ (z, ¥) does not contain any term of the form a constant
times y, the function y (z, ©) will not contain any constant term, and we can
write the preceding equation in the form

ow —bu=ulaz + pu+ .
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Let us now put u = Azb, where A\ denotes the new dependent variable. The
equation takes the form

(12) N=A[a+ zt-14 ...]= FQ) 2, 20-0),

where F denotes a power series with respect to the three variables A, z, zb~1.
In the plane of the variable z let us draw through the origin two rays whose
inclinations are w, and w;(w, < w; < w, + 27), and let us consider the circular
sector 4 limited by these two rays and an arc of a circle with the radius r
described with the origin as center. If z remains in the interior of 4, and
if [\| remains less than & positive number !, the function F(A, z, z-1) will
be analytic,® provided that the two numbers r and ! are sufficiently small.
Let us connect the origin with any point z of the sector 4 by a straight line-
segment, and suppose that we take for the initial value of A an arbitrary value
Ao Whose absolute value {8 less than l. We can apply to the equation (12) the
method of successive approximations (§29), which consists in taking the
sucoessive integrals

M=) +f;.F(’\ov 5, B-N)dzs, M=1 +f;'F(>.,, z, 2b~1)dz,

and, in general @
! ! M=xo+f; F(M-;,Z,#-l)dz,

all of these integrals being taken along the straight line. The fundamental
hypotheses for the validity of the proof are satisfied. All the functions \,(z),
M(z), - -+ are analytic in the interior of the sector 4, and the function A, (z)
approaches & limit A (z) if the radius » has been taken suficiently small. Hence
the equation (12) has an integral which is analytic in the interior of the sector
4 and which approaches the value A\, as z approaches zero. [It follows that the
equation (5) has an infinite number of non-a2nalytic integrals in the neighbor-
hood of the origin, each of which approaches zero as the point z approaches
the origin and depends upon an arbitrary parameter A,. This proves Briot and
Bougquet’s theorem.

The condition that the real part of b — 1 be positive is essential. Indeed, if
2 approaches the origin, remaining in the sector 4, its angle remains between w,y
and w,, and its absolute value approaches zero, Setting z = pew,b—1= u + »,
we have

(13) 2P =1 = gk + W) (logp +w) = gnlogp—vwgi(¥logp +pw),

As p approaches zero, w remaining included between the two limits wy and w,,
#log p — vw becomes infinite in absolute value in remaining negative, and the
absolute value of zb~1 approaches zero. On the contrary, if the real part of
b — 1 is negatlve, it is obvious that the absolute value of zb—1 becomes infinite
a8 z approaches zero, remaining in the sector 4. The function F(\, z, 22-1) is
not continuous at the origin, and the previous proof no longer applies.
According to Briot and Bouquet, if the real part of b is negative, the equa-
tion (5) has no other integral than the analytic integral vanishing for z = 0.

*1f z approaches the origin, remaining always in the sector 4, the derivative of the
function F' with respect to z may become infinite if the real part of b — 2 is negative,
but that derivative does not appear in the method of successive approximations.
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But their proof, which is very similar to the one in the footnote on page 50, sup-
poses that the variable z approaches the origin along a path of finite length that
has a definite tangent at the origin, and this condition should appear in the state-
ment of their theorem. In order to give some idea of the difficulty of the ques-
tion, let us consider the function 2?, supposing that the real part u of b is negative,
while the coefficient » of i is different from zero. The absolute value of 22 is equal
to exlogp—vw, If we make the variable z describe a curve that approaches the
origin indefinitely, u log p does approach + «, but if we make the angle w in-
crease in absolute value at the same time in such a way that the difference
ulog p — vw remains negative and increases indefinitely in absolute value, the
absolute value of z* approaches zero at the same time as [z|. If »> 0, we need
only make the variable z describe the logarithmic spiral whose equation is
p = evw/2k, for example ; for we then have |zb| = e—~*»/3, and if the angle w
approaches + o, |z| = p and |z?| approach zero simultaneously.

If the real part of b is negative and the real part of b/i is not zero, it follows
from investigations of Picard and Poincaré that the equation (5) has an in-
finite number of non-analytic integrals that depend, upon an arbitrary constant
and approach zero as the variable z describes a path such as the preceding, along
which |z¢| approaches zero. The contradiction between this result and the
theorem of Briot and Bouquet is only apparent, since in the two cases entirely
different conditions are assumed. In particularlet us notice that if the variable
z takes on only real values, it cannot turn an infinite number of times around
the origin ; consequently there will be no other integral which approaches zero
with z except the analytic integral, provided the real part of b is negative.

The results of this discnssion are easy to verify with the elementary equation
zy’ = ax + by, whose general integral is y = az/(1 — b) + Czb if b—1 is not
zero, and y =arLogz 4+ Cz if b=1.

65. We shall linit ourselves to a few statements concerning the
general case of an equation of the form

14 dy ex+by+cx®+2dey+ey’-.. ¥

a4 dx  az+by+ o+ 2dxy +eyt-. X

where X and Y are power series which converge when
|z] <7 ly| <
We are supposing, as we may without loss of generality, that it is
for z = y = 0 that dy/dx becomes indeterminate. Setting y = vz in
this equation, it becomes
dv _a+bv—v(a'+b') + 2 (z, v)

(15) T a' + b'v + xy (=, v) !
where ¢ (z, v) and ¥ (z, v) are two power series which are convergent
whenever |z| < r and |vz| < . If the equation (14) has an analytic
integral vanishing with z, the coefficient of = in the development of
that integral is necessarily a root of the equation

(16) a+4bv—v(a' 4+ bv)=0,
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since the left-hand side of (15) is zero for # = 0. Lek v, be a root of
the equation (16). If we put v = v, + u, the two functions

% (@, v, + w), ¥ (x, v, + u)
are still regular in the neighborhood of the values x = 0, # = 0, and
the equation (15) reduces to an equation of a form already studied,

an x%=.4u+13a:+---,

provided that v = v, does not make a' 4 4'v vanish. Bince the equa~
tion (16) is in general of the second degree, we see that we can
reduce the equation (14) to the form (5) in two different ways.
Hence there are in general two analytic integrals and only two van-
ishing for # = 0. But these conclusions are applicable only under
the most general conditions, where the coefficients a, b, a', ' do not
satisfy any special relation.

The general investigation of the integrals, analytic or not, of the
equation (14), which approach zero when = approaches zero (X and
Y being two regular functions which vanish for # = y = 0), has been
the object, since the work of Briot and Bouquet, of a large number
of investigations. Although it has been possible to treat more and
more general cases, the question is still not exhausted. Let us notice
in particular just one remarkable circumstance which we have not
yet mentioned. Let us take the equation

(18 x’%—bg:am,

and let us try to find, as above, an analytic integral of this equation
which vanishes for z = 0. If we attempt to determine the coeffi-
cients of the series (6) so that on substituting it in the equation (18)
we arrive at an identity, we discover the relations

a 4 be, =0, ¢, = be,, 2 o, = be, .oy Ny = BCpygy s+ vy
from which we derive
a a a nla
cl=—z, c¢=-—-‘;, d.==—-—bT’ ovey °‘+"=_W.

We thus obtain a unique value for each coefficient, but the series
which we obtain is divergent except for x = 0. The origin is an essen-
tially singular point for all the integrals, as is verified by direct
integration. Similarly, the point =0 is an essentially singular
point for all the integrals of the equation xy’ 4+ 3° = 0; and all these
integrals approach zero with |z|.
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If we assignonly real values to the variables z and y, and wish tocorstruct the
integral curves of the equation (14) (X and Y being, for example, two polyno-
mials in ¢ and y with real coefficients), it is very important, to know the form of
these integral curves in the neighborhood of a point common to the two curves
X =0, ¥Y=0. We sball study from this point of view the simple equation

iz~ @z % by

which can be integrated by elementary methods (§ 8) by the substitution y = tz.
‘We can integrate it in a more symmetric way by replacing the equation (19) by
the system R
dz d,
(20) =,

az+ by ar+4dy
where ¢ is an auxiliary variable introduced for the sake of symmetry. We have
seen above (§ 59) that this system can be reduced to a simple canonical form
by replacing = and y by two linear homogeneous combinations X and Y of these
variables. In this case the characteristic equation ig

82— (a’ + b)s + ba’ — ab/ = 0.
This equation cannot have zero for a root, since we suppose that ab’~ ba’ is
not zero. Several cases are now to be distinguished according to the nature of
the roots :
1) If the characteristic equation hss two real and distinct roots s;, 83, we can

reduce the system (20) to the form

ax_ay_

uX 8y
and the given equation consequently becomes

vix =2 xay.

8

The general integral is given by the equation

4

Y=0CXx"
If s, and s; have the same sign, ¥ approaches zero with X, and all the integral
curves pass through the origin, which is a node. If s,/8, is negative, there exist
only two integral curves passing through the origin, the straightlines X = 0,
Y = 0; hence the origin is a saddleback.
2) If the characteristic equation has two conjugate imaginary roots a + i,
a — Bi(8 # 0), we can reduce the system (20) to the form
dX+Yy) _ dX-Yi)
(@+B) (X + YD) (a—pi)(X~ Yi)
where X and Y are linear homogeneous combinations of z and y with real
cogfficients. We can then write these equations in the form
dx _  dY a,
aX—gY X 4 aY

XdX +YdY _ XdY — YdX
a(X3+ Y%~ pXI+ Y

2l

from which we derive
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The general integral of the equation (19) is therefore represented by the
m;pa\‘ tion PR 4
VXigri=Cef

If « is not zero, all these curves have the form of spirals which approach
the origin as an asymptotic point. The origin is said to be a focus.

If a is zero, the general integral is represented by concentric conics. The
origin is called a center, but this case must be considered as exceptional, since it
occurs only when « satisfles an equality.

8) If the characteristic equation has a double root s, that root is real and
different from zero, and the system (20) reduces to the form

ax_  dY a

X (X+7Y)
The equation (19) itself becomes dY/dX =1+ Y/X, and the general integral is
Y = CX 4 X Log X. In order to construct these curves, we can express X and
Y in terms of an auxiliary variable by putting X = ef, which gives ¥ = Ce® + fe?.
When @ approaches — o, X and Y, and consequently = and y, approach zero,
and the origin is again a focus.

The preceding classification is due to Poincaré, who has extended the dis-

cussion to equations of the general form (14) whose coefficients are real.

II. A STUDY OF SOME EQUATIONS OF THE FIRST ORDER

66. Singular points of integrals. The developments in series by
which we have established the existence of analytic integrals of a
system of differential equations emable us to calculate these inte-
grals only in the interior of the circle of convergence; but the
knowledge of these developments suffices, as we have noticed in
general (see II, Part I, § 86), to virtually determine these functions
in the whole domain of their existence. Let us consider, for defi-
niteness, an algebraic differential equation of the first order,

21 F(z,y,y)=0,

where F is a polynomial in z, y, 4. Let (x,, y,) be a pair of values
for which the equation F(z,, ¥,, ") = 0 has a simple root y;, When
x and y approach x, and y, respectively, the equation (21) has one
and only one root approaching y;, and that root, ' = f(z, ¥), is a
regular function in the neighborhood of the point (z,, v,). The
equation (21) has therefore an analytic integral which reduces to
¥, for z = x,, and whose derivative takes on the value y; for z = «,.
This integral is defined by its power-series development only in the
interior of a circle C, about x, as center, whose radius is in general
finite. But this function, whose analytic extension may be followed
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outside of the circle C,, satisfies the equation (21) in its whole domain
of existence. Let us observe that we may make use of the equation
(21) itself to calculate the coefficients of the different series which
we use in the method of analytic extension. If at a point z, in the
circle C, the integral considered is equal to y,, its derivative is equal
to one of the roots y; of the equation F(z,, y,, y") = 0, and we shall
be able to derive the values of the other derivatives at the point z,
by successive differentiations of (21).

It follows that every differential equation of the first order defines
an infinite number of analytic functions, depending upon one arbi-
trary constant. These are in general transcendental functions which
cannot be expressed in terms of the classic transcendentals, and the
same thing is true a fortiori of the functions defined by algebraic
differential equations of the second, or higher, order. The study
of the properties of these new transcendentals and their classifi-
cation constitutes the object of the analytic theory of differential
equations.

‘We may be guided in this study by two different motives: we
may seek the necessary and sufficient conditions that equations of a
given sort may be integrated by means of functions already known ;
or, on the other hand, we may propose to ourselves the problem of
discovering the algebraic differential equations that define transcen-
dentals not reducible to the classic transcendentals, and possessing
certain remarkable properties, such as being single-valued and ana-
lytic, or analytic except for poles, etc. Whatever may be the object
that we have specially in view, the investigation of the possible
singularities of the integrals is an essential question. While the
singular points of the integrals of a linear equation are fixed, the
singular points of the integrals of non-linear equations vary in gen-
eral with their initial values. For example, the integral of the equa-
tion =+ yy' = 0 which takes on the value y, for z=0 is y = Vyi — a2
This function has the two critical points + y,, — y,, which depend
upon the initial value. Similarly, the integral of the equation y'=y*
which takes on the value y, for # =0 is y /(1 — xy,); this solu-
tion has the pole z=1/y,. We are therefore led to distinguish two
classes of singular points for a differential equation: the fized sin-
gular points which do not depend upon the chosen initial values
(not being necessarily singular points for all the integrals), and
the movable singular points, poles, or critical points which depend
upon the initial values. A differential equation may have both kinds

of singular points.
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67.; Functions defined by a differentlal equation ¥ = R(x, 2). We
shall atudy in partioular the differential equation

d
@2 =Ry =528,
where P(z, y) and Q(x, y) are two polynomials in # and y which
have no common polynomial divisor. The pair of simultaneous
equations P(x, ¥) = 0, Q(x, ¥) = 0 has a certain number of solutions
%), -+ (@, b,). Let us mark the points a,, a, -, a, in the
xz-plane.
The transformation y = 1/z reduces the equation (22) to an equa-
tion of the same form,

dz _ _ Pi(z, %)
(23) == B 9= o)
and the pair of equations P,(x, 2) = 0, Q(x, ) = 0 has a certain
number of systems of solutions (a;, 2;), - - -, (a,, ;). Let us M

the points a, ag, - - -, a, in the z-plane The points a,, a; are in gen-
eral singular points for some of the integrals of the equation (22),
but they are known a priori; that is, they are the jfixed si
points.

Let now (x,, y,) be any pair of values such that Q(z,, ¥,) is not
zero. Then by Cauchy’s fundamental theorem the equation (22) has
an analytic integral, in the neighborhood of the point =z, which
takes on the value y, for # = x,. Suppose that we make the variable
x describe any path L proceeding from the point x, and not passing
through any of the points a,, a;. We can continue the analytic
extension of this integral along L so long as we do not encounter
any singular point. But it may happen that we are stopped by the
presence of such a point; let a be the first singular point which
we encounter. The integral considered is analytic in the neighbor-
hood of every point X of the path L included between z, and «, but
the circle of convergence of the power series which represents i,
and whose center is at X, never contains the point @ in its interior,
however small | X — | may be. The equation Q(a, y) = 0 has a cer-
tain number of roots 8, 8,,---, By. Let us mark the points 8 in
the y-plane. The equation Q(a, y) = 0 has only a finite number of
roots, for otherwise the polynomial Q(z, y) would be divisible by
(x — ) and the point @ would be included among the points a,, a;.
For the same reason it is seen that the two equations I(a, y) = 0,
Q(a, ) = 0 have no common root.
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There are now several possible cases to be examined. Let ¥ be
the value of the integral in terms of X; we cannot suppose that ¥
approaches a finite value 8 different from g8, B,,---, By 88 X ap-
proaches a, for R (z, y) is a regular function for z = a, y = 8. Now,
by Cauchy’s fundamental theorem, there would then exist a single
integral approaching B as x approaches a, and that integral would
be analytic at the point a, contrary to hypothesis. Let us suppose
next that ¥ approaches the value 8; when | X — «| approaches zero.
The function R (z, ) is infinite for # = a, y = B,, but its reciprocal
is a regular function, since we cannot have P (e, B) =0. We have
seen in § 63 that the equation (22) has one and only one integral
which approaches f; as | X — a| approaches zero, and which has the
point a as an algebraic critical point. Similarly, if | ¥| becomes
infinite as | X — a| approaches zero, the equation (23) has an integral
which approaches zero with |X — a|. We tannot have simultane-
ously P (a, 0)=0, Q (a, 0) =0, since the point @ is not contained
a.m’épg the points a;. If Q (e, 0) is not zero, # is analytic in the
ne‘i&borhood of the point a, which is a pole for the integral con-
sidered. If Q,(a, 0) =0, the point @ is an algebraic critical point
fop,¢ and thus also for y.

“We have not yet exhausted all the possibilities. Might it not hap-
pen, for example, that ¥ does not approach any limit, although | Y|
does not become infinite as |X — a| approaches zero? Painlevé has
showa, in the following way, that this is not possible. Previously
this had been assumed without adequate proof. About the point @
as ‘a center let us describe a circle C with a very small radius ». The
roots of the equation Q(X, y)=0 which approach respectively
By By By as | X — a| approaches zero remain respectively con-
tained in the interior of the circles y,, y,, - -+, y» about the points
B Bp: -+, By 88 centers with radii p, p,, - - -, py. We can take the
radjus  so small that all these radii p; are themselves smaller than
any given positive number e. Let us consider at the same time a
cirgle T with a very large radius R, described in the plane of the
varibble » about the origin as center, and let (E) be the portion of
the g-plane exterior to the circles y; and interior to the circle I'. We
shall show that when |X — a| approaches zero, the corresponding
point Y finally remains constantly in the interior of one of the cir-
cles y, or exterior to the circle I'. If this were not the case, we
should always find on the path L certain points X such that |[X — a|
is less than any given number and for which ¥ would be in the
region (E). Suppose now that we have | X — a| < r/2, for example,
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whily only values of ¥ in the region (E) are considered. We shall
show that there is a positive minimum for the radius of the oircle of
convgrgence of that integral of the equation (22) whick is equal to ¥ |
Jor 3 = X. In fact, there is evidently a maximum for |R (X, Y)| when
the points X, Y remain respectively in the preceding regions, while
there is a positive minimum for the nuinbers a and & (see § 22). Let
» be the minimum of the radius of this circle of convergence. We
could find, by hypothesis, a point X' on the path L whose distance
from the point @ would be less than 5 and such that the correspond-;
ing point ¥' would be in the region (E). Since the circle of conver-
gence of the series, which represents the integral which takes on the
value Y’ for » = X', has a radius at least equal to y, the point &
wonld be in the interior of this circle, which is evidently impossible,
since a is a singular point.

The point ¥, therefore, finally remains constantly in the interior
of one of the cireles y; or outside of the circle I' as | X — «] approa.chel
zero. Since the radius p; can be taken as small as we please %
radius R as large as we please, this means that ¥ approaches
the values B, unless | Y| becomes infinite. We have just examingd
what happens in these two cases. It follows that the point & is &}

a pole or an algebraic critical point. Hence we can avoid the si

point by replacing the portion of the path L near the point
are of a circle of infinitesimal radius described about t
as center, and we shall be able to continue the analytic
beyond this point until we meet a new singular point.
show that on a path L of finite length there are never mody than
a finite number of poles or of algebraic critical points. In fact, Wﬂh
each of the points a;, a; as centers let us describe a very smaljouir
in the plane of the ’s, and let us describe also a circle of ve¥§
radius about the origin as center, so that all of the path L ahs
in the region (E') of the 2-plane bounded by these circumfSiaons
Let «, be any point of (E'). Then the integral whose absolute ifﬂne
becomes infinite as |« — ,| approaches zero is equal to a polynmal
in (x — z,)"* plus a power series in (z — ,) which convergey-in
a circle of radius p,. Similarly, the different integrals whiei ye
the point z, as an algebraic critical point are represented by seﬁi«
arranged according to fractional powers of z — «,. Let Pa be the
smallest of the radii of convergence of these dlﬁerent series. It is
clear that these numbers p, and p, vary continuously with the position
of the point x,; hence they have a minimum A > 0, and the distance
between two neighboring singular points on the path L is of necessity
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greater than A* We can therefore encounter on this path only a
finite number of poles or of algebraic critical points. Consequently,
the only movable singular points of the integrals of the equation (22)
are poles or algebraic critical points. These integrals cannot have
movable essentially singular points, and consequently they can have
no natural boundaries.

The preceding arguments can be extended without difficulty to
equations of the form (22), where P(z, y), Q(x, ¥) are polynomials
in y whose coeficients are analytic functions of z. We have only to
add to the points a,, a;, which are defined as above, the singular
points of all these coefficients. If the path described by the variable =
remains in a region not containing any of the points a,, a; or any
of the singular points of the coefficients of the various powers of y,
the only singular points which the integrals can have are poles or
lgebraic critical points.

As an application, let us consider the question of finding the
equations of the form (22) which have no movable eritical points.
In order that this may be true, the denominator must not contain y.
In fact, let @ be any value of x, and B8 a corresponding value of y,
for which Q(«, 8) = 0, while the numerator P («, 8) is not zero. The

ntegral of the equation (22) which approaches g8 when |z —a|
phes zero has this point as a critical point, and it is clear
3 not a critical point for all the integrals. Hence the desired
,must be of the form

’ dy
. = Puy+ Py 4

mﬂ,, P,_,,--- are functions of x. Moreover, the equation
by putting y = 1/z must be of the same form, so that m

Wu ﬁ&ld be noticed that an integral can have an infinite number of critical points,
l.nq f¥en an infinite number of them in the neighborhood of any value of x. Consider,

for g#ample, the equation
2yy’= R(z),
wﬁ‘ R (z) is a rational function; the general integral of this equation is
Vi=1+ f R (z) dz.

Let us suppose that the definite integral [ R (z) dx has the four perioeds 1, a, §, Bi,
where a and B are two real irrational numbers. In the interior of a circle ¢ described
with any point 2, as center and with an arbitrary radius, it is easy to prove (see II,
Part 1, § 53, Note) that we can find an infinite number of roots of y% by suitably
choosing the paths of integration, and each of these roots is a eritical point. But
a path of finite length described by the variable never contains an infinite number
of them.
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cannat be greater than 2. It follows that the most general equation
which satisfies the given conditions is' a Riccati equation. It is
easily verified that the condition is satisfied by any Riccati equa-
tion. If we take, for example, the expression in (26) (§ 40) which
represents the general integral, it is clear that that integral can have
for singular points, besides the singular points of the functions y,,
¥, only poles resulting from the roots of the denominator y, + Cy,,
that is, poles which vary with the constant C.

Similarly, we may consider the question of determining the equations of the
fosm (22) whose integrals have no movable poles. Let m and n be the degrees
of P(z, ) and of Q(z, y) with respect to y ; the equation obtained by putting
vy = 1/z is of the form a

z

(24) &= =z"+’—"‘P , z)

@ (=, =)

where P; and @, are two new polynomials in z. Let z = a be any value of 2
not contained among the fixed singular points. The equation (24) has an inte«
gral which approaches zero as |z — a| approaches zero. It would seem from
this that the equation (22) always has an integral whose absolute value becomes
infinite as |x — a| approaches zero, but this conclusion is incorrect if the inte-
gral of the equation (24) reduces to z = 0. It is necessary and sufficlent for
this that m < n 4 2; hence this is the condition that there shall be no movable
poles. It follows that the only type of equation which has no movable linguhr
point of any kind is the linear equation. .\

Application. The preceding result enables us to determine whether 'l'he gen-
eral integral of a differential equation of the first order is o rational fmetion
qf the constant of integration, when that constant is suitably chosen. X" '

_ _ Pz, C)
A) v =Rz, C’)———Q @ 0)

be a rational function of the parameter C, where the coefficients of the m
polynomials in C, P(z, C) and Q(x, C), are any functions of z. It is clwﬂht.
the derivative y’ is also a rational function of C,

v =R'(z O).
The elimination of the parameter C leads to a relation of the form
(E) Fy,vio=

where F is a polynomial in y, 3’ whose coefﬂclent.s may be any functions #t.
¥rom the manner in which this equation is obtained we see that it is of M—
ciency zero in y and ¥, regarding z as a parameter.

Conversely, let us consider a differential equation of the first order (E),
which the left-hand side is & polynomial in y and 3’ whose coefficients are any
analytic functions of z. In order that such an equation have a general integral
of the form (A), it must first of all be of deficiency zero in y and . When
this is the case, we can express y and y” as rational functions of a parameter «,

Y = r(z, u), V= Lo (z, u),
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in such a way that we have, conversely, u = s(z, y, ¥), where the functions r
and r, are rational in u, and where s is a rational function of ¥ and y°. Hence
the given differential equation (E) may be replaced by the equation

or  ordu
311 + = 2u E =n (z, u)’
which is of the form
du
() % =F@w,

where F is a rational function of u. If the general integral of the equation (E)
is ¥ = R(z, C), the general integral of the equation (E,) is, acoording to the

above
' u =3[z, R(z, C), K'(z, O));

that is, it is a rational function of C. But the only singular points of such an
expression which vary with C are evidently poles. The only movable singular
points that the equation (E,) can have arc therefore poles ; consequently the
equation (E,) must be a Riccati equation.*

Let us consider, for example, the equation

v?*=(Py+ Q*(v—a)(y— ),
where P and Q are functions of x, and where a and b are two constants. This
relation is of deficiency zero in ¥ and ¥/, and in order to express y and y° as
rational functions of a parameter, we need only set (y — b)/(y — a) = t2, which
gives V(1= 92 = (b — a) [P (bt — at®) + Qt — B9)],
and the equation (E,\ is the Riccati equation

L Po—a+Q1—13).

68. Single-valued functions deduced from the equation (y')™ = R(y).
Let us now consider the integrals of the differential equation

- - P,

(25) @ =RW=G()’
where m is a positive integer and where P(y) and Q(y) are two
mutually prime polynomials in y with constant coefficients. We shall
now propose to determine all the equations of this kind whose gen-
eral integrals are single-valued and in general analytic. Let x, be
any value of z, and y, an arbitrary value of ¥ which does not cause
either of the polynomials P (¥), Q(y) to vanish. The equation (25),
after y has been replaced by y,, has m distinct roots in y'. Let us
choose one of these roots, y;. The equation (25) has an analytic

* The converse is immediate. If (E;) is a Riceati equation, the general integral u
18 a linear function of the arbitrary constant C, and consequently y= v (z, u) is a
rational function of C.
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and, conversely, we have for (y — 4)'% a development according to
integral powers of x — a.

In order that the integrals of the equation (27) shall have no
critical points, where P(y) is a polynomial of degree 2 it is neces-
sary and sufficient, by what precedes, that tke order of multiplicity
of each oot of P(y)= 0 be equal to or greater than m, or of the form
m (1 —1/i), where i is an integer greater than unity. If all these
conditions are satisfied, the general integral of the equation (27) is
a single-valued function whose singular points in the finite portion
of the plane can only be poles.

To complete the discussion, we shall distinguish several cases:

First case. There is one linear factor in P(y) whose exponent is
greater than m (evidently there can be only one). If there are also
p linear factors distinct from this one, the sum of the exponents of
these factors is less than m:

m(l—}—)+---+m<1—.1)<m.

i, iy

Hence we have p —1 < 1/i + ...+ 1/i, and, since i, 4, - - +, 4, are
each greater than unity, p —1 < p/2, or p < 2. We have therefore

p =1, and, extracting the mth root of the two sides, we may write
the equation (27) in the form

@ y=Ad@y—a) iy—b -

The case where ¢ =1 should not be excluded, for it corresponds to
an hypothesis which we have not examined — that of a single linear
factor in P (y).

Second case. The equation P’ (y) = 0 has an m-fold root. If it has
two, the equation (27) becomes, after extracting the mth root of the
two sides,

(11 y'=A@Fy—a)(y—10).

If the equation P(y) = O has only one root of multiplicity m, it has
p(p = 2) roots whose order of multiplicity is less than m, and we
have a relation of the form

m(l—%)+---+m(1—-,l>=m,
Y T

p—1=%+...+1
whence we derive p = 2. '
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Since p is greater than unity, we have necessarily p = 2, i, = 4,=2;
the number m is an even number, and the equation (27) reduces
to the form

(ILI) Y =A@ —a)y—d)y—o),
@, b, ¢ being three different numbers.

Third case. The equation P(y) = 0 has only roots whose order of
multiplicity is less than m. Let p be the number of these roots; the
sum of the orders of multiplicity being equal to 2m, we have a
relation of the form

m(l— l)+m(1 - 1>+ - +m(1— .l)= 2m,
Yy Y %

or

Hence p = 4, and since p > 2, we can have only p =4 orp = 3. If
p=4, the sum 1/{ +1/i, +1/i, 4+ 1/i, must be equal to 2; and
since each of the denominators is equal to at least 2, we must have

2. =’loa=’l

_'__f
1 3—1’4_2'

If p =3, it is a question of finding three integers, 4, 4,, i, each
greater than unity, such that the sum of their reciprocals is equal
to 1. If none of these numbers is equal to 2, each must be equal to
3. If one of them, 7, is equal to 2, the sum of the reciprocals of the
other two must be equal to 1/2; if the two are equal, each of them
is equal to 4. If they are unequal, the smaller must be less than 4;
it is therefore equal to 3, and the greater is then equal to 6. We
have, then, in all only four possible combinations, and the equation
(27) may be reduced to one of the following forms:

av) Yr=A(y—a)(y—0)(y—c)(y—4d),
™) y*=A(y —a)’(y — )’ (y — )},
(VD yt=A(y—a)(y— )’y — o)
(V1D) Y =A@y — o)’y — 'y —of

where a, b, ¢, d are different numbers. If, in the equation (27), the
polynomial P(y) is of degree 2m, and if the general integral is a
single-valued function, the equation (27) has one of the forms which
we have just obtained. Conversely, every integral of any one of
these equations is a single-valued function, since on any path
described by the variable we cannot encounter any other singular
points than poles.
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It is oonﬁement to add to the types wlnoh we have just enumer-
ated, in order to have all the equations of the form (25) whose
general integral is single-valued, the types which are obtained by &
transformation of the form y — ¢ =1/z, where @ is a root of the
polynomial P(y). The new types of equations thus obtained are

1

@ y=A@y— “)l—ra

1 1
(I)" y’=A(y—a) +I’
arny’ y' =A(y —a),
(111)' Yy *=A(y—a)'y—?d),
In* . Yr =4y —0b) (y—o),

avy Yrl=A@y—a) y—0)(Y—o)

1\ Yy =A(y —a)(y—19),
L' y=A(y —a)'(y—b)}
D" Y=Ay—a) (y—?b)5
(viny Y =A(y —a)(y — b,
(VI Y= A(y — a)’(y — b)},
(VID™ Y =A(y—a)(y—b)"

The equations (I), (I)!, (I)", which are transformable one into the
other, have a rational function for their general integral, as we see
immediately from the equation (I)', for example. It is easy to show
that the equations (II), (II)!, (III), (III)!, (III)" have a simply
periodic function for their general integral. Finally, the general
integral of the equations (IV) and (IV)' is an elliptic function.
There remain, then, as new types of differential equations of the
form (25) whose general integral is single-valued, only the equations
(V), (VI), (VII), and those which reduce to these forms. These
equations separate into three groups, and it is sufficient to integrate
one equation from each of the groups, for example, the equations
(V)', (VI)", (VII)"'.

If, in the equation (VI)", we put ¥ = @ 4 2* and extract the square
root of the two sides, it becomes

428 = A¥e(e* +a—1),

and the general integral in z is an elliptic function. Similarly, if in
the equation (VII)'"" we put y = a + 2* and extract the cube root
of the two sides, it becomes

92" = A¥(s* 40 = B),
which is an equation of the form (IV)"
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In order to mtegmbe the equation (V)', we observe that that rela-{"“
tion between y and y' is of deficiency one. We can therefore express
y and y' rationally in terms of the cobrdinates of & point of a cubic
or in terms of a parameter ¢ and the square root of a polynomial of
the third degree. In fact, if we put y' = A#?, we derive from the

equation (V)' b
y=2F 4 VG Toy T ias,
and the relation dy = y'dx leads to the new equation
de
3= =V(e—ty + 447
The general integral of this equation, ¢ = f(x + C), is an elliptic

tunction. Hence the general integral of the equation (V)' is of the
form a + b

2f(a: + O).

It follows that the general integral of every equation of the form
(25), if it is a single-valued function, is a rational funetion of = or
of the exponential function ¢, or is an elliptic function.

Except in the cases which have just been enumerated, the general
integral of the equation (25) is never a single-valued function. For
example, the inverse function of a hyperelliptic integral of the first
kind cannot be a single-valued function. In fact, let P(y) be a poly-
nomial prime to its derivative and of degree greater than 4. The
differential equation y” = P(y) cannot have a single-valued integral.
Let (z, y,) be the initial values of the two variables x and y. As
|y| becomes infinite,  approaches a finite value @; and, conversely,
when z goes from x, to @, |y| becomes infinite. The point z =& ia
an algebraic critical point, as we have just seen, for the integral of
the equation £ =2'P(1/2) which approaches zero when  approaches
@, since the degree of P(y) is greater than 4.*

* In one of their papers Briot and Bouquet set for themselves the problem of de-
termining all the equations ¥ (y, ") =0, where ¥ is a polynomial, whose general inte-
gral is a single-valued function (Journal de I' Ecole Polytechnigue, Vol. XX1). From
the conditions found by them Hermite proved that the relation between y and y’ is
of deficlency zero or one (Cours lithographi¢ de I Ecole Polytechnigue, 1878) ; hence
we can apply the method of § 11 in integrating them. If the relation is of deficiency
zero, we can express y and y” as rational functions of a parameter ¢. In order that
the integral of the given equation be a single-valued function, the variable =, which
is obtained by a quadrature, must be a linear function of ¢, = (at + b)/(ct + d), or
else the Jogarithm of such a function, 2= 4 Log [(at + b) /(et + d)]. 1f the relation
of deficiency one, we can express y and y’ as elliptic functions of a parameter sy
dz/du = (1/y") dy/du must reduce to & constant. The problem of Briot and
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" @9, Existence of elliptic functions deduced from Eules’s equation. The reasoning
of the preceding paragraph proves, in particular, that the general integral of
the equation y? = E(y), where E(y) is a polynomial of the third or of the fourth
degree, prime to its derivative, is a single-valued function analytic except for
poles in the whole plane. On the other hand, the inverse function, which is an
elliptic integral of the first kind, has two periods whose ratio is imaginary (see
11, Part I, § 56). This single-valued function is therefore doubly periodic, and
we thus demonstrate the existence of elliptic functions by means of the integral
calculus alone.

The preceding proof of the single-valued property of the inverse function of
the elliptic integral of the first kind is distinct from the one which has been
given in § 78 of Vol. II, Part I, in which we make use of the properties of the
function p(x). We shall also show in brief how we can take as our point of
departure the theory of the integration of Euler’s equation, which will give an
idea of the method pursued by the originators of the theory.

Let us first consider the differential equation

dy

@9) Ql—zl Vie g =0

whose general integral is £ V1— 33 + y V1—22 = C (§ 14). It is also clear that
the general integral is given by the equation

arcsinz + arcsiny = C’,
and therefore that we have between the two a relation of the form
arceinz + arcsiny = F(cV1—y2 + y vV1-1z2).

In order to determine the function F, let us suppose y = 0; there results the
definite relation

(80) arcsinz 4 arcsiny = arcsin (zV1— g% + yvV1—22).
This relation is equivalent to the addition formula. For let us take two angles
u and v determined by the conditions

z=sinu, Vit = = CO8 U, y =sinv, \/1—y"‘=oosv,
where the radicals have the same values as in the preceding equations. The
relation (80) gives
V1= + yV1— 2 =sin(u + v),

or
sin (z 4+ v) = sin u co8 v 4 sin v cos u.

However, to see in this work only an ingenious proof of the addition formula
for the sine function would be to overlook entirely its broad sigunificance.
Indeed, we shall show that it leads to & very simple proof of the existence of a
single-valued integral function which satisfies the differential equation

@1) yi=1-3,

has been generalized by Fuchs, who formulated the necessary and sufficient condi-

tions that the general integral of an equation of the first order F'(z, y, y) =0, alge-

braic in y and 7, may bave only fixed critical points. Poincaré has since shown that
these conditions are satisfied, we are led to quadratures or o Riccati equations
mathematica, Vol. VII).
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wnd which reduces to zero for z = 0, while y’ is equal to 4+ 1 forz = 0. Cauchy’s
general theorem shows, indeed, that there exists an analytic function ¢ (z) satis-
fying these conditions and analytic in the neighborhood of the origin, but it does
not give the radius of convergence of the power series which represents ¢ (z).
Let B be this radius of convergence. The circle C of radius R about the origin
a8 center is the greatest circle described about the origin as center within which
the function ¢ (z) is analytic. The derivative ¢’(z) is analytic in the same circle,
and we have ¢’?() = 1 — ¢2(z). Let us now return to the equation (29), and let
us make the change of variables z = ¢ (1), ¥ = ¢ (v), where u and v are the two
new variables and ¢ the function which has just been defined. If we choose
the determination of the radicals in & suitable way, we have also

Vi—d=¢m, Vi-g@=¢o)

and the equation (20) becomes du + dv = 0. The general integral of this equa-
tion can therefore be written in two different ways:

u4v=0C, eVI—pP24+yVi—z3=C
or L]
P ) ¢'(v) + ¢’ (w) ¢ (v) = C".
Hence it follows, as before, that we have a relation between u + v and
¢ (u) ¢°(v) + ¢’(4) ¢ (v). Putting v = 0, the relation is determined, and we have

(82) @ (u + v) = ¢ (u) ¢(v) + ¢'(v) 2 (v).
This relation holds, provided [u]< R, |[v|<R, |u + v| < R, which will surely

be true if we have |u|< R/2, |v)<E/2. Let us put v=u and |4|< R/2; then
the equation (82) becomes

(83) ¢(2u) = 2¢ (u) ¢'(u).

Let ¢,(u) be the function 2 ¢ (u/2) ¢’(w/2). This function ¢,(u) is analytic in
the circle of radius 2 R about the origin as center, and, by (38), it is identical
with the analytic function ¢ (u) in the circle C of radius R. These two func-
tions, ¢ (x), ¢, (v), form therefore only a single analytic fanctivn, which is ana-
lytic outside of the circle C. It is therefore impossible that the radius R of this
circle of convergence has a finite value ; consequently the functiun ¢ (v) is an

integral function of u.
Let us now consider the differential equation

(84) vi=(1-1%) 1=k,
adopting for the right-hand side Legendre’s normal form, and let us study the
integral A (z) of this equation which is zero for ¢ = 0 and whose derivative is
equal to + 1 for z = 0. This function \(z) is analytic in the neighborhood of
the origin. Let C be the greatest circle about the origin as center in the inte-
rior of which the function \(z) is analytic except for poles, and let R be its
radius. If the nearest singular point of A\ (z) to the origin were not a pole, we
should take for C the circle through this singular point, and the funotion A (z)
would then be analytic in this circle.

Let us now consider Euler's equation

dz, dz, -

85) -+ =
‘ Q-2 —k=d) /(1—aDH(Q—k2d
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Multiplying the numerator and the denominator of the right-hand side of the
equation (88) (p. 26) by the conjugate of the denominator, and suppressing
the ocommop factor z} — 23, we have for its general integral

oy HY(-DO-EDiaVa-Do-eh__,
1-wale
On the other hand, choosing the sign of the radicals suitably, the change
of variables z, = A(u), ; = A (v) reduces the equation (35) to the equation
du 4 dv =0, whose general integral is u 4+ v = C’. If we make the same sub-
stitution in the formula (36), we have a relation of the form
AW N (0) + A (V)N (u)
1 — k33 (u) M3 (v)
We can determine the form of the function F, as before, by supposing v =0,
which gives F'(x) = A (v); and we have the definite relation

A u) V(v) + N (v) M (u) .

=F(‘u+")-

37 Au+v)= 1= 18 N(w) N(s)
Putting v = u, we find
— 22 (u) N'(u)
(38) ABu) = l—k’)\‘(u)'

a formula which holds true whenever |u|< R/2.

Tet us consider the function
u u
2N - IM(=
(6 G)

1- kﬂv(f)
2

This function is analytic except for poles in the circle of radius 2 R about the
origin as center, since it is the quotient of two such functions. Moreover, it
coincides with A\ (u) in the interior of the circle C, by the relation (38). Hence
the two functions A (u) and & (u) form a single analytic function, and A\ (u) is
analytic except for poles in a larger circle than C. It ia therefore impossible to
supposee that the radius R of this circle has a finite value, and consequently the
funotion A () is analytic except for poles in the entire plane.

The equation (87) constitutes the formula for the addition of the arguments
of the function A (). When k approaches zero, we find again at the limit the
addition formula for sin u. The function sin u can, in fact, be considered as &
degenerate case of A (u), obtained by letting k approach zero.

P(u)=

70. Equations of higher order, The study of the properties of the functions
defined by differential equations of higher order presents much more serious
difficulties than those which arise in studying equations of the first order. These
difficulties result in & great measure from the possible presence of movable
essential singularities. These singularities may be at the same time essentially
singular points and transcendental critical points, as in the following example,
due to Palnlevé. The function

(39) y = p[log(4z + B); 93¢ Osls
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where 4 and B sre two arbltrary constants, is the general integral of the squas
tion of the second order,

( 6”"'29' 1
‘o = — .
0 4 v 47'—0:7-'0. \/4y'—g’y_.g

In the neighborhood of every value of z different from — B/A this function
(89) is analytio or analytic except for poles.

‘When z turns around the point — B/ A, the function has an infinite number
of different values, unless 2 is an aliquot part of one of the periods of the
function p(u; gy, g5).- On the other hand, when the variable z describes any
sort of curve such that |4z + B| approaches zero, the point which represents
the quantity u = Log (4z + B) describes a curve with an infinite branch. This
curve therefore crosses an infinite number of parallelograms of periods of
the function p(u), and consequently y does not approach any finite or infinite
limit. Thus, although the general integral of the equation (40) presents neither
fixed critical points nor movable algebraic critical points, we cannot conclude
from this that it is single-valued. This is on account of the presence of the
movable transcendental critical point, z = — B/A4.

Beginning with equations of the third order, the movable transcendental
singular points may form lines. It is easy to see how an analytic function hav-
ing natural boundaries may not have any critical points in its whole domain of
existence without being on that account single-valued. Consider, for example,
a function f(x) analytic in the ring included between the two circles C and C’
described about the center a and having C and C’ as natural boundaries
(I, Part I, § 87). The function F(z) = f(z) + Log (z — a) has the same circles
C and ¢’ as natural boundaries, and it is analytic at every point between ¢
and C’. Nevertheless it has an infinite number of determinations for every
value of z in this domain.

For a long time these difficulties arrested the progress of this theory, but
Painléve, in recent investigations, has obtained algebraic differential equations
of the second order which are integrable by means of essentially new single-
valued transcendentals. We sball cite only one of the equations given by

Painlevé,
v’ = ay® + Bz,
where a and g are constants (ap = 0). The general integral of this equation is

a transcendental function analytic except for poles.* (Bulletin de la Société
Mathématique, Vol. XXVIII.)

# Starting with linear equations, it is easy to form systems of differential equa-
tions which generalize Riccati’s equation, and whose integrals have no other movable
singular points than poles. Consider, for example, a system of three linear equations
of the first order,

(@) y+ay+bdztcu=0, Z+aqy+dz+ciu=0, wW+asy+byz+cgumo.
It we put yeuY, z=uZ, Yand Z are integrals of the system of equations

7)) Y+aY+bZ+ec- Y(a,Y+b,2+c,)-0,
Z'4 0 Y+ b2+ 6= Z (2 + by Z + ) =0,

and it is clear that the only movable singular points of the integrals are poles. Bus



198 vaanmut. EQUATIONS [Iv,§7n

1IL. SINGULAR INTEGRALS

71. Singular integrals of an equation of the firet order. We have
already remarked on several occasions (§§ 10, 14) that a differential
equation of the first order may have certain integrals which it would
be impossible to obtain by assigning a particular value to the arbi-
trary constant which appears in the general integral. This result
appears to contradict the theorem of § 26, from which we deduced a
precise definition of the general integral. This leads us to consider
again Cauchy’s fundamental theorem and to determine by a closer
examination whether or not the hypotheses of that theorem are
necessarily fulfilled for all integrals. Let us consider, for definite-
ness, an equation of the first order,

(41) . F(z,y,y)=0,
where F is an irreducible polynomial in z, y, y' of the mth degree
in . To every system of values (z,, ¥,) the equation

(41) F(zo, ¥y 4) =0
determines in general m corresponding distinet and finite values
Y1, Yo+ + + Ym for y'. Let us suppose first that this is actually true
at a given point (x,, y,). Then, as x — x; and y — y, approach zero,
the m roots of the equation (41) approach respectively y{, ¥z, * « -y ¥a:
and each of them is an analytic function in the neighborhood of the
point (x,, ). The root which approaches y;, for example, is repre-
sented by a power-series development of the form

(42) y’=y:+a,(x— o)+B|(y_yo)+"'-

We can apply Cauchy’s theorem to the equation (42), and we con-
clude from it that that equation has one and only one integral which
approaches y, as [x — x| approaches zero. This integral is analytic,
and the development of y — y, begins with the term y;(z — z,). To
each root of the equation (41" corresponds thus an integral of the
given equation.

it is to be noticed that this is not the most general system of differential equations
of the form

(7) Y'-R(l:, Yv Z), Z' - Rl (z, Y, Z),

where R and R, are rational functions of ¥ and Z, which possess this property.
In fact, let Y=¢ (X, Z;), Z=¥ (Y], Z;) De relations defining a Cremona trans-
Jormation, such that we can derive from them the inverse relations I; = ¢, (¥, 2),
Zy=¥y1 (Y, Z), where ¢, ¥, ¢, ¥, are rational functions. If we apply this trans-
formation to the system (8), we are led to & system having the same property, which
is surely of the form (7) but not in general of the form (8).
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The equation (41) has therefore m and only m integrals which
take on the value y, for = z,, and these m integrals are analytic
in the neighborhood of the point x,. In geometrio language we may
say that through the point M, whose cosrdinates are (z,, ¥,) there
pass m integral curves with m distinct tangents, and that the point
M, is an ordinary point on each of them. Besides, all the integrals
of the equation (42) which for z = x, take on values differing only
slightly from g, satisfy a relation of the form ®(x, y; «,, y,+ C) =0
(§ 26), and the integral considered corresponds to the value C =0
of the arbitrary constant.

If for x ==, y =1y, a root of the equation (41') is infinite, it
will suffice to regard y as the independent variable and z as the
dependent variable. The equation (41) is replaced by an equation
of the same form, F,(z, y, ;) = 0, which for z =z, y=y, has a
zero root &' = 0. If this is a simple root, we'derive from it a develop-
ment for z — z, in powers of y — g, beginning with a term of at least
the second degree. Conversely, the point z, is an algebraic critical
point for the integral which approaches y, when |2 — z,| approaches
zero (II, Part I, § 100). Through the point (z,, y,) there passes an
integral curve whose tangent at that point is the straight line z =«

The cobrdinates (z,, y,) of a point for which the equation (41)
has a multiple root satisfy the relation

(43) R(z, y) =0,

which is obtained by eliminating ' from the two relations F =0,
0F/dy' = 0. The equation (43) represents a certain curve (y), and
for all the points of this curve the equation (41) has one or several
multiple roots. Let (x,, y,) be the coordinates of an ordinary point
M, taken on this algebraic curve. We shall suppose, in order to
treat the simplest possible case, that the equation

F(zy Y y) =0
has a double root z; but no other multiple root finite in value. If
this double root were infinite, it would suffice to interchange x and
y in order to pass to the case where it is zero. When |z — z,| and
|y — y,| are very small, the equation (41) has two roots which differ very
little from y;. These roots are not, in general, analytic functions of
the variables z and v in the neighborhood of the point (z,, ¥,), but
their sum and their product are analytic functions,* so that these two

* The proofs of these properties are analogous to the proofs of the corresponding
theorems on implicit functions of & single variable (II, Part 1, § 98).



209 ‘WMWWMmruL EQUATIONS [iv,§71

roots of the pquation (41), which approach y; as | —z,| and |y — ]
approach zero, are also roots of an equation of the second degree,

44) yV*—=2P(@, )y + Q= ¥)=0,

where P(z, y) and Q(x, y) are analytic functions in the neighbor
hood of (z,, ¥,)- From the equation (44) we find

(45) Y'=P, y) £VP(z,y) — Q= ¥),

and these two roots are equal for all the points of the curve (y,)
whose equation is P* — Q = 0. This curve (y,) is necessarily part of
the curve (y), and since it passes through the point (z,, ¥,), it coin-
cides with (y) in the neighborhood of (x, %,). In order to study
the corresponding integral curve, we shall suppose that the origin
has been transformed to the point M, which amoants to putting
x,= g, == 0. Since the origin is a simple point of the curve (y), if we
have chosen the axes of cotrdinates in such a way that the tangent
at the origin is not the axis Oy itself, the equation P2 — Q=0 hasan
analytic root y = y,(x) which approaches zero as = approaches zero.

In general, the slope of the tangent to the curve (y) at the origin
is different from the double root y, = P (0, 0) of the equation (45)
for x =y = 0. Let us first assume this point, which is almost self-
evident, and return to it later. Then, if we put y =y, 4+ # in the
equation (45), it becomes

i+2=P@y+2)+ \/ztb(:c, z),

where @ (x, #) is a power series in # and 2. It is clear that # must
be a factor under the radical after the substitution y = y, + #, since
¥, is a root of the equation P* — Q =0. If we arrange ®(z, #) in
powers of 2, we have a development of the form

¥ (@) + 24, (@) + 2y, (x) + - - -,

where ¢, ¥, ¥, are regular functions of z in the neighborhood of
the origin. The function y () cannot be zero for x = 0, for other-
wise the development of #®(z, ) would contain no terms of the first
degree in x, z; whence the development of P2 — Q would contain no
terms of the first degree in z, g, contrary to hypothesis. Similarly,
if we replace y, by its development in the difference P(z, y, + %) — %},
we have, after arranging in powers of #,

P, y,+2)—yi= ¢o(z)+‘¢‘(“)+"'a

where the first function ¢,(x) does not vanish for z = 0, since by
supposition the derivative y; is different from P (0, 0) at the origin.
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The equation (45) therefore reduces to an equation of the form
(46) &= @) + 2@+ Ve VY@ F W+,
where neither of the functions ¢,(z) and y,(z) vanishes for = = 0.

In this last equation let us put # = »%. Selecting a determination
of the radical on the right, we find

@) 203 =g @)+ PH@+ -+ U VDT IRE F o

The right-hand side is analytic in the neighborhood of the point
x = 0, u = 0, since y,(0) is not zero. Moreover, this right-hand side
is not zero for z = 0, u = 0, since ¢ (0) is not zero. The derivative
du/dx is infinite for £ = « = 0. Hence the equation (47) has one
and only one integral which approaches zero as x approaches zero
(8 63), and for which the origin is an algebraic critical point.

It follows that the given equation (44) his an integral y =y, + «*
which approaches zero as x approaches zero. The adoption of the
opposite determination of the radical in the equation (47) would
amount to changing « to — » in that equation, and we should obtain
the same function y, + »% The origin is an algebraic critical point
for this integral. Let e, be the term independent of x and of « in
the development of the right-hand side of the equation (47), and let
b, be the coefficient of  in the same development. Developing x in
powers of %, we find \

U "4l o
x = ';; - 3—;: U SN

Conversely, we derive from this a series for % in powers of z'%,
b,
u=\/a—°a;*+—3qz+n-,

and the development of y, 4+ u*® contains a term in 2*2. The origin
is therefore a cusp for the integral curve which passes through this
point, and we can say now that zhe curve (y), represented by the equa-
tion (43), is, in general, the locus of the cusps of the integral curves.
Through a point of the curve (y) there passes, in general, an inte-
gral curve that has a cusp of the first kind at this point, and the
tangent at the cusp has for its slope the double root y;. If the equa-
tion (41) is of higher degree than 2, there pass through the same
point other integral curves, corresponding to the simple roots of the
equation F(z,, ¥, ¥") = 0, for which this point is an ordinary point.
The discussion is entirely different when for every point (z,, ¥,)
of the curve (y) the corresponding double root y; of the equation (41)
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is equal to the slope of the tangent to the curve (y) at this point.
In this ease we see first of all that the curve (y) is an integral curve
of the equation (41). Moreover, it is an integral which is entirely
unaccounted for in Cauchy’s fundamental theorem, whatever may
be the point chosen on the curve to fix the initial values of « and y.
For if we take the point (z,, y,), the equation
F(z,y,9)=0

has two roots which approach y; as |z — z,| and |y — y,| approach
zero; but these two roots are not in general regular functions of the
variables # and y in the neighborhood of the values z,, y,, and we
cannot apply Cauchy’s theorem. The integral thus obtained is said
to be a singular integral. The investigation of singular integrals
does not offer any theoretical difficulties, since it is evidently suffi-
cient to determine whether the curve represented by the equation
(43) satisfies the differential equation (41), and this necessitates only
an elimination. It may happen that the equation (43) represents two
distinct curves, one of which is a singular integral curve and the
other the locus of the cusps of the integral curves.

If the curve (y) is a singular integral, through each point of that
curve there passes in general another integral curve tangent to (y).
Let us take for origin any point of (y). We know in advance an
integral y, of the equation (45), namely, the singular integral for
which we have simultaneously

(48) ¥ = P(x, .’/1)) Pa(z’ 3/1) = Q(‘T, 3/1)'
Putting y = y, + 2, as above, the equation takes the form (46), but
in this case the function ¢ (z) is zero, since = = 0 must be an inte-
gral of this new equation Retaining the other hypotheses, the func-
tion y,(x) is not zero for » = 0, and if we next put z=* in the
equation (46), we are led to an equation all of whose terms are
divisible by ». Dividing by u, there remains a differential equation

(49) 2w =u[$,(@) +u'y(@) + - T E V(@) + v, @) + - -,
to which we can apply Cauchy’s general theorem. Since the func-
tion y,(x) is not zero for x = 0, the two determinations of the radi-
cal are analytic for x =0, w = 0. The equation (49) has therefore
two analytic integrals in the neighborhood of the origin which van-
ish for z =0, and it is easily seen that these two integrals are
deducible one from the other by changing « to — « It follows that
the equation in y has another integral curve

y=1y,+
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which is tangent to the curve (y) at the origin. But there is an
essential difference between these two integrals. In fact, we can
apply the general theorems of § 26 to the equation (49), and the
integral of this equation which is zero for z = 0 belongs to a family
of integrals which depend upon one arbitrary constant. The same
thing is therefore true of the integral curve which is tangent to the
singular integral curve at the origin, whereas the singular integral
itself is in general an dsolated solution. This fact is easily explained,
since we cannot apply to this integral the reasoning which proves
the existence of a general integral (§21) from which we could
obtain the former by giving a particular value to the constant
which appears in the latter.

The singular integral is therefore in general the envelope of the
other integral curves. Lagrange had already noticed that the enve-
lope of the curves represented by the general'integral of a differen-
tial equation of the first order is also an integral of the saine equation,
which is almost self-evident, since at any point of the enveloping
curve the slope of the tangent is the same for the envelope and for
the particular curve enveloped at that point. We can also find in
this way the rule which enables us to deduce the singular integral
from the differential equation itself. In fact, let us first take a point
M very near the envelope. Through this point M there pass two
integral curves very close to each other. Moreover, the slopes of
the tangents to these two curves differ from each other very little.
When the point Af approaches the envelope, these tangents approach
coincidence, and the equation (41) has a double root in ' (see I,
§ 208, 2d ed.; § 202, 1st ed.).

Summing up, we see that for an equation of the first order two
entirely distinct cases may present themselves, according as the
curve (y) is a singular integral curve or the locus of the cusps of the
integral curves. It is natural to ask which of these two cases ought
to be considered as the normal case. A little attention will show that
it is the second. In fact, the curve (y) is also the envelope of the
curves represented by the equation F(z, y, ¢) = 0, where a is the
variable parameter. If the differential equation (41) had & singular
integral, whatever the polynomial F might be, we should be led to
assert a consequence which is manifestly absurd — that is, that at
every point of the envelope of a family of algebraic curves the slope
of the tangent is equal to the value of the parameter for the corre-
sponding curve of the family tangent to the envelope at that point.
If this condition is satisfied by a family of curves, it suffices to



1]

204 NON-LINEAR DIFFERENTIAL EQUATIONS [1v,§71

chapge the parameter (putting, for example, 4 = o'+ ¢) in order
that this condition shall cease to bold. We see, therefore, that if
we start from an equation of the first order in which the coeffi-
cients of F are taken at random, rather than from an equation fur-
nished by the elimination of an arbitrary constant, the cases where
there exists a singular integral must be considered as exceptional.
If this result formerly appeared paradoxical to some mathemati-
ocians, that was no doubt because, up to the time of Cauchy’s work,
the equations studied had been principally those whose general inte-
gral is represented by algebraic curves. As a family of algebraic
curves has in general an envelope, it appeared quite natural to
extend the conclusion to the integral curves of any differential
equation of the first order. We have just seen that this induction
was not justified.* Moreover, even in the case where a family of
plane curves depending upon a variable parameter has an envelope,
the method which enables us to find that envelope gives also, as
we have seen (I, §§ 207, 208, 2d ed.; §§ 201, 202, 1st ed.), the locus

of singular points.
73. General comments. Example 1. Let us take the equation
(50) Y42z —y=0.

The two values of y are equal for all the points of the parabola
y 4 z* = 0, and the double root is equal to — z, while the slope of
the tangent to the parabola is — 2x. This curve is therefore not a
singular integral curve. We shall show that it is the locus of the
cusps of the integral curves. The equation (50) is a Lagrange
equation. Applying to it the general method of § 9, we find that the
codrdinates « and y of a point of an integral curve are expressed in
terms of a parameter p by means of the equations

(51) 3=-‘i—-§-, y=~—-_3.

*1In the theory of envelopes we suppose tacitly that in the neighborhood of a
system of solutions (2o, Yo, Go) of the two equations f (z, ¥, @) =0, 3f/2a =0 the
functions / and @//2a, together with their partial derivatives, are continuous, so that
we can apply to the functions z and y of a defined by these two equations the reason-
ing which we apply to implicit functions. Now, given a differential equation of the
first order, we know certainly that it has an infinite number of integrals depend-
ing upon an arbitrary constant and represented in a certain region by an equation
¢ (z, ¥, C) = 0, but there is nothing to prove a priori that this function ¢ (z, y, )
satisfies the conditions which we have just mentioned. We may even assert that it is
not true in general.
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It £ollows that these integrals are represented by unicursal curves of
the fourth degree. For the values of the parameter which are roots
of the equation p* 4 8 C = 0 we have dx/dp = dy/dp = 0. Each of
these curves has therefore three cusps, and the locus of these points
can be found by eliminating » and C from the equations (51) and
the relation p* = — 3 C, which gives the parabola y 4 2® = 0.

Example 2. Let us again consider Eunler’s equation Xy® == ¥. The
two values of y' are equal for all the points of any one of the eight
straight lines represented by the equation X¥ =0. These eight
lines represent the singular solutions, and form the envelope of the
curves represented by the general integral.

Example 3. We can use the following method to determine whether
singular solutions exist. From what we have seen, such an integral,
if it exists, satisfies the equations

F(z, y, y)=0, z_yl;=0'

and consequently also the equation 8F/0x + 0F/0y y' = 0 obtained by

differentiating the first. Conversely, suppose that for all the points
of a curve (y) the three equations

F _o ELOF . _o
om

‘o oy
have a common solution in m. Along the curve (y), z, ¥, and m are
three functions of u single variable satisfying the three relations
(562). We have therefore the relation between their differentials,

oF oF oF
——dx+5;dy+5zdm—0,

(62) F(z, y, m)=0,

ox
which, by (52), takes the form
oF( _dy\_
%(m=a)=°

If 0F/dy is not zero at all the points of the curve (y), we have

therefore y' = m, and this curve is a singular integral curve.* If

9F /0y = 0, we must also have 9F/dx = 0, and a direct verification is

necessary to determine whether the curve (y) is an integral curve.
This remark applies in particular to Clairaut’s equation

F 9 y)=f¥)y—zy)=0.

®Bee an article by Darboux in the Bullstin des Sciences mathématiques,
Vel. IV, 1878, pp. 158-176.
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Pautting, for the sake of brevit.y, U=y --zy', the three equations
which are to be compatible are here

[/ 7 2 [
s y—e=0, L-s=o, L—yy+y=o,
and they reduce to only two equations. A singular integral is there-
fore obtained by eliminating y' from these two relations.

Ezample 4. Consider the equation
24y — 2z (x + w’)+#(z+mf)’+x=°'

whose general integral is represented by the circles which have double contact
with the conic Bl—mY)+ 2+ K =0,

and which have their centers on the z-axis. This conic represents a singular
solution. Moreover, the two values of 3 become infinite for every point of the
axis of . This straight lire is not, however, a locus of the cusps. Through any
point of it there pass two integral curves tangent to each other, the common
tangent being parallel to the axis of y.

Ezample 5. In order that a curve C represent a singular integral, it is not
enough to require that at all the points of that curve the equation (41) shall
have a double root. It is also necessary that that double root shall be precisely
the slope of the tangent to C. Let us consider, for example, the cissoids repre-
sented by the equation (y — 2 a)? (z— a) — 28 = 0. The straight line £ =0 is the
locua of the cusps of these curves, and it represents also a particular integral
obtained by supposing @ = 0. At every point of this integral curve the corre-
sponding differential equation has the double root 3’ = 0 and an infinite root.
It is therefore not a singular integral curve.

Ezample 6. Let S be a surface having convex regions and also regions
where its curvature is negative. These regions are separated by a curve I', the
locus of the parabolic points, at every point of which the differential equation
of the asymptotic lines (I, § 248, 2d ed.; § 242, 1st ed.),

Ddu? 4 2 D’'du dv + D”dv? = 0,

has a double root in dv/du. This double root furnishes the direction of the
single asymptotic tangent. If the tangent to I' does not coincide with this
asymptotic tangent (which is the general case), the curve I' is the locus of the
cusps of the asymptotic lines; but if the asymptotic tangent at each point M
of I' coincides with the tangent to I', the curve is the envelope of the asymptotic
lines. This curve I, therefore, is at the same time an asymptotic line and a line
of curvature, since the tangent is also an axis of the indicatrix. The normals
to the surface S along I' form, therefore, a developable surface, and since the
normal to S is the binormal to the curve T, it follows that I' is a plane curve
(I, § 285, 2d ed. ; § 231, 1st ed.) and the given surface S is tangent to the plane P
of the curve I' along the entire length of that curve.

Let us consider, for example, a surface of revolution. In order that one of
the principal radii of curvature at a point M of this surface be infinite, the
radius of curvature of the meridian must be infinite or the tangent to this
meridian must be perpendicular to the axis. In the first case the curve I'is &
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parallel each point of which is a point of inflection for the meridian, the asymp-
totic tangent is perpendicular to the tangent to I, and this parallel is a locus
of the cusps of the asymptotic lines. On the other hand, in the second case the
curve I' is a parallel in all of whose points the surface is tangent to the plane
of this parallel, as in an anchor ring. It is also the envelope of the asymptotic
lines. All these results are easy to verify directly from the differential equation
of the asymptotic lines in polar codrdinates.

78. Geometric interpretation. The preceding discussion may be presented in a
somewhat different form, which we shall rapidly indicate. We shall continue
to employ geometric language, although the reasoning can be extended without
difficulty to the domain of complex variables.

We have already pointed out (§ 8) that the integration of a differential
equation of the first order F(z, y, ') = 0 is equivalent to the determination of
the curves I' which lie on the surface 8 whose equation is

(53) Fz,y,2)=0

and for which dy — zdz = 0. The projection ¢ on the Zy-plane of a curve I of the
surface S satisfying the preceding conditions is an integral curve of the given
differential equation, and conversely. We shall suppose in the discussion that
this surface S has no other singularities than the double curves along which two
sheets of the surface cross with distinct tangent planes. Instead of studying
the curves ¢ in the zy-plane, we shall study the curves I' on the surface S.

Let us consider first a point M, (o, ¥o, %) of the surface S not on a double
curve nor where the tangent plane is parallel to the 2-axis. The tangent to the
curve I' which passes through M, lies in the tangent plane at this point,

GH  (X—z) (%)ﬁ (¥ -y (%f—); Z —2) (aa—f)o= 0,

and also, since we must have dy — zdx =0, in the plane
(66) Y—yy—2z,(X—12,)=0.

These two planes are distinct, since (8F/z), is not zero ; hence they intersect in
a straight line not parallel to Oz. Through the point M, there passes, therefore,
one and only one curve I' whose tangent is not parallel to the z-axis. The
projection ¢ of this curve on the zy-plane passes through the point m,, the
projection of M,, and m, is an ordinary point for c¢. If the point M, belongs
to a double curve of S, the preceding reasoning applies to each of the two sheets,
provided that none of the tangent planes at M, are parallel to Oz. Through the
point M, thcre pass, therefore, two curves I' corresponding to the two sheets
of the surface 8. It romains to find out what happens if the point M, lies on
the curve D of 8, the locus of the points for which we have simultaneously
F =0, 2F/2z = 0. We shall suppose that this curve .D is not a double curve.
It is, then, the locus of the points of S where the tangent plane is parallel to Oz,
and one at least of the partial derivatives aF/oz, 0F/dy is different from zero
at the point M,. Hence the two planes (54) and (55) are parallel to the z-axis,
and their intersection is parallel to Oz unless these two planes coincide, that
is, unless we have

= () =)0
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Let us first discard the case in which this huppens. The tangent to the
ourve I' which passes through M, is parallel to Oz, but this curve itaelf does
pot present any singularity at the point M,. To assure ourselves of this, we
shall replace the system of the two equations

{67 F(z, y,2) =0, dy =zdz
by the system of the two simultaneous equations
ds _dy  ~dz
‘“’ oF " 3F T, oF
oz oz oz oy
with the initial conditions z = z,, y = y,, £ = 2,. The two systems are equiva-

lent. In fact, from the equations (58) we derive the integrable combination
dF = 0. Hence we have F(z, y, z) = F (2, ¥, 2;) = 0. Now, since

@)+« (5),

does not vanish by hypothesis, we derive from the equations (58) the develop-
ments of z — z, and of y — y, in powers of z — z, beginning with terms of at
least the second degree,

T—zg=ay(z—zg)%---, V—vy=Fa(z— 2.

The point M, is therefore an ordinary point for the curve I' which passes
through this point, but the projection m, of M, on the plane zOy is a cusp (in
general of the first kind) for the curve ¢, the projection of I'. This results, more-
over, from & general property, which is easily verified, that the projection of a
space curve on a plane, in a direction parallel to the tangent at a point M of
the curve, has a cusp at the point m, the projection of M (I, Exercise 18, p. 582,
2d ed.). If d denotes the projection of the curve D on the zy-plane, it follows
that the curve d is the locus of the cusps of the integral curves c, as we have
shown before. The preceding method has the advantage of showing us how this
singularity disappears when we pass from the plane to the surface 8.

The result is quite different when the relation (56) is satisfled at all the
points of the curve D. The two planes (54) and (55) are then coincident, and
we have the case in which there exists a singular integral. Through every point
of D there pass in general two curves T, the curve D itself and the second curve
whose projection on the zy-plane is tangent to the singular integral curve d.

74. Singular integrals of systems of differential equations. The theory of the
singular integrals may be extended to systems of differential equations of the
first order, and therefore also to equations of higher order. We shall study
only a system of two equations of the first order (which covers also the case of
a single equation of the second order), and we shall employ & process which is
the reverse of the preceding —that is, we shall consider first of all a system
obtained by the elimination of the constants.* Let

(59) F(z,v,2; a, b) =0, @ v, 2; a,b)=0

*B8ee E. GoursaT, Sur les solutions singulidres des équations différentiellss
simultandes (Amerioan Journal ¢f Mathematics, Vol. XI).
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be the equations of a family of plane or akew curves which depend upon twe
arbitrary parameters a and 4. Such a family is called a congruince of curves.
Let us suppoae, for simplicity, that the functions F and & are polynomials. The
curves of the congruence are then algebraic. We shall first generslize the
theorems established for the congruences of straight lines (I, § 255). If we
establish & relation between a and b of arbitrary form b = ¢(a), we obtain an
infinite number of curves I' depending upon 4 single arbitrary parameter a.
In general these curves do not have an envelope. In order that an envelope
exlst, it I8 necessary that the four equations (69) and (60) shall have a system
of common solutions in z, y, £ (I, § 315, 2d ed. ; § 223, 1st ed.) :

oF oFadb o o dd
——t—— —=0 — 4 ——=0.
2a taa- " oaTmaa- "
The elimination of z, y, z from these four equations leads to a relation
between a, b, and db/da,

(61) o (a, b, %) =0;

(60)

that is, to a differential equation of the first order. If we have taken for
b = ¢ (a) an integral of this equation, the curves I' will generate a surface 2
and will be tangent to a curve C lyingon 2. We shall call this curve C the edge
of regression of Z, as in the case of line congruences. If the equation (61) is of
degree m in db/da, every curve I' of the congruence belongs, in general, to m
surfaces similar to Z, and it touches the corresponding edge of regression on
each of these surfaces in a definite point. Thus there exist m remarkable par-
ticular points on each curve I' of the congruence, which we call the focal points.
These focal points can be obtained without integrating the differential equa~
tion (61), for we need only solve the four equations (59) and (80) for z, y, 2,
db/da. We find first the relation (61), which gives db/da, and, eliminating db/da
from the two equations (60), we have a new relation,

D(F, &) _oF 2 aFa¢_°

(62) D(a,b) oa b b 2a

which, together with the two equations (69) of the curve T, enable us to calcu-
late the codrdinates of the focal points.

The locus of the focal points is the focal surface of the congruence. We
obtain the equation of this surface by eliminating a and & from the three rela~
tions (69) and (62). The focal surface is also the locus of the edges of regres-
sion C of the surfaces 2. In fact, any point of the curve C is a focal point
for the curve of the congruence which is tangent to C at that point. It follows
that every curve I' of the congruence is tangent to m sheets of the focal surface
at the m corresponding focal points, since at each of these points it is tangent
to a curve C lying on the focal surface. All these properties are exactly analo-
gous to the properties of congruences of straight lines. In general, if F and &
are any polynomials, the m sheets of the focal surface are represented by &
single equation, but it may also happen that this equation breaks up into sev-
eral distinct equations. In certain particular cases it may also happen that
some of the sheets of the focal surface reduce to curves, In such s case the

corresponding edge of regression C reduces to & point.
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The conclusion which we can derive from these properties with respect to
differential equations is as follows: The curves I’ are the integral curves of a
system of differential equations which is obtained by eliminating the constants
a and b from the equations (50) and the equations obtained by differentiating
them :

oF oF aF o® , 29 2% ,
(64) F@ v v,2)=0, Ay nv,2)=0

he the system of differential equations thus obtained. The equations (59) rep-
resent the general integral of this system, since by hypothesis we can choose the
constants @ and b in such a way that the curve I' passes through any point
(%o Yo 2o) Of Bpace. If through this point there passn curves I',the equations (59)
determine n systems of values for @ and b. The equations (63) deterinine
v’ and 2’, and we see that for the point (z,, ¥, 2,) the equations (64) determine
n systems of values for y’ and z’. But the edges of regression C are also integral
curves of the equations (€4), since in & point of O the values of z, 7, 2, ¢/, 2’
are the same for C and for the curve I' tangent to C at that point. The equa-
tions (84) have, therefore, besides the integrals represented by curves TI', an
infinite number of other integrals, not included in the equations (69), which
are obtained by integrating the equation of the first order (61) ; these are the
singular integrals of the system.

On closer examination we see that the existence of the focal surfaces does
not in reality require that the curves I’ shall be algebraic. It is sufficient that,
in the neighborhood of a system of solutions (z,, ¥,, 2o, @y, by) of the three
equations
©65) F@ ynza,b)=0, &@, v,z ab)=0, 11’)((‘: ’ :’)) =0,
the implicit functions z, y, z of the parameters a and b, defined by these three
equations, which reduce to z,, ¥,, 2,, for @ = a,, b = b,, shall be continuous
and have continuous derivatives in the neighborhood. In fact, let

(66) z = fi(a, ), y =1, (a, b), z=/f,(a, b)
be these three functions. The sheet of the focal surface which passes through
the point (z,, ¥,, 2;) i8 represented in the neighborhood of this point by the
equations (66), where the values of the parameters a and b are near a, and b,.
It is easy to derive from this the equation of the plane tangent to the focal sur-
face. In fact, when the point z, y, z describes any curve on this surface, z, ¥,
z, a, b are functions of a single independent variable which satisfy the equa-
tions (66) ; hence the differentials of these functions satisfy the two relations

oF oF oF oF oF

— 3z —3 — & —_— p =
™ +ay v+az z+aa8a+abab 0,
2P

od o® o® %
— % 4+ —38 — & — Z»=0.
o +ay v+azz+aaaa+abcb 0

Making use of the last of the relations (85), we can eliminate 3z and 3b, and
we find the new relation
D(F, ®) D(F, &) D(F, $)
C) 3z 3 2 3z:
“n D@0 - D T DEn
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We have only to replace 3z, 3, 8z by X — z,, ¥ — g, Z — %,, respectively, in
order to have the equation of the plane tangent to the focal surface. It is easy
to show that this plane passes through the tangent to the curve I'. The prop-
erties of the focal surface suppose, therefore, only that we can apply the
theory of implicit functions to the equations (85), and in particular that the
functions F, &, together with their partial derivatives, are continuous in
the neighborhood of a system of solutions z,, y,, z,, a,, b,. This is certainly
true when F' and & are polynomials, but it is clear that it is also true for
many other functions. Let us also observe that if the curves T' have singular
points, the locus of these singular points forms a part of the focal surface.
This is shown as in the case of the analogous proposition relative to plane
curves (I, § 207, 2d ed.; § 201, 1st ed.).

Let us now examine the question from the opposite point of view. Given a
system of two differential equations of the first order, such as the system (64),
let us propose to determine whether this system has singular integrals. We
shall suppose that <7 and 3‘1 are polynomials. Let M, be any point (z,, ¥y, Zo)
of space. If z, y, z are replaced by z,, ¥,, 2,, respectively, in the equations (64),
these equations have in general a certain number of systems of solutions. Let
Y5y Zg be one of these systems. Let us assume first that, for this system of solu-
tions, the Jacobian D (%, F,)/D(¥’, 2’) is not zero. From the equations (64), y’
and 2’ can be found as regular functions in the neighborhood of the p»nint
(Zgs Yoy Zo)y

V=vta@—z)+ -, =z +ac—2)+---,

which reduce to y; and z;, respectively, for z=z,, y=v,, 2=2,. The equations(64)
have therefore an integral curve passing through the point M, tangent to the
straight line whose equations are ¥ — y, = yo (X — ), Z — 2y = 24 (X — ).
Moreover, this curve forms part of a family of integral curves depending upon
two arbitrary parameters (§ 26). This conclusion does not hold if we have
D(F, F)/D(yg, z5) = 0; but this can occur only if the cobrdinates (o, ¥o, 2Zo)
satisfy the relation

(68) R(z,y,2)=0,
which is obtained by eliminating y” and 2’ from the three equations
DG R
60! F=0, A =0 —= 1=,
(%9) ! ! Dy, 2)

The equation (68) represents a surface S, and, from what we have just seen,
an integral curve which does not lie on the surface S cannot be a singular
integral curve.

If the peint M, is on the surface S, the three equations (69) have for this point a
system of common solutions, y” = y,, z' = z;. 1f the straight line D represented
by the equations

(70) -2y Y-yy_Z—-2

1 vo %
is not tangent to S (which is the general case), there is an integral curve pass-
ing through the point M, and tangent to the straight line D. It has been shown
that the point M, is in general a cusp for that curve. What is essential for us
is that this integral curve cannot be on the surface, since its tangent is not in

the tangent plane. In order that singular integrals may exist, in each point of
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$he ocorresponding straight line D must therefore be situated in the plane

t to the surface. This condition is sufficient, for then through sach point

8 there passes a curve lying on the surface and tangent to the line D. These

are determined by a differential equation of the first order, and they are

indeed singular integral curves, for at each of their points the values of y* 4nd
of £ form a multiple system of solutions of the equations (84).
Ezample 1. Consider the simultaneous system of equations

(1) v—2=90, ot=s4y2-1
The two values of 2’ are equal for all the points of the cylinder z* + y3 — 1 =0,
and the direction corresponding to that double root is the perpendicular dropped
from the point (z, ) on the z-axis. Since this perpendicular is not in the tangent
plane to the cylinder, there cannot be any singular integrals. In this example it
is easy to verify that the cylinder is the locus of the cusps of the integral curves,
for the general integral of the system (71) is represented by the equations

y = Cy2, 2=Vzl4+y3—1—arctan Vad 4 p3 -1+ C,.
*Xrample 2. Every systemr of differential equations of the form

(7?) Fy—ay',z—az,y,2) =0, ey—2v,z—2Z,y,2) =0,
which may be considered as a generalization of Clairaut's equation, is easily
integrated by observing that the preceding relations lead to the equations

oF oF\ ,,(oF _oF\ ,
(W—z'a?)” + (az' ’ au)f =%
2P 2% L oP
— — — 4 e — —_— "’ - o .t
(ay' e au)” +(Zz e au)’ »
where u = y — 2y, v = z— zz’. These last equations are satisfled by assuming
that y” = 0, £” = 0, or by supposing that we have
oF oF\ (0@ 0P eF oF)\ fod o9

@ (=% G (%) G 0=

Under the first supposition, ¢ and 2’ are constants a and b; whence we see
that the curves which correspond to the general integral are the straight lines
af the congruence represented by the two equations

F(y — az, z — bz, a, b) = 0, ®(y~ az, z — bz, a, b) = 0.

There are also singular integrals, since the straight lines of the congruence
are tangent to the two sheets of a focal surface. These singular integrals are
the edges of regression of the developables of the congruence, and are obtained
by the integration of a differential equation of the first order. The equation of
the focal surface is obtained by eliminating 3’ and 2’ from the relations (72)
and (73).

EXERCISES
1. Examine the following differential equations for singular solutions:
v+ (z + z—;:) vV —-©01+z)y— -;% =0. [SerrET.]
YT — 1y + aPz =0. [ScuvbmiLen.]
vi—2aVyy + 4yVy=0. [BooLk.]
@y —y)i—2zy(14y?) =0. . [Hoiier.]

2zy(14+ v — (v +yv)3=0. [Mo1iaxo0.])
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2¢. The equation H (2, y) = 0, obtained by eliminating 3’ between the two
rélations F(x, y, v) = 0, 8F/z 4 2F/dy ¥’ = 0, represeuts the locus of the
points of inflection of the integral curves.
Deduce from this the theorem of § 72, in regard t6 the locus of the cusps of
the integral curves, by means of a transformation of reciprocal polars.
[Darzsoux, Bulletin des Sciences mathématiques, Vol. IV, 1878.]

8. Determine the singular integrals of the system of differential equations
y=2+y%+ 7, 2=zz+y7. {S8zzz=r.]
4. Determine whether the differential equation of the second order,

a+ayr—(2ar + D+ ity -y =o,

has singular integrals, and find any that exist. [Lacraxas.]
[Replace this equation by a system of two equations of the first order.]

8*. Given a differential equation of the second order,
F (Z' Y, y’q V') = 01 4

by eliminating y”” between this equation and the relation 2¥/2y” = 0 we obtain
a differential equation of the first order P (z, y, ) = 0, whose integrals have
in general the following property . Through each point M of one of these inte-
gral curves C there passes an integral curve of the equation F' = 0, which has &
cusp of the second kind at M, and whose cuspidal tangent is the tangent to the
curve C at this point. [American Journal of Mathematics, Vol. XI, p. 864.])

6. Establish the properties of e* by starting with the general integral of the
differential equation dz/z + dy/y = 0, written in the algebraic form zy = C.

Consider the same question for the function tan z, finding first the general
integral in algebraic form of the differential equation

gz + 9y

1422 142

7*. Let ¥’ = R(z, v), where R(z, y) Is a rational function of y whose coefi-

cients are analytic functions of z, be a differential equation of the first order
having a general integral of the form

S V" + (@) Yr 1 + - - - + Ia(2)
1 (4 1 = F(z, V)= 0.

@ VoD P+ @+t pa@) V)
Prove that this equation can be reduced to a Riccati equation by a substitution
of the form u = R,(z, ), where R, is a rational function of y. [PArxLEvE.]

Note. It will be noticed that the equation (1) can be written in the form

v+ [4,@) + By@)u]y—14 oo+ [Au-1(z) + Ba1@@)uly + v =0,

where u = (¢ — Cy¥a)/(do— Cy¥,), and that u satisfles a Riccati equation, while
the functions 4;, B; are known.

8. If we seek to determine the function f(a) eo that the envelope of the
straight lines = cos a + ¥ 8in & = f(a) shall be a given curve C, we are led to

a differential equation whose general integral is represented by the straight
lines which pass through a fixed point of C. The true solution is furnished by

the singular integral.

= 0.




CHAPTER V

PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

This chapter is devoted to the theory of partial differential equa-
tions of the first order. We shall consider for the most part the
reduction of the integration of an equation of this type to that of a
system of ordinary differential equations. Although this reduction is
not, in many cases, of any practical utility, it nevertheless possesses
great theoretical interest, for it enables us to determine just how
difficult the problem is Although not all the arguments require
that the integrals considored shall be analytic, we shall restrict our-
selves to that case unless the contrary is particularly stated.

I. LINEAR EQUATIONS OF THE FIRST ORDER

75. General method. We have already seen that the integration
of the homogeneous equation

xZoxd o ex i

1 + X,
® X 7
where X, X,, - - -, X, are functxons of x, x,, - -, 2,, and the integra-
tion of the system of differential equations
dz, dx dz
2 AT =0
@) X, = X, X,

are equivalent problems (§ 31). If £, f;, - - -, fo—; are (n — 1) inde-
pendent first integrals of the systemn (2), the general integral of the
equation (1) is an arbitrary function,

Q(fpf;: MRS | f;—l)’
of these (n — 1) integrals.

We can obtain the integral satisfying the Cauchy condition as
follows : Suppose that the coefficients X; are analytic in the neighbor-
hood of a partioular system of values a9, a3, . - -, 2, and that the first
coefficient (X,), does not vanish at that pomt Solving equation (1)
with respect to 9f/dx,, we can apply to it the general theorem of
§ 25. Hence there exists an analytic integral in the neighborhood
mentioned, which reduces, for z, = zj, to a given analytic function

314



v.4m] LINEAR EQUATIONS OF THE FIRST ORDEE 418

$(xy -+ 3,) of the (x —1) variables =, gy v vy Eye In order
to obtain this integral, let us write the system (2) in the form
d da, X b

® -‘T:: X o = ._\-n ,
where the right-hand sides are analytic in the neighborhood of the
point (2}, z§, - - -, z2). There exists a system of analytic integrals
reducing to given values C,, C,, ---, C, for z =z, provided that
each of the absolute values |C; — x}| is less than a certain limit, and
these integrals are analytic functions of x, and of the parameters Cy

-5 Cy (§ 26), which are represented by developments of the form

4) x=Ci+(x;—a)P,(),Cy Cyy-++,C,). (£=2,8,...,m)
Solving these (n — 1) equations for the C/’s, we obtain a system of
(n — 1) first integrals of the equations (2), represented by the
developments .

%) Co=xi+ (@ —a) Q@ Ty + %), (i=2,8,-.-,7)
where the Q’s are analytic functions. It is clear that the function
¢(C, C,, - --, C,) of these (n — 1) first integrals is analytic in the
neighborhood of the point (x4, - - -, 22) and reduces to ¢ (,, z,, - - -, 2,)
for 2, = 3.

Let us now consider any linear equa.tion

(6) ‘3::+P .+ "”’-5;_‘“‘” 0,

where P, P, --., P,, R may depend both upon the independent
variables z,, z,, ---, x, and upon the dependent variable z. We
shall reduce this equation to the form (1) by means of a device
very often used in the study of partial differential equations.
Instead of trying to find the unknown function # directly, we shall
try to define it by means of an equation not solved for 2,

) V(z, &,y Zgy -+ ) =0,
where the function ¥ of the (n 4 1) variables #, x,, x, .-, x, is
now the unknown function. From this relation we derive, by

differentiation,
oV oV oz oV ox _
Pt =l +3z3z_o

and, replacing 9z/dz, - .., 0z/0x, by the values derived from the
preceding relations, the equation (6) becomes

®) F(V)= az, +P,g:+ni’i=.a



2165, - PARTIAL DIFFERENTIAL EQUATIONS v,

The new equation is of the form (1), and its integration is equiva.
lent to that of the system

d d dzx, dz
(9) -‘Fz:=—}%:=-..=P. =T‘

hence we may state the following proposition :

If u, u,, - - +, u, are n independent first integrals of the system (9),
every function & of the n variables z,, x,, « - -, x,, defined by a relation
of the form

10) @ (1, Uy -y ) =0,

where ® indicates an arbitrary function of wu,, u,, --., u,, i an
tntegral of the equation (6).

‘We cannot conclude from this that we obtain all the integrals of
the equation (6) in this way. In fact, in order that the implicit
function defined by the relation (7) be an integral, it is not neces-
sary that we have identically F(V)= 0; it is sufficient that the
equation F(V) = 0 be a consequence of the equation V' = 0. If, for
example, we take for ¥ an integral of an equation of the form
F(V)=KV, where K indicates a constant different from zero, the re-
lation ¥ = 0 still defines an integral of the equation (6). It is quite
in order, therefore, to determine whether or not the relation (10)
gives all the integrals of the given equation. In order to prove
that this is really the case, with certain exceptions which we shall
state, let us suppose that in the » functions «,, «,, - - -, %, we replace
# by an integral of the equation (6). The resulting expressions are
n functions U,, U,, - - -, U, of the n variables «,, z,, - - -, z,. If we
prove that the Jacobian of these n functions is identically zero, it
will follow that we have a relation of the form

\"(Uv Up R Uu) = 0:

and consequently that the integral considered satisfies a relation of
the form (10) in which the function & is replaced by y. This Jaco-
bian is of the form

ouy 4 p 2 Oy O duy  duy
oz, TP TP T G TP oe

A= ce e cee ee o PP . (p‘=-5;)
o, O b, 2w, :
oz, TP % ‘ B e v
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Noting that certain determinants in the development of A have two
columns identical and therefore vanish, we may write

D (uy, Ugy  ++y %) D(uy, Uy« +y Uy)
11) A = 1y Uy * + y Ugy * o vy Uy .
( ) D(“ Tgy ey X,) 2;}74 D@y, -« s Tyyy %, Tigry = z,)

But, since u,, u,, - - -, ¥, are n first integrals of the system (9), we
have

3 0 0
a;“+p ”‘+ -+ P, "‘+Ra“‘ 0; (=1,2...,m)
hence, by the theory of linear homogeneous equations, we have
R —P
12 = $ = M
a2 D(uy, usy - - - Uy) D (uyy Ugy < -2y ) ’

D(mp Tgy oy x,) -D(zp cey Ey_qy Ry Ligqy tcy Xy)
(¢z=1,2,.-., n)'

where M is a function of «,, «,, - - -, x,, # which we can always cal-
culate when we know the first integrals «,, %,, - - -, %,. Substituting
in (11) the values of the determinants deduced from (12), we find

(129 MA=R—Pp,—Pp,— -+ — Pyp,

If # is an integral of the equation (6), the right-hand side is zero;
hence this integral satisfies either the condition A = 0 or else M = 0.
In the first case, as we have just shown, this integral is defined by
a relation of the form (10). As for the relation M = 0, it can define
only one or more completely determined implicit functions. Hence,
except for certain exceptional integrals which do not depend upon
any arbitrary constant, all the integrals of the equation (6) satisfy a
relation of the form (10). We shall hereafter say that the relation (10)
represents the general integral of the equation (6).

To see if an integral can satisfy the relation M = 0, let us consider any point
of that integral, (z2, z3, - - -, 20, z,), and let us suppose that all the coefficients
P,, P;,.-., Py, R are analytic in the neighborhood of this system of values
without being all zero simultaneously for z; = z?, z = z,. Let us assume, for
example, that P, is not zero for this system of values. We can then solve the
equation (8) for 2V/éz,, and, by Cauchy's theorems (§ 25), we can take for u,,
ug, - -, U, functions analytic in the neighborhood of this system of values. Now
one of the equations (12) can be written in the form

' D(u y Ugy |ul)
- P M_i____._—-.
D(2,Zgy oy Tn)

Since the determinant on the right is analytic, and since P, is not zero for
2, =}, 2 = z,, it follows that this system of values cannot make M zero. Since
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the paint (23, - - -, 2§, %) 18 any point of the integral, we see that there cannot
exist ihtegrals satisfying the relation M = 0 except in the two following cases :

1) There exists & function V(z;, Zy, « + *s Zn, 2) such that every system of
values of the variables 2,, £ that makes the function V' vanish, also causes P,,
Py, -+ry Py, and R to vanish, All these coefficients are therefore divisible by
the same factor, and it is clear that by equating this factor to zero we obtain
an integral. This trivial case is of slight interest.

2) The reasoning would again be faulty if the integral deflned by the rela-
tion ¥V =0 were such that, in the neighborhood of every system of values
satisfying that relation, some of the coefficients P;, R ceased to be analytlo.
This case can actually oocur, as we shall show presently.

76. Geometric interpretation. The preceding general method is
susceptible of a simple geometric interpretation in the case of an
equation in three variables, which we shall write in the customary
notation,

0z oz

(18) Pp + Q¢ =R, p=732 q=5;’

where P, Q, R are functions of the three variables z, y, 2. Let S be
any integral surface. Since the equation of the plane tangent to this

surface is
Z-—z2=p(X—2)+9(¥—y),

the relation (13) expresses the fact that this tangent plane passes
through the straight line D represented by the equations

X—z_Y—-y_Z—-z_

(14) 7 2 =

Hence the problem of the integration of the equation (13) may be
stated in geometric language as follows :

To each point M of space, whose covrdinates are (x, y, %), there
corresponds a straight line D through that point, represented by the
equations (14). A surface S is to be determined so that the tangent
plane at each of its points passes through the straight line associated
with that point.

The surfaces possessing this property constitute the general inte-
gral of the linear equation (13). The three functions P, Q, R deter-
mine the law according to which the straight line D moves when
point M changes its position. These three functions are us. dz
analytic functions of z, y, 2, but it is sufficient for the argnm';,)
that they satisfy the conditions stated in our previous study o.
differential equations (§§ 27 ££.).
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The preceding 'statement leads us to seek the curves I" which are
in each of their points tangent to the corresponding straight line D,
We shall call these the characteristic curves. We shall first show
that every imtegral surface is generated by characteristic ocurves,
Consider, in fact, such a surface S. In each point A of that surface
the corresponding straight line D lies in the tangent plane. We can
therefore propose to determine the curves on that surface which are
tangent et ench of their points to the corresponding straight line D.
These curves may be obtained by the integration of a differential
equation of the first order (§ 17). Through each point of S there
passes in general one and only one curve, possessing this property,
which lies entirely on the surface. It is clear that these curves are
characteristic curves, which proves the proposition.

The converse is almost self-evident. If g surface is a locus of
characteristic curves, the tangent plane at any one of its points con-
tains the tangent to the characteristic curve lying upon the surface
and passing through that point — that is, the straight line D. The
given problem is therefore reduced to the determination of the
characteristic curves.

The differential equations of these curves, by their very definition,

are of the form
dz _dy _de
s PTQ R

Through each point of space there passes, therefore, in general one and
only one characteristic curve tangent to the corresponding straight
line D. Suppose that we have integrated these equations (15).
Let « and v be two independent first integrals of this system.
The general integral is represented by the equations

(16) u(z, y, )= a, v(z, y, 2)=1,

where a and b are two arbitrary constants. The characteristic curves,
which depend upon two parameters, therefore form a congruence. In
order to obtain a surface generated by the curves of this congruence,
we must establish between the two parameters a and & an arbitrary
relation, say ¢ (a, b)= 0, and the corresponding integral surface will
«~ for its equation ¢ (¥, v) = 0. This is exactly the result to which
eral method of the preceding paragraph would lead us, for u
;:re here two independent integrals of the equation

du du du
P-;a;+a-5;+k-5:-0.
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Ezample 1. Consider the equation pz + gy = mz. The differential equations
of the characteristic curves,

have the two first integrals y/z = a, z/z™ = b, and the general equation of the
integral surfaces is z = #™f(y/z). If m =1, the characteristic curves are straight
lines passing through the origin, and the integral surfaces are cones having their
vertices at the origin. If m = 0, the characteristic curves are straight lines par-
allel to the zy-plane and meeting the z-axis. The integral surfaces are conoids.

Ezample 2. Consider the equation py — ¢z + a = 0. The differential equa~
tions of the characteristic curves,

give the two integrable combinations

zdz +ydy =0, dz—a W =¥E_,

@+
and the characteristic curves are represented by the equations

2492 =C,, z—aurctani-’:C,.

These are helices with the pitch 2 wa lying upon cylinders of revolution hav-
ing Oz for axis, and the general integral is represented by helicoids (the axes of
cobrdinates being supposed rectangular). In the particular case where a = 0,
the characteristic curves are circles having their centers on the z-axis and their
planes parallel to the zy-plane. The integral surfaces are surfaces of revolution
about the z-axis.

Ezxample 8. Orthogonal trajectories. Let

(17 F(,y,2)=C
be the equation of a family of surfaces = which depend upon an arbitrary
parameter C in such a way that through every point of space (or at least of a

portion of space) there passes one and only one of these surfaces. Let us con-
sider the problem of finding another surface S, represented by the equation

z=¢(z, v),
which cuts orthogonally at each of its points the surface = through that point.
Since the direction cosines of the normals to the two surfaces are respectively
proportional to 8F/az, 0F/dy, ¢F/oz for =, and to p, g, — 1 for S, the condition
of orthogonality leads to the linear equation

oF oF oF
(18) P'a—£+q§;-'a—z—0-
The characteristic curves, whose differential equations are
dr _dy _dz
(19) 3F = 3F o7
ox oy Oz

are the curves tangent at each of their points to the normal to the surface Z
through that point.
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Buppose, for example, that we have F(z, y, #) = zf(z, v), where f(z, v) Is a
homogeneous function of the mth degree. The differential equations of the char-
acteristic curves are here

By Euler’s relation, we have the integrable combination

zdz 4+ ydy — mzdz =0,
from which we derive the first integral 23 4 y® — mz? = a. On the other hand,
dy/dxz is a homogeneous function of degree zero in the variables z, y. Hence
we can obtain a new first integral by a quadrature (§ 8).

Ezample 4. 1t is sometimes possible to determine the characteristic curves
without any calculation, merely from their geometric definition. Let it be re-
quired, for example, to determine the surfaces S such that the tangent plane at
any point M of one of these surfaces meets a fixed straight line A in a point T,
equally distant from the point M and from a fized point O on the straight line A.

Let M be a point in space ; there exists on the straight line A one and only
one point T such that T0O = T'M, and this point is the intersection of A with
the plane perpendicular to the segment OM at its middle point. Let D be the
straight line through the two points M and 7. The tangent plane to every sur-
face satisfying the given condition and passing through the point M therefore
contains this straight line D. Consequently these surfaces are obtained by the
integration of a linear equation. Since the tangents to the characteristic curves
all meet the straight line A, these curves are plane curves, lying in planes pass-
ing through A. The characteristic curves lying in one of these planes are the
integral curves of a differential equation of the first order, and it is easy to see,
from their definition, that they are circles tangent to the straight line A at O.
The required surfaces are therefore generated by the circles tangent at O to the
straight line A.

‘We can dispose of the arbitrary function ¢ (%, v) in such a way
that the integral surface passes through a given curve T'; we shall
obtain that surface by taking the locus of the characteristic curves
passing through the different points of the given curve. If T is
represented by the system of two equations

(20) ®(x, y, 2)=0, ®,(z, ¥, 2)=0,
the whole question reduces to finding the relation which must hold
between the parameters @ and & in order that a characteristic curve
shall meet the curve I. It is clear that that relation may be found
by eliminating z, y, # between the equations (20) and the equations
. = a, v = b of the characteristic curve. The problem has only one
solution, unless the curve T is itself a characteristic curve. In this
singular case it suffices, in order to obtain an integral surface pass-
ing through T, to consider the surface generated by a family of
characteristic curves which depend upon an arbitrary parameter, and
of which the curve T is a member.
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79. Congruences of characteristic curves. To every linear equation
of the form (13) there corresponds a congruence of characteristic curves
formed by the characteristic curves of that equation. Conversely,
every congruence of curves, that is, every family of curves depending
upon two arbitrary parameters a and b, is the congruence of charac-
teristio curves for an equation of the form (18).* Buppose, in fact,
that the equations which define that congruence are solved for the
two parameters a and &:

u(x, y, 2)=a, v(z, y, £)=b.
Every surface S generated by the curves of this congruence, associated
according to an arbitrary law, is represented by an equation of the
form v = o (%). Taking the partial derivatives with respect to =
and to y, we find

ov 31: au v , dv au
rmr=re(E+orr)  Etami=rw(+me)
The elimination of #'(x) leads to a linear equation
D(w,v)  D(wv) _ D(u,v) _
+ g+ 0,
D(z, y) » D(=, z) D(z y)

for which the given congruence is evidently the congruence of

characteristic curves.

Let us now consider the general case of a congruence defined by
two equations of any form whatever,

(21) U(z, y, %, a, b)) =0, V(z, vy, 2, @, b)=0.
If we set up an arbitrary relation ¢(a, ) = 0 between the two
parameters a and b, we shall have the equation of a surface S gener-
ated by the curves I' of the congruence by eliminating o and 4 from
the equations (21) and the relation ¢ = 0. All these surfaces again
satisfy, whatever may be the function ¢, the same partial differen-
tial equation of the first order. To obtain this equation we may
proceed as follows: The three equations

(22) U=0, V=0, ¢(a, 5)=0
define three implicit functions =z, a,  of the independent variables
« and y, and the last contains only ¢ and 5. Hence we have

@) B =

0.

® We suppose, in addition, that through any point of space (or of a portion of space)
there passes one of these ourves, which would not happen if they were all situated
upon the same surface.
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On the other hand, if we differentiate the first two of the equa-
tions (22) with respect to x and to y, we can derive from the result-
ing relations expressions for da/oz, 0b/ox, 8a/dy, 2b/dy in terms of
x, Y, %, p, g, a, b, and, by replacing these derivatives in the determi-
nant (23) by their values, we obtain a new relation,

@,y 20, 9q a, b =0.

‘We need only eliminate a and b from this relation and the two rela-
tions (21) in order to obtain an equation containing only =, ¥, #, p, ¢,

(24) F(z, y, 2, p, 7)=0,
which applies to all the surfaces generated by the curves of the
congruence. It is easy to show, from the very way in which this
equation has been obtained, that it breaks up into a system of linear
equations in p and ¢. The same fact results from its meaning. Let
us suppose, for definiteness, that through a point A7 of space there
pass m curves of the congruence, and let D, D,, .., D, be the m
tangents to these curves at the point M. Every surface through the
point A generated by the curves of the congruence must contain
one of the m curves of this congruence which pass through af;
hence the tangent plane at the point A must pass through one of
the straight lines D, D,, --+, D,. Let P, Q, R; be proportional
to the direction cosines of the straight line 1,. Every surface gen-
erated by the curves of the congruence must therefore satisfy one
of the m equations,

(25) E=rp+Qy—R;=0, (i=1,2,...,m)
and the left-hand side of the equation (24) is identical, except for a
factor independent of p and of ¢, with the product of the m linear
factors E,, E,,---, ,. It should be noticed also that it would be
impossible, in general, to separate these m factors analytically.

Similarly, certain problems of geometry may lead to partial differ-
ential equations of the first order which decompose into a product of
linear factors. Let us consider again, for example, the problem ot
the orthogonal trajectories to a family of surfaces whose equation
F(z, y, 2, )= 0 is of degree m in the arbitrary parameter C. To
obtain the partial differential equation of orthogonal surfaces, we
must again eliminate C between the relation ¥ = 0 and the condition

oF OF OF
Po iy %~

Through a point M of space there pass, by hypothesis, m surfaces

of the given family. Let D, D, - --, D, be the normals to these m
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surfaces, The tangent plane to an orthogonal surface through A
must contain one of these straight lines. Hence the partial differen-
tial equation decompnses into a system of m equations which are
linear in p and g.

Conversely, given any equation of this type, to each point of
space there correspond m straight lines D, D,,..., D,, and the
plane tangent to any integral surface contains one of these straight
lines. If we give the name ckaracteristic curve to every curve which,
at each of its points, is tangent to one of the corresponding m straight
lines, the reasoning employed above shows again that every integral
surface is a locus of characteristic curves. To obtain the differential
equations of these curves, we are not compelled to carry out the
decomposition of the left-hand side of the equation into linear
factors. Indeed, expressing the fact that the left-hand side is divisi-
ble by the factor Pp 4 Qg — R, we obtain equations of condition
homogeneous in P, @, R, which furnish m systems of values for the
ratios of these coefficients for each point (x, y, ). Replacing P, Q,
R in these conditions by the proportional quantities dz, dy, dz, we
obtain the differential equations of the characteristic curves, and
the integration of the partial differential equation is reduced to the
integration of a system of ordinary differential equations.

The preceding theory explains very simply how a linear equation may have
integrals which are not included in the general integral. Consider a partial
differential equation of the form

(26) F(z, v, 2, 3, q) = 0,

whose left-hand side is the product of a certain number of linear factors in p
and ¢ that are not analytically distinct, and let
(27) llh(z, Y 2, Z—z, g—:—) =0, v (z, Y, 2, %, g) =0

be the differential equations of the characteristic curves of this system. The
curves which represent the general integral of this system form a congruence,
which is the congruence of the characteristic curves of the equation (26), and
the general integral is represented by the surfaces generated by the curves of
this congruence associated according to an arbitrary law. But it may happen
that the equations (27) have singular integrals. This will happen if the con-
gruence of the characteristic curves has a focal surface (£). Then through each
point of this surface there passes a curve of the congruence of characteristica
tangent to this surface. The plane tangent to (£) contains, therefore, one of
the straight lines D; relative to the point of contact, and consequently (%) is
an integral surface of the equation (26). Moreover, it is not « member, at least
in general, of the surfaces which represent the general integral ; that is, it is &
singular integral surface.
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Consider, for example, the equation
(28) pE =) +q(ey +2Vai + i—23) =0,

which in reality is equivalent to two linear equations. We can write the
differential equations of the characteristic curves in the form

:__E =0, (y— z%)’.—_ z’[l + (%)’]

The integration is immediate, and the congruence of characteristic curves is
formed by the straight lines

z2=0C, y=Ciz+z V14 Cl,

which are parallel to the zy-plane and tangent to the cone z% 4 y% = 23. The
general integral is represented by the conoid surfaces generated by these straight
lines, and there is a singular integral, the cone itself.

The coefficient of ¢ in the equation (28) is not analytic in the neighborhood
of any point (z,, ¥y, Z,) of this cone, which confirms a previous remark (§ 75).

II. TOTAL DIFFERENTIAL EQUATIONS

78. The equation dz = Adx 4 Bdy. The existence of integrals of a
completely integrable system of total differential equations was estab-
lished in § 24. The integration of such a system reduces to the
integration of several systems of ordinary differential equations
with a single independent variable. The method, which we shall
develop only in the simplest case, is extensible to the general case.

Let the equation be

(29) dz =4 (%, y, )dz + B(x, y, #)dy,
where z is an unknown function of the two independent variables »
and y. This equation is equivalent to two distinct relations
oz 0z
(30) P =A (x, ¥, 2), 7y = B (s, y, 2).
Every integral common to these two equations satisfies also the two
new equations
Pz 04  0A Pz JdB 0B
81:3y_3—y.+_3? ’ ayaz_a:c-'--a_z-A’
and consequently the relation
04 04 9B , 0B
(31) '37+3;B—‘5;+§;A.
If this relation does not reduce to an identity, there can be no in-

tegrals of the given equation (29), except possibly one or more of the
implicit functions defined by the equation (31). Hence in this case
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we can always determine by substitution whether the equations (30)
have a common integral. On the other hand, in order that these
equations may bave an infinite number of integrals depending upon
an arbitrary constant, the relation (31) must be satisfied identically.
If it is, the equation (29) is said to be completely integrable.

In order to obtain all its integrals, let us first disregard the second
of the equations (30), and consider only the first. If we regard y
as a parameter, this equation is a differential equation of the first
order between the independent variable o and the dependent vari-
able z; hence it has an infinite number of integrals z = ¢ (x, ¥, C)
that depend upon an arbitrary constant C. We may replace this
constant C by any function «(y) of the variable y, since the expres-
sion for 0z/0x remains the same when we replace C by a function
of y. The solution of the problem therefore depends upon the deter-
mination of this function () in such a way that the derivative of
the function z = ¢[=z, ¥, u(y)] with respect to y shall be equal to
B(z, ¥, ¢). This leads to the equation

2 o¢ d
_a§+£a—;—’/=3[$, Y ¢(I, Y u)]’

or
du B[z) Y ¢(z) Y u)]_"_;
32) du_
y o¢
ou

‘We shall show that the right-hand side of this equation depends
only upon the variables ¥ and «. It is sufficient to show that the
derivative with respect to = is identically zero, that is, that we have
0p(0B  ©Bop ¢ ] P
(33) 311.(5.2: op 0x Ox ay> - [B @y #)— 3_/]311 or
From the very manner in which the function ¢(z, y, ) has been
obtained, we have the relation

(34) %L; =A(z, y, ¢),
which is satisfied for all values of x, 3, and u. It follows that we
may write
. Pp 2429,
7oy "' % 0y’
(2 3_A o
dxou  0p Ou
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Replacing 0¢/dx, P /020y, P¢/oudx by the preceding values, the
relation to be verified reduces to the form

o aB 9B 94 94 0
ou Ers oy d¢> ’

The second factor is identically zero by the condition of integra-
bility (31). The equation (32) is therefore of the form

(35) =P .

Let « = y(y, C) be the general integral of this equation, where € is
a constant independent both of « and of y. Then if we replace » by
¥ (y, ) in the function ¢ (z, y, ), we obtain the general integral of
the completely integrable equation (29), and We see that the integra-
tion of this equation reduces to the successive ‘integrations of two
ordinary differential equations (34) and (35).

Ezxample. Consider the total differential equation

(86) dz = 1F V24 2E—D),
14 zy 14 rxy

’

which is equivalent to the system

86) ez _ltpz  2z_z(z—3)
ex l4zy ey 14+ zy

The condition of inte, rability is verified, and the first of the equations (36",
which 1s linear in z and 9z/ox, has for its*general integral

z=—%+u(y)(1+1:y),

where u (y) is an arbitrary function of y. Substituting this value of z in the
second of the equations (36’), it becomes du/dy + 1/y? = 0, whence we derive
u(y) = 1/y + C. Ilence the general integral of the equation (86) is

37 z=z+ C(1+ 2p),

where (" indicates an arbitrary constant.

The preceding problem can also be interpreted geometrically.
1n order to <implify the statement, we shall again call an integral
surface any surface represented by an equation z = f(x, y), where
the function f(=x, ¥) is an integral of the equation (29). The two
conditions (30), or

p=4 (I, Y, z)r 9= B(zv Y, '):



228 - PARTIAL DIFFERENTIAL EQUATIONS [v.518

prl&u the fact that the tangent plane to the integral surface S at
a point (z, y, #) of that surface coincides with the plane P whose
equation is

(38) Z—2=AX—x)+B(Y—y),

so that the problem of the integration of the equation (29) is
equivalent to the following geometric problem :

To each point of space (x, y, z) there corresponds a plane P through
that point, which is represented by the equation (38). It is required
to find the surfaces S whose tangent plane at each point (x, y, ) is the
plane P associated with that point.

The proposition is analogous to that of § 76. But in the present
case the problem does not always have a solution. If the condition
of integrability (31) is ‘satisfied, there exists, in general, one and
only one integral of the equation (29) which takes on a given value
z, when = and y take on given values z, and y,. Through every
point in space there passes, therefore, in general, one and only one
integral surface.

Let us consider, for example, a family of skew curves T' which
depend upon two arbitrary parameters a and b, and which are rep-
resented by a systean of two equations

(39) u(z, y, 2)=q, v(r,y,2)=10
such that through every point of space (or of a region of space)
there passes one and only one curve of this family. There does not
always exist a family of surfaces § which has these curves I' for
orthogonal trajectories. In fact, the tangent plane to the surface S
passing through a point would have to coincide with the normal
plane to the curve I' passing through the same point. We are there-
fore led to a particular case of the preceding problem, which proves
that the curves of an arbitrarily assigned congruence of curves are
not, in general, the orthogonal trajectories of any family of surfaces.
The plane tangent to the surface S through the point (x, y, ) must
be perpendicular to the planes tangent to the two surfaces (39)
which pass through the tangent to the curve I Hence we have, in
rectangular codrdinates, the two conditions

ou ou ou _ ov

ov ov
azp+5;q—$—0, 'é;p+@q—5;=0.

From these equations tixe values of p and ¢ are found to be
p=A(=y, =), q = B(=, y, #),
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and the condition (31) must be satisfied identically in order that the
problem have a solution.
Let us take, for example, the family of curves
X=aZ, Y=0bZ

where X is a function of z alone, and Y and Z are respectively functions of y
alone and of z alone. The preceding method gives the following values for p
and g,

Xz Yz
==z 17" vz "

and the total differential equation can be written in the form
Zdy Xdr Ydy _

7z vt =
It is clear that this equation is completely integrable, and the general integral
is obtained by quadratures

[Lws fRas fEormc

79. Mayer’s method. The preceding method requires two successive integra-
tions. We can replace these two integrations by a single integration, as follows:
Let us suppose, for definiteness, that the coefficients 4 (z, y, z) and B(z, v, 2)
are analytic in the neighborhood of the point (z,, ¥,, z,). Then there exists one
and only one integral surface S, through the point (z,, ¥,, 2,) if the condition (31)
is satisfled. Mayer's method for obtaining this surface reduces to determin-
ing first the sections cut from that surface by the planes parallel to the z-axis
through the point (z,, ¥y, 2,). Let I’ be the intersection of 8, with the plane

(40) V=1 =m(E—2),

where m has any given value. Along this curve I' we have dy = mdz, and, replac-
ing ¥ and dy in the equation (29) by the preceding values, we obtain the relation

(41) dz= {A[z, yy+ m(z— z,), z] + mB[z, y, + m(z ~ z,), 2]} dz,

which is also satisfled along the whole length of the curve I'. Now this is &
relation containing only the two variables z and z ; that is, it is a differential
equation of the first order, the integration of which determines the curve I'. Let

(42) z2=¢(Z; Ty, Yor Zo» m)

be the integral of this equation which reduces to z, for z = z,. The curve I is
represented by the two equations (40) and (42). Since the required surface 8,
is the locus of the curves I' as the parameter m varies, the equation of this sur-
face is obtained by eliminating m from the equations (40) and (42). To accom-
plish this it is sufficient to replace m in the equation (42) by (¥ — yo)/(z — z,)-
This method presents an evident analogy with the one which has been indicated
for the integration of the total differentials P (z, v)dz + Q(z, v)dy (I, § 162).
We might generalize it still further by replacing the planes parallel to the
z-axis by cylinders passing through a given point (z,, ¥y, %,) and baving their
generators parallel to Oz.
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For example, let us again take the equation (86), and let us suppose x, = y, = 0.
Substituting y = mz, dy = mdz, that equation becomes
dz _ 2mzz | 1—mz?
dz 14 ma? 14 nad
This s a linear equation which is readily integrated, and the integral which re-
duces to z, for z = 0 has the form
z=2z+ z,(1+ mz?).

Hence the surface S, has the equation z = z + z,(1 + zy), which is the result
obtained by the first method.

80. The equation Pdx 4 Qdy 4+ Rdz = 0. The problem of the inte-
gration of a total differential equation can be put in a more general
and more symmetrical form. Let P(z, y, 2), Q(z, », 2), R (x, y, 2) be
three functions of the variables «, y, 2. To integrate the equation

43 P(z, y, 2)dz+ Q(z, y, 2)dy + R(x, y, 2)dz =0
is to find a relation F(z, y, 2) = 0 between z, y, z such that these
three variables and their differentials dz, dy, dz satisfy the given rela-
tion. If the function F contains the variable 2, we may regard = and

v in it as two independent variables and = as a function of these two
variables, and we see that that tunction must satisfy the equation

——P_8
dz = 7 dr R dy,
which is of the form (29). Replacing A by — P/R and B by — Q/R,
and carrying out the differentiations,the condition of integrability (31)
becomes

9Q @R oR or oP 0Q

w25 -5)(mw) (G —w)=e
This condition remains the same when we permute z, y, z and P, Q, R
circularly. Hence we should have obtained the same relation if, in-
stead of regarding z as the dependent variable, we had taken one of
the variables = or y for the unknown dependent variable. The prob-
lem of the integration of the equation (43), therefore, does not differ
essentially from the problem already treated; but when we write
a total differential equation in this way, it is not necessary to
specify which of the variables have been chosen as the independent
variables.

The condition (44) arises in a question which is closely connected
with the preceding. Given an expression

P(z, y)dz + Q(=z, y)dy,
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we have seen (§§ 12, 26) that there always exist an infinite number
of factors w(z, y) such that the product u(Pdz + Qdy) is the total
differential of a function of the two variables z and y. When we
pass from two to three variables, this does not remain true in general.
Let us consider, in fact, three functions, P, Q, R, of the variables
, ¥, 2. In order that the product 4 (Pdx + Qdy + Rdz) be an exact
differential, the factor w(x, y, ) must satisfy the three conditions

o(pQ) _o(pR)  9(rR) _O(pP)  (uP)_3(nQ),

oz oy oz oz oy ox
If we add these three equations, after having multiplied them by
P, @, R respectively, and then divide by u, we find again the con-
dition of integrability (44). This condition is therefore necessary
in order that the trinomial Pdz + Qdy + Rdz have an integrating
factor. It is also sufficient. For if it is satisfied, the equation (43)
is completely integrable. ILet

(45) F(x,y,2)=C
be the general integral of this equation. The values of 9z/dx and of
%z /0y derived from the equation (45) must be identical with the
values — P/R and — Q/R obtained from the equation (43), since we
can choose the arbitrary constant C' so that the integral surface
passes through any point of space. For this we must have
E_F_F_,
P Q R ’

or

dF = p(Pdx + Qdy + Rdz).
The factor u, which is equal to the common value of the preceding
ratios, is therefore an integrating fuctor. Repeating the reasoning
of § 12, we see, in a similar manuer, that there are in this case an
infinite number of integrating factors, which are of the form um (F),
where 7r is an arbitrary function.

The condition of integrability (44) is invariant with respect to every change
of variables. Consider, in fact, « transformation defined by the equations

(46) r = f(u, v, w), v = ¢ (u, v, w), 7 =y (u, v, w),
where the Jacobian of the functions f, ¢, ¥ with respect to u, v, w is not identi-
cally zero. This transformation carries the trinomial Pdz + Qdy + Rdz into an

expression of the same form, P,du + Q,dv + R,dw, where P,, Q,, R, are func-
tions of u, v, w. If now the relation (44) is satisfled, the analogous relation

A e R A C o B
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is aleo matisfled identically. We might verify this by a direct caleulation
(I, Chap. II1, Ex. 19, 2d ed.; I, Chap. II, Ex. 19, 1st ed.), but it also results
fromy the meaning of the condition. In fact, if the relation (44) is satisfied,
thers exist two functions x(z, v, z) and F(z, v, 2) such that

#(Pdz 4+ Qdy + Rdz) =

I we carry out the change of variables defined by the equations (46), the
funections « and F change into two functions u,(u, v, w), F;(y, v, w) of the new
variables, and we have identically d¥ = dF,. Hence the preceding identity

becomes
# (Pydu + Q,dv + R, dw) = dF,,

and the trinomial P, du + Q,dv + R, dw has an integrating factor. This shows
that Py, Q,, R, satisfy also the relation (47).

This remark enables us to present the method of integration of § 78 under &
more general form. For let us suppose that the trinomial Pdz + Qdy + Rdz has
been converted by a transfcrmation into a binomial of the form P, au + Q,dv,
containing now only two differentials du and dv. IT the relation (47) we must
suppose R, = 0,and that relation reduces to

8Q| =Q aP,

which shows that the ratio of the two coefficients P, and Q, is independent of
w. The integration of the given total differential equation is therefore reduced
to the integration of an equation of the form dv + = (u, v)du = 0, that is, to an
ordinary differential equation.

Every trinomial Pdz + Qdy + Rdz can be reduced to a binomial P, du+ Q, dv
in sn infinite number of ways. For example, we can proceed as follows: We
determine first two functions, u(z, ¥, z) and F(z, y, z), such that, whatever dz
and dy may be,

oF

a¢ di¢+—dll '_F[P(zv Y, z)d.‘t-}-Q(Z, Y z)dy]

This amounts in reality to integrating the differential equation Pdz + Qdy =0,
regarding z as a parameter. Again, we may write the preceding equation in
the form

dF + (,.R - aa—z dz = u(Pdz + Qdy + Rdz).

Then if we select a new system of independent variables, of which F(z, v, 2)
and z are two, we see that Pdz + Qdy + Rdz is actually replaced by an expres-
sion in which there appear only the two differentials dF and dz. This procedure
can be varied in many ways. It is clear, for example, that we can begin by
integrating either of the two equations

Qdy + Rdz=0, Pdz+ Rdz=0;

this last method is in reality identical with the method of § 78.
We can also connect with the preceding remark an elegant method due to
Joseph Bertrand. Assuming that the equation (48) is completely integrable,
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let us begin by integrating the linear partial differential equation
2Q _oR\of P @

wxn= (L (R (-9 o

(48) X(N=(3, w2\ %
Let u and v be two independent integrals of this equation. If between the two
relations

Xu=0 X@w=
and the condition of integrability (44) we eliminate the three differences
2Q @R 2R _o2P 2P _2Q

Y —— —_——— —_——

%z oy o= oz oy o=
we obtain the equality

ou ou du
ox oy oz
2v 20 2vi=o.
ox oy oz
P Q R
There exist, therefore, two functions A\ and u for Which we have
ou ov ou ov du ov
49 P=\= - =A== - R=2>- g
(49) atra TGty zt'a

and we can write the given equation in the form
Adu + pdv = 0.

Now we have seen that the ratio A/u can depend only upon the variables u and
v; hence this equation is a differential equation in u and ».

This method appears to be more complicated than the preceding, since the
integration of the equation (48) requires first the integration of a system of two
differential equations of the first order. But it is more symmetric, and it may
be preferable if the given equation is itself symmetric in z, ¥, and z.

Consider, for example, the equation

WP+ yz+28)de+ 23+ zz + 2¥)dy + (22 + 2y + y?)dz = 0.
The condition (44) is satisfied, and the linear equation (48) ia here
of
oz

e-nZ+e-nZ+a-aZ=0

The corresponding system of differential equations,
dz dy dz

Z2—y T—2z2 Y—2

gives easily the two integrable combinations
diz+y+2)=0, zdz + ydy + 2dz=0.

Hence we may take
u=z+y+2 v=a% 4+ 92 + 2%,

and the values of the factors A and u derived from the equations (49) are
ul 4 v —_z+yt+z__u

N - ——— T e

A=Ay b= 2 2
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The transformed equation in % and v is therefore
(u? + v)du — udv =0,

or
dy = g0 —vdu _ d('l).
ul u
It follows that the general integral is « — v/u = C, or, returning to the vari-
ables z, y, 2, Wzt _

z+y+z

81. The parenthesis (u, v) and the bracket [u, v]. Any total differ-
ential equation is really equivalent to two simultaneous equations

p=A(z,y, 2), q = B(=, y, 2).
Let us now consider any two equations,

(50) F(z, 9,2, p) ?) =0, ®(x, y, 2,0, 9)=0,
in the two independent variables = and y, the unknown dependent
function =z, and its two partial derivatives p and gq.

If we can solve these two equations for p and ¢, we obtain two
equations, p = f(=, ¥, 2), ¢ = (<, ¥, 2), of a form which has already
been studied, and it will be possible to determine whether these two
relations are compatible. But we can determine whether the condi-
tion of integrability is satisfied without first solving the equations
(50) for p and g. We have only to apply the rules for the calcula-
tion of the derivatives of implicit functions. Let us consider, in fact,
the relations (50) as defining two implicit functions, p = f(z, ¥, 2),
g = ¢ (=, y, 2), of the three independent variables z, , z. Differen-
tiating with respect to x, we find

OF 0Fdp ¢Fdq _ =0, °® B<b3p+§ib?_<l=0
ox | Op ox ' dg ox 9x " 9p 0x ' oq ox ’

and consequently
D(F,®) 0 oq D(F,®) _

D(p,q) ox + D(p, x) =0.

Similarly, we have
D(R®) op , D(F®)_,  D(FE®) 2  DF® _,
D(py9) % D 9) D(p, q) 3z D(z, )]
D(F,@}@_q+ D(R®) _
D(p,q) 02  D(p,2)
Substituting the values of dp/dy, dp/oz, 8q/dx, dq/0z in the cop-
dition of integrability

% %, _2%, %
8y+ q az"" V)
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that condition becomes, after development,

oF (0@ 0%\ A OF (0% o®
(ot 2) Y o (5 T 1)
0® (OF 6F\ 0®(0F oF
~HE %) G rem) =0
In general, if » and v are any functions of z, y, z, p, ¢, we shall set
d _ 0 Ui d 0 Ui

iz PR ay oyt i%
dudv ©Ovdu Oudv dvdu

and we shall call the expression [u, v] a bracket. The preceding
condition can then be written in an abridged form,

(51) [F. ®]=0.

In order that the two equations (50) shall form a completely inte-
grable system, it must first be possible to solve them for p and ¢;
that is, it must not be possible to derive from them a relation
between z, y, z independent of p and of ¢; and, further, the con-
dition [F, ®] = 0 must be a consequence of the two relations (50).
If the bracket [F, ®] is identically zero, the two equations F = a,
& = b form a completely integrable system for any values of the
constants ¢ and &. If the relation [F, ®] = 0 is a consequence of the
single equation F = 0, independently of the second equation & = 0,
the two equations F = 0, ® = b form a completely integrable system
for any value of the constant b.

If the two functions F and ¢ do not contain z, the expression for
the bracket [F, ®] is simplified. The following expression, where
and v are any functions of z, y, p, ¢,

onwodv Ovow Oudv Ovou

is called the parentlesis (u, v). The condition that the two equations
Fryup, 0)=0, &= %p9)=0
be compatible is, by what precedes, that the equation
(F,®)=0

shall be satisfied, either identically or as a comsequence of the
relations F = 0 and ® = 0 themselves.
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III. EQUATIONS OF THE FIRST ORDER IN THREE
VARIABLES

83. Complete integrals. We shall now consider the integration of
a ial differential equation of the first order, of any form what-
ever but with only two independent variables, and we shall first
present some very important results obtained by Lagrange. Let

(52) F(, 9, %p9) =0
be the given equation. The fundamental result obtained by Lagrange
is the following: If we know a family of integrals which depend
upon two arbitrary parameters, we can derive all the other integrals
from them by differentiations and eliminations. Let

(53) V(z, 9,2 a,0)=0
be a relation which contains two arbitrary constants a and 4, and
which defines an integral of the equation (62) for any values of
those constants. The values of the partial derivatives p and ¢ of
that integral are given by the equations

oV ov ov ov

(64) -a::-+p-5;=0, -é-y—+q-5z—=0.

By hypothesis, the function 2z always satisfies the equation (52) for
any values of @ and 4; hence the elimination of the two parame-
ters @ and b from the three relations (63) and (54) will lead to the
equation (52) and to that one only.*

‘We shall now show that this equation (52) expresses the neces-
sary and sufficient condition that the three equations (53) and (54)
be satisfied by a system of three functions 2, a, b of the two varia-
bles z and y, where p and ¢ denote the partial derivatives of z with
respect to « and y respectively. When this has been proved, it will
be evident that the problem of integrating the single equation (52)
is equivalent to the following problem: Zo find three functions z, a,
b of the two independent variables x and y which satisfy the three
equations (53) and (54).

If 2 = fi(x, ¥), a = fy(x, ¥), b = fy(x, y) form a system of solutions
of these three equations, the function f,(x, y) also satisfies the
equation (52), which is a consequence of these three relations.

# In fact, if the elimination of a and b led to another relation & (z, v, 2, p, ) =0
different from F'=0, the two simultaneous equations F =0, & =0 would have a com-
mon integral V=0 depending upon two arbitrary parameters ¢ and b, which is
impossible (§ 78). The given integral would therefore depend in reality upon only a
single parameter.
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Conversely, if fi(z, y) is an integral of the equation (52), the
three equations (53) and (54) are consistent when we replace =
by f,(x, ¥), and p and ¢ by the partial derivatives of f;(#, ). Hence
we can derive from them as values for @ and  two other funetions
a=f(z, ¥), b=/f,(z, y), which form with f (z, y) a system of
solutions of the equations (563) and (54).

The new problem, although apparently more complicated than the
original, is easily solved. In fact, if we differentiate the relation
(63) with respect to « and to y, regarding now ¢, a, b as unknown
functions of = and y, the relations obtained reduce, by (54), to the
two equations

oV ada , OV 0b oVada A 0V b
o=t B daoytwoy~
and the system formed by the equations (53) and (55) is equivalent
to the system formed by the equations (53) and (54).

‘We see at once that this system is satisfied by taking for the un-
known functions @ and  any two constants. This gives as the value
of z the integral already known, which Lagrange called the complete
integral. In order to treat the problem in a general way, let us
observe that the equations (55) are linear and homogeneous in
0V /da, 0V /0b. Hence the three equations (53) and (55) are satisfied
if we set

(56) V=0,

(55) 0,

ov ov

T = 0, = 0.

If these three equations are consistent, they define three functions

2, a, b of the two variables x and y. This gives an integral z = f,(x, 3)

of the equation (52) which does not depend upon auny arbitrary

parameter, and which is commonly called the singular integral.
If 6V /0a and 0V/0b are not zero simultaneously, the equations

(65) give D(a,8) _ o

D(z,y)

which proves that there exists between the functions a and b at least
one relation independent of x and of y. If there exist two relations
of that kind, @ and & reduce to constants, which gives again the com-
plete integral. If there exists only one relation between « and b, at
least one of the functions @ and & does not reduce to a constant.
Assuming that @ is not constant, we can write the relation between
a and b in the form

67 b= ¢(a),
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and the two equations (55) become
dafoV A 3V da[oV A oV
a[a—a' + ¢'(a)] =0, 5-!;[% +% ¢'(a)]= 0.

Since « is not a constant by hypothesis, these two relations reduce
to a single relation, and the three equations

v 0o
%8 V(z, v, 2 ab)=0, b= ¢(a), e + -a—blf¢'(a)= 0

define a new system of solutions of the equations (53) and (54). In
particular, the function 2z = f(z, y) defined by (58) is an integral of
the given equation (52). It is evident that this integral depends upon
the arbitrary function ¢ (a). We shall call it the general integral.
In order to obtain the relation between xz, y, z, the arbitrary
parameter @ must be eliminated from the two equations

0 0
(b68) Vz, y, 2 a ¢(a)]=0, Eg + TZI) ¢'(a)=0.

This elimination can be made only after the function ¢ (a) has been
chosen, but the equations (58') always enable us to express two of
the coordinates of a point of an integral surface as functions of a
third coordinate and of a parameter a.

The preceding method is related in a very simple way to the
theory of the surface envelopes. Consider, in fact, the family of sur-
faces S which represent the complete integral (53) and which depend
upon two constants ¢ and . If we choose an arbitrary relation of
the form b = ¢ (a) between the two parameters @ and b, we obtain a
family of surfaces which depend upon only one parameter a, and the
envelope of this family of surfaces is obtained precisely Ly eliminat-
ing a from the two equations (58"). The process by which we deduce
the general integral from the complete integral consists, therefore, in
taking the envelope of a one-parameter family of complete integrals
obtained by choosing an arbitrary relation between the two param-
eters a and b. Similarly, the singular integral is obtained by taking
the envelope of all the complete integrals, as the two parameters a
and b vary independently * (T, § 212, 2d ed.; § 220, 1sted.).

* We have seen above (§ 71) that all considerations founded on the theory of
envelopes in the study of differential equations are quite troublesome. All the diffi-
culties pointed out in the study of the singular solutions of an ordinary differential
equation of the first order arise again for partial differential equations of the first
order. The final conclusion is just as before* a partial differential equation of the
first order, given a priorl, does not normally have any singular integrals. This
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It would seem from what precedes that we ought to distinguish
three categories of integrals: the complete integral, the general inte-
gral, and the singular integral. But Lagrange’s theory itself shows
that there exist an infinite number of complete integrals. Indeed,
if we establish between the two parameters ¢ and b a relation of a
definite form b = 7 (a, a', ¥"), containing two constants a' and &', the
corresponding general integral will depend upon these two constants
a', V', and may be considered as a new complete integral. The
original complete integral will now be included in the general inte-
gral, and will correspond to the relation § = m(a, a', ") established
between the two parameters e’ and &'. There is, therefore, no essential
distinction between the general integral and the complete integral. On
the contrary, the singular integral, as can be seen from its geometric
meaning, does not depend upon the choice of the complete integral.

Ezxample 1. Consider the generalized Clairaut’s equation

z=pz+ g9y +f(p 9
It is easily seen that it has a complete integral of the form

2 = ax + by + f(a, D).
This complete integral is represented by a family of planes which de-
pend upon two arbitrary parameters ¢ and . These planes envelop
a non-developable surface 3, which is the singular integral surface of
the given equation. In order to obtain the general integral, we must
choose an arbitrary relation between a and b, say b = ¢(a), and we
must find the envelupe of the planes thus obtained. This envelope,
which is represented by the two equations

or

e=az+ @+ 0 $@) = +yd @)+ L+t 4(2)=0,

e ®
is a developable surface tangent to the surface X all along a curve I.
It is evident that we can choose the arbitrary function ¢(a) in such
a way that the curve of contact I shall be any preassigned curve on 3,
Kxample 2. Consider the equation
7 =1(»),

of which a complete integral is
z=ax + f(a)y + 5.

conclusion does not contradict the reasoning of the text, for we have assumed that
we can apply the theory of implicit functions to the system of three equations (56),
and the conclusions are correct only when that condition is satisfied. (See the paper
by Darboux, Sur les solutions singuliéres des équations auz dérivées partielles du
premier ordre (Mémoires des Savants étrangers, Vol. XXVII).)
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Thisiequation represents a plane, and the general integral, which is
giver by the system of two equations

®9) r=az+xf@)+d@), 0=z+y'@)+¢'@)
is represented by developable surfaces, which can be defined geomet-
rically in a very simple way. Draw through a fixed point of space
(for example, the origin) the planes parallel to the planes which form
the complete integral ; these planes depend only upon the parameter
a, and consequently envelop a cone (7)) whose vertex is at the origin.
It follows that the edge of regression of the developable surface (59)
has its osculating plane constantly parallel to a tangent plane of the
cone (T). Henoce the generators of this surface are parallel to the gen-
erators of the cone just mentioned (I, § 227, 2d ed.; § 224, 1st ed.).

The equations (56), which determine the singular integral, are in
this case inconsistent, for the last reduces to 1 = 0. There is there-
fore no singular integral.

Kxample 3. Consider a family of spheres with a given radius R,
whose centers remain in a fixed plane. These spheres depend upon
two arbitrary parameters, and if we take a system of rectangular
axes with the fixed plane for the zy-plane, they are represented by

the equation (@ —a)' +(y — by 4+ £ — B* = 0.
The corresponding partial differential equation is obtained by elimi-
nating a and & from this equation and the following two,

x—a+pz=0, y—b+ gz =0,
which gives the equation

(1 +P’+ q’)z’ — R3=0.

Geometrically this equation expresses the fact that the portion of
the normal included between any point of the surface and the xy-
plane is constant and equal to R. The general integral is a tubular
surface, the envelope of a sphere of radius R whose center describes
an arbitrary curve in the xy-plane. There is a singular integral
surface formed by the two planes = == R. It is evident that these
two planes are tangent to all the other integral surfaces.

83. Lagrange and Charpit’s method. To sum up the preceding, in
order to determine all the integrals of an equation of the first order,
(60) F(z, y, 2, p, 9) = 0,
it is sufficient to know a complete integral, that is, an integral depend-
ing upon two arbitrary constants. In order to determine a complete
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integral, let us suppose that, by any means whatever, we have
obtained another function ®(z, y, z, p, ¢) such that the two equations

(61) F=0, ®=a

can be solved for p and g, and form a completely integrable system,
for any value of the constant @. If this is the case, then by solving
the two preceding equations for p and ¢, and substituting these
values of p and ¢ in the equation dz = pdx + ¢dy, we obtain a com-
pletely integrable total differential equation

(62) dz = f(z, ¥, 2, a)dz + ¢ (2, ¥, 2, a)dy.

The integration of this equation introduces a new arbitrary constant
b,and in this way we obtain an integral of the given equation which
depends upon the two arbitrary constants e and &.

Lagrange and Charpit’s method of integration consists precisely
in adjoining to the equation F = 0 another equation ¢ = a such that
the system (61) formed by these two equations is completely inte-
grable. For this it is necessary and sufficient (§ 81) that [F, @] =0,
that is, that

o o® oo o® od
(63) P-a;‘-FQ-a-!; +(Pp +Qq)Z—(-"+pz)§’j—(l’+92)a=0,

where, for brevity, we have set

oF oF oF OF oF
X—'a-;: Y—'g;, Z—'a—z‘; P—'a;) Q—-a;-
The auxiliary function & (z, ¥, 2, p, ¢) must therefore satisfy a linear
partial differential equation in five independent variables. The inte-
gration of this linear equation reduces in turn to that of the system
of ordinary differential equations
(64) .Qf:gﬂ:.)_.iz___-_._-:_d&.___ —dg .
P Q PrPe+Q X+4+pZ Y+9Z
But, for the purpose which we have in view, it is not necessary to
find the general integral of this system (64); it is sufficient to know
one first integral ® = a of this system, such that we can solve the
two equations F = 0, & = a for p and g¢.
‘We can therefore state the following general rule:

To obtain a complete integral of the equation (60), we first find one
first integral ® = a of the auzxiliary system (64) for which the Jaco-
bian D(F, ®)/D(p, q) 18 not zero ; then we solve the two equations
F=0,®=a for p and q. Substituting the expressions obtained for
p and ¢ in the equation dz = pdx + gdy, we obtain a completely
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integrable total differential equation. The general integral of this
equation contains a second arbitrary constant b, and is a complete inte-
gral of the equation (60).

We know in advance one integral of the equation (63); that is, the
funetion F itself. This integral cannot be used directly, but the
knowledge of it reduces the integration of the system (64) to the inte-
gration of a system of three differential equations of the first order.
The precise nature of the problem to be solved is thus made clear.

When the function F does not depend upon the unknown function
#, we may also suppose that the function ® does not depend upon z,
and the condition that the system (61) be completely integrable
is then

(F,®)=0,
or
o® . 0@ 0P o®
’ — —_—— —_—— —_— =
(63" P3x+Q3y Xap Yag 0.
Hence the auxiliary system (64) takes the form
de _dy —dp —dg
i = =L - = .
(64 ) P Q X Y
If we know a first integral ® = a of this system for which
D(F, ®)
D(ps 9)

is not zero, we are led to a total differential equation of the form
dz =f(z, y, a)dx + ¢ (=, ¥, a)dy,

which is integrable by a quadrature. The difficulty of the second
part of the problem is therefore diminished in this case. This is also
true of the first part, for we know a first integral F = C of the sys-
tem (64'); we can therefore replace this system by a system of two
differential equations of the first order.

Ezample 1. Let us consider an equation containing only one of the three
variables z, y, z (for example, the variable y) :

F(y, p, q)=0.

In this case X = Z = 0, and the equations (84) give the integrable combination
dp = 0. Hence the two equations F(y, p, ¢) = 0, p = a form a completely inte-
grable system, as is easily verified. For if we solve the given equation for g,
the total differential equation to be integrated takes the form

dz = adz + f(y, a)dy.
Hence we obtain a complete integral by a quadrature :

z=az+ff(u.a)dy+b.
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Ezample 2. An equation of the form F(z, p, ¢) =0 can be reduced to the
preceding form by taking y and z for the independent variables, but we can dis-
pense with this change of variables. For in this case we have X = Y = 0, and
the equations (64) give i dg

» g
whence a first integral is ¢ = ap. From the two equations

g=ap, F(z,p,9=0
we then derive
y4 =f(zl a’)l q= a.f(z. a)l

and the total differential equation
dz = f(z, @) (dz + ady)
can be integrated by a quadrature :

dz
ff_(z, a)_:c+ay+b. )

Consider, for example, the equation pg — z = 0. Adjoiniug to it the equation
g = ap, we derive from them

p=d§, =a\/§, dz=\/3(dz+ady);

hence a complete integral is given by the equation
4daz = (z + ay + b)?,

which represents a family of parabolic cylinders tangent to the zy-plane along

the entire length of . generator. The ry-plane represents a singular integral.
The equations (64), in the case where F' = pg — z, have also the first integral

p —y =a. Starting with tlus integral, we are led to the total differential

equation zdy

v+a

dz = (y + a)dz +

which can also be written in the form

dz:d( z )
v+a

This furnishes a new complete integral z = (y + a) (z + b), which represents a
family of hyperbolic paraboloids tangent to the zy-plane.

Erample 3. Let the equation be of the form f(x, p) — f; (v, ¢) = 0. The dif-
ferential equations (64")

de _ dy _—dp _dg
of _dh o4
ap oq oz oy

have the first integral f(z, p) = a. If we adjoin this equation to the given equa-~
tion, we derive from the two relations
S, p)=a Sfilv,a)=a,

the values for p and g, p = ¢ (2, a), ¢ = ¢,(v, a), and the total differential

eguation
dz = ¢ (z, u)d: + ¢1(71 G)dv
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can be integrated by two quadratures as follows :

2= [o@ 0+ [ 410y )y +b.

When an equation of the first order is of the preceding form, we say that
the variables are separaled. For example, let us consider the equation

pg—zy =0,
which can be written in the form
P_Y,
z ¢

Equating these two guotients to a constant a, we obtain the total differential

equation
dz = axdz + gdyy

whence a complete integral is
_ ax3 V’ + b
=gt t™
Ezample 4. Let us propose to find the functions F'(z, ¥, p, ¢) for which the
equations (64) have the first integral py — gz = a. For this it is necessary and
sufficient that the relation pdy + ydp — gdz — zdg = 0 shall be a consequence

of the relations (647) ; that is, that the function F shall itself be an integral of

the linear equation
oF _ oF | oF_ oF_,

+z—
P Ve T T T
The corresponding system of differential equations

has the three first integrals
2+y=0C, p+¢?=C, pr—qz=20C"

and the function F is therefore of the form F(py — gz, 2% + y3, p? + ¢%). The
investigation of the equation F = 0 for a complete integral is therefore reduced
to the integration of two simultaneous equations of the form

P+ =r@+yhpy—gqz), pv—gz=a.
Making use of the identity
(9? + 9% (2% + ¥*) = (py — ¢2)® + (PZ + )3,
we derive from the two preceding equations

pz+ gy =V (2 + 13) f(2® + 1, @) — a3 = ¢ (2 + 33, a).
Solving for p and ¢, we obtain the values
p=av+z¢;(=’+v’, a -ty +yha)
z* + y* 2t +92
whence we obtain a complete integral by a quadrature,

=—amt&n(§) +f¢—(;ﬁui)du+b,
where u = 29 4 2.
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1t is sometimes possible to find a priorl, by geometrie considerations, certain
integrable combinations of the differential equations (64). Suppose, for exam-
ple, that we wish to find the surfaces 8 whose tangent plane ai any point M
meets at & constant angle V' the plane passing through M and Oz. It is clear
that if & surface S satisfies this condition, all the surfaces obtained from it by
a helicoidal movement around the z-axis, for which the pitch of the helix is
equal to A, will also satisfy the condition. Hence the surface envelope Z will
also be an integral of the same equation. This envelope T is evidently &
helicoidal surface of pitch 2. Since we may translate it any distance what-
ever parallel to the z-axis, it follows that the partial differential equation of
the problem and the partial differential equation of the helicoidal surfaces
py — gz = a (§ 72) have, for any value of a, an infinite number of common
integrals which depend upon an arbitrary constant. Consequently the differ-
ential equations (64) corresponding to the partial differential equation of the
surfaces S have a first integral py — gz = a, and the complete integral can be
obtained by a quadrature.

Note. It should be noticed that it is not necessary that the relation (63)
shall be identically satisfied in order that the system (61) be completely inte-
grable ; it is sufficient that it be satisfied by virtue of the relation F =0 itself,
We can sometimes make use of this fact in the search for the function ¢. In
fact, the problem of finding an integrable combination of the equations (64)
reduces essentially to that of finding five functions Azy Ay Asy Apy Ag of the
variables z, ¥, 2z, p, ¢ such that

Aedr + Ny + Nz + Npdp + Mg
shall be an exact differential d$ and such that we have also

Phe+ Q0+ (Pp+ Q)M — (X 4 DZ) N — (Y + qZ) N3 = 0.

If this last equation is not satisfled except by virtue of the equation F = 0, the
function @ is not, properly speaking, a first integral of the system (64). How-
ever, since the multipliers A, A, - - - are equal to the partial derivatives of ®,
the two equations F = 0, & = a still form a completely integrable system, for
the equation (68) is then a consequence of F = 0.* A similar remark applies to
the sytem (64').

# When the equation F'=0 can be solved for one of the variables z, ¥, 2, p, q, We
may suppose that the function @ does not contain that variable, and it will also not
appear in any of the coefticients X, ¥, Z, P, Q. For definiteness, let us take an equa-

tion of the form p+/(@, Y, 2, ) =0.

To find a complete integral, we need only adjoin another equation ¢ (2, ¥, 2, Q)=a,
which forms with the first a completely integrable system In this case the condition
[p +/, $]=0 takes the form
2,228, (,2 )2 (& AR
astog oy \%5g 7)o oyt 92z) 2"
In which the letter p does not appear.
More generally, let us suppose that we can satisfy the relation F'=0 by putting

p=f(z ¥, 2N, g¢=0¢(Ey, 2N,
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84. Cauchy’s problem. Given an equation

(65) 2=f(=y = 9
in which the right-hand side is analytic in the neighborhood of a
system of values (z,, ¥,, 2, ¢,), and a function ¢(y) analytic in
the neighborhood of the point y,, such that we have ¢(y) =2,
¢'(y,) = 4, We proved in § 25 that this equation has an analytic
integral in the neighborhood of the point (z,, ¥,) which reduces to
the given function ¢(y) for 2 = z,. Let C be the plane curve rep-
resented by the two equations z = z,, 2 = ¢(y). Geometrically this
result may be stated as follows: There exists one and only one ana-
lytic integral surface of the equation (65) passing through the curve C.

This proposition is capable of generalization. Let us first consider
an equation of any form,

(66) F(a-’ Y % P Q) =0,

and let us propose to determine an integral surface passing through
a plane curve, such as C, which lies in a plane z = =z, parallel to the
yz-plane. Let 2z = ¢ (y) be the equation of the cylinder which pro-
jects C upon the yz-plane. Since the function ¢ is analytic in the
neighborhood of the point y,, the equation

(67) F(zyy Yoy 20 Py q,) = 0,
where 2, = ¢ (¥,), ¢, = ¢'(%,) and where we regard p as the unknown,
has a certain number of roots. Let p, be one of them. If the func-
tion F is analytic in the neighborhood of the system of values (x,,
Yor %y Por 9,), and if also the partial derivative (0F/dp), is not zero
for this system of values, the equation (66) has a root p = f(z, ¥, 2, ¢)
which is analytic in the neighborhood of the system of values (z,, y,
z, q,) (I, § 193, 2d ed.; § 187, 1st ed.). Hence we are led back to
an equation of the form (65), which shows that the equation (66)
possesscs an integral surface through C. As a matter of fact, the
reasoning proves that this equation has m integral surfaces which
satisfy the conditions if the equation (67) is of degree m with
respect to p. There is no possible ¢xception unless one of the roots

where \ denotes an auxiliary parameter. We need only replace A by a function of
Z, ¥, z such that the equation dz=fdz + ¢ dy is completely integrable, which again
leads to a linear equation for A (z, y, 2):

UL U 2) 08 20, 20 21, 01
afa:”'*ax a;,*az’f‘ a:*a:ﬂ oA (az+az‘f)'

(ANTOMARI, Bulletin de lu Soctété Mathématique, Vol. XIX, p. 154.)
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of the equation (67) satisfies also the relation F/dp = 0 at all the
points of C, since z,, y,, 2, are the cosrdinates of any point of
this curve.

Let us consider finally any curve T, represented by a system of
two equations

(68) z=A@y), =z=pQ)
and let it be required to determine an integral surface of the equa-
tion (66) which passes through I. “This problem, in turn, can be
reduced to the preceding by means of a change of variables; for if

we put z=X+A(Y), y=1%,
the relation dz = pdz + ¢dy becomes
dz = pdX +pN(Y)dY + ¢ d¥,

and from this we derive

. 0z
—87[’ p)t(Y)-f-q:a—Y

The equation (66) is then replaced by the equation

(66") F[X+).(Y), Y, z, ;: :; A’(Y)ax]

and it remains to find an integral of this new equation which
reduces to u(Y) for X = 0. Hence we see that in general an inte-
gral surface of an equation of the first order is determined if we
ussign a curve lying on that surface. There may be several integral
surfaces satisfying this condition if the equation similar to (67) has
several distinet roots, just as an ordinary differential equation of the
first order and of degree m in ' has in general m integral curves
passing through a given point. We shall return later to the excep-
tional case in which this reasoning fails.

The problem of determining an integral surface of a partial differ-
ential equation of the first order through a given curve has been
called Cauchy’s problem. This name is used to remind us of the
close relation just explained existing between this problem and
Cauchy’s general theory. We shall now show how Cauchy’s problem
can be solved by an elimination if we know a complete integral, and
this will furnish also a verification of the preceding results.

Let

0,

V(z,y,2 ab)=0

be a complete integral, and let T be a given curve not situated upon
the singular integral surface nor upon one of the integral surfaces
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obtained by giving to o and to b constant values. Cauchy’s problem
reduces to determining the function ¢ (@) in such a way that the given
curve I' shall lie upon the surface S defined by the two equations
ov oV
(89) V[=z w2 a ¢(a)]=0, Pa + m“—) ¢'(a)=0.
Let us suppose that the codrdinates z, y, # of a point of I' are
expressed as functions of an auxiliary parameter A,

(70) z=fA) y=LQ) 2=£0)
and let U(A, a, ) be the result obtained by replacing =, y, # in
V(=, y, 2, a, b) by the preceding expressions. The two simultaneous
equations

@ UD e e@I=0 G+ #(@=0

determine the values of A and a which correspond to the points of
intersection of the curve I' with the surface S. If the surface S
passes through the curve T, these two equations form an indeter-
minate system. Hence, eliminating A from these two equations, we
obtain an identity. This elimination leads to a relation between a,
¢ (a), $'(2),
(72) I [a, ¢(a), ¢'(a)]= 0,
that is, to a differential equation of the first order for the determire
tion of ¢(a). It would seem, therefore, that the problem has an
infinite number of solutions, contrary to Cauchy’s result. But it is
easy to deduce from the equations (71) another relation not contain-
ing ¢'(a). In fact, let us suppose that the curve I' lies entirely on
the surface S. When a point moves on T, « is a function of A which
satisfies the two equations (71) simultaneously. Hence, if we differ-
entiate the first of these two equations with respect to A, it follows
from this result and the second that
oU
(73) e 0.

This equation contains only A, a, ¢ (). Eliminating A from the two
equations U = 0, 9U /oA = 0, we obtain an equation which determines
the function ¢ (a). The method to which we are led has an evident
geometric meaning. In fact, the equation U(A, a, b)) = 0 determines
the values of A which correspond to the points of intersection of the
curve I' with the complete integral. If we also have 0U /oA = 0, this
equation has a double root, and the complete integral is tangent to I
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Eliminating A from the two equations U(}, e, 8)=0, U /oA = 0,
the condition obtained, ®(a, 5) = 0, therefore expresses the fact that
the complete integral is tangent to T, and the desired integral surface
through T may be defined as the envelope of the complete integral
surfaces tangent to the curve T. This result is geometrically almost
intuitive.*

85. Characteristic curves. Cauchy's method. Cauchy’s method is
independent of the theory of the complete integral. We shall now
present it in a geometric form. For this purpose, let us first consider
the meaning of a non-linear partial differential equation

(L) F@, 9 %p, 9)=0.

This equation may be regarded as a relation between the direc-
tion cosines of the tangent plane to an integral surface S through a
given point (z, y, ) of space. Hence this tangent plane cannot be
any plane passing through the point (z, y, z). Since the possible
tangent planes form only a one-parameter family, they envelop in
general a cone (7") whose vertex is the pownt (a, ¥, 2). It follows
that the tangent plane at any point M of space to each integral surface
S passing through this point is also tangent to a certain cone (T)
whose vertex is at M.

The cone (7)) depends, of course, upon the function F, and also
upon the position of its vertex. In order to obtain the equation of
the cone (7)) whose vertex is (x, y, 2), we must, by its definition,
find the envelope of the planes

(76) Z—z=pX—2)+9(Y—y),

where the parameters p and ¢ are connected by the relation (74). We
must therefore eliminate p and ¢ from these two equations and the
new relation (I, note, § 208, 2d ed.; § 202, 1st ed.)

(76) Y —1w) £ or

—x-—nE=o

)
op oq

* It is easy to obtain the general mtegral of the differential equation (72). In fact,
if we replace \ by an arbitrary constant Ao, the function ¢ (a) defined by the equation
(e v [XOI a ¢ (d)] =0,
also satisfies the equation
U, U 4 (a)=o0.

) oa 0¢ (a)
Hence ¢ (a) satisfies also the equation obtained by eliminating Ao from (e) and (¢,
but the resulting equation is exactly the equation (72). The relation (e) therefore
represents the general integral of the equation (72). There is also & singular inte-
gral, which is indeed precisely the desired solution of the given problem.
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The two equations (75) and (76) represent the characteristic direc-
tion, that is, the generator of the cone (") which is the line of con-
tact of the tangent plane. If we suppose that the axes of codrdinates
are rectangular, we can obtain immediately the equation of the
normal cone (&), which is generated by the normals to the different
integral surfaces passing through the point M. For, since the equa-
tions of the normals are

X—z+p(Z—2)=0, Y—y+4+9(Z—2)=0,

the elimination of » and ¢ gives the equation of the cone (&) in
the form

¢4)) F(z,y, z,—‘;_:s—g_::):().

If the given equation (74) is linear in p and ¢, the cone (N) is a
plane and the cone (7' reduces to a straight line A. We have seen
(§ 76) that the integration reduces in this case to the search for the
curves which are tangent in each of their points to the correspond-
ing straight line A. We are led to Cauchy’s method by extending
this process to non-linear equations.

Let S be an integral surface represented by the equation

z=f(z, y)-
At each point M of this surface the tangent plane is also tangent
to the cone (7) along a generator (G). We shall give the name char-
acteristic curve to every curve C of the surface S which is tangent
in each of its points to the corresponding generator G. Through
each point of § (excepting the singular points, if there are any)
there passes one and only one curve of this kind. The name ckarac-
teristic curves will be justified later (§ 86).

The key to Cauchy’s method is that we can determine these curves
by a system of ordinary differential equations without knowing the
function f(z, ¥). In the first place, the tangent to the curve C coin-
cides with the straight line &' represented by the two equations (75)
and (76), which may be written in the form

X—2_ Y—y Z-—=z
P Q  Pp+@
in the notation of § 83. Along a characteristic curve z, ¥, 2, p, ¢
are functions of a single independent variable, and we may write the
relations between the differentials dr, dy, dz in the form
dn_dy _ _ds
P Q Pp+Qg

(78) = du,
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where « is a conventional auxiliary variable which is introduced
merely for symmetry. Along this curve C we have also

dp = rde + sdy, dq = sdz + tdy,

where 7, s, ¢ are the usual second derivatives of the function f(z, y).
On the other hand, since z = f(x, y) is an integral of the given
equation (74), the partial derivatives r, s, ¢ also satisfy the two
relations

X+pZ+Pr+ Qs =0, Y+4+9Z+Ps+ Qt =0,

which are obtained by differentiating (74) with respect to = and
with respect to . Replacing the differentials dz and dy by Pdu and
Qdu respectively, the expressions for dp and dg become

dp = (Pr + Qs)du, dg = (Ps + Qt)du,
or, using the preceding relations, '
dp =— (X + pZ)du, dg =— (Y + ¢2Z)adu.

Adjoining these equations to the equations (78), we arrive at a
system of ordinary differential equations
de _dy = dz  —dp _ —dg _

M) =" Prta; Xtpz Ytgz_
which is identical with the system (64) to which we are led by
Lagrange’s method.

This system of differential equations is absolutely independent of
the integral considered. We derive from it the following conclusions :
Let (x,, ¥, #,) be the coordinates of a point M, of S, and let p, and
g, be the values of p and ¢ for the tangent plane at this point. If
the function F is analytic in the neighborhood of this system of
values, and if not all the denominators of the quotients (79) vanish
simultaneously for x,, ¥,, 2,, 7, 7, the equations (79) have one and
only one system of integrals which take on the values z,, y,, #,, 2,, 7,
for u = 0. It follows that if two integral surfaces are tangent at a
point (T, Yo 2,), they are tangent along the entire length of a common
characteristic curve through that point.

For convenience we shall call every system of values assigned to
the five variables a, ¥, 2, p, 7 an element. Thus, an element may be
thought of as consisting of the set of a point whose codrdinates are
(x, ¥, #) and a plane through that point whose position is defined
by the values of p, 9. Along an entire characteristic curve, z, y, 2, p,
and ¢ are functions of an independent variable u. To each point of
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a characteristic curve there corresponds, therefore, an element com-
posed of this point together with the plane through this point defined
by the values of » and ¢g. But from the equations (79) we have

dz dzx dy
du=pdu +qdu’

so that this plane contains the tangent to the curve at the point
(z, 3, #). When the point (z, y, 2) describes the characteristic curve,
the corresponding plane envelops a developable surface passing
through this curve, which is called the characteristic developable
surface. Thus, to each characteristic curve there corresponds a char-
acteristic developable surface through that curve. We shall hereafter
use the words characteristic strip to denote the combination of the
curve and the developable surface, and we shall refer to the curve
as the characteristic curve, to avoid any possibility of ambiguity.
With this understauding, a characteristic strip is composed of an
infinite number of elements which depend upon an independent
variable, and the infinitesimal variations of x, ¥, 2, p, ¢ are con-
nected by the relations (79). A characteristic strip is therefore
completely defined if we are given one of its elements, and the
theorem stated a moment ago can again be expressed in the follow-
ing exactly equivalent form :

If two integral surfaces huve a common element, they have in com-
mon all the elements of the characteristic strip to which the given
commnon element belongs.

The totality of all characteristic strips depends upon three arbi-
trary parameters. In fact, a characteristic strip is determined if one
of its elements (x, ¥, 7, P4 9,) 18 given. One of the coordinates,
x, for example, may be assigned a given numerical value, and, more-
over, by definition the relation F(x,, y,, 2, p,, q,) = 0 is satisfied.
Hence only three parameters remain arbitrary.

In order to determine the characteristic strips, let us observe first
that F = const. is a first integral of the equations (79). Hence, if
F(z, ¥, %, p, g) vanishes for the initial element (x,, ¥,, 2., Py ;) F
vanishes throughout the entire length of the characteristic strip
through that element, as we see also from the derivation of the
equations (79). In order to find the characteristic strips of the given
equation, we can therefore adjoin to the system (79) the relation
F = 0 itself, which reduces that system to one of three differential
equations of the first order.
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Let us suppose that we have obtained the equations of the charac-
teristic strip in finite terms; and, for definiteness, let

(80) “ {y =L1(% Zos Yor 20 s Ty % =S3(Zy Ty Yo» %oy Py L)
P =f.(z’ Zys Yo %oy Pos ﬂo), q =f‘(z: Ty Yos %oy Pos qo)

be the equations of the characteristic strio through the element

(zo’ Yor Zgs Py 9q)'

The two first equations of (80) represent the characteristic curve
itself, and every integral surface, being a locus of the characteristic
curves, will be obtained by supposing that «, ¥, 2,, p,, 7, are fune-
tions of an auxiliary parameter ». We are therefore led to investi-
gate how these five functions of » may be chosen in order that the
surface generated by these characteristic curves shall be an integral
surface. We shall introduce with Darboux an auxiliary variable w,
and write the equations in a symmetric form. Let

r = d’;(ur Loy Yor 2y Pos ’1.,),
(81) y= ¢;(u) Tos Yor %oy Py 90),
z2=d, (u, Zos Yoy % Po» 90);
(82) _p = ¢4 (u) xo! 3/01 zo) po’ qo)l

q = ¢5(u) xo) !/o! zo) I)o’ QO)

be the equations which represent the integral of the system (79)
which takes on the values x, y,, . », ¢, respectively for « =0.
If we replace x, ¥,, % Py 1, in these expressions by functions of a
second auxiliary variable v, the equations (81) represent in general
a surface S, » and v being regarded as two independent variables.
In order that the surface S be an integral surface, and that the
curves v = const. be the characteristic curves, the equations (82)
must give precisely the values of p and ¢ which determine the
tangent plane to that surface; and, moreover, the relation F=0
must be satisfied at every point of S. Hence the five functions
x, y, #, p, ¢ of the two variables « and v must satisfy the three
conditions

(83) F("‘; Y, %P 9)= 0)
0z ox oy _
(84) e P 13.=9

0z oz oy
(85) w P o
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Sinoe the five functions ¢, are integrals of the system (79), we have,
as remarked above, F(z, y, 2, p, ¢) = F(Zy Yo 2o Por 2,)- Hence the
relation (83) will be satisfied if

(86) F (25, Yy 209 Por To) = 0-

The relation (84) is identically satisfied, for it is a consequence of
the differential equations (79). Cauchy transforms the condition (85)
as follows: Indicating by H the left-hand side of (85); and differen-
tiating with respect to u, we find

°H _ &2 Pz Py _O9xzdp 9dydq.

e duov T oude Tdwén  ov ou  ov ou
On the other hand, differentiating the relation (84) with respect to v,
we have also

0=

0%z &z Py opox 0qdy.

2uoo Poude  Lowde b0 du  0v ou’
whence, subtracting,
oH 37) dx d70y odxop Oy 3_((

ey + 90 0 Ov ou  Ov ou’

or, replacing the derivatives with respect to « by their values
obtained from the relatious (7 9),

o0H _ or oy g’l ( Oz 31/)
8u—X3 Y +P84+Q +Z”au+‘lau
Finally, observing that the five functions x, y, 2, p, ¢ of v satisfy

the relation
F(‘T’ 2D 7)= 0,

and that we therefore have also
ox

ox Oy, 0= ,0p 07 _
A@ +7 1+130+P30+Q30—

we may write the preceding value of 9#7/0u in the form

oH or oy 0z
(87) R

We derive from this relation the following value for H,

)=—zm

(88) H=H e b
where H, denotes the value of A for « = 0, that is, when =, ¥, 2, p, ¢
reduce respectively to «,, ¥,, 2, p,, ¢, Since the function F, and

consequently also the partial derivative Z, is supposed analytic
in the neighborhood of the system of values z,, y,, z,, 2, 7, the
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necessary and sufficient condition that H be zero is that H, be zero,
that is, that (92/0v), = p,(%x/v), + q,(Py/?v),
Summing up, to obtain an integral surface * it is syfficient to replace

Zgy Yor % Py 9 tn the equations (80) or (81) by functions of an
auziliary variable v which satisfy the two conditions

oz oz 2
(89)  F(zy Yy % D0y 20 =0, E;Q =D, ﬁ + g, 3%9

This method leads very easily to the solution of Cauchy’s problem.
In fact, if we wish to determine an integral surface through a given
curve T, we may take for z, y,, #, the coérdinates of any point of
that curve expressed as functions of a variable parameter v, and the
equations (89) then determine p,and ¢,. The solution may also be
stated in geometric language as follows: The first of the equations
(89) expresses the fact that the plane through the point @ Y1 %)

* The argument presumes, however, that the denominators P, Q, X+pZ, Y+¢Z
are not all zero for the initial values o, ¥o, 20, Doy ¢o. In case they are, the equa-
tions (81) and (82) reduce to x = 2, ¥ = Yo, 2= 2o, P = Py, ¢ = 7o, Whereas if we suppress
the auxiliary variable u, the equations (79) may have integrals which take on the
given initial values (§ 31, Note). Hence the integrals of the given equation which
satisfy also the four equations

P=0, Q=0, X+pZ=0, Y+qZ=0

are not given by the general method. Buch integrals, if there are any, are singular
integrals. There exist normally no such integrals for an equation given a priori and
not formea by eliminating constants.

The reasoning can be arranged so a8 to put in evidence the hypotheses necessary
for the validity of the conclusions. Let us suppose first of all that the function
F(z, v, 2, p, q) I8 an analytic function of z, y, 2, p, ¢. In order to show that every
integral z=/(x, ¥) represents a locus of characteristic curves, it is not necessary to
suppose that that integral is analytic; it is sufficient to assume that it has continuous
partial derivatives of the second order r, s, ¢, since only these derivatives appear in
the proof. The characteristic curves, being defined by a system of analytic differen-
tial equations, are necessarily analytic curves, and, consequently, on every integral
surface, whether it is analytic or not, there exists a family of analytic curves, namely,
the characteristic curves. The functions ¢,, ¢, - -, ¢;, which represent the general
integral of the equations (79), are analytic functions of u and of the initial values
2o, Yo 20y Pos 9o (§ 26). In order that the calculations which follow, and their con-
clusion, be rigorous, it i3 sufficient that these initial values be continuous functions
of a parameter v, and that they have continuous derivatives, but it is not necessary
that they shall be analytic functions of ».

This is quite fn accord with the method of the variation of constants. If the com-
plete integral V(r, v, 2, a, b) is an analytic function of its arguments, the same
will be true of F'(z, 9, z, p, 9), but nothing in the argument requires that the arbi-
trary function b= ¢ (a) shall be an analytic function of a. A similar remark applies
to the general integral of a linear equation. For more details on this subject ses
E. R. HEDRICK, Ueber den analytischen Character der L8sungen von Differential-
gleichungen (Inaugural-Disssrtation, Gdttingen, 1901).
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determined by the values p, and ¢, is tangent to the cone (7)) whose
verfex is that point; and the second of the equations (89) expresses
the fact that this plane passes through the tangent to the curve I'.
Hence the whole process may be formulated as follows: Zhrough
the tangent at the point M to the curve T pass a plane tangent to the
cone (T) whose vertex is M ; let C he the characteristic curve through
the element thus determined ; the surface generated by this charac-
teristic curve, as the point M describes the curve T, is an integral
surface through the curve T.

There will be as many surfaces fulfilling these conditions as there
are tangent planes to the cone (7') through a tangent to the curve T.
1t is also clear that we should associate tangent planes which form
a continuous sequence.

Let us consider first the general case where the tangent to the
curve I' is not a generator of the cone (7). Since p, and g, fix the
position of the tangent plane to the cone (7), the direction cosines
of the element of contact of (7°) with that plane are proportional to
P, Q, P,p,+ Qg, by the formule (75) and (76). Since the differ-
ence P (0y,/0v) — Q,(dx,/dv) is not zero, the values of p, and of ¢,
derived from the equations (89) are analytic functions of v in the
neighborhood of the given point of I'. Oun the other hand, we can
solve the first two equations of (81) for v and », for the functional
determinant dx/du dy/0v — 0y /01 0x/d» reduces for u = 0 to

@) (32 -G
Ow/y \ Ov du/o \ Ov ’
that is, to P (8y,/9v) — Q,(0z,/0v). Substituting these values of » and

v in the third of the equations (81), we see that z is an analytic
function of z and y in the neighborhood of the given point (see § 84).

If the tangent at a particular point of the curve I' coincides with the element
of contact of (T) with the plane determined by the values p,, g, at that point,
this point is in general a singular point for the corresponding integral. 1f the
same thing happens at every point of I', we must distinguish two cases, according
as the curve I is a characteristic curve or not.

1t the curve I is a characteristic curve, it is tangent at each of its points to an
element @ of the cone (T) whose vertex is at that point, and the characteristic
developable surface is the envelope of the tangent plane to the cone (7 along
the generator @ when the vertex M describes the curve I'. The characteristic
curve through each of the elements thus determined coincides with the curve
T itself, and the equations (81) do not define a surface. But it is clear that in
this case the problem is indeterminate. For let M be a point of T, let P be the
plane tangent to the cone (T') whose vertex is M along the tangent @ to T, and
let I be-another curve through M whose tangent at M is a straight line of the
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plane P different from G. From what we have just proved, the integral surface
through I'” contains the curve T'.

If the given equation (74) is not linear in p and ¢, as we shall suppose, the
curve I" can be tangent at each of its points to a generator @ of the correspond-
ing cone (T) without being a characteristic curve. The family of curves
having this property depends, in fact, upon an arbitrary function. Let

Y—y Z-—
0(3, YV, Z; "Y—-—:q X——:)-—: (1}
be the equation of the cone (T) whose vertex is (z, 7, z). In order that a curve

T be tangent at each of its points to an element of (T), the cosrdinates z, y, z
of a point of that curve must be functions of a variable v satiafying the condition

(90) dr(z, U Z; g' d—z)=0.

If we take z, for example, as the independent variable, we may choose arbi-
trarily y = f(z), and then, substituting f(z) for y in the preceding relation, we
have a differential equation of the first order for the determination of z as a
function of z. Every curve not a characteristic satisfying the condition (80)
will be called an integral curve.

Now let us suppose that the curve I', for which we wish to solve Cauchy’s
problem, is an integral curve. From each point M of T there issues a character-
istic curve tangent to I', and it follows from the preceding arguments that the
surface S generated by these characteristic curves is an integral surface. Indeed,
it is sufficient to take for z,, ¥,, 2, the coordinates of a point of T', and for p,,
¢, the coefficients p and ¢ of the plane tangent to (T) along the tangent to I'.
But this curve I' is a singular line on the surface S; for if it were not, the
derivatives r, 8, { would have finite values in a point of I', and, since we have
Q,dzy = P,dy,, the arguments of page 251 to establish the equations (79) would
apply without modification, and we should conclude that the curve I' is &
characteristic curve, whick is contrary to the hypothesis. This cvrve I', which
is the envelope of the characteristic curves of the surface 8, is the analogue of
the edge of regression of a developable surface.

Note Cauchy’s method also leads readily to a complete integral;
for we can satisfy the conditions (89) by putting =, =a, y,=25,
, = ¢, Where a, b, ¢ are any three constants and where p, and ¢,
satisfy the relation F(a, d, ¢, p,, 7,)=0. The integral surface thus
obtained is the locus of the characteristic curves starting from the
point (a, 8, ¢), which is evidently a conical point for that surface.
1f we regard one of the codrdinates a, b, ¢ as a numerical constant,
we have a complete integral.

Ezample 1. Let us consider the equation treated by Cauchy, pg— zy = 0.
Making use of the equation itself, we see that the differential equations of the
characteristic curves can be written in the form

d
pdz:qdy=—2—z-=zdp=ydq.
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We derive from them successively the integrable combinations
dp _dz
? z

and the characteristic strip through the element (z,, ¥,, 2o, Pq) 9) i8 represented
by the equations

dq _dy dz =22 q
- ==-2z2dz2=~2
q ”’ z v Udv-

»_z 9._Y = Po(ze =%003
L=, 1== z— g, =20z —2f) =303 — ¢}
Po zo’ % yo’ 0 z, 0 "o( o)v
where z,, Vo, Do 9o 8@ connected by the relation p,g, = Zs,. In order to
obtain the integral which, for z = z,, reduces to ¢ (¥), we shall put, as in the
general method, ¥, = v, z, = ¢(v). In this case the equations (89) give

, To0

3 L) _— —
Q=90 p e
The required integral is therefore represented by the simultaneous system of
two equations ‘

- =l (B =P 2
z ¢(")“‘¢,(”) @ —z)= » (Ve )s

which define v and z as functions of z and y. These two equations may be
replaced by the equations

(z— o)) =@ — ) (2~ v?), [z— ¢ (1)]¢'(v) = v(z* — 7)),

of which the second may be obtained from the first by differentiating with

respect to the parameter v. The desired integral can be obtained by eliminating

v, and it follows that this result is quite in accord with Lagrange’s theory.
Ezample 2. Let us consider again the equation of page 240,

(1+p*+ )22 - R =0,

which states that the length of the segment of the normal cut off by the
zy-plane s equal to E. Hence, in order to obtain the normal cone (N') at the
point M of space, we need only describe about the point M as center a sphere
of radius R, and then take the cone of revolution whose vertex is M through
the circle in which the zy-plane cuts this sphere. The corresponding tangent
cone (T') is the cone of revolution whose vertex is M. We know here a com-
plete integral, the spheres of radius R having their centers in the zy-plane.
The characteristic curves, which are the limiting positions of the intersections
of two spheres that are an inflnitesimal distance apart (see § 88), are there-
fore circles of radius R, whose planes are parallel to the z-axis and whose
centers are in the zy-plane. Every integral curve, as we have seen, may be
regarded as the envelope of the characteristic curves on an integral surface.
These curves are therefore represented by the system of three equations,

(—a)+ [y—¢(a)]* + 22— R* =0,
z—a+[y—¢(a)] ¢ (@) =0,
14 ¢2(a) + ¢(a)p”(a) — yo”(a) =0,

where ¢ (@) is an arbitrary function.
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86. The characteristic curves derived from a complete integral. The concept of
characteristic curves can be derived in a very natural manner from Lagrange’s
theory. We have seen, in fact, that if V' = 0 18 & complete integral of a given
equation of the first order, we obtain an integral surface by eliminating a from
the two equations

V., av

91 Y[z, =0 —

(01) [= ¥, 2, a, ¢(a)] y aa+a¢(a)
where ¢ (@) is an arbitrary function. If we give to the parameter a & constant
value, these two equations represent a curve whose locus is the integral surface.
The equations of this curve are of the form

#(@)=0,

(02) V(v 2 a b)=0, —a+_c=°'

where a, b, ¢ are arbitrary parameters. These curves form a complez, and we
see that the integral surfaces are generated by the curves of this complex
associated according to a suitable law. The name characteristic curves is self-
explanatory, since they are the curves of contact of the complete integral with
its envelope.

The characteristic developable surfaces also appear in a natural manner.
Let us consider a characteristic curve corresponding to the values a,, b,, ¢, of
the parameters a, b, c. All the integral surfaces obtained by means of funec-
tions ¢, such that we have b, = ¢ (a,), ¢, = ¢’(a,), pass through this curve and
are tangent to each other along this entire curve, for the values of p and g, which
for any point of an integral surface are given by the relations

v ov oV %4

(93) E"'p_a‘z‘—of a"'(I‘é;—ov
are the same for all these surfaces. It is therefore natural to associate with
each characteristic curve a characteristic developable surface passing through
this curve. The four equations (92) and (83) enable us to express four of the
variables z, ¥, 2, p, ¢ in terms of one of them and of the three arbitrary con-
stants a, b, c¢. In order to prove the identity of the forms thus defined with
those of the characteristic strips deduced from Cauchy’s method, let us suppose
that the complete integral is represented by an equation of the form

z2=2%(z, 7 @ b).
The equations (62) and (83) then become

2% 2%
(94) z=9%(, 7, a,d), E-{-Ec:O,
% 2%
9| =— =—
(95) " 2

The relations (94) and (96) enable us to express the five variables (z, ¥, 2, p, ¢)
in terms of one of them (z, for example) and of the three arbitrary constants
a, b, c. The proof reduces to showing that these functions satisfy the differen-
tial equations (64). Since the function ®(z, ¥, a, d) is a complete integral of
the equation F = 0, we have already between these functions the two relations

(96) F@, ¢.2.0.9)=0, dz = pdz + ady.
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On the other hand, we deduce from the second equation of (94)
2P ol ] 2¢ el
P d;
S (aaaz +e abaa:) ¢z + (aaay +e abay) ¥ =0.
Now if we differentiate with respect to the constants a and b the identity

oP 09
F(z, Yy Dy -—» ——) =0,

ox oy
we find ®
o2¢ o?
Z — 0
+Pmm+Qmw !
84’ 02¢
z— - =0:
at wm*Q ;
and consequently, by eliminating Z, we have
L 3 %% 6’@ 2
98 P(—— —)=0.
8 (aaa.c *e ab az) +Q (aa oy abay)

A comparison of the two relations (97) and (98) shows that we have dz/P=dy/Q.
The remaining equm.lons of (64) are established as in § 86, by comparing the

relations 26 2e

ap =224, d =P 22,
P=m Tt oumg =gyt

which are deduced from the equa.t.lons (95), with the relations
2d
X 7 — ]’ - —
+ + aﬂ + Q 2oy
el J
Y Z P — =0
+ + 2oy + Q o y
which in turn are obtained by dlﬁerentlatmg the identity

od od
Flz o, -
( y Yy b.t 0]{)

=0,

with respect to the variables z and y.

Note. The theory of the complete integral applies to linear equations as well
as to the non-linear equations. It seems at first sight, on the contrary, that
Cauchy’s method is altogether different for linear equations and for non-linear
equations. In fact, the characteristic curves of a linear eguation, or of an
equation which separates into several linear equations, form a congruence and
not a complex. But if we associate with each characteristic curve a charac-
teristic developable surface, the paradox disappears. Each characteristic curve
belongs, in fact, to an infinite number of characteristic developable surfaces
which depend upon an arbitrary constant, so that this family of characteristic
strips does depend upon three arbitrary constants. Let us consider, for example,
the equation of the cones px + gy — z = 0. The equation z = ax + by represents
a complete integral formed by all planes P through the origin. The character-
istic curves are the straight lines passing through the origin, and the character-
istic developable surfaces are the planes P themselves. We shall therefore
obtain a characteristic strip by associating with a straight line through the
origin a plane through that straight line; this set actually depends upon three
arbitrary constants.
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87. Extension of Cauchy’s method. Cauchy’s method can be extended ,
without difficulty to an equation in any number of independent
variables,

2

(99) F(mp Ty ot 2y Tp3 2y PryPys vy Pu)=0. (Pi"_"a—f)

X
Let z = ®(x,, =,, -+, @,) be any integral of the equation (99); we
shall designate as an element of this integral the set which consists
of a system of particular values zf, «3, - - -, a8 of the independent
variables, together with the corresponding values 2 2%, - .., p% of
the function & and its partial derivatives. Let us suppose that an
element of the integral, starting with certain initial values x, 2° 29,
varies so as always to satisfy the differential equations

dry _dr, _ _dx,
(100) = 7, == ,
where, as in § 83,
‘\"=6—F’ k=2£’ Z=€£‘
ox, op, 2

It is clear that these equations determine completely a family of
curves (or one-dimensional manifolds) on each integral. For if z is
known as a function of 2, «,, - - -, ,, the same thing is true of the
partial derivatives p,, and consequently of the functions I, These
relations (100) form, therefore, a system of (n — 1) differential equa-
tions of the first order between the » variables (r, x,, .-+, ,). By
the theory of differential equations, through each point of the inte-
gral surface there passus in general one and only one of these mani-
folds. If to each point (x,, x,, .- -, x,, 2) of one of these manifolds
we associate the corresponding values of p,, p,, - -, p,, We have a
simply infinite sequence of elements, which we may again call a char-
acteristic strip. We shall show that, without knowing the expression
for the function 2z, we can adjoin to the relations (100) other differ-
ential equations enabling us to define completely the variation of
the variables z,, 2z, p, along a characteristic curve.

Let us start from an element of the integral (x?, 2°, p2), and let us
consider the characteristic strip through this element. Along this
characteristic strip the variables a, 2, p, are functions of a single
independent variable satisfying the relation F = 0, whose differen-
tials satisfy the equations (100) and also the relations

dz =p1dzl+ et +pndxl’ dpi =I’-’1df"x +--- +pmdzu)
o'z .
pa‘=ms (&=1,2,...,n)
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which result from the definition. Differentiating the relation F == 0
with respect to the variable x,, we find

Xs+P4z+P1P|1+"‘+P.P¢-=o~

Indicating by du the common value of the quotients (100), and
replacing P; in the preceding relation by dz,/du, we find

Xi+p2Z)du + pyda, + - - - + pada, =0,
(X, +p.2)du + dp;= 0.

This shows us that the elements of an integral satisfy, along the
entire length of a characteristic strip, the system of differential
equations,

that is,

(101) ’%=P d= =P _ gy (i k=1,2,-n)

|p1+ "'+Pupn ‘Xl:‘*‘zpt
These equations do not depend upon the function &®; hence we
can determine the successive elements of a characteristic strip, pro-
vided that we know a single element (x?, 2°, p}). We conclude from
this, just as before (§ 85), that if two integrals have a common ele-
ment, they have in common all the elements of the characteristic
strip through that element.

If, as we shall assume, the denominators of the equations (101)
remain finite and are not all zero for the initial values, we derive
from these equations
(102) D= (u, a), 20 P?:),

z =y (u, 2}, 2° py),

{71 = fi(%, 27, 2", ),

where z?, 2°, p} denote the initial values corresponding to the initial
value » = 0 of the auxiliary variable v, and where the functions f,,
¢y, ¥ are continuous differentiable functions of » and of the initial
values, at least within certain limits.

Since each integral is a locus of characteristic curves, it is clear
that every integral will be represented by the equations (102), where
xf, 2% p} must be functions of » — 1 independent variables, so that
these equations represent, in fact, a manifold of » dimensions. But
in addition these 2n + 1 functions x,, 2, p, of n independent vari-
ables must satisfy the relations

F(z,, , Pk)= F(“"]i Ty Ty X5 Pyt ©y Pa)= 0,
(103) dz — p,dz, — p,dx, — - - . — p,dx, = 0.
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Since the differential equations (101) have the integrable combina~
tion dF = 0, the first of the relations of (103) will surely be satisfied
if F(xf, 2% p})=0. On the other hand, we also have from the equa-
tions (101)

dz _  dx
—d.u;—.pl du +"'+pu

dzx,
du

Since the initial values x, 2° p are functions of » — 1 independ-

ent variables v,, v,, - - -, v,_,, We must also have

U"—:az_pl&c;—""—puszn:o’

where the letter 5 denotes the differentials corresponding to arbitrary
increments 8v,, - - ., 8v,_, of these variables. By proceeding as in
the case for n = 2, we have necessarily

AU =dd¥ — p déx, — .. - — p,ddx, — dp 8x, — ... — dp,bx,,
dz =Pldrl + .- +p,.dﬂ”,‘,
8dz = p 8dzx, + - - - + p,8dx, + 8pdx, + - . . + 8p,dx,,

and, sincé we may interchange the order of the operations & and 3,
aU = 8p . dx; — dp, 8z,
2 i3p.dz }

= i §P.&, + (X, + p.Z) 8z} du.

ta=]

Since 2, z,, p, satisfy the equation F = 0, we have
E(Pdsl’. + Xdz)=—Z8

and, consequently,
AU =— ZU du.

From this we find the following expression for U :
U= er_";-ld-.

In order that U shall be zero, it is necessary and sufficient that U, be
zero, that is, that we have
8" —pidaf — ... — pRd =0.

To sum up, in order that the equations (102) represent an integral,
i is necessary and sufficient that the initial values (a9, #°, p}) be
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JSunctions of n — 1 independent variables satisfying identically the
conditions

(104) F(x}, 2, pt) =0,

(105) 8 — pi&ad — pidag — ... — pliud = 0.

Every system of 2n 4 1 functions (af, 2% p}) of » —1 variables
satigfying these conditions defines an (» — 1)-dimensional manifold
of elements. Again, we may say that every integral of the equation
F = 0 is generated by the characteristic curves through the different
elements of a manifold of this kind.

In particular, to obtain Cauchy’s integral, which for x, = x? reduces
to a given function ®(x,, - - -, z,), if we take 3, 3, - - -, 2} for inde-
pendent variables (x? being supposed constant), the relation (105)
gives the values of 2° p3, - - -, 22,

z°=d)(a'g’...'m°) p°=22, .o P°=a—-

)y )y 2 a?‘g H n azn-
The value of p} can be obtained from the relation (104). If P{is not
zero (as we must assume in order to apply the general existence
theorem of I, § 194, 2d ed.; § 188, 1st ed.), »§ will be an analytic
function of z3,--., 23 in a certain region, and the equations (102)
will give, for 2, z,, p, analytic functions of u, z3, - - -, 3. Moreover,

the Jacobian D@y, -, 2,

D(ut iEg, R} 2‘:)
is not zero, for it reduces to P for » = 0. Hence we can solve the
first n equations (102) for u, 3, - - -, 3, and, putting these expres-
sions in the last of the equations (102), we obtain for z an analytic
function of the variables x,, z,, - - -, z,.

Note. 1t may happen that the application of the preceding general rule does
not lead to an integral. For example, it might turn out that the manifold of
elements defined by the equations (102) does not really depend upon n arbitrary
parameters. This is what would happen if the manifold formed by the elements
(2, 2°, p}) were composed of characteristic strips; in this case, in fact, the
manifold defined by the equations (102) would coincide with the manifold of
the elements (z, 2° ).

Disregarding this case, it may also happen that the elimination of the param-
eters u, v,, - - -, v, from the equations (102) leads to several distinct relations
between the variables z,,--., Zx, 2. In order not to reject such solutions, we
agree with Sophus Lie to enlarge the definition of the integral and to designate
as an integral of the equation F'= 0 every system of oo* elements (z:, 2, Px) sat-
isfying the relations

(108) F(zi, 2z, ) = 0, dz=P1¢1=1+«--+p.d.'z...
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IV. SIMULTANEOUS EQUATIONS*

88. Linear homogeneous systems. Let us consider a system of
¢ linear homogeneous equations in one unknown, f,

[ .. 0 0 2
xl(f)=axxa_mf;+azlf:‘;+"'+“n15£=o:

= of of of
(107) 1Xﬂ(f)—amé;l+a’m5;:+"-+a-,£;=0,
—a f af
\Xﬁ(f)—a’lqarl‘*'agqaxz-}- e +aw.51_” _0’

where the coefficients a,, are functions of the n» independent variables
x,, &, + -+, x, and do not contain the unknown function f. The ¢
equations (107) are said to be independent if there does not exist
any identical relation of the form

MX(NH+--+2,X(f)=0,

where A, A,, - - -, A, are functions of x, x,, - - ., «, not all zero. It is
clear that every system of ¢ equations that are not independent can
be replaced by a system of ¢' independent equations (¢' < ¢) equiva-
lent to the first, and that no system can contain more than = inde-
pendent equations.

We can therefore always suppose the g equations (107) inde-
pendent and ¢ = n.

If ¢ = n, and if the equations (107) are independent, the deter-
minant of the coefficients a,, 1s not zero, and these equations have
no other common integral than the trivial solution f= C, which we
shall hereafter discard. If ¢ is less than =z, we can always find the
integrals common to the equations (107) by successive integrations.
In fact, let us suppose that we have integrated one of these equa-
tions (the first, for example), and let ,, v,, - - -, ¥,_, be a system of
n — 1 independent integrals. Again, let y, be another function such
that the Jucobian D(y,, ¥,, - -+, #)/DP(x, x,, ---, x,) is not zero.
Then we may take y, ¥,, - - -, ¥, for new independent variables, and
the equation X, (f)= 0 becomes 9f/dy, = 0 hy this change of vari-
ables, while the equation X, (/) = 0 (¢ > 1) is replaced by an equation

# We shall limit ourselves to an indication of the principal methods in their essen-
tial features. For further details the reader is referred to E. GOURSAT, Sur l'inté-
gration des équations aux dérivées partwslles du premier ordre (Paris, Hermann
et fils, 1892).
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of the same form, in which the term in 9f/dy, may be euppressed.
This new equation may be wriften in the form

of af
Yc(f)=bllay‘+ et "'bu-l.l'ay“_1 = 0)

where the coefficients &, are functions of ¥, ,, - - -, ¥». If we sup-
pose the coefficients b, arranged according to powers of y,, this
equation can be written in the form

e of
Y((f)=(ch—a;: -+ e 4 0._1,.'ayn_l)
0
+ y.(oi‘%’r-; +ot c;_,,.@f)+ B

where the coefficients ¢,,, ¢},,:-. are independent of y,. Since the
unknown function f must be independent of y,, this function must
satisfy all the linear equations which are obtained by equating to
zera all the coefficients of the different powers of y,. Suppose that
we proceed in this way with all the equations X,(f)=0 (¢ >1). If
the system formed by all the independent equations which we thus
obtain contains » — 1 equations, the only solution is = C. If not,
the system will be composed of » linear independent equations
(r <n—1). We may operate in the same way on an equation of the
new system, and so on in the same manner. Since at each operation
the number of independent variables is diminished by unity, it is
easy to see that the given system has no other integral than f= C,
or else it reduces to a system composed of a single linear equation.

This method, which may be easily applied in certain cases, is
evidently very imperfect from a theoretical point of view, since it
does not enable us to determine a priori whether the equations
(107) have common integrals other than f= C. We shall now show
that this question can be settled without any integrations.

Let £ be an integral common to the equations (107). This func-
tion satisfies the two relations X,(f) = 0, X, (f) = 0, where ¢ and %
are any two of the indices 1, 2,..., ¢. We also have

X[X ()] = X:(0)=0, X [X.(N] = X, (0) =0,
and, consequently,
XX (N] = X[X.(NH]=0.
We have already observed that this new equation contains only deriva-
tives of the first order (§ 36), and that it may be written in the form

X,[X:(N]— X.[X:.0N)] =g{x.(an) - Xb("'n)}g;fi =0.



v, § 8] SIMULTANEOUS EQUATIONS 267

Suppose that we form all the equations, similar to the preceding,
obtained by combining any two of the given equations. These equa-
tions have all the integrals of the system (107). Let us indicate by

.X¢+1(j')= 0, Xo4s(S)=0, ) X.u(f)“o
all those of these new equations which are independent of each
other and which form with the equations (107) a system

le=0, ceey X'(f)=0,

(108) X1 () =0, Yy Xees(N=0
of independent equations. If ¢ 4 s = 7, the system (108), and con-
sequently the system (107), has only the solution f=C. If g 42 <n,
we repeat on the system (108) the operations performed on the first
system, and so on in the same manner. Continuing in this fashion,
we finally obtain either a system of = independent equations, in
which case the system (107) will have only the solution f= C, or
else a system of r independent equations (» < n) such that all the
combinations X,[X,(f)]— X.[X.(f)] are linear combinations of
X.(f) e+ X, (f). Such a system has been called by Clebsch a
complete system.

It follows, then, that the search for the integrals of a system of
the form (107) leads to the integration of a complete system.

Since it is clear that every system of n linear independent equa-
tions is a complete system, we may say that every linear system
reduces to a complete system.

89. Complete systems. The theory of complete systems rests upon
the following properties :

1) Every complete system i3 transformed into a complete system
by any change of variables.

Let @y =Yy Yar s W) (i=1,2,---,n)

be the formulm that define a change of variables such that we cau

express also the variables y,, ¥,,- -+, ¥. in terms of the variables

Z,, Ty -+ +5 T, By means of such a transformation every symbol of

the type of of
X(N)=a,z-+ -+ a, -,
) a"a:m1 oz,

where a,, a,, - - -, a, are functions of z,, «,, - - -, z,, changes into an
expression of the same form, Y (f)=6,3//%y, + ---+ b,3f/oy,,

where b, b,, - - -, b, are functions of y,, - - -, ¥,. We have identically
X (f) = Y(f), where the letter f on the left-hand side denotes any
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function of x,, x,, - - +, %, and on the right-hand side the same func-
tion expressed in terms of the variables y,, y,, -+, Ya:

Now let

(109) X,()=0, -+, X(f)=0
be a complete system. By means of such a transformation this
system goes over into the system

(110) Y,(H=0 tt Y.()=0,
where X,(f)= Y;(f) identically, with the understanding just men-
tioned concerning the interpretation of f on the two sides. This new
system is also a complete system. For, since we have identically

X(N=X0)  XN()H=Y(f)
for any function f, we also have
X[X (] = Y[X(N]= Y. [Y(N]
X [X.(N] = [X.(N]= Vi [Y(N)],
and, consequently,
X[ (N] — X [X(N]) =V (N] - [F0)]
Since by hypothesis the system (109) is complete, we have for any
two indices ¢ and %
N[X (NI = N[X (DT =1X(N+ - + LX)

Hence, after the transformation, we have

ARACHIEDARACHIER S ACHE LR 28 AT N
where A, - - -, A, indicate the results obtained by replacing z,, z,, - - -,
z, in A, - - -, A, by their expressions in terms of y,, : - -, ,. The new
system is therefore a complete system.

2) Every system equivalent to a complete system is also a complete
system.

A system of r linear homogeneous equations in 9/,

(109') Zl(f)= 09 ooy Z,.(j')= 0,
is said to be equivalent to the system (109) if we have » identities
of the form

Zy()=Au:X(N+ AuX,(N)+ - +4.X.(), *=12...,7)
where the coefficients 4, are functions of z,, x,, - - - x, whose deter-

minant is not zero. In that case we can express X,(f),- -, X.(f)
linearly in terms of Z,(f), -, Z2,(f), and the name equivalent
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systems is self-explanatory. The difference Z,[Z,(f)] — Z.{Z.(/)]
can now be written in the form

E AMXA[E Auxz(f)] - 2 ApX, [ 2 A,,,X.(f)];
Am] lmel {ml Awml
hence it is equal to a sum of terms of the form

AAIAug‘XA[XI(f)J - X![A'h(f)] ; + AA\IXh(AlL‘) Xl(,f) - AIL‘YI(AM)X‘(f)'
If the system (109) is complete, this difference will therefore be a
linear function of X,(f), - - -, X,(f), since all the differences

X[ X (N = X[ X(N]
are, by hypothesis, linear functions of X,(f),-- ., X,(f). Bince the
two systems (109) and (109') are equivalent, all the differences

Z,[Z2:(N]— Z:[2.0N)]
can be expressed linearly in terms of Z,(f), Z,(f), - -+, Z,(f).

It is clear that every complete system can be replaced by an
equivalent system in an infinite number of ways. We say that the
complete system (109) is a Juacobian system if all the expressions
X, [X ()] — XL [X,(S)] are identically zero. We shall now show
that every complete system s equivalent to a Jacobian system.

Since the » equations (109) are independent by hypothesis, we
can solve them for » of the derivatives of f, for example, for the
derivatives df/ex,, - - -, 9f/0x,. Since the system thus obtained,

( o i o,
Z(f)=—i by of - +b1.._,%=0,
- 3f of _
i {%N= 7 nax,+,+"'+b""-'a—‘°'
'd 3
Z(f)—_+rlaxf;l+°"+brn raf 0’

is equivalent to the system (109), it also is a complete system. Now
if we form the expressions Z,[Z,(f)] — Z.[Z.(f)], it is clear that
only the derivatives f/dc, ,,, .., 9f/0x, will appear, and conse-
quently the new equations Z,[Z,(f)] — Z.[Z,(f)]=10 can be
linear combinations of the equations (111) only if the left-hand sides
of these new equations are identically zero. The system (111) is
therefore a Jacobian system.

The reasoning proves that every complete system of the special
form (111) is a Jacobian system, but it is clear that a Jacobian sys-
tem is not necessarily of that form.
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8) Every complets system of r equations in n independent variables

oan be reduced by the integration of one of the equations of the system
0 & complete system of r — 1 equations in n — 1 independent variables.

Suppose that we bave integrated one of the equations of the sys-
tem, for example, the equation X,(f)= 0, and that we choose a new
syatem of independent variables (y,, v,, - - *, ¥.), 88 in the preceding
paragraph, in such a way that y,, #,, - - -, ¥, are n — 1 integrals of
X,(f)=0. The system (109) is replaced by a new complete system
in which the first equation reduces to 9f/dy, = 0. Solving the » — 1
remaining equations for the r — 1 derivatives 9f/dy,, - - -, 8f/dy,, for
example, we obtain a complete system,

nH=zE=0
) )
12 1’(f)———+c,lay'f+ ot Cnr =0,
. SR _
Y(f) +c"layr+l+"'+cr.u—ra_‘y{—'os

which is of the special form (111) and which is therefore a Jacobian
system. Now we have 2 3 ) )
c:l Con—r
NI = VLG =g g it o 4 P 2L,
and since this expression must be identically zero, we see that the
coefficients ¢, of the new system are independent of the variable y,.
Moreover, for ¢ >1, £ >1 we have identically

ARACHIERARACHIEAY

consequently the » — 1 equations

(113) Y,(f)=0, Y, (=0, LAY Y.(f)=0
form a Jacobian system of » —1 equations in n —1 independent
variables y,, ¥,, * -, ¥, Which establishes the proposition.

The system (113) can in turn be reduced to a complete system of
r — 2 equations in n — 2 independent variables, and so on in this
way. Continuing in this manner, we finally reduce the given com-
plete system to one linear equation in n — » 4 1 independent vari-
ables. We conclude from this that every complete system of r equations
in n independent variables has n — r independent integrals, and the
general integral of the system is an arbitrary function of these n —r
particular integrals.
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The preceding reasoning shows also what are the integrations to
be carried out in order to obtain these integrals. Moreover, it is clear
that this method can be applied in a variety of ways. We may, in fact,
replace the given complete system by any other equivalent system,
ard begin by integrating any one of the equations of this new sys-
tem. For example, if we replace the complete system by a Jacobian
system of the form (111), we know at once r — 1 particular integrals
%, - -+, &, Of the equation Z,(f)= 0, and it is sufficient to integrate
a system of n — » ordinary differential equatiens in order to have
the general integral. For complete details of other methods of inte-
gration of complete systems, the reader is referred to special treatises.

Ezample. Let it be required to integrate the system

(f)-—+ (z,+z‘—8:r,‘)——+ (z.+x‘z,+z‘z,)—f._0

(114) or f

XN = L4 + (@52, — 2,) o, + (%) 252, + Z, "'“1’:)—' =0.
oz,

Forming the combmamon X, [X,(f)] = X, [X,(f)], we are led to add to the
given equations a new equation 8f/dz; + z, 8f/8x, = 0, and_the system of three
equations thus obtained is equivalent to the system
115 Z4 + 822 — 4+ z,—=0, -i z-—f——o

(116) —~ +(a+ 31) 0, + 2oz, + 1 oze
which is a J acobian system. The system (114) has therefore on]y one independ-
ent integral. The general integral of the last equation of this system is an arbi-
trary function of z,, z,, and z, — z,z,. If we take for independent variables
Z,, Ty, T4, and u =z, — T, 7y, overy function f(z,, Z,, Z3, T,) changes into a
corresponding function ¢ (z,, Z,, Z5, %), and the system (115) is replaced by the
system

20 2 2 2 2
(116) 53:+ax§5u2=0, -i+z,_:=o, 22 _o.

The first two equations of (118) form a new Jacobian system of two equations in
three independent variables z,, z,, . The general integral of the second is an
arbitrary function of z, and of u — z3/2.

Let us now take for independent variables z,, z,, and 4 — 23/2 = v. Every
function ¢ (z1, z,, u) changes into a corresponding function y (z,, 4, v), and
the first two equations of (116) become

3'/’ 30y oy _
+ 8z r =0, oz, =
The general integral of the first is an arbitrary function of v — 2}, and, conse-
quently, returning to the original variables, we see that the general integral of
the system (114) is an arbitrary function of
3’
z.—zlz.—i’f—z}.
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90. Generalization of the theory of the complete integrals. Let us
consider an equation

117) V(@ Ty« +y Ty, 25 Ay gy + %y By pyy) = 0
defining a function 2z of the n independent variables z,, ,, - -, z,,
which depends also upon (n — r + 1) arbitrary parameters a,,

+¢y @,_, 1. 1f we suppose that definite values have been assigned
to these parameters, and if we eliminate them from the relation
(117) and the relations obtained by successive differentiations,

ov ov o0z .
(118) a +p 5 D= =0, P = a_x" (1' =12..., ”)

we obtain in general only » independent relations between 2, z,, - .,
Tny D1y * * %y Py
(119) Fl(xp Tty Tpy By Poy "';Pn)=0; Fg=0) ] F,.=0.

Limiting ourselves to this case, which is the general case, we shall
say, as above (§ 82), that the function z defined by the relation (117)
is a complete integral of the system of partial differential equations
(119). We shall show that, in this case also, the knowledge of a
complete integral of the system (119) enables us to find all other
integrals. In fact, since the equations (119) arise from the elimina-
tion of a,, a, ---, a,_,,. between the equations (117) and (118),
finding an integral common to these r equations (119) reduces to
finding a system of functions #,a,---, a,_,,, of the variables «,,
x,, - -+, x, satisfying the equations (117) and (118). It is obvious
that we can replace the system of equations (117) and (118) by the
system consisting of the equation (117) and the equation

ov
3

which is obtamed by dlfferentm.tmg the equation (117) and making
use of the equations (118). We can satisfy the equations (117) and
(120) in a variety of ways:

1) By supposing that a,, a,, - - -, a,_, ,, are constants, which gives
precisely the complete integral.

2) By putting

V=0,

(120) +—da, + da + ..+ da,_,,,=0,

0ay_, iy

ov ov
=0, ...

a(ll aa’n -r+1

=0.

The elimination of a,, a,, - - -, @,_,,, from these equations, if it is
possible, furnishes an integral which does not contain any arbitrary ™
constant, and which we shall call, as before, a singular integral.
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3) If all the coefficients 9V /da, are not zero simultaneously, there
exists at least one relation between the unknown functions a, a,,
-ty @y_,4, Of the variables z, (I, § 55, 2d ed.; § 28, 1st ed.).
Suppose that there exist £ and only % independent relations between
these functions,

(121) .f](ap M) au—r+l)= o! M ] fk(a'p @gy * + +y @, _,.+1)== 0.

Since the relation (120) must be a consequence of the relations
df,=0(i=1,2,...,k), there exist k& coefficients A,, A,y « -y A Buch
that we have identically

oV

5 Qo t oo

This relation is equivalent to » — » 4 1 distinect relations,

Y _, 2h of;
3a1—h‘3al “.+A*5a—l’
(122) e e e e e e e e,
2
4 2/, Fo N ofy

=
1
aan-—r-{-l aa‘n—r‘l»l aan—r+l

e da, .= Ndf, + -« + A dfs
n—r+1

The elimination of @, a,, - - -, @, _, 1, A, Ay - - -, A, from the equations
(117), (121), and (122) will lead, in general, to a single relation
between z,, «,, - - -, x,, and z, that is, to an integral common to the
equations (119), which depends upon the arbitrary functions chosen.
The set of integrals thus obtained, by making the number % vary
from 1 to n — 7, and by taking the functions f, f,, - - -, f; arbitra-
rily, constitutes the gereral integral of the system (119). It will
be observed that the complete integral will be obtained by supposing
k=n—r+41.

If » =1, the system (119) reduces to a single equation. Con-
versely, given any equation of the first order F(x;, 2; p,)=0, it
follows from the general existence theorems that it always has an
infinite number of integrals which depend upon as many arbitrary
parameters as we wish, and consequently an infinite number of com-
plete integrals. The preceding method, which is a direct generaliza-
tion of that of § 82, enables us to find all the other integrals of the
equation F = 0 when we know one complete integral.

If » > 1, the system (119) is not the most general of its kind, for
a system of r equations of the first order with a single dependent
variable does not necessarily have any integrals. We shall show in
the following paragraphs how to determine whether such a system
is consistent, and how to find the integrals when they exist.
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91. Involutory systems. Let
(123) Fy(@y Tgy * * *s Tp3 Py Pgr+ s P)=0, Fy= 9, ..., F,=0

be a system of » independent partial differential equations of the
first order, not containing the dependent variable z. The general
case can always be reduced to this particular case by the device
used in § 756. The problem of finding an integral common to the r
equations (123) is equivalent to the following problem: 7% find n
Junotions p, = ¢,(x,, - - -, z,) satisfying the relations (123) and the
conditions Op;/ox, = Op, [0x,.

If we know a system of » functions ¢,(x,, - - -, x,) satisfying these
conditions, we can derive from them, by quadratures, an 1ntegral of
the equations (123) which depends upon an arbitrary constant.

Let F and I be any two functions of the 27 variables z,, p,.
Using the notation (see § 81)

OF OH _ O OF
& =% (G o 35,50,

we shall call the expression (F, H) a Poisson parenthesis. We now
have the following theorem : If the two equations F = 0, H = 0 have
a common integral, that integral also satisfies the equation (F, H)=0.

For let us suppose that p, p,, - - -, p, are functions of the n vari-
ables z, - - ., x, satisfying the two equations F =0, H = 0 and the
conditions 0p,/0x, = 0p,/ox,. Differentiating the relation F = 0 with

respect to z,, we find
oF 3‘7),,
a.z:‘ 2 | 9p, Or,

Multiplying this equation by @H/dp, and adding all the similar
resulting equations, we find

S OFOH | TN 9H OF dp, _
aZ 0.
21 ox; ap‘ .E_l E op, apk ox;

Permuting the letters F and H and observing that we may permute
the indices ¢ and % in the double sum, we have also

Cx=n tumn k—-
e az' apl 1m]l Aml dpt apl axk

Subtracting the two results term by term, it follows that

oF 0H ¢ Opg
(124) * H)+ s gx op, a}’i (a't 84-,,) =0.
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If p, .-, p. are the partial derivatives of the same function, we
have, for any two indices < and %, 8p,/0x, = dp,/0x, and, consequently,
(¥, Hy=0.

This theorem contains as a particular case the one which was
proved above (§ 88) for linear homogeneous equations in p,, - - -, p,,
and its logical consequences are also analogous to those of § 88. For
every integral of the equations (123) is also an integral of all the
equations (F,, Fg)=0 which can be formed from pairs of the equa-
tions (123). Hence we can adjoin to the given system all of these new
equations which form with the original equations a system of inde-
pendent equations. Continuing in this way, we must finally obtain
either a system of independent equations whose number exceeds #,
in which case the system has no integral in general, or else a system
of m equations (m = =) such that all the equations (F,, Fg)=0 are
satisfied identically or are algebraic consequences of the preceding.

Such systems are similar to complete systems. It is always possi-
ble either to show that the given equations are inconsistent or to
reduce them to a system for which all the parentheses (¥,, Fp) are
identically zero. In fact, let us suppose that we have solved the »
equations (123) for r of the variables p,, - - -, p,, which must always
be possible, for otherwise the elimination of p,, - - -, p, from these r
equations would lead to a relation between the variables =, - - -, z,,
and the given system would evidently be inconsistent. Let

(125) Pr _.fl(Pr-u’ ety Pay Tyt zn)= 0, :- pr "'.f;'( . ')= 0
be the equivalent system thus obtained. The parenthesis

(Pl -fl' Ps —fﬂ)

does not contain any of the variables p,, - - -, 2,; hence the equations
obtained by equating these parentheses to zero cannot be conse-
quences of the first, and they furnish new equations if the paren-
theses are not identically zero. Solving these new equations for
certain of the quantities p,,,, - + -, pa, and continuing in the same
way, we finally either demonstrate the impossibility of the problem
or else obtain a system of m equations of the first order (m = n),

(126) F,=0, -, Fn=0,

such that all the parentheses (F,, Fg) are identically zero.

Such systems, which are similar to the linear Jacobian systems,
are called involutory systems. It follows from what precedes that
the search for the common integrals of a system of equations of the
first order reduces to the integration of an involutory system.
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This integration is immediate if m = n, as the following proposi-
tion shows: Let F,, F,, - -, F, be functions of the 2n variables x,,
Py, such that all the parentheses (F,, Fg) are identically zero, and
such that the Jacobian A = D(F,, -+, F,)[/D(2y, -+, Pa) 8 not zero.
If we solve the n equations

127) Fi=a, F,=a,, coey F,=a,
where a,, a,, - -+, @, are any constants, for p,, Py ** *y Pr the expres-
sion p dx, + ... + p,dx, is an exact differential for the resulting
values of the p’s.

For we have
(Fa— @y Fg — ag) = (F,, Fg) =0,

and, by what precedes, these » functions p,, p,, - - -, p, of the n varia-
bles x,, z,, - - -, x, defined by the n equations (127) must satisfy all the

relations .
S aF dF, (0p, _p,\ _ _
tem] kwml aj—’k (3:;‘ axk> - 0’ (ay ﬁ = 1, 2, sy n)

Let us take all the » relations of this kind in which the index B
retains the same value. These relations can be written in the form

oF, org (Op; 3p>
—z=)=0
21 op, gg; a[h.-( oxy,

If we take for unknowns the n expressions

= aF ap a p .
% " o = s e
1:2-1 opy (al‘. 3.1:)’ (=12, , )
the determinant of the coefficients of these unknowns is precisely

the determinant A, which, by hypothesis, does not vanish identically.
It follows that we have, for any two indices i and B,

2 9F, 51% _\_,
s oz, |
Similarly, taking the n equatlons of this kind in which the index ¢
has a definite value, we evidently have 9p,/ox, = dp,/0x,, which

proves the proposition.
The function

z= Q(zp Ceey Ty Gpyt vty Tuypy)
128
( ) =f(pldx1 +oeee 4 dx,,) + a4y

where a@,,, is a new arbitrary constant, represents the complete
integral of the involutory system (127). If we regard the » con-
stants a,, a,, - - -, a, a8 having definite values, while the constants
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@r 41y * )y @4y Temain arbitrary, the formula (128) represents a
complete integral of the involutory system formed from the first
equations of (127). This is a true complete integral, for, from the
way in which we have obtained the function ®, the equations
p o® o®
= - o n = o
1 ox, * =g
form a system equivalent to the system (127), and the only inde-
pendent relations not containing a, ,,, - - -, a, which can be deduced
from them are evidently the first » equations of this system.

92. Jacobi’'s method. Let us consider an involutory system of »
equations (r < z),

(129) Fi(@y -+ & Py o=y Pa) =0y, -+ F(z,--,p)=a,,
where the constants a,,---., a, have definite values. To obtain a
complete integral of this system, it is sufficient to adjoin to it n — »
new functions F,,, - .-, F,, such that the Jacobian

D(F LI Fn
D(pl, R ) Pn)
is not zero, and such that the new system
(130) F1=“1,"':Fr=an F,1=0a,4,, tc F,=a,
isitsc1f involutory. Indeed, the complete integral of this system (130)
will furnish, as we have just seen, a complete integral of the system
(129). If r =1, this method is merely the extension of the method
of Lagrange and Charpit to an equation in » variables.
Jacobi’s method for solving this problem depends upon a noted

identity due to Poisson. Let f, ¢, ¢ be any three functions of the
2n variables x,, p,; then we have identically the relation

In fact, each term on the left-hand side is the product of a partial
derivative of the second order and two partial derivatives of the
first order. Hence, to show that it vanishes, it is sufficient to show
that it does not contain any derivative of the second order of the
function f, for example, since the three functions f, ¢, ¢ appear in
it symmetrically. The terms containing the second derivatives of f
can arise only from ((f; #), ¥)+ (¥ f), 8) = (1)) — (&, (4 S))-
Observing that (¢, /) and (y, /) are two linear homogeneous expres-
sions in the derivatives of £, and setting

(& N)=X(f)  BS)=Y()
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the preceding expression can be written in the form

Y{X()]1-X[¥(N)]
Now we saw in § 88 that this expression does not contain any second
derivatives of /. It follows that all the terms of the left-hand side
of the equation (131) cancel each other in pairs.
Finally, in order to integrate the involutory system (129), let us
first try to find a function ® independent of F,, ..., F, satisfying
r linear homogeneous partial differential equations of the first order,

(132) (F, ®)=0, (Fp ®=0, cony (F,, ®)=0.
These r equations form a Jacobian system. For if we set

X(®)=(F, ®),
Poisson’s identity, & "

((F., Fp), °)+((FF’ °)’ F') +((Q7 F')l Fﬂ)= 0,

) Xu[Xp(®)] — Xp [X(®)] =0,
since (Fe, Fg)=0.
Let F,,, be an integral of this Jacobian system which forms with
Fy .-+, F, a system of independent functions of p,, .-, p,. We
next proceed to form the new Jacobian system of » 4 1 equations,

(Fp Q)=0, Tty (Fr+1’ °)=0)
and to find an integral of this system which is independent of
F, ..., F,,, as functions of the p,; and we continue in the same

way. Finally, when we have found an integral of the last Jacobian
system,

becomes

(Fp d’): 0, ey (Fooys )= 0,

we can obtain a complete integral of the given system by a quadra-
ture, as we have seen above.

V. GENERALITIES ON THE EQUATIONS OF HIGHER ORDER

93. Elimination of arbitrary functions. The study of partial differ-
ential equations of the first order in a single dependent variable has
led us to the following conclusions: 1) The integration of an equa-
tion of this form reduces to the integration of a system of ordi-
nary differential equations. 2) All the integrals of this equation are
represented by one or more systems of equations in which appear
explicitly one or more arbitrary functions and their derivatives.

These properties are nmot extensible to the most general partial
differential equations of order higher than the first. The problem
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of the integration of such an equation cannot, in general, be reduced
to the integration of a system of ordinary differential equations.

We can easily generalize, however, the method of the elimination
of arbitrary functions which leads to a partial differential equation
of the first order (§§ 77 and 82), but the equations of higher order
which we obtain in this way form only a very special class.

Thus we have seen that the general integral of a linear equation
in two independent variables Pp 4 Q7 = R is obtained by associating
the curves of a congruence according to an arbitrary law. Let us
now consider a fa.mily of curves I' that depends upon » + 1 arbitrary
parameters a,, @,, « + +, @y 4y, (2 >1),

(133) F(z, 4 %8, uy1) =0, @(x,y,2,a, -+, 0,,,)=0.

If we establish n relations of arbitrary form between these n 41
parameters, we obtain a family of curves I' that depends upon only
one parameter. These curves generate a surface S, and all these
surfaces S satisfy, whatever may be the m relations established
between the » 4+ 1 parameters, a partial differential equation of the
nth order, which is called the partial differential equation of the
family of surfaces S. To prove this, let us observe that instead of
establishing n relations between the n + 1 parameters a;, it amounts
to the same thing to take for these parameters arbitrary functions
a,(A) of an auxiliary variable A. The two equations (133) then define
two implicit functions z = f(z, ¥), A = ¢(z, ), and we have to
prove that the function z = f(x, y) satisfies a partial differential
equation of the nth order, independent of the form of the arbitrary
functions a,(A). Differentiating the first of the equations (133) with
respect to « and then with respect to y, we obtain the two relations

F OF oF oF |, ,
E"*"a_z'?'l'[ ag(A)+-- an.Han-n(A)]‘\::O;
oF 6F oF ,
a az 7+ [ a3 (}‘) + - 5(1,__; Ay 41 (A)] A, =0,
from which we derive
oF  OF
’ +5-9
_& azﬁ oz ° .
X, aF oF

8z

From the second of the equations (133) we derive, similarly, an
expression for the quotient A;/A;, which is deduced from the pre-
ceding by replacing in it F by ®. Equating these two expressions,
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we adjoin to the equations (133) a new equation containing z, ¥, #,
Py 9 @y @gy ¢ °y Ay

(184) W, (2, ¥y 2, Py ) Qyy Bgy + + +, B yy) = 0.

Operating on this new equation as on the equation F = 0, we derive
from it an expression for A;/A. which depends upon «, ¥, 2, p, ¢, r,
8 t, @, @y, Equating this new expression to one of the expres-
sions already obtained for this same quotient, we obtain a new
relation containing the second derivatives of z,

(135) ‘I'a(z: YsZy Py @5 Ty 85 8y Ay By =+ - Bpyy) = 0.

After n similar operations we adjoin to the system (133) a system
of n relations containing a,, a,, - - -, a,,,, %, ¥, 2, and the derivatives
of # up to those of the nth order. The elimination of a,, @, -+, @y 4,
from these n + 2 equations will lead, in general, to one and only one
equation between z, y, 2, and the partial derivatives of 2 up to those
of the nth order. This is the partial differential equation of the
surfaces generated by the curves T.

Ezample 1. If the curves I' are the straight lines parallel to the zy-plane,

+he equations (138) are
z=a,, V=0,%+ a,.

Applying the general method, let us suppose that a,, a,, a; are functions of a
parameter A. From the two preceding equations we derive for the quotient
A/N, the two values p/q and — a,, which leads to the relation p/q + a, = 0.

Differentiating this last relation with respect to z and then with respect to
¥, and dividing the corresponding sides of the resulting equations, we find

A, _pt—gs
N, P3—gqr

Equating this value of the quotient to the expression ¢/p already obtained, we
find again the partial differential equation of the ruled surfaces which have the
zy-plane for the directing plane (I, Ex. § 89, 2d ed.; § 24, 1st ed.),

9%r — 2pgs + p2t = 0.

Ezample 2. If the curves I' are all possible straight lines, the equations (188)
can be written in the form

z=a,z+ a,, Y =a32+ a,.

Applying the general method, we derive from them successively

or
P+ ayg—1=0.
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From this new equation we then derive

or
) afr +2a,0,8 + aft =0.
This last equation gives in turn

)s_;_afp,,+2ala,|p”+a3po,_ o pa= othg
’ - === R =
A, iy, + 24,00, + afpy, @ ozfayt
or, clearing of fractions,
(B) a}Dgo + 801 a5py + 80,a3D,; + afpes = 0.
Eliminating the quotient a,/a; from the relations (A) and (B), we obtain the
partial differential equation of all ruled surfaces. We see that this equation
contains only derivatives of the second and third orders. By its derivation
we see that it states that at each point of the surface one of the asymptotic
tangents has contact of the third order with the surface (I, § 228, 2d ed.;
§ 238, 1st ed.).
Ezample 8. Let us consider the plane curves I' represented by the two

i
equations z=f(a:, Yy By -ty a‘ll)! YV=0Qn41-

Instead of applying the general method, let us suppose that a,, a,, - - -, as are
functions of the last parameter a,+3. The surface S generated by these curves
I’ has for its e Juation 2= 112, U, S3¥)s -+ > Dalt)],

where ¢,, - - -, ¢, are arbitrary functions of y. The elimination of these n func-
tions from the prereding relation and the relations which give dz/0z, d%z/0z3,
..., o™z/0z" leads to o partial differential equation of the nth order,

orz _ ( 0z aﬂ—lz)

(136) ﬁl’ z,y,a—z,---,m ’

in which only derivatives with respect to z appear.

Conversely, every partial differential equation of this type can be integrated
a8 an ordinary differential equation containing a parameter. If z = f(z, ¥, C,,
C,, - -+, Cy) is the general integral of such a differential equation, it will suffice
to replace C,, C,, - .-, C, in it by arbitrary functions of y in order to have the
general integral of the same equation, considered as a partial differential equa~
tion in {wo independent variables z and y.

The general integral of a partial differential equation of the first
order, of any form, in two independent variables, is obtained by tak-
ing the envelope of a two-parameter family of surfaces when we
establish an arbitrary relation between these two parameters (§ 82).
To generalize this result, let us consider a family of surfaces X
which depends upon n + 1 parameters,

@asmn F(2, )% 0, 05, -+ By)) = 0. (rn>1)
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If we establish n arbitrary relations between these » 4 1 parame-
ters, o1, what amounts to the same thing, if we replace a,, a,,-- -,
@, by arbitrary functions of an auxiliary variable A, we have a
family of surfaces % which depends upon a single parameter. The
envelope of this family of surfaces is a surface § which satisfies a
partial differential equation of the mth order, independent of the
form of the arbitrary functions a,(A). For we should obtain the
equation of this surface by eliminating A from the two equations
(137) and (138)

(138) %gai(x) +e 52—5-‘@’,“()\)= 0.

But these two equations may be considered as defining two func-
tions # = f(x, y) and A = ¢ (2, y) of the two variables z and y. The
partial derivatives » and ¢ are given by the two equations (I, § 41,
2d ed.; § 25, 1st ed.)

o0F OF oF OF

_3;+—8;P=0’ —é;+—a—;q=0.

Applying to this system (139) the method applied to the system
(133), we can adjoin to it, step by step, 2 — 1 new relations between
a, Gy -+ @4y, T, Y, 2, and the partial derivatives of z of orders
2, 8,---,n. The elimination of a, a,,---, a,,, from these n —1
equations and the equations (137) and (139) will lead, in general, to
a single relation independent of e, a,,---, @,4,, in which will
appear z, ¥, z, and the partial derivatives of # up to those of the
nth order.

(139)

Ezample. If the surface T is a plane, we find again the equation of the
developable surfaces 82 — ¢t = 0. If the surface Z is a sphere with the constant
radius R, the equations (187) and (189) become

(140) { Z—a,)+ (y—a,)?+ (z— a;)3 ~ R* =0,
:l:—a1+(z——a‘)p=0, y_a’_'_(z_a.)q:o.

Suppose that a,, ag, @, are functions of a parameter A\. Equating the valuea
of the quotient A;/A; derived from the last two equations (140), we obtain the
relation

(141)  (rt— %) (2= ap)*+ [(1 4+ 2%t + (14 ¢ r — 28] (— ag) + 14 5 4 g1 =O0.

‘We ahall obtain the desired equation by eliminati ag, as from (140) and
{(141). From the first we derive s — a, = R/V'1 + p* + ¢3, and, replacing z — a,
by this value in (141), we obtain the partial differential equation of the tubular
surfaces,

(48 it — M RS+ [(149%) 84 (1409 r—2008] BV1+03+ 0+ (14 99+ 0)2=0,
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The geometric meaning of this equation is easily verified. It states that
one of the principal radii of curvature of the surface is equal to R (I, § 242,
2d ed ; § 241, st ed.).

Note. Given a function of several variables which depends upon
one or more arbitrary functions, it is not always possible, as in the
two cases which have just been eéxamined, to deduce from them
one and only one relation, independent of the form of the arbitrary
functions, between the independent variables, the function & and
its partial derivatives up to a given order. Let us consider, for
example, a function z = F(z, », X, Y), where F is a given funo-
tion of the four arguments which appear in it, and where X and
Y are arbitrary functions of the variables = and y respectively. The
five derivatives p, ¢, », s. t of the first and second orders depend
upon X, X', X", ¥, Y, ¥", and it is in general impossible to elimi-
nate these six quantities from the six equations. But if we continue
up to derivatives of the third order, we have. in all, ten relations
containing eight arbitrary quantities, .X, X', X", X" vy, ¥/, ¥" ¥y,
and the elimination will lecad to a system of two equations of the
third order.*

94. General existence theorem. The proof given for a system of
partial differential equations of the first order (§ 25) can be extended
readily to the most general systems of the normal form, studied by
Madame Kovaleveky, t

P Fr@y @g o o) Tas 2y 2y 000 2y 00 0),
1
oz
\143) aa.i: = Fﬂ(a'ﬂ z-p sy Xy zp z” MRS zp, .. ’))

. . v
orz

-a;',l'f = Fp(xp xg, sy Ty zp zp MR ] zp’ . '):
in which the right-hand sides contain the independent variables =,
Zy, -, ¥, the dependent functions z,, - - -, 2,, the partial derivatives
of z, up to and including those of order »,, the partial derivatives of
#, of orders up to and including those of order r, --., and so on,

* Beo HERMITE, Cours & Analyse, pp. 216-229.

t Journal de Crelle, Vol. LXXX. In her proof, Madame Kovalevaky reduces the
gensral case to the case of a linsar system of the first order, but for us it will be
sufficient to reduce the general case to the case of a system of the first order of any
form whatever.
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but none of the derivatives onix,/0x}, 0s2,/0z], .- -, 072, /0. We
may then state the general theorem as follows:

Regarding the quantities ., x,, - « -, Tpy %y, 24+ * *5 £y,
0%t &g+ r‘.z:
021 02k - - - 33::-’
which appear in the functions F, as independent variables, let

¢
Qyy Qyy * * =y Ay, bp b,; Tty bp’ b"v ay, - an

be any system of values of these variables in whose neighborhood the
Junctions F; are analytic. On the other hand, let

1, bl Bl -, 1Y
(144) b2 @ B0 05 P
¢p; ¢}u 4’:1 Tty 4’;’_1
be functions of the n — 1 variables x,, z,, --., z,, regular in the

neighborhood of the point a,, - - -, a,, and such that we have

8':"’“-*"»4,:'4 .

¢| = bl! a:r;. .. aa_,‘ - LA YRERY

Jorx,=ay, -, x,=a, Then the equations (143) have one and
only one system of integrals, analytic in the neighborhood of the point
(a,, a,, - - -, a,), and such that we have, for x, = a,,

r—1
z, = ¢, 2_:_:'=¢-11 Tty %;;‘__il!=¢.r‘—l_ (i=112:"':l’)

To prove this we observe first that the equations (143), and those
which we obtain from them by successive differentiations, enable us
to express all the partial derivatives of the dependent variables in
terms of the independent variables, the dependent variables, and the
partial derivatives 94+ *@z /Oxfi. .. 0x%~, where @, < r, for i=1,
e <r,fori=2...,a <r, for i=p. This follows, step by step,
by a process of reasoning exactly like that of § 25. Now the ini-
tial conditions determine immediately for z, =a,, - .., z, = a, the
numerical values of the derivatives in terms of which all the
others are expressible. Hence the coefficients of the developments
in power series of the integrals whose existenice we wish to prove
can be calculated by the operations of addition and multiplication
alone, in terms of the coefficients of the developments of the func-
tions F; and of the functions of the array (144).
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To finish the proof, it remains to establish the convergence of the
power series thus obtained when the absolute values of the differ-
ences x; — a; are sufficiently small. We have already proved this
convergence when all the numbers r,, 7,, - . ., r, are equal to unity.
We shall now show how to reduce the general case to this particular
case by considering as dependent variables the functions z,, - - -, #,,
and their partial derivatives up to those of order r; — 1, inclusive,
for 2,(i=1,2,..., ).

Let us put prbatonnt

atayteta,
m.:z“l"'"""-' <=“’-°-"‘-°=z‘)

The right-hand sides of the equations (143) contain the variables
Z,,++, x,, the dependent variables z, ..., z,, the new dependent
variables, and certain derivatives of the first order of these new
dependent variables. But, by hypothesis, the derivatives of the varia-
ble 2; of order », which can appear are different from the derivative
2} 0,0,.,0- Hence at least one of the numbers a,, a,, - - -, , is differ-

ent from zero. If, for example, a, > 0, we can replace 27 ... ., by
az‘d a,—1,ay 4@,
L= liay ey
oz,

when a, + @, + : - - + a, = r,, and similarly for the others. We can
therefore write the given equations (143) in the equivalent form
0%} _1,0,0, - .0 .

(145) '_‘a—z;'_' =@ (X, T3 By Fper) (0=1,2,...,p)
the right-hand sides containing only the independent variables and
the dependent variables with some of the partial derivatives of the
first order taken with respect to one of the variables z,, ..., z,. To
these equations must be adjoined those which give the derivatives
with respect to z, of the new dependent variables, other than those
which we have already written. If wehavea, +a,+ -+ -+ a,=n—2,
we can write immediately

02 o..a
(146) __Lé_:.c# = z"‘+" g oo @)

1

and we have a, + 14 ay+ - +a, =7, — 1, so that the right-hand
side is one of the dependent variables. If we have

o +ag+ - +a,=r—1,
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we must suppose ¢, < r; — 1, and, consequently, one at least of the
sumbers a, - - -, &, is different from zero. If, for example, we have
@, > 0, we shall write
0 P
14 @ s+« o Ky = ¢‘+l.l.—1,-.-,¢.'
147) oz, or,

and the right-hand side is the derivative with respect to =, of one of
the auxiliary dependent variables. The equations (145), (146), and
(147) form a normal system of equations of the first order. The
initial conditions which must be satisfied by the integrals of this
new system result immediately from the initial conditions imposed
upon the integrals of the original system, and it is clear that the
power series obtained for the integrals 2, #,, - - -, #, of the new sys-
tem will be identical with the power series obtained for the integrals
of the given system. These series are therefore convergent (see § 25)
in the neighborhood of the point (a,, a,, - - -, a,).

For example, the equation of the second order r = f(z, v, z, p, g, 8, t) can be
replaced by a system of three equations of the first order in the normal form,

3z _ ap op a_q) 29 _op.
03— ] f(z!y‘lzip1qlav'ay az ay

If it is required that z = ¢(y), oz/2z = ¢ (¥), for z =z, the Integrals of the
auxiliary system must reduce respectively, for z = z,, to the functions ¢ (y),

v () ¢ ).

This general theorem does not furnish a reply to all the questions
which can be proposed on the existence of integrals of any system
whatever of partial differential equations, for it applies only to sys-
tems in the normal form considered. The most general systems have
been the subject of a great number of studies, the most recent of
which, due to Tresse, Riquier, and Delassus, have led to the gen-
eral solution of the following problem: Given a system of m partial
differential equations of any order in any number of independent
and any number of dependent variables, to determine whether this
system has any integrals and, if it has, to define the arbitrary quan-
tities (constants or functions) upon which the integrals depend.*

To sum up, every partial differential equation of any order in
which both sides are analytic functions of their arguments has an
infinite number of analytic integrals, but we cannot say, in general,
as in the case of ordinary differential equations (§ 26), that all the

® The investigations of Rigujer have been collected by him in his work Sur les
systémes d'dquations auz dérivées partislles (1910).
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integrals are analytio functions of the independent variables. We
have seen above (p. 2565, ftn.) that it is not true for an equation
of the first order. It is, moreover, easy to see this by elementary
examples such as the equation p = 0, whose general integral is any
function of y.

The methods of the calculus of limits do not apply to the non-
analytic equations. Let us consider, for example, the equation

(148) p+ef(z,y)=0,
where f(x, y) is a continuous non-analytic function satisfying the
Lipschitz condition with respect to y. We have proved in §§ 27-80
that the differential equation

Y f@, v)

has an infinite number of integrals which depend upon an arbitrary
constant C. In order to conclude from this, as in § 31, the existence
of an integral of the equation (148), it would be necessary to prove
that all these integrals are defined by an equation of the form
¢ (=, y¥) = C, where the function ¢ possesses continuous derivatives
of the first order. We shall return to this question in the next
volume.

EXERCISES
1. Integrate the partial differential equations
aztp + (22 + az’y — az%y?) g = 2 azxdyz — za¥hys,

Ve DNo-(2+2 ) _(l_i)
(x+v’)p (u+z’+1 1=\z"n"
(z—6y)p+ (10z—y)g=6y*—42% — 8Bzy.

2. Find the general equation of the surfaces which cut at right angles the

spheres represented by the equation
2242+ 22 4 2a2z=0,

where a is a variable parameter.

Deduce from the result obtained some systems of three families of orthogonal
surfaces

8. It is required to find the partial differential equation of the surfaces
desacribed by a straight line which moves 8o that it always meets a fixed straight
line at a given angle. Integrate this partial differential equation.

[Licence, Paris, July, 1878.]

4. Given a plane P and a point O in the plane, find the general equation of
all the surfaces such that, if we draw the normal mn at any point m of one of
them meeting the plane P at n, and then the perpendicular mp to this plane,
the area of the triangle Onp will be equal to & given constant,

[Licence, Paris, November, 1871.)
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5. The same question as in Ex. 4, supposing, however, that the angle nOp is

constant. [Licence, Rennes, 1888.]
8. Determine all the surfaces which satisfy the condition

Op x mn = AOm®,

where \ denotes a given constant, O the origin of codrdinates, »m any point of
one of the surfaces, p the foot of the perpendicular dropped from O upon the
tangent plane at m, and » the trace of the normal on the plane zOy.

[Licence, Paris, 1875.]

7. Find the general equation of the surfaces such that if we draw the
normal mn from any point m of one of them terminating in the zy-plane, the
length mn will be equal to the distance On.

[Licence, Poitiers, 1888.]
8. Find the integral surfaces of the equation

zy’p + 2yq = z (z* + 7).
Determine the arbitrary function in such a way that the characteristic curves
form a family of asymptotic lines of the integral surfaces, and find the
orthogonal trajectories of the surfaces thus obtained.
[Licence, Paris, July, 1904.]
9. Consider a family of skew curves I' represented by the two equations
B+ 2y =az2, 224y +423=10z,
where a and b are two variable parameters.
1) Prove that these curves are the orthogonal trajectories of a one-parameter
family of surfaces S ;
2) Find the lines of curvature of these surfaces S ;
8) Show that these surfaces form part of a triply orthogonal system, and find
the other two families of this system. . .
[Licence, Paris, July, 1901.]
10. Form the partial differential equation which has the complete integral
3 (22 — a) = (z + b)?, and integrate this equation.
11. Determine the surfaces such that the segment mn of the normal included
between the surface and the point of intersection n with a fixed plane P pro-
jects upon this plane into a segment of constant length.

12. Let n be the point where the normal at m to a surface meets the zy-
plane. Find the surfaces such that the straight line On will be parallel to the

tangent plane at m.
ngent p [Licence, Poitiers, July, 1884.]

13. It is required to determine the surfaces which cut at a given angle ¥V all
the planes passing through a fixed straight line. Show that the characteristic
curves are the lines of curvature of the integral surfaces.

14. The integral curves of the partial differential equation for which a com-
Plete integral is () _ ooyp 4 k(1 4 a?)z 4+ 2ay +b=0,
where a and b are two arbitrary constants, satisfy the relation
dz® 4 dy’ = k3ds3.
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15*. Every integral curve of a partial differential equation F(z, ¢, 2, p,¢) = 0,
tangent at & point M to a generator G of the cone T with its vertex at Af,
has contact of the second order with every integral surface tangent at M to the
plane tangent along the generator G to the cone T.

[Sorrus Lix.]

16. From a point M of a surface 8 a perpendicular MP is dropped upon the
fixed axis OO’, then from the point P a perpendicular PN upon the normal to
the surface at M. It is required to determine the surfaces S such that the
length MN will be a given constant a.

Study in particular the surfaces S which are helicoids having OO’ for axis.

[Licence, Paris, October, 1808.]

17. It is required to find the general form of the functions F(z, v, z, p, q)
such that the differential equations of the characteristic curves of the equation
F = 0 will have the integrable combination d (g/p) = 0.

Application. Determine the surfaces S such that the distance of any point
M of one of them to the zy-plane is equal to the distance from the point O to
the tangent plane to the surface at the point M.

18. Given the partial differential equation
[0)) Pp+Qy=Rz34+ 8z+ T,
where P, @, R, S, T depend only upon the variables z and y, show that the

anharmonic ratio « of any four particular integrals of the equation (I) eatisfies
the equation

Knowing four particular integrals z,, z,, 2,3, z, of the equation (I), can we
derive from them the general integral ?

19. Parallel surfaces. Let 6 (z, y, z) be an integral of the equation

26\ 26\2 26\3
E — — —) =1.
=) G+ @)+ )
Prove that the equation 6 (x, y, z) = C represents, in rectangular codrdinates,

a family of parallel surfaces.

Note. We observe that the equation (E) has the complete integral
=Vie—aP+ w0+ -7

and the general integral is obtained by finding the envelope of the sphere of
radius # whose center describes a surface or a curve. It is clear that by
making the radius § vary we obtain a family of parallel surfaces.

Conversely, in order that the equation u (z, 7, 2) = C shall represent a family
of parallel surfaces, it is necessary and sufficient (Ex. 9, p. 42) that u(z, 7, 2)
satisfy an equation of the form

() ()" () -

which we may reduce to the form (E) by putting 6§ = ¢ (u).
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£0. In order that the expression dz + A dz + Bdy shall have an integrating
fastor independent of z, it Is necessary and sufficient that it be of the form
ds 4 2d¢ + e~bdy,
where ¢ and y are functions of z and y.
21. Apply the method of J. Bertrand (p. 232) to the equation
Pdz 4+ Qdy + Rdz =0,
where P, Q, R are linear functions of z, y, z satisfying the condition of
integrability.
22+, Given a completely integrable system of the form
dz = pdz + ¢dy,

dp = (a,p + 059 + a2)dz + (¢, P + C30 + €32)dy,
dg = (e, P + c;q + ¢52) dz + (5,2 + byq + by2)dy,

where a;, b, ¢, are functions of z and y, the general integral is of the form
¢ = C,2, + Cg2, 4+ Cy2,, Where 2,, z,, 2, a1e three linearly independent inte-
grals, and where C,, C,, C; are arbitrary constants.*

238. Find the necessary and sufficient conditions in order that the equations
1‘=,f1(2, ¥) a=f,(z, 8 t=/fs(2,¥)
be consistent.

Application. Find what condition the functions 4 (z, 3), B(z, ), C(z, v)
thust satisfy in order that the integral curves of the differential equation
Adz? + 2 Bdzdy 4+ Cdy? =0 be the projections on the zy-plane of the two
families of asymptotic lines uf a surface.

* ApPRLL, Journal de Liouvtile, 3d serles, Vol. VIIL, p. 192
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50, ftn.; 51, 23; 53, 24; 54, 25;
57,25;69,26;60,26;61,26;67,29;
100, 87 ; 175, 64 ; 246, 84 ; 284, 04

Anharmonic ratio of integrals: 18, 7

Antomari: 246, ftn.

Appell: 41, ftn.; 115, 42; 290, ftn.

Approximate integration of differen-
tial equations: 64, ftu.

Arbitrary constants: 74, 81 ; see also
Elimination of constants

Asymptotic lines: 43, ex.18; 91, 85;
206, ex. 6

Auxiliary equation, polynomial: 12,6 ;
117,48 ; 124,45; 163,60; roots of :
119, 43; for a system of equations:
158, 58, 168, 60

Bernoulli: 11, b

Bernoulli’s equation: 11, 6

Bertrand : 41, ftn. ; 282, 80; £90, ex. 21

Bertrand'’s method : £32, 80; 290, ex.
21

Bessel: 126, 46 ; 142, 62; 169, ex. 8

Bessel's equation: 126, 46; 148, 52;
169, ex. 8

Boole: £18, ex. 1

Bounitzky : 44, ex. 21

Bracket [u, v]: £34, 81; £41, 88
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Briot and Bouguet: 45, 21; 60, ftn.;
59, 20; 173, 64; 175, 64; 176, 64 ;
177,64 ; 178, 85 ; 193, ftn.

Briot and Bouquet's equation : 173, 64

Briot and Bouquet's method, analytic
integrals: 50, ftn.; 59, 26

Briot and Bouquet's theorem : 175, 64;
176, 64 ; 177, 64; 178, 65

Calculus of limits: 45, 21 and 22; 65,
ftn.; 187, 60 ; (system of equations) s
48,22; equations of thenthorder: 49,
22; 100, 37; non-linear equations:
174, 64; partial differential equa-
tions: 53, 25; (system of): 56, 26 ;
288, 94; 287, 94; system of linear
equations: 50, 23 ; total differential
equation: 51, 24; (system of) : 53, 24

Canonical form, of substitutions: 151,
48; 182, 48; of a system of linear
equations: 161, 69 ; 165,61 ; 179, 66

Cauchy: 35, 18; 45, 21; 46, 22; 61,
27; 68, 80; 78,80; 7¢, 80; 108,
89; 109, ftn.; 128, 46; 154, ftn.;
172,63 ; 188,67; 198,71 ; 208, 71;
214,76; 217,75; 246,84 ; 249,86 ;
254, 8b; 257, 85; 257, Note, 259,
86; 260, Note; 261, 87; 264, 87

Cauchy-Lipschitz method : 61,27 ; 68,
80; 74, 80

Cauchy's equation: 257, ex. 1.

Cauchy’s first proof : 68, 80; 73, 80

Cauchy’s method: non-homogeneous
linear equations: 108, 89 ; 109, ftn.;
(system of) : 154, ftn.; partial dif-
ferential equations: 249, 86; 257,
Note; 259, 86; 260, Note; (ex-
tended) : 261, 87

Cauchy's problem : 246, 84 ; £6¢, 87

Cauchy’s theorem: 45§, 22; 172, 68;
188, 867; 198, 11; 208, 11; (system
of equations) : 48,22 ; 217, 75; par-
tial differential equations: 54, 26
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Center, of integral curves: 180, 65;
of simiiitude, 8, 8

Characteristic curves: 219, 76; 224,
77; 249, 86; 250, 86; 259, 86;
261, 87; Cauchy’s method : 249, 85;
257, Note; 269, 88; 260, Note;
261, 87; congruence of: 219, 76;
220, 76; 222, 77; derivation from
complete integral : 259, 86 ; differen-
tial equations of : 219, 76; 222, 77;
284, 17; 251, 856; see also Char-
acteristic strip

Characteristic developable surface:
262, 85; 259, 86; 260, Note

Characteristic direction: 250, 85

Charaocteristic equation: 730,47 ; 139,
50; 140,51 ; 143,53; 147,54 ; 165,
61; 166,62; 179, 66; elementary
divisors: 182, ftn.; roots of: 130,
47; 181,48 ; 139, 60; 149, Note 2

Characteristic exponents: 147, b4;
150, 65

Characteristic numbers: 747, 64

Characteristic strip: 252,85 ; 259, 86 ;
260, Note; 261, 87; differential
equation of : 262, 87

Circles, differential equation of : 5,1;
of double contact with a conic:
206, ex. 4

Cissoid : 206, ex. b

Clairaut: 17,10; 41, ftn. ; 44,ex.20;
205,12 ; 212, 14; 2389, ex. 1

Clairaut's equation: 17,10; 41, ftn.;
44, ex. 20; 206, 72; generalized :
212, 14 ; 239, ex. 1

Clebsch : 267, 88

Complete integral: 236, 82; 239,,82 ;
241, 88; 247, 84; 260, Note; 277,
91; 278, 92; generalization of the-
ory: 272, 90; geometric interpreta~
tion: 238, 82; of involutory systems:
277, 91 ; see also Cauchy’s method
and Lagrange’s theory

Complete systems: 267, 88 and 89;
equivalent : 268, 89; Jacobian sys-
tems: 269, 89; 270, 89; 271, ex.;
275, 91; 278, 92; method of inte-
gration: £70, 89; change of varia-
bles: 267, 89

Completely integrable total differen-
tial equations: 52, 24; 225, 78;
system of equations: 53, 24; see
also Condition for integrability

Complex of curves: £59, 86

Condition for incompressibility of a
fluid : 86, 83

Condition for integrability of total
differential equations: 62, 24; 225,
78; 230, 80; the bracket [u, v]:
234, 81; 241, 83; invariance of:
231, 80; involutory systems, Pois-
son’s parenthesis: 274, 91; the
parenthesis (u, v): 234, 81

Conformal representation: 22, 18

Congruence of curves: 209, 74; 219,
76; 222, 77; focal points of, focal
surface: 209, 74; 224, 77; see also
Characteristic curves and Edge of
regression

Conical point : 257, 86

Conics, differential equation of: 5, 1;
having circles of double contact:
206, ex. 4

Conoids : 220, ex. 1

Constant coefficients in differential
equations: 117, 43; (system of equa~-
tions) : 157, 68; 160, 68; D'Alem-
bert’s method : 122, 44 ; 161, 58

Constants of integration: 74, 81; see
also Elimination of constants

Continuous one-parameter groups:
87, 34 ; see also Groups

Corresponding homogeneous linear
equation: 107, 89

Cotton : 64, ftn.

Covariant : 80, Note 2

Cremona transformation: 198, ftn.

Critical points, algebraic: 173, 63;
188, 67; 199, T1; 201, 71; infinite
number of : 185, ftn.; linear equa-
tions: 129, 47; non-linear equa-
tions: 178, 63; permutation of
integrals about: 129, 47; 138, 49;
transcendental : 197, 70

Curves, asymptotic lines: 43, ex. 18;
91, 86 ; 206, ex. 6; circles: see Cir-
cles; cissoid: 206, ex. 5; complex
of : 259, 86; congruence of: see
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Congruence of curves; conics: see
Conics; cycloid: 41, 20; edge of
regression: 209, 74; 212, 14; 240,
ex. 2; 257, 86; elastic space curve:
99, ex. 7; ellipse: 18, 10; enve-
lope: see Envelope; family of: 8,1;
helices : £20, ex. 2; isothermal : 43,
ex. 12; orthogonal: 14, 7; 38, 17;
220, ex. 8; 228, 18; parabola: 6,
1; parallel: ¢2, ex. 9; similar: 8,
8; straightlines: ¢, 1; trajectories:
14, 7; 34, 17; 98, 86; unicursal
quartic: 19, ex. 2; 205, 72; seealso
Cusps Integral curves, Lines of
Curvature, Locus

Cusps of integral curves: 41, 20;
201, 71; 202,71; 208, 13; 212, 14;
218, ex. 2 ; see also Locus of cusps

Darboux: 29, 16; 41, ftn.; 45, 21;
79, ftn.; 116 ftn.; 205, ftn.; 218,
ex. 2; 239, ftn.; 253, 86

Darboux’s theorems: 29, 16

D' Alembert: 122, 44; 161, 58

D’Alembert’s method : 7122, 44; 161,58

Definite integrals as solutions, of Bes-
sel's equation’s 126,46 ; 169, ex. 8;
of Laplace’s equation: 124, 46

Delassus : 2586, 94

Depression of order: 36, 19; 109, 40

Derivative in non-linear equations,
infinite: 172, 63; indeterminate:
178, 64; 177, 65; see also Briot and
Bouqyuet's equation and Briot and
Bouquet's theorem

Developable surfaces: 240, 82; 257,
86; 282, ex.; see also Character-
istic developable surfaces

Differential equations: 3, 1; admit-
ting a group of transformations:
89,38b6; 91,35; 95,36, 96,36 ; 97,
86 ; 98, ex. 4; algebraic: 180, 66 ;
182, 67; slgebraic, of deficiency
zero or one: 18, 11; Bernoullt’s: 11,
6; Bessel's: 126,46; 142,52 ; 169,
ex. 8; Briot and Bouquet’s: 178, 64;
Cauchy’s: 257, ex. 1; of character-
istic curves: 219, 716; 222, 17; 224,
77; 251, 85; of characteristic strip:
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262, 87; of circles: &, 1; Clairaut’s:
see Clairaut's equation; of conics
(Halphen's method): &5, 1; Dar-
boux's theorems: £9, 16; depreasion
of order of : 36, 19; 109, 40; differ-
ential notation: 7, 2; elastic space
curve: 99, ex. 73 equations F(z,y’)
=0, F(y, ) =0: 18,11; Euler's:
see Euler’s equation; Euler’s linear:
128, 46; existence theorems: see
Existence theorems ; of first order:
6, 2; 180, 66; Gauss's: 140, 51;
geometric representation of : 14, 8;
of higher order: 35, 18; 196, 70;
homogeneous: &, 8; 16, ftn.; 38,19 ;
90, 86; of incompressible fluid : 84,
88 ; integrals of: see Integral curves,
Integral surfaces, and Integrals; of
isothermal curves: 43, ex. 12 ; Jaco-
bi's: see Jacobi's equation; La-
grange's: 16, 9; 204, 72; 205, 12;
Lamé's: 146, 53; Laplace’s linear :
124, 48 ; Legendre's: 112, ex.; lin-
ear: 9, 4; 90, 856; Liouville's: 79,
ex. 3; of the nth order: 4, 1; 8,
2; 49, 22; 100, 87; order of: 4,
1; of orthogonal trajectories: 14,
7; 88, 17, 228, 78; Painlevé's:
196, 70; 197, 70; of parabolas: 6,
1; with periodic coefficients: see
Periodic coefficients; Picard’s: 143,
53; raising order of : 41, Note;
regular: 134, 60; Riccati's: see Ric-
cati's equation; of similar curves:
8, 3; singular points of : see Singu-
lar points; of straight lines: 4, 1;
of trajectories: see Trajectories; see
also special classes of differential
equations and systems of equations

Differential notation: 7, 2

Differential operators: 97, 36; 102,
38; 113, 41; bracket [u, v]: £34,
R1, #41, 83; the parenthesis (u, v):
284, 81; Poisson’s parenthesis: 274,
01, X [Y(f)] — Y [X(/)]: 97, 38;
266, 88 ; 278, 92

Duron: 44, ex. 21

Dominant functions: 46,21; 47,22; 61,
23; 52,24 ; 65,26; 188, 80 ; 174, 64



Poubly periodic functions of the sec-
ond kind: 145, 58

Bdge of regression: 209, 74; 212, 4;
240, ex. 2; 257, 86

Klastic space curve: 99, ex. 7

Element: 251, 85; 261, 87

Elementary divisors: 139, ftn.

Elimination, of arbitrary functions:
222, 77; £38,82; 259,86; 273, 90;
278, 93; of constants: 3, 1; 208,
74; 236, 82; 255, ftn. ; 272, 90

Ellipsoid, lines of curvature of: 47,
Note

Elliptic functions: 23, 14; as coefli-
cients of a linear equation: 144,
58; 146, b4; existence proof from
Euler's equation: 23, 14; 194, 69;
a8 integrals: 19, ex. 8; 39, 20; 144,
68; 152, 68; Picard’s equation:
144, 53

Envelope, of asymptotic lines: 206,
ex. 8; of integral curves: 17, 10;
208,71 ; 204, ftn. ; 205, 72 ; 209, 74;
218, ex, 8; of integral surfaces: 238,
82; 281, 93 ; of straight lines: 18, 10

Equations of first order, higher order:
see Differential equations and special
classes of equations

Equivalent complete systems: 268, 89

Essentially singular points: 131, 47;
134, 49; movable: 196, 70

Euler: 19, 12; 28, 14; 27, 14; 28,
16; 29, 16; 41, ftn.; 43, ex. 17;
117, 43; 123,45; 194, 69; 205, 72;
221, ex. 8

Euler's equation: 28,14 ; 28, 15; 41,
ftn. ; 194, 69; 205, 72; Abel’s the-
orem: £8, 15; existence of elliptic
functions: 23, 14; 194, 69; La-
grange's integral of: 43, ex. 17;
Stieltjes's general integral : 27, 14

Euler’s linear equation: 723, 45

Euler’s relation for homogeneity : 221,
ex. 8

Exceptional initial values: 172, 63;
178,64 ; 177, 65

Existence theorems: 45, 22; 98, ex.
1; apalytic integrals: see Analytic
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integrals and Briot and Bouquet's
method; calculus of limits: asee
Calculus of limits; for elliptic funo-
tions: 23, 14; 154, 89; for inte-
grating factors: 57, 26; successive
approximations: see Successtve ap-
proximations; for systems of partial
differential equations in normal
form: 283, 94; see also Exceptional
initial values
Extended group: 94, 36

First integrals: 74, 31; 76, 81; 81,
82; 83, 382; 157, 67; 216,75

Fixed singular points: 181, 66 ; 182, 67

Floquet: 151, ftn.

Focal point: 209, 74

Focal surface: 209, 14; 224, 77

Focus: 180, 65

Fuchs: 134, 60, 139, ftn.; 150, ftn.;
194, ftn.

Fuochs’ theorem: 134, 650

Functions defined by differential
equations: 182, 67

Fundamental characteristic equation :

189, b0; see also Characteristic
equation
Fundamental system of integrals:

108, 88; 105, 38; 129,47; 130, 47;
147, 54; for a system of linear
equations: 158, 66

Gauss: 140, 51

Gauss’'s equation: 140, 51

General integral: 3,1; 13, 7; 69,26;
7?4, 81; of homogeneous linear
equations: 108, 88; 105, 88; of
partial differential equations: £17,
75; 238, 82; 278, 90; of a system
of equations: 57, 26 ; 152, 56

Goursat: 88, ftn.; 170, exs. 14, 15;
208, ftn.; 265, ftn.

Group, differential equations admit-
ting a: 89, 85; 91, 85; 95, 86; 96,
86; 97, 86; 98, ex., 4; diiferential
equations of a: 88, 84

Groups, one-parameter continuous:
86,34, 91, 86; application to differ-
ential equations: 89, 85; 96, 86;
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97,86; functions admitting: 93, 86;
of infinitesimal tramsformations:
91, 86; 83, 86; invariants: 93, 88;
similar: 88, 84; of translations:
89, 84 ; see also Transformations

Halphen: 6, 1; 115, 42

Hedrick: 255, ftn.

Helices: £20, ex. 2 ; 245, 83

Helicoid : 220, ex. 2 ; 245, 88; lines
of curvature of : 91, 86

Hermite: 99, ex. T; 146, 63; 169, ex.
8; 198, ftn.; 288, ftn.

Homogeneity of functions, Euler’'s re-
lation: 221, ex. 8

Homogeneous equations: 8, 8; 16,
ftn.; 38, 19; 90, 86

Homogeneous linear equations: 102,
88; 107, 89; adjoint equation, poly-
nomial: 116, 42; analogies with
algebraic equations: 118, 41; anal-
ogies with the Galois theory, with
symmetric functions of roots: 115,
41; auxiliary equation, polynomial :
117, 43 ; Bessel’s equation: 726, 46;
142, 62, 169, ex. 8; common inte-
grals of two equations: 174, 41;
constant coefficients: 117, 43;
(D’Alembert’s method): 122, 44;
corresponding: 107, 89; critical
points: 129, 47 ; depression of order:
109, 40; elliptic coefficients: 144,
b63; 146, 54; Euler'slinear equation:
1238, 45; Fuchs' theorem: 184, 50;
fundamental system of integrals:
108, 88, 105, 38; 129, 47; Gauss’s
equation: 740 51; general integral :
108, 88 ; 105, 38 ; greatest common
divisor: 713, 41; group of substitu-
tions: 132, 48; 134, 48; invariants:
115, 41; Lamé's equation : 146, 53 ;
Laplace’s equation : 724, 46 ; Legen-
dre’s equation: 112, ex.; linearly
independent integrals: 103,38 ; 105,
88; periodic coefficients: 128, 47;
146, b4; 150, ex.; 151, ftn.; per-
mutations of integrals around a
eritical point: 128, 47; Picard's
equation: 143, 63; ratio of two
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integrals : 169, ex. 10; regular: 134,
50; regular integrals: 728, 47; 181,
47; 134, 49; relation to Riccatl's
equation: 111, 40; 112, {tn.; roots
of integrals, Sturm’s theorem: 111,
ftn.; solution as a definite inte-
gral : see Definite integrals; system
of : see System of homogeneous lin-
ear equations; Wronskian: 129, 47;
see also Characteristic equation,
Characteristic numbers, and Char-
acteristic exponents

Houel: 212, ex. 1

Hyperelliptic functions: 193, 68

Hypergeometric series: 140, 81; de-
generate cases: I42, 62

Identical transformation: 88, 84; 81,
36

Incompressible fluid, condition for:
86, 33; invariant integrals: 84, 88

Independent equations: 265, 88

Independent integrals: &1, 81; line-
arly: 108, 88; 105, 38

Infinitesimal transformations: 86, 84 ;
91,36, 93, 86; 98, 86

Initial conditions: 45, 22 ; 48, 22; 49,
22; 50, 28; 52,24; 53,24; 61,28;
defining an integral : 700, 87 ; partial
differential equations: 64, 26; §7,
26; £14,74; 221,76 ; 246,84 ; 284,
94; see also Cauchy’s problem, De-
rivatives in non-linear equations,
and Exceptional initial values

Integrable combination: ?7, 81; 78,
exs. 1, 2; 220, 76; 245, 83

Integral curves: 4, 1; 60,26 and ftn.;
61,26; 79, Note 1; 173, ftn.; 179,
65; 199,713 center: 180, 66 ; cusps:
see Cusps; envelope of: 17, 10; 208,
71; 204, ftn. ; 205,72; 209, 74 ; £18,
ex 8; focus: 180, 66; in para-
metric form: 16, 9; of a partial dif-
ferential equation: 257, 85; 268,
ex. 2; 289, ex. 15; saddleback:
179, 65, see also Integrals

Integrai equation: 61, 27

Integral surfaces: 218, 76; 219, 76;
227,78 ; 246, 84; 250,86 ; £55,85;
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envelope of : £38, 82; 281, 98 ; see
also Cauchy’s problem and Integrals
Integrals: Abelian: 18, 11; analytic:
see Analytic extension and Analytic
integrals ; anharmonic ratio of: 18,
73 Cauchy’s problem: 246,84 ; 264,
87; complete: see Complete inte-
gral; common to two linear equa~
tions: 114, 41; defined by initial
conditions: 100, 87; in form of
definite integrals: see Definite in-
tegrals; elements of : 251, 85; 261,
87; elliptic functions: 19, ex. 8; 39,
20; 144, 63; 192, 68; of equations
of higher order: 196, 70 ; existence
of : see Existence theorems; first:
see First integrals; fundamental
system of : see Fundamental system
of integrals; general: see General
integral; general properties of:
100, 87 ; hypergeometricseries: 740,
b61; 142, 62; independent: 8/, 31;
initial conditions: see Initial condi-
tions; invariant : see Invariant inte-
grals; Legendre’s polynomials: 112,
ex.; Lie’s enlarged definition: 264,
Note; linearly independent: 103,
88; 105, 38; non-analytic: see Non-
analytic integrals; particular: 3,1;
12,17; 14, 7; 20,12; 107,39 ; 109,
s periodic: 192, 68; permutation
of integrals around a critical point:
129,47; 138, 49; rational functions:
144,58 ; 192, 68; rational functions
of constants: 10, 4; 12, 7; 186, 67;
regular: 128, 47; 131, 47, 134, 49;
roots of, Sturm’'s theorem: 111,
ftn.; singular: see Singular inte-
grals; singular points: see Singular
points; Wronskian: 129, 47; sce
also Integrable combination, Inte-
gral curves, Integral surfaces, and
special types of equations
Integrating factors: 19,12; 81,82; 88,
82; 96,86; 98,ex8.8,4; 115,42, 231,
80 ; 290, ex. 20 ; existence of : 57, 26
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Invariant functions: 93, 86

Invariant integral : 83, 88 ; of homoge-
neous linear equations: 115, 41; of
incompressible fluid: 84, 83; line
and surface: 84, 83; multiple: 85,
83; volume: 86, 33

Involutory systems: 274, 91; com-
plete integral: 277, 91; Jacobi's
method : 277, 92; Poisson’s paren-
thesis: 274, 91

Isothermal curves: 43, ex. 12

Jacobi: 11, 6; 25, 14; 32, 16; 74, 81;
81,82; 163, 60; 269, 80; 270, 89 ;
271, ex.; 275, 91; 277, 92; 278, 92

Jacobi’s equation: 17, 8; 32, 16; re-
lation to a system of homogeneous
linear equations: 163, 60

Jacobi’'s method, involutory systems:
277, 92

Jacobi’s multipliers: 74, 31; 81, 82

Jacobian system: 269, 89; 270, 89;
271, ex.; 275, 91; 278, 92

Kovalevsky, Madame: 45,21 ; 283, 94
and ftn,

Lagrange: 16,9; 41, ftn.; 43, ex, 17;
107, 80; 109, ftn.; 115, 42; 208,
71; 204, 12; 205, 712; 218, ex. 4;
236,82; 239, 82; 240,83; 241, 83 ;
251, 85; 255, ftn.; 258, ex. 1; 259,
86; 277, 92

Lagrange and Charpit’s method : 240,
83; 277, 92

Lagrange’s equation: 16, 9; 204, 72;
205, 72

Lagrange’s integral of Euler’s equa-
tion: 43, ex. 17

Lagrange’s method : 241, 83; 251, 86

Lagrange’s method of the variation of
constants: 107, 89; 109, ftn.; 265,
ftn.

Lagrange's theory of the complete in-
tegral : 236, 82; 239, 82; 258, ex.
1; 259, 86

Laguerre: 115, 41
Lamé: 146, 63
Lamé’s equation : 146, 68

Integration by raising order: 41, Note
Invariance of conditionof integrability:
231, 80
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Laplace: 124, 46 ; 127, Note

Laplace's linear equation: 124, 46;
127, Note

Legendre: 16, ftn.; 28, 15; 112, ex.

Legendre’s equation: 112, ex.

Legendre's polynomials: 112, ex.

Legendre’s transformation : 16, ftn.

Letbnitz : 118, 43

Leibnitz's formula : 118, 43

Liapunof: 151, 55 and ftn.; 166, 62

Lie: 43, ex. 12; 86, ftn.; 98, 86;
264, Note ; 289, ex. 1

Lie's enlarged definition of the inte-
gral : 264, Note

Lie’s theory of differential equations:
86, 84 ; see also Groups

Lindelof: 61, 27; 98, ex. 1

Linear equations: 9, 4; 90, 85; 100,
87; 106, 89; 186, 67; coeflicients
depending upon a parameter: 65,
Note ; depression of order : 109, 40;
general properties of integrals : 100,
87; see also Homogeneous linear
equations, Integrals, Non-homoge-
neous linear equations, Partial d ffer-
ential equations, and Singular points

Linearly independent functions: 708,
38; integrals: 108, 38; 105, 88

Lines of curvature: 206, 72; of an
ellipsoid : 41, Note; of a helicoid:
91, 85

Liouville: 79, ex. 3

Liouville's equation: 79, ex. 8

Lipschuz: 68, 30; 287, 94

Lipschitz condition : 68, 30; 257, 94

Locus, of characteristic curves: 2719,
765 of cusps of integral curves:
201, 71; 202, 71; 206, 12 ; 208, 18 ;
212, 14; 218, ex. 2; of points of
inflection of integral curves: 213,
ex. 2.

Mayer: 229, 79

Mayer’s method : 229, 79

Méray: 45, 21

Moigno : 68, 80; 212, ex. 1

Monge : 41, Note

Monge's method of finding the lines of
curvature of an ellipsoid : 41, Note
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Movable singular points: 181, 66;
185, 67; 197, 70 and ftn.; for
equations of higher order: 196,703
essentially singular: 196, 70; lines
of : 197,70; poles: 197, ftn.; tran-
scendental critical points: 197, 70

Multipliers: 74, 81; 81, 82; 85, 83

Non-analytic integrals: 50, 22 ; 255,
ftn.; Briot and Bouquet’s theorem :
175, 84; 176, 64 ; 177,684 ; 178,65;
see also Analytic integrals and Briot
and Bouquet’s method

Non-homogeneous linear equations:
100, 87; 106, 89; analytic exten-
sion of integrals: 101, 37; Cauchy’s
method : 108, 80; 109, ftn.; con-
stant coefficients: 120, 43; corre-
sponding homogeneous equation 3
107, 89 ; depression of order: 110,
40; general integral: 107, 89; La-
grange's method of the variation of
constants: 107,39; 109, ftn.; singular
points: 700, 87 ; system of equations:
see Systems of non-homogeneous
linear equations

Non-linear differential equations, 172,
63; 179, 65; algebraic equations of
the first order: 180, 66; 182, 67;
DBriot and Bouquet’s problem: 198,
ftn.; having single-valued inte-
gralss 7187, 68; 192, 68; 198, ftn.;
exceptional initial values: 172, 63;
(derivative infinite): 172, 63; (de-
rivative indeterminate): 178, 64;
177, 656 ; integrals: see Envelope of
integrals, Integral curves, Integrals,
Locus of cusps, and Singular inte-
grals; functions defined by y =
R(z, y): 182, 67; non-analytic inte-
grals: see Non-analytic integrals;
singular points: see Critical points,
Fixed singular points, Movable sin-
gular points, Singular points; sys-
tems of : 208, 74 ; see also Equations
of Briot and Bouquet, Clairaut,
Euler, Lagrange, and Riccati

Normal form of & system of partial
differential equations: 288, 94



298

Order of a differential equation: ¢,1;
depression of : 36,19 ; 109, 40; first
order: 6, 2; 180, 68; higher order,
nth order: 4, 1; 6, 2; 35, 18; 196,
70; integration by raising order:
41, Note

Orthogonal trajectories: 14, 7; 38,
17; £20, ex. 8; 228, 18

Orthogonal surfaces: £23, 77

Painlevé: 59, ftn.; 74,80; 196, 70;
197, 70; 218, ex. 7

Painlevé’s equation: 196, 70;
70

Parallel curves: €2, ex. 9

Parallel surfaces: 289, ex. 19

Parenthesis (u, v): £34, 81; Poisson's:
274, 91

Partial differential equations: 76, 31;
of first order: see Partial differential
equations of the first order; of
higher order: 278, 93; (system of
equations): 283, 94; of ruled sur-
faces: 280, ex.1; 281, ex. 2; of
tubular surfaces: £40, ex. 3; 282,
ex. ; see also Systems of differential
equations and Existence theorems

Partial differential equations of the
first order, linear: 75, 81; 214, 75;
characteristic curves: see Character-
istic curves; of conoids: 220, ex. 1;
general integral: 217, 76; geomet-
ric interpretation : 218, 76; general
method of integration: 214, 75; of
helicoids: 220, ex. 2 ; £45, 83; initial
conditions, 221, 76; integral surface:
218, 76; 219, 76; singular integral,
surface: 284, 77; see also Systems
of differential equations

Partial differential equations of the
first order, non-linear: any num-
ber of variables: £61, 87; Cauchy’s
equation: 257, ex. 1; Cauchy’s
method: 249, 85; 259, 86; 260,
Note; (extended): £61,87; Cauchy’s
problem: £46, 84; characteristic
ocurves, characteristic developable
surface, characteristic direction,
characteristic strip: ses these titles;

197,

INDEX

Clairaut’s equation, generalized:
239, ex. 1; complete integral: £86,
82, and see also Lagrange's theory ;
element: 251, 85; envelope of gur-
faces: 288, 82; general integral:
£38, 82; integral, Lie’s enlarged
definition: 264, Note; integral
curves: 257, 85; £89, ex. 16; La-
grange and Charpit's method: 240,
83; 277, 92; separation of variables:
244, ex. 8; singular integrals: 284,
77; 287, 82; £38, ftn.; 272, 90;
three variables: 236, 82; see also
Involutory systems

Particular integral, solution: 8, 1;
12, 7; 14, 7; 20, 12; 107, 89;
109, 40

Periodic coefficients: 128, 47; 146,
b4, 1560, ex.; 151, ftn.; elliptic:
144, 53; 146, b4; Picard’s equa-
tion: 144, 53; system of linear
equations: 764, 61; 166, 62

Picard: 59, ftn.; 61, 27; 74,80; 115,
42 ; 144, 58; 177, 64

Picard’s equation: 144, 53

Picard’s method of successive approxi-
mations : see Successive approxima~
tions

Poincaré: 83,88, 126, ftn.; 151, ftn.;
177, 64 ; 180, 85; 194, ftn.

Poisson: 274, 91 ; 277, 92

Poisson’s identity : 277, 92

Poisson’s parenthesis: 274, 91

Poles of integrals: 148, 68 ; 188, 67;
185,67; movable: 186, 67; 19?7, {tn.

Properties, of differential equations of
higher order: 196, 70; of e®, tanz:
£18, ex. 6

Quadratures: 7, 2; 10, 4; 18, 7; 18,
7; 14,7; 16,9; 19,12; 78,81; 79,
Note 1; 83, 82; 90, 86; 108, 89;
110, 40; 111,40; 154,56 ; 278,92

Rqffy : 44, ex. 21

Ratio, of similitude: &, 8; of two
integrals: 169, ex. 10

Rational functions, of constants as in-
tegrals: 10, 4; 12, T; 186, 67; of
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variables as integrals: /44, 68 ; 192,
68

Reducible systems: 165, 62

Regular differential equations: 134,
50

Regular integrala: 128, 47; 131, 47;
184, 49; Fuchs' theorem: 134, 650;
substitutions: 132, 48; 154, 48

Riccati: 12, 7; 18, ftn.; 48, ex. 13;
79,ex.2; 117,40; 112, 40 and ftn.;
148, Note; 157,57; 169,ex.9; 170,
ex. 16; 186, 67; 187, 67 and ftn.;
194, ftn.; 197, ftn.; 218, ex. 7

Riccati’s equation: 72, 7; 43, ex. 18;
79,ex.2; 111,40; 712,40 and ftn.;
148, Note; 157,57; 169,ex.9; 170,
ex. 16; 181, 67 and ftn.; 186, 67;
194, ftn.; 213, ex. 7; generalization
of : 197, ftn. ; linear transformation
of : 18, ftn.; relation to linear equa-
tions: 111, 40; 112, ftn.

Riguier: 45, 21; 286, 94 and ftn.

Roots of characteristic equation: 130,
47; 131,48; 139, 50 ; 149, Note 2;
elementary divisors: 132, ftn.

Roots of integrals: Sturm’s theorem :
111, ftn.

Ruled surfaces : 280, ex.1; 281, ex.2

Saddleback : 179, 66

Sauvage: 132, ftn.

Schlomilch : 212, ex. 1

Separation of variables: 6, 2; &, 8;
19,12 ; 244, ex. 8

Serret : 212, ex. 1; 213, ex. 8

Similar curves: 8, 8

Similar groups: 88, 84

Single-valued integrals: 144, 53; of
)™ = R (y), classification of equa-
tions: 187, 68; 192, 68; 138, ftn.

Singular integral, curve, surface: 17,
10; 27, 14; 76, ftn.; 198, 71; 208,
71; 205,72 ; 206,72 ; 208,14 ; 210,
74; 224,77, 237, 82; 255, ftn.; as
an envelope: 203, 71; 238, 82; geo-
metric interpretation: 207, 78

Singular integral, curves and surfaces:
determination of : 206, 72; of first-
order equations: 198, 71; £08,71;

209

206, 723 geometric interpretation:
207, 783 of partial differential equa-
tions: 224, 77; 287, 82; 238, ftn.;
278, 90; of a system of equations;
208, 14; 210, T4

Singular lines, movable: 197, 70

Singular points: algebraic critical
points: 178, 63; 183, 67; 184, 67;
201, 71; Briot and Bouquet’s theo-
rem: 176, 64; center: 180, 65; of
equations of the first order: 180,
66; essentially : 131, 47; 134, 49;
essentially singular movable: 196,
70; fixed: 181,668 ; 182,67 ; focus:
180, 65; of linear equations: 65,
28; 100, 87; 129,47 ; 140, b1 ; 142,
52; 148, b3; indeterminate deriva-
tive: 778, 84; infinite derivative:
172, 68 ; infinite number of critical
points: 185, ftn.; movable: see
Movable singular points; poles: 131,
47; 148, 53 ; 144, 63 ; 183, 67; 184,
67, 185,87 ; 197, ftn.; saddleback :
179, 66

Solution : see Integral

Star: 67, 20

Stationary flow: 86, 88

Stieltjes: 27, 14

Stieltjes's general integral of Euler's
equation: 27, 14

Straight lines, differential equation
of: 4,1

Sturm : 111, ftn.

Sturm’s theorem: 711, ftn.

Substitutions : linear equations: 1£9,
47; 132, 48; 134, 48; canonical
form: 181, 48 ; 132, 48 ; system of
linear equations, canonical form :
164, 81 ; Wronskian : 129, 47

Successive approximations: 61, 27;
analytic functions: 66, 20; 108, 87;
175, 64 ; Cauchy-Lipschitz method :
61,27; 68,80; 74,80; Cauchy’sfirst
proof: 68, 80; 73, 80; coefficienta
functions of a parameter: 65, Note;
Lindeltf’s addition: 61, 27; linear
equations: 64, 28; Lipschitz condi-
tion: 68, 80 ; 287, 4 ; non-analytic
integrala: 175, 64; real variables:
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91, 27; 62,27; 68,80; 78,80; 150,
b6; star: 67, 29

Surfaces, conoids: 220, ex. 1; develop-
able: 240, 82; 257, 85; 282, ex.;
ellipsoid: 41, Note; focal: 209,
74 ; 224, 77; helicoids: 220, ex. 2;
245, 88 ; orthogonal: 228, 77; par-
allel: 289, ex. 19; ruled: 280, ex.
1; 281, ex. 2; tubular: 240, ex. 3;
282, ex. ; see also Characteristic de-
velopable surfaces, Envelopes, and
Integral surfaces

Symbolic polynomial: 713, 41; 116,
42; 118,48; divisor: 114,41; great-
est common divisor: 1138, 41

Systems of differential equations: 60,
26; 74, 81; 79, Note 1; covariant:
80, Note 2; existence theorem:
see Existence theorem; first inte-
grals: see First integrals; general
integral: 57, 26; integral curve:
60, 26; invariant integrals: see
Invariant integrals; multipliers:
74,81; 81,82 ; 85, 883 ; singular inte-
grals: 208, 74; see also Integrable
combination, Systems of homoge-
neous linear equations, and Systems
of non-homogeneouslinear equations

Systems of homogeneous linear equa~
tions: 752, 66; adjoint system:
156, b7; 166, 82; auxiliary equa-
tion: 158, 58; canonical form:
161, 659; 165, 61; 179, 65; con-
stant coefficients: 157, 68; 160,
68; (D'Alembert’s method): 161,
58; fundamental system of inte-
grals: 158, 68 ; periodic coefficients :
164,61 ; 166, 62 ; reducible systems :
165, 62; relation to Jacobi’s equa-
tion: 763, 60; substitutions: 165, 61

Systems of non-homogeneous linear
equations: 164, 66; Cauchy's
method : 154, ftn.; existence theo-
rem: 50, 23

Systems of partial differential equa-
tions : of first order: 272, 80; nor-
mal form, general existence theo-
rem: 288, 94; see also Existence
theorems, Involutory systems, and

INDEX

Systems of homogeneous linear par-
tial differential equations of the first
order

Systems of partial differential equa-
tions, homogeneous linear equa-
tions of the first order: 265, 88;
independent equations: 265, 88;
X[Y(f)]-Y[X(f)]: 266, 88 ; see
also Complete systems

Tannery : 139, ftn.

Taylor: 85, 18

Total differential equations: 51, 24;
225, 18; 241, 83; 276, 91; Ber-
trand’s method : 232, 80 ; 290, ex. 21;
completely integrable: 52, 24 ; 225,
78; existence theorem: 51, 24;
geometric interpretation: 227, 78;
integral surface: 227, 78; Mayer's
method : 229, 79; method of inte-
gration: 225, 78; 232, 80; Pdx +
Qdy + Rdz =0: 230, 80; see also
Condition of integrability

Trajectories: 13, 7; 14, T; 34, 17;
93, 86

Transcendental critical points: 197,70

Transformations: 82, 82; 88, 82;
84,38; admitting a group of : 89,85 ;
96, 36 ; of complete systems : 267,89 ;
covariants: 80, Note 2; Cremona :
198, ftn.; extended group of : 94,36 ;
ident.icgl: 88, 34; 91, 36; infinites-
imal : 86,34 ; 91,86 ; 93, 86; 98,86;
inverse: 89, 34; Legendre's: 16,
ftn.; of linear equations: 115, 41;
162, 59; of Riccati's equation: 18,
ftn. ; see also Groups and Invariants

Tresse: 286, 94

Tubular surfaces: 240, ex. 3 ; 282, ex.

Unicursal quartic: 19, ex. 2; 205, 72

Variation of constants: 107, 89 ; 109,
ftn.; 255, ftn.

Weierstrass: 46, 21 ; 132, 48 and ftn.

Weierstrass's elementary divisors:
132, ftn.

Wronskian: 1£9, 47



GUIDE TO THE LITERATURE OF
MATHEMATICS AND PHYSICS

Including Related Works on Engineering Science
by Nathan Brier Parke il

WHAT literature is available and WHERE can it be found? Fully revised
—and for the first time available in a handy, inexpensive edition—
this unique, up-to-date GUIDE TO THE LITERATURE OF MATHEMATICS
AND PHYSICS puts a comprehensive library catalogue at your finger
tips.

Over 5,000 entries (more than double the number in the first edition)
are included under approximately 120 subject headings, further sub-
divided by an average of 6 subheadings. Every branch of physics,
mathematics, and related engineering science is fully represented. For
example, 28 books appear under the subhead, Projective Geometry;
78 under Geometrical Optics; 22 under Cosmic Rays; not including
cross-references and general works.

All books were selected by a practicing mathematician and physicist
on the basis of current significance, fullness of treatment, and the
ability to give clues to further material on a subject. Citations are as
full as possible—giving author, title, edition, publisher, place, data,
number of volumes or number of pages. Many recently available
Russian works are included. Discussions of the literature under each
heading define the subject matter and provide numerous cross-refer-
ences and suggestions for further investigation. The GUIDE also con-
tains an extensive listing of bibliographical aids: abstracts, indexes,
periodicals, reviews, bibliographies, directories, encyclopedias, docu-
mentary reproductions, guides, and library resources. A complete
Author and Subject Index allows instantaneous location of the biblio-
graphical data on any book.

This GUIDE will not only save you countless hours and help you locate
much difficult-to-find material; it will often help you shape your prob-
lem and prevent a duplication of work by showing you exactly what
has been done on a subject. With the literature grown to such huge
proportions, the GUIDE TO THE LITERATURE OF MATHEMATICS AND
PHYSICS has become an indispensable research assistant for every
physicist, mathematician, engineer, scientist, student, and researcher.
2nd revised edition. Over 5,000 entries. 71-page introduction. Indexes.
pp. 5% x 8. Paperbound $



NUMERICAL INTEGRATION OF
DIFFERENTIAL EQUATIONS

by A. A. Bennett, W. E. Milne, Harry Bateman

Unabridged republication of an original monograph for the National
Research Council. This well-known greatly sought-after volume de-
scribes new methods of integration of differential equations developed
by three leading mathematicians. It contains much material not readily
available in detail elsewhere. Discussions on methods for partial dif-
ferential equations, transition from difference equations to differential
equations, solution of differential equations to non-integral values of
a parameter are of special interest to mathematicians, physicists,
mathematical physicists.

Partial contents. THE INTERPOLATIONAL POLYNOMIAL, A. A. Bennett.
Tabular index, arguments, values, differences. Displacements, divided
differences, repeated arguments, derivation of the interpolational
polynomial, integral. SUCCESSIVE APPROXIMATIONS, A. A. Bennett.
Numerical methods of successive substitutions. Approximate methods in
solution of differential equations. STEP-BY-STEP METHODS OF INTE-
GRATION, W. E. Milne. Differential equations of the 1st order: Taylor's
series, methods using ordinates, Runge-Kutta method. Systems of dif-
ferential equations of the first order. Higher order differential equa-
tions. Second order equations in which first derivatives are absent.
METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, Harry Bateman.
Transition from solution of difference equations to solution of differen-
tial equations. Ritz's method. Least squares method. Extension of solu-
tion to nonintegral values of a parameter.

288 footnotes, mostly bibliographic, 285 item classified biblography.

108pp. 5% x 8.
$3C5 Paperbound $1.35
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0
DOVER BOOKS

BOOKS EXPLAINING SCIENCE

(Note: The books listed under this category are general introductions, surveys, reviews, and
non-technical expositions of science for the interested layman or scientist who wishes
to brush up. Dover also publishes the largest list of nexpensive reprints of books on inter-
mediate and higher mathematics, mathematical physics, engineering, chemistry, astronomy,
etc., for the professional mathematician or scientist. For our complete Science Catalog,
write Dept. catrr., Dover Publications, Inc., 180 Varick Street, New York 14, N. Y.)

CONCERNING THE NATURE OF THINGS, Sir Wiltiam- Bragg. Royal Institute Christmas Lectures
by Nobel Laureate. Excellent plain-language introduction to gases, molecules, crystal struc-
ture, etc. explains “building blocks” of universe, basic_properties of matter, with simplest,
clearest examples, demonstrations. 32pp. of photos; 57:figures. 244')'?' 5% x 8.

31 Paperbound $1.3§

MATTER AND LICHT, THE NEW PHYSICS, Louls de Broglie. Non-technical explanations by a
Nobel Laureate of electro-magnetic theory, relativity, wave mechanics, quantum physics,
philosophies of science, etc. Simple, yet accurate introduction to work of Planck, Bohr,
Einstein, other modern physicists. Only 2 of 12 chapters require mathematics. 300pp.
3 x 8. T35 Paperbound $1.60

THE COMMON SENSE OF THE EXACT SCIENCES, W. K. Clifford. For 70 years, Clifford’'s work
has been acclaimed as one of the clearest, yet most precise introductions to mathematical
symbolism, measurement, surface boundaries, posttion, space, motion, mass and force, etc.
Prefaces by Bertrand Russell and Karl Pearson. Introduction by James Newman. 130 figures.
249pp. 5% x 8. T61 Paperbound $1.60

THE NATURE OF LIGHT AND COLOUR IN THE OPEN AIR, M. Minnaert. What causes mirages?
haloes? ‘“multiple’” suns and moons? Professor Minnaert explains these and hundreds of
other fascinating natural optical phenomena in simple terms, tells how to observe them,
suggests hundreds of experiments. 200 illus; 42 photos. xvi + 362pp.

T196 Paperbound $1195

SPINNING TOPS AND GYROSCOPIC MOTION, John Perry. Classic efementary text on dynamics
of rotation treats gyroscopes, tops, how quasi-rigidity 1s induced in paper disks, smoke
rings, chains, etc, by rapid motion, precession, earth’s motion, etc. Contains many easy-to-
pertorm experiments. Appendix on practical uses of gyroscopes. 62 figures. 128pp.

1416 Paperbound $1.00

A CONCISE HISTORY OF MATHEMATICS, D. Struik. This lucid, easily followed history of
mathematics from the Ancient Near East to modern times requires no mathematical back-
ground itself, yet introduces both mathematicians and laymen to basic concepts and
discoveries and the men who made them. Contains a collection of 31 portraits of eminent
mathematicians. Bibliography. xix + 299pp. 53 x 8. T255 Paperbound $1.75

THE RESTLESS UNIVERSE, Max Born. A remarkably clear, thorough exposition of gases,
electrons, ions, waves and particles, electronic structure of the atom, nuclear physics,
written for the layman by a Nobel Laureate. ‘‘Much -more thorough and deep than most
attempts . . . easy and delightful,”” CHEMICAL AND ENGINEERING NEWS. Includes 7 animated
sequences showing motion of molecules, alpha particies, etc. 11 full-page plates of photo-
graphs. Total of nearly 600 illus, 315pp. 6¥8 X 9Va. T412 Paperbound $2.00

WHAT (S SCIENCE?, N. Campbell. The role of experiment, the function of mathematics, the
nature of sclentific laws, the limitations of science, and many other provacative topics
are explored without technicalities by an eminent scientist. ‘‘Still an excellent introduction
to scientific philosophy,” H. Margenau in PHYSICS TODAY. 192pp. 5% X 8.

§43 Paperbound $1.28
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FADS AND FALLACIES IN THE NAME OF SCIENCE, Martin Gardner. The standard account of
the varioys cults, quack systems and delusions which have recently masqueraded as science:
hollow earth theory, Atlantis, dianetics, Reich’s orgone theory, flying saucers, Bridey Murphy,
psionics, irridiagnosis, many other fascinating fallacies that deiuded tens of thousands.
“Should be read by everyone, scientist and non-scientist alike,” R. T. Birge, Prof. Emeritus,
Univ. of California; Former President, American Physical Society. Formerly titled, ‘‘In the
Name of Science.’’ Revised and enlarged edition. x + 365pp. 53 x 8.

T394 Paperbound $1,50

THE STUBY OF THE HISTORY OF MATHEMATICS, THE STUDY OF THE HISTORY OF SCIENCE,
G. Sarton. Two books bound as one, Both volumes are standard introductions to their fields
by an eminent science historian. They discuss problems of historical research, teaching,
itfalls, other matters of interest to the historically oriented writer, teacher, or student.

th have extensive bibliographies. 10 iljustrations. 188pp. 5% x 8. T240 Paperbound $1.25

THE PRINCIPLES OF SCIENCE, W. S. Jevons. Unabridged reprinting of a milestone in the
development of symbolic logic and other subjects concerning scientific methodology, proba-
bility, Inferential validity, etc. Also describes Jevons' ‘‘logic machine,”" an early precursor
of modern electronic calculators. Preface by E. Nagel. 839pp. 5% x 8. S446 Paperbound $2.98

SCIENCE THEORY AND MAN, Erwin Schroedinger. Complete, unabridged reprinting of ‘‘Science
and the Human Temperament” plus an additional essay ‘“What is an Elementary Particie?’”
Nobel Laureate Schroedinger discusses many aspects of modern physics from novel points
of view which provide unusual insights for both laymen and physicists. 192 pp. x 8.

T428 Paperbound $1.35

BRIDGES AND THEIR BUILDERS, D. B. Steinman & S. R. Watson. Information about ancient,
medieval, modern bridges; how they were built, who built them, the structural principles
employed; the materials they are built of; etc. Wrnitten by one of the world’s leading
authorities on bridge design and construction. New, revised, expanded edition. 23 photos:
26 line drawings, xvi + 40lpp. 53 x 8. T431 Paperbound $1.95

HISTORY OF MATHEMATICS, D. E. Smith. Most comprehensive non-technical history of math
in English. In two volumes. Vol. I+ A chronological examination of the growth of mathe-
matics from primitive concepts up to 1900. Vol. Ii: The development of ideas in specific fields
and areas, up through elementary calculus The lives and works of over a thousand mathema-
ticians are covered; thousands of specific historical problems and their solutions are
clearly explained. Total of 510 illustrations, 1355pp. 536 x 8. Set boxed in attractive con-
tainer. T429, T430 Paperbound, the set $5.00

PHILOSOPHY AND THE PHYSICISTS, L. S. Stebhing. A philosopher examines the philosophical
implications of modern science by posing a lively critical attack on the popular science
expositions of Sir James Jeans and Arthur Eddington. xvi + 295pp. 538 x 8.

T480 Paperbound $1.65

ON MATHEMATICS AND MATHEMATICIANS, R. E. Moritz. The first collection of quotations by
and about mathematicians in English. 1140 anecdotes, aphorisms, definitions, speculations,
etc. give both mathematicians and layman stimulating new insights into what mathematics
1s, and into the personahities of the great mathematicians from Archimedes to Euler, Gauss,
Klein, Weierstrass. Invaluable to teachers, wrnters, Extensive cross index. 410pp. 5% x 8.

T489 Paperbound $1.95

NATURAL SCIENCE, BIOLOGY, GEOLOGY, TRAVEL

A SHORT HISTORY OF ANATOMY AND PHYSIOLOGY FROM THE GREEKS TO HARVEY, C. Singer.
A great medical historian’s fascinating intermediate account of the siow advance of anatom-
ical and physiological knowledge from pre-stientific times to Vesalius, Harvey. 139 unusu-
ally interesting illustrations. 221pp. 53& x 8. T389 Paperbound $1.75

THE BEHAVIOUR AND SOCIAL LIFE OF HONEYBEES, Ronald Ribbands. The most comprehensive,
lucid and authoritative book on bee habits, communication, duties, cell life, motivations,
etc. ““A MUST for every scientist, experimenter, and educator, and a happy and valuable
selection for all interested in the honeybee,”” AMERICAN BEE JOURNAL. 690-item bibliography.
127 1llus.; 11 photographic plates. 352pp. 535 x 8. S$410 Clothbound $4.50

TRAVELS OF WILLIAM BARTRAM, edited by Mark Van Doren. One of the 18th century’s most
delightful books, and one of the few first-hand sources of information about American
geography, natural history, and anthropology of American Indian tribes of the time. ‘‘The
mind of a scientist with the soul of a poet,” John Livingston Lowes. 13 original illustra-
tions, maps. Introduction by Mark Van Doren. 448pp. 538 x 8. 1326 Paperbound $2.00

STUDIES ON THE STRUCTURE AND DEVELOPMENT OF VERTEBRATES, Edwin Goodrich. The
definitive study of the skeleton, fins and limbs, head region, divisions of the body cavity,
vascular, respiratory, excretory systems, etc., of vertebrates from fish to higher mammals, by
the greatest comparative anatomist of recent times. ‘‘The standard textbook,”” JOURNAL OF
ANATOMY. 754 llus. 69-page biographical study. 1186-item bibliography. 2 vols. Total of
906pp. 538 x 8. Vol. I: S449 Paperbound $2.50

Vol. 11: S$450 Paperbound $2.50



DOVER BOOKS

THE BIRTH AND DEVELOPMENT OF THE GEOLOGICAL SCIENCES, F. D. Adams. The most com-
plete and thorough history of the earth sciences in print. Covers over 300 geological thinkers
and systems; treats fossils, theories of stone growth, paleontology, earthquakes, vulcanists

vs. neptunists, odd theories, etc. 91 illustrations, including medieval, Renaissance wood cuts,
etc. 632 footnotes and bibliographic notes. 511pp. 308pp. 53 x 8. T5 Paperbound $2.00

FROM MAGIC TO SCIENCE, Charles Singer. A close study of aspects of medical science from
the Roman Empire through the Renaissance. The sections on early herbals, and “The Visions
of Hildegarde of Bingen,” are probably the best studies of these subjects available. 158
unusual classic and medieval illustrations. xxvii + 365pp. 5% x 8. T390 Paperbound $2.00

SAILING ALONE AROUND THE WORLD, Captain Joshua Slocum. Captain Slocum's personat
account of his single-handed voyage around the world in a 34-foot boat he rebullt himself.
A classic of both seamanship and descrigtlve writing. ““A nautical equivalent of Thoreau's
account,” Van Wyck Brooks. 67 illus. 308pp. 5% x 8. T326 Paperbound $1.00

TREES OF THE EASTERN AND CENTRAL UNITED STATES AND CANADA, W. M. Harlow. Standard
middle-tevel guide designed to helr you know the characteristics of Eastern trees and
identify them at sight by means of an B-page synoptic key. More than 600 drawings and
photographs of twigs, leaves, fruit, other features. xin + 28Bpp. 45 x 6V..

T395 Paperbound $1.33

FRUIT KEY AND TWIG KEY (“Fruit Key to Northeastern Trees,” “Twig Key to Deciduous
Woody Plants of Eastern North America’’), W. M. Harlow. Identify trees in fall, winter,
spring. Easy-to-use, synoptic keys, with photographs of every twig and fruit identified.
Covers 120 different fruits, 160 different twigs. Over 350 photos. Blbllograshles. Glossaries.
Total of 143pp. 5% x 83%. T511 Paperbound $1.25

INTRODUCTION TO THE STUDY OF EXPERIMENTAL MEDICINE, Claude Bernard. This classic
records Bernard’'s far-reaching efforts to transform physiology into an exact science. It
cover'. problems of vivisection, the limits of physiological experiment, hypotheses In medical
experimentation, hundreds of others. Many of his own famous experiments on the liver, the
pancreas, etc., are used as examples. Foreword by I. B, Cohen xxv + 266pp. 53 x 8.

T400 Paperbound $1.50

THE ORIGIN OF LIFE, A. 1. Oparin. The tirst modern statement that life evolved trom complex
mitro-carbon compounds, carefully presented according to modern biochemical anowledge of
primary colloids, organic molecules, etc. Begins with historical introduction to the problem
of the origin of life. Bibliography. xxv + 270pp 53 x 8. §213 Paperbound $1.75

A HISTORY OF ASTRONOMY FROM THALES TO KEPLER, J. L. E. Dreyer. The only work in English
which provides a detailed picture of man’s cosmological views from Egypt, Babylonia, Greece,
and Alexandria to Copernicus, Tycho Brahe and Kepler ‘‘Standard reference on Greek
astronomy and the Copernican revolution,’”” SKY AND TELESCOPE. Formerly cailed ‘‘A History of
Planetary Systems From Thales to Kepler.”” Bibliography. 21 diagrams. xvii + 430pp. 538 x 8.

S79 Paperbound $1.98

URANIUM PROSPECTING, H. L. Barnes. A professional geologist tells you what you need to
know. Hundreds of facts about minerals, tests, detectors, sampling, assays, claiming, develop-
ing, government regulations, etc. Glossary of techmical terms. Annotated bibliography.
x + 117pp 5% x 8. T309 Paperbound $1.00

DE RE METALLICA, Georgius Agricola. All 12 books of this 400 year old classic on metals
and n.etal production, fully annotated, and containing ali 289 of the 16th century woodcuts
which made the original an artistic masterpiece A superb gift for geologists, engineers,
hbraries, artists, historians, Transiated by Herbert Hoover & I H. Hoover. Bibliography,
survey of ancient authors. 289 illustrations of the excavating, assaying, smeiting, refining,
and countless other metal production operations described in the text 672pp. 634 x 103a.
Deluxe library edition. S6 Clothbound $10.00

DE MAGNETE, William Gilbert. A landmark of science by the man who first used the word
“electricity,” distinguished between static electricity and magnetism, and founded a new
science P F. Mottelay transiation. 90 figures. lix + 368pp. 53 x 8. S470 Paperbound $2.00

THE AUTOBIOGRAPHY OF CHARLES DARWIN AND SELECTED LETTERS, Francis Darwin, ed.
Fascinating documents on Darwin's early hfe, the voyage of the ‘‘Beagle,” the discovery of
evolution, Darwin's thought on mimicry, plant devel)pment, vivisection, evolution, many
other subjects Letters to Henslow, Lyell, Hooker, Wallace, Kingsley, etc. Appendix. 365pp.
¥ x 8. T479 Paperbound $1.65

A WAY OF LIFE AND OTHER SELECTED WRITINGS OF SIR WILLIAM OSLER. 16 of the great
physician, teacher and humanist's most inspiring writings on_a practical philosophy of hfe,
science and the humanities, and the history of medicine. 5 photographs. Introduction by
G. L. Keynes, M.D., F.R.C.S. xx -+ 278pp. 538 x 8. T488 Paperbound $1.50



CATALOG OF
LITERATURE

WORLD DRAMA, B. H. Clark. 46_plays from Anclent Greece, Rome, to India, China, Japan.
Plays b{ Aeschylus, Sophocles, Euripides, Aristophanes, Plautus, Marlowe, Jonson, Farquhar,
Goldsmith, Cervantes, Moliére, Dumas, Goethe, Schiller, Ibsen, many others. One of the
most comprehensive collections of mrortant plays from all literature available in English,
Over %3 of this material is unavailable in any other current edition. Reading lists. 2 vol-
umes. Total of 1364pp. 5% x 8. Vol. |, T57 Paperbound $2.00

Vol. 1], T59 Paperbound $2.00

MASTERS OF THE DRAMA, John Gassner. The most comprehensive history of the drama in
print. Covers more than 800 dramatists and over 2000 plays from the Greeks to modern
Western, Near Eastern, Oriental drama. Plot summaries, theatre history, etc. ‘‘Best of its
kind in English,” NEW REPUBLIC. 35 pages of bibliography. 77 photos and drawings. Deluxe
edition. xxii + 890pp. 53 x 8. T100 Clothbound $5.85

THE DRAMA OF LUIGI PIRANDELLO, D. Vittorini. All 38 of Pirandello’s plays (to 1935) sum-
marized and analyzed in terms of symbolic techniques, plot structure, etc. The only authorized
work. Foreword by Pirandello. Biography. Bibliography. xiii + 350pp. 53% x 8.

T435 Paperbound $1.98

ARISTOTLE'S THEORY OF POETRY AND THE FINE ARTS, S. H. Butcher, ed. The celebrated
“Butcher transiation” faced page by page with the Greek text; Butcher's 300-page introduc-
tion to Greek poetic, dramatic thought. Modern Anstotelian criticism discussed by John
Gassner. Ixxvi -+ 421pp. 53 x 8.

T42 Paperbound $2.00

EUGENE O'NEILL: THE MAN AND HIS PLAYS, B. H. Clark. The first published source-book on
O’Neill’s hfe and work. Analyzes each play from the early THE WEB up to THE ICEMAN
COMETH. Supplies much information about environmental and dramatic influences. ix + 182pp.
5% x 8. T379 Paperbound $1.25

INTRODUCTION TO ENGLISH LITERATURE, B. Dobrée, ed. Most compendious hterary aid in its
price ram{e. Extensive, categorized bibliography (with entries up to 1949) of more than
5,000 poets, dramatists, novelists, as well as historians, philosophers, economists, religious
writers, travellers, and scientists of literary stature. Information about manuscripts, impor-
tant biographical data. Critical, historical, background works not simply listed, but evaluated.
Each volume also contains a long introduction to the period it covers.

Vol. I: THE BEGINNINGS OF ENGLISH LITERATURE TO SKELTON, 1509, W. L. Renwick. H. Orton.
450pp. 5¥s8 x 7V4. T75 Clothbound $3.50
Vol. 11: THE ENGLISH RENAISSANCE, 1510-1688, V. de Sola Pinto. 381pp. 5V x 7Vs.

T76 Clothbound $3.50

Vol. 11l: THE AUGUSTANS AND ROMANTICS, 1689-1830, H. Dyson, J. Butt. 320pp. 5% x.7%e.
T77 Clothbound $3.50

Vol. IV: THE VICTORIANS AND AFTER, 1830-1914, E. Batho, B. Dobrée. 360pp. 5% x 7.
778 Clothbound $3.50

EPIC AND ROMANCE, W. P. Ker. The standard surve{ of Medieval epic and romance by a fore-
most authority on Medieval Iiterature. Covers historical background, plot, hiterary analysis,
significance of Teutomic eplcs, Icelandic sagas, Beowulf, French chansons de geste, the
Niebelungenlied, Arthurian romances, much more. 422pp. 538 x 8. T355 Paperbound $1.95

THE MEART OF EMERSON'S JOURNALS, Bliss Perry, ed. Emerson’'s most intimate thoughts,
impressions, records of conversations with Channing, Hawthorne, Thoreau, etc., carefully
chosen from the 10 volumes of The Journals. ‘‘The essays do not reveal the power of
Emerson’s mind . . .as do these hasty and informal wntings,’”” N. Y. TIMES. Preface by
B. Perry. 370pp. 5% x 8. T447 Paperbound $1.83

A SOURCE BOOK IN THEATRICAL HISTORY, A. M. Nagler. (Formerly, ‘‘Sources of Theatrical
History.””) Over 300 seiected passages by contemporary observers tell about styles of acting,
direction, make-up, scene designing, etc., in the theatre’'s great periods from ancient Greece
to the ThéAtre Libre. ‘‘Indispensable complement to the study of drama,” EDUCATIONAL
THEATRE JOURNAL. Prof. Nagler, Yale Univ. School of Drama, also supplies notes, references.
85 illustrations. 611pp. 53 x 8. T515 Paperbound $2.75

THE ART OF THE STORY-TELLER, M. L. Shedlock. Regarded as the finest, most helpful book
on telling stories to children, by a great story-tel!fr. ‘How to catch, hold, recapture attention;
s. Also includ

how to choose material; many other asp Also a 99-page selection of Miss
Shediock's most successful stories; extensive bibliography of other stories. xxi + 320":6
¥ x 8, T245 Clothbound $3.

THE DEVIL'S DICTIONARY, Ambrose Blerce. Over 1000 short, ironic definitions in alphabetical
order, by America’s zreaiest satirist in the classical tradition. ‘‘Some of tife most gorgeous
witticisms in the English tanguage,” H. L. Mencken. 144pp. 53 x 8, T487 Paperbound $1.00



DOVER BOOKS
MUSIC

A DICTIONARY OF HYMNOLOGY, John Julian. More than 30,000 entries on individual hymns,
their authorship, textual variations, location of texts, dates and circumstances of composi-
tion, denominational and ritual usages, the biographies of more than 9,000 hymn writers,
essays on important topics such as children’s hymns and Christmas carols, and hundreds
of thousands of other important facts about hymns which are virtually impossible to find
anywhere eise. Convenient alphabetical Ilstlnf, and a 200-page double-columned index of
first lines enable you to track down virtually any hymn ever written. Totai of 1786pp.
6% x 9%. 2 volumes, T133. The Set, Clothbound $13.!

STRUCTURAL HEARING, TONAL COHERENCE IN MUSIC, Felix Salzer. Extends the weli-known
Schenker approach to include modern music, music of the middle ages, and Renaissance
music. Explores the phenomenon of tonal organization by discussing more than 500 composi-
tions, and offers unusual new nsights into the theory of composition and musical relation-
ships. ““The foundation on which all teaching In music theory has been based at this
college,’” Leopold Mannes, President, The Mannes College of Music. Total of ssapﬁ. 612 x 9.
2 volumes. S418 The set, Clothbound $8.00

A GENERAL HISTORY OF MUSIC, Charles Burney. The complete history of music from the
Greeks up to 1789 by the 18th century musical historilan who personally knew the great
Baroque composers. Covers sacred and secular, vocal and instrumentsi, operatic and sym-
phonic music; treats theory, notation, forms, instruments; discusses composers, performers,
important works. Invaluable as a source of information on the period for students, historians,
musicians. ‘‘Surprisingly few of Burney's statements have been invalidated bg modern re-
search . . . still of great value,” NEW YORK TIMES. Edited and corrected by Frank Mercer.
35 figures. 1915pp. 5% x 8%.. 2 volumes. T36 The set, Clothbound $12.50

JOHANN SEBASTIAN BACH, Phillip Spitta. Recognized as one of the greatest accomplishments
of musical scholarship and far and away the definitive coverage of Bach's works. Hundreds
of individual pieces are analyzed. Major works, such as the B Minor Mass and the St.
Matthew Passion are examined in minute detail. Spitta also deals with the works of
Buxtehude, Pachelbel, and others of the period. Can be read with profit even by those
without a knowledge of the technicahities of musical composition. ‘‘Unchallenged as the tast
word on one of the supreme geniuses of music,” John Barkham, SATURDAY REVIEW SYNDI-
CATE. Total of 1819pp. 536 x 8. 2 volumes. T252 The set, Clothbound $10.00

HISTORY

THE IDEA OF PROGRESS, J. B. Bury. Prof. Bury traces the evolution of a central concept of
Western civihization in Greek, Roman, Medieval, and Renaissance thought to its flowering
in the 17th and 18th centuries. Introduction by Charles Beard. xI + 357pp. 5% x 8.
T39 Clothbound $3.95
T40 Paperbound $1.8S8

THE ANCIENT GREEK HISTORIANS, J. B. Bury. Greek historians such as Herodotus, Thucydides,
Xenophon; Roman historians such as Tacitus, Caesar, Livy; scores of others fully analyzed
in terms of sources, concepts, influences, etc., by a great scholar and historian. 291pp.
53 x 8. T397 Paperbound $1.50

HISTORY OF THE LATER ROMAN EMPIRE, J. B. Bury. The standard work on the Byzantine
Empire from 395 A.D. to the death of Justiman in 565 A.D., by the leading Byzantine scholar
of our time. Covers political, social, cultural, theological, military history. Quotes contem-
porary documents extensively. ‘‘Most unlikely that it will ever be superseded,” Glanville
Downey, Dumbarton Oaks Research Library. Genealogical tables. 5 maps. Bibliography. 2 vols.
Total of 965pp. 53 x 8. 7398, T399 Paperbound, the set $4.00

GARDNER'S PHOTOGRAPHIC SKETCH BOOK OF THE CIVIL WAR, Alexander Gardner. One of the
rarest and most valuable Civil War photogragmc collections exactly reproduced for the first
time since 1866. Scenes of Manassas, Bull Run, Harper's Ferry, Appomattox, Mechanicsviile,
Fredericksburg, Gettysburg, etc.; battle ruins, prisons, arsenals, a slave pen, fortifications;
Lincoln on the field, officers, men, corpses. By one of the most famous pioneers in docu-
mentary photography. Original copies of the ‘‘Sketch Rook' sold for $425 in 1952. Introduc-
tion by E. Bleier. 100 full-page 7 x 10 photographs (original size). 244pp. 10% x 814

T476 Clothbound $6.00

THE WORLD'S GREAT SPEECHES, L. Copeland and L. Lamm, eds. 255 speeches from Pericles to
Churchill, Dylan Thomas. Invaluable as a guide to speakers; fascinating as history past and
present; a source of much difficult-to-find matenal. Includes an extensive section of informal
and humorous speeches. 3 indices: Topic, Author, Nation. xx + 745pp. 538 x 8.

T468 Paperbound $2.49

FOUNDERS OF THE MIDDLE AGES, E. K. Rand. The best non-technical discussion of the
transformation of Latin paganism into medieval civilization. Tertullian, Gregory, Jerome,
Boethius, Augustine, the Neoplatonists, other crucial figures, philosophies examined. Excel-
lent for the intelligent non-specialist. ‘‘Extraordinarily accurate,’”” Richard McKeon, THE
NATION, ix + 365pp. 53 x 8. 7369 Paperbound $1.85



CATALOG OF

THE POLITICAL THOUGHT OF PLATO AND ARISTOTLE, Ernest Barker. The standard, compre-
hensive exposition of Greek political thouf‘ht. Covers every aspect of the ‘‘Republic’’ and the
“Polltics'’ as well as minor writings, other philosophers, theorists of the period, and the
later history of Greek political thought. Unabridged edition. 584pp. 53 x 8.

T521 Paperbound $1.85

PHILOSOPHY

THE GIFT OF LANGUAGE, M. Schlauch. (Formerly, “The Gift of Tongues.”) A sound, middle-
level treatment of linguistic families, word  histories, grammatical processes, semantics,
language taboos, word-coining of Joyce, Cummings, Stein, etc. 232 bibliographical notes.
350pp. 5% x 8. T243 Paperbound $1.83

THE PHILOSOPHY OF HEGEL, W. T. Stace. The first work in English to give a complete and
connected view of Hegel's entire system. Especially valuable to those who do not have
time to study the highly complicated original texts, yet want an accurate presentation by
a most reputable scholar of one of the most influential 19th century thinkers. Includes a
14 x 20 fold-out chart of Hegelian system. 536pp. 538 x 8. T254 Paperbound $2.00

ARISTOTLE, A. E. Taylor. A lucid, non-technical account of Aristotle written by a foremost
Platonist. Covers life and works; thought on matter, form, causes, logic, God, physics,
metaphysics, etc. Bibliography. New index compiled for this edition. 128pp. 53 x 8.

1280 Paperbound $1.00

GUIDE TO PHILOSOPHY, C. E. M. Joad. This basic work describes the major philosophic prob-
lems and evaluates the answers propounded by great philosophers from the Greeks to
Whitehead, Russell. ‘‘The finest introduction,”” BOSTON TRANSCRIPT. Bibliography, 592pp.
3% x 8. T297 Paperbound $2.00

LANGUAGE AND MYTH, E. Cassirer. Cassirer’s brilliant demonstration that beneath both lan-
guage and myth hes an unconscious ‘‘grammar’’ of experience whose categories and canons
are not those of logical thought. Introduction and transtation by Susanne Langer Index.
x + 103pp. 53 x 8. T51 Paperbound $1.25

SUBSTANCE AND FUNCTION, EINSTEIN'S THEORY OF RELATIVITY, E. Cassirer. This double vol-
ume contains the German philosopher’s profound phiiosophical formulation of the differences
between traditional logic and the new logic of science Number, space, energy, relativity,
mauy other topics are treated in detail. Authorized translation by W. C. and M. C. Swabey.
xii + 465pp. 536 x 8. T50 Paperbound $2.00

THE PHILOSOPHICAL WORKS OF DESCARTES. The definitive English edition, in two volumes,
of all major philosophical works and letters of René Descartes, father of modern philosophy
of knowledge and science. Translated by E S. Haldane and G Ross. Introductory notes.
Total of 842pp. 538 x 8. T71 Vol 1, Paperbound $2.00

T72 Vol. 2, Paperbound $2.00

ESSAYS IN EXPERIMENTAL LOGIC, ). Dewey. Based upon Dewey's theory that knowledge
implies a judgment which in turn 1mphes an inguiry, these papers consider such topics as
the thought of Bertrand Russell, pragmatism, the logic of values, antecedents of thought,
data and meanings. 452pp. 538 x 8. T73 Paperbound $1.95

THE PHILOSOPHY OF HISTORY, G. W. F. Hegel. This classic of Western thought is Hegel's
detailed formulation of the thesis that history 1s not chance but a rational process, the
realization of the Spirit of Freedom. Translated and introduced by J. Sibree. Introduction
by C. Hegel. Special introduction for this edition by Prof. Carl Friedrich, Harvard University.
xxxix 4+ 447pp. 53 x 8. T112 Paperbound $1.85

THE WILL TO BELIEVE and HUMAN IMMORTALITY, W. James. Two of James’s most profourd
investigations of human belief in God and immortality, bound as one volume. Both are
powerful expressions of James's views on chance vs. determinism, pluralism vs. momsm,
will and intellect, arguments for survival after death, etc. Two prefaces. 429pp. 53 x 8.
T294 Clothbound $3.75
T291 Paperbound $1.65
INTRODUCTION TO SYMBOLIC LOGIC, S. Langer. A lucid, general introduction to modern
lo%‘ic, covering forms, classes, the use ot symbols, the calculus of propositions, the Boole-
Schroeder and the Russell-Whitehead systems, etc. ‘‘One of the clearest and simplest intro-
ductions,” MATHEMATICS GAZETTE. Second, enlarged, revised edition. 368pp. 53 x 8.
S$164 Paperbound $1.75

MIND AND THE WORLD-ORDER, C. I. Lewis. Building upon the work of Peirce, James, and
Dewey, Professor Lewis outlines a theory of knowledge in terms of ‘‘conceptual pragmatism,”
and demonstrates why the traditional understanding of the a priori must be abandoned.
Appendices. xiv + 446pp. 53 x 8. 7359 Paperbound $1.95

THE GUIDE FOR THE PERPLEXED,M.Maimonides One of the great philosophical works of all
time, Maimomides’ formulation of the meeting-ground between Old Testament and Aristotelian
thought 1s essential to anyone interesied in Jewish, Christian, and Moslem thought in the
Middle Ages. 2nd revised edition of the Friediander translation. Extensive introduction. lix
+ 414pp. 5% x 8. T351 Paperbound $1.85



DOVER BOOKS

THE PHILOSOPHICAL WRITINGS OF PEIRCE, ). Buchier, ed. (Formerly, ‘‘The Philosophy of
Peirce.”') This carefully |nteira!ed selection of Peirce's papers Is considered the best cov-
erage of the complete thought of one of the greatest philosophers of modern times. Covers
Peirce’s work on the theory of signs, pragmatism, epistemology, symbolic logic, the scientific
method, chance, etc. xvi + 386pp. 5 3% x 8. T216 Clothbound $5.00

T217 Paperbound $1.95

HISTORY OF ANCIENT PHILOSOPHY, W. Windelband. Considered the clearest survey of Greek
and Roman philosophy. Examines Thales, Anaximander, .Anaximenes, Heraclitus, the Eleatics,
Empedocles, the Pythagoreans, the Sophists, Socrates, Democritus, Stoics, Epicureans, Sceptics,
Neo-platonists, etc. 50 pages on Plato; 70 on Aristotle. 2nd German edition tr. by H. E.
Cushman. xv + 393pp. 53 x 8. T357 Paperbound $1.78

INTRODUCTION TO SYMBOLIC LOGIC AND ITS APPLICATIONS, R. Carnap. A comprehensive,
rigorous ntroduction to modern logic by perhaps its greatest lving master. includes
demonstrations of applications in mathematics, physics, biology. “‘Of the rank of a
masterpiece,” Z. fiir Mathematik und ihre Grenzgebiete. Over 300 exercises. xvi + 241pp.
5% x 8. Ciothbound $4.00

S453 Paperbound $1.85

SCEPTICISM AND ANIMAL FAITH, G. Santayana. Santayana’s unusually lucid exposition of the
difference between the independent existence of objects and the essence our mind attributes
to them, and of the necessity of scepticism as a form of belief and animal faith as a neces-
sary condition of knowledge. Discusses belief, memory, intuition, symbols, etc. xu + 314pp.
5% x 8. 1235 Ciothbound $3.50

T236 Paperbound $1.50

THE ANALYSIS OF MATTER, B. Russell. With his usual brilliance, Russeil analyzes physics,
causahity, scientific inference, Weyl's theory, tensors, invariants, periodicity, etc. in order
to discover the basic concepts of scientific thought about matter. ‘‘Most thorough treatment
of the subject,” THE NATION. Introduction 8 figures. viii + 408pp. 5% x 8.

T231 Paperbound $1.95

THE SENSE OF BEAUTY, G. Santayana. This important philosophical study of why, when, and
how beauty appears, arnd what conditions must be fulfilled, 1s in itself a revelation of the
beauty of language. ‘It 1s doubtful if a better treatment of the subject has since appeared,”

PEABODY JOURNAL. 1x + 275pp. 53 x 8. T238 Paperbound $1.00
THE CHIEF WORKS OF SPINOZA. In two volumes. Vol. |: The Theologico-Political Treatise and
the Political Treatise Vol. II On the Improvement of Understanding, The Ethics, and

Selected Letters. The permanent and enduring ideas in these works on God, the umiverse,
rehigion, society, etc., have had tremendous inpact on later philosophical works. Introduc-
tion. Total of 862pp. 538 x 8. T249 Vol. |, Paperbound $1.50

T250 Vol. I}, Paperbound $1.50

TRAGIC SENSE OF LIFE, M. de Unamuno. The acknowiedged masterpiece of one of Spain's
most influential thinke's Between the despair at the inevitable death of man and all his
works, and the desire for immortality, Unamuno finds a ‘‘saving incertitude.” Called “‘a
masterpiece,” by the ENCYCLOPAEDIA" BRITANNICA. xxx + 332pp. 5% x 8.

T257 Paperbound $1.85

EXPERIENCE AND NATURE, John Dewey. The enlarged, revised edilion of the Paul Carus
lectures (1925). One of Dewey's clearest presentations of the philosophy of empiricat natural-
1sSm iwhich reestablishes the continuity between ‘‘inner’’ experience and ‘‘outer’’ nature.
These lectures are among the most significant ever delivered by an Ainerican philosopher.
457pp. 5% x 8. T471 Paperbound $1.85

PHILOSOPHY AND CIVILIZATION IN THE MIDDLE AGES, M. de Wulf. A semi-popular survey of
medieval intellectual life, religion, philosophy, science, the arts, etc. that covers feudalism
vs. Catholicism, rise of the universities, mendicant orders, and similar topics. Bibliography.
viii + 320pp. 5% x 8. T284 Paperbound $1.75

AN INTRODUCTION TO SCHOLASTIC PHILOSOPHY, M. de Wulf. (Formerly, ‘‘Scholasticism Old
and New.’') Prof. de Wulf covers the central scholastic tradition from St. Anselm, Albertus
Magnus, Thomas Aquinas, up to Suarez in the 17th century, and then treats the modern
revival of scholasticism, the Louvain position, relations with Kantianism and positivism,
etc. xvi + 271pp. 53 x 8. 1296 Clothbound $3.50

T283 Paperbound $1.7%

A HISTORY OF MODERN PHILOSOPHY, H. Himdin*. An exceptiorally clear and detailed coverage
of Western philosophy from the Renaissance to the end of the 19th century. Both major
and minor figures are examined in terms of theory of knowledge, logic, cosmology, psychology.
Covers P zz1, Bodin, Boehme, Telesius, Bruno, Copernicus, Descartes, Spinoza, Hobbes,
Locke, Hume, Kant, Fichte, Schopenhauer, Mili, Spencer, Langer, scores of others. A standard
reference work. 2 volumes. Total of 1159pp. 5% x 8. T117 Vol. 1, Paperbound $2.00

T118 Vol. 2, Paperbound $2.00

LANGUAGE, TRUTH AND LOGIC, A. J. Ayer. The first full-length development of Logical
Posivitism in English. Building on the work of Schlick, Russell, Carnap, and the Vienna
school, Ayer presents the tenets of one of the most important systems of modern philosoph-
ical thought. 160pp. 5% x 8. T10 Paperbound $1.25




CATALOG OF
ORIENTALIA AND RELIGION

THE MYSTERIES OF MITHRA, F. Cumont. The great Belgian scholar’'s definitive study of the
Petsian mystery religion that almost vanquished Christianity in the ideological struggle for
the Roman Empire. masterpiece of scholarly detection that reconstructs secret doctrines,
organization, rites, Mithraic art 1s discussed and analyzed. 70 illus. 239pp. 53 x 8.
T323 Paperbound $1.8%

CHRISTIAN AND ORIENTAL PHILOSOPHY OF ARY. A. K. Coomaraswamy. The late art historian
and orientalist discusses artistic symbolism, the role of traditional culture in enriching art,
medieval art, folklore, philosophy of art, other similar topics. Bibliography. 148pp. 53 x 8.

1378 Paperbound $1.28

TRANSFORMATION OF NATURE IN ART, A. K. Coomaraswamy. A basic work on Asiatic religious
art. Includes discussions of religious art in Asia and Medieval Europe (exemplifi by
Messter Eckhart), the origin and use of images in Indian art, Indian Medieval aesthetic
manuals, and other fascinating, littie known topics. Glossaries of Sanskrit and Chinese
terms. Bibliography. 41pp. of notes. 245pp. 53 x 8. T368 Paperbound $1.75

ORIENTAL RELIGIONS IN ROMAN PAGANISM, F. Cumont. This well-known study treats the
ecstatic cults of Syria and Phrygia (Cybele, Attis, Adonis, their orgies and mutilatory rites);
the mysteries of Egypt (Serapis, Isis, Osiris); Persian dualism; Mithraic cults; Hermes
Trismegistus, Ishtar, Astarte, etc. and their influence on the religious thought of the Roman
Emplre. Introduction. 55pp. of notes; extensive bibliography. xxiv + 298pp. 53 x 8.
1321 Paperbound $1.73

ANTHROPOLOGY, SOCIOLOGY, AND PSYCHOLOGY

PRIMITIVE MAN AS PHILOSOPHER, P. Radin. A standard anthropological work based on
Radin's investigations of the Winnebago, Maori, Batak, Zuni, other primitive trnibes. Describes
rimitive thought on the purpose of life, marital relations, death, personality, gods, etc.
xtensive selections of driginal primitive documents. Bibliography. xvii + 420pp. 53 x 8.

T392 Paperbound $2.00

PRIMITIVE RELIGION, P. Radin. Radin's thoroughgoing treatment of supernatural beliefs,
shamanism, imtiations, religious expression, etc. in primitive societies. Arunta, Ashanti,
Aztec, Bushman, Crow, Fijian, many other tribes examined. ‘‘Excellent,”” NATURE. New
preface by the author. Bibliographic notes. x + 322pp. 538 x 8. T393 Paperbound $1.85

SEX IN PSYCHO-ANALYSIS, S. Ferenczi. (Formerly, ‘‘Contributions to Psycho-analysis ') 14
selected papers onp impotence, transference, analysis and children, dreams, obscene words,
homosexuality, paranoia, etc. by an associate of Freud Aiso included: THE DEVELOPMENT OF
PSYCHO-ANALYSIS, by Ferenczi and Otto Rank. Twp books bound as one. Total of 406pp.
3% x 8. T324 Paperbound $1.85

THE PRINCIPLES OF PSYCHOLOGY, William James. The complete text of the famous ‘‘long
course,’” one of the great books of Western thought. An almost incredible amount of infor-
mation about psychological processes, the stream of consciousness, habit, time perception,
memory, emotions, reason, consciousness of self, abnormal phenomena, and similar topics.
Based on James's own discoveries integrated with the work of Descartes, Locke, Hume,
Royce, Wundt, Berkeley, Lotse, Herbart, scores of others. ‘‘A classic of interpretation,’”
PSYCHIATRIC QUARTERLY. 94 illus. 1408pp 2 volumes. 53 x 8.

T381 Vol. 1, Paperbound $2.50

T382 Vol. 2, Paperbound $2.50

THE POLISH PEASANT IN EUROPE AND AMERICA, W. |. Thomas, F. Znaniecki. Monumental
sociological study of peasant primary groups (family and community) and the disruptions
produced by-a new industrial system and emigration to America, by two of the foremost
sociologists of recent times. One of the most important works in sociological thought.
Includes hundreds of pages of primary documentation, point by point analysis of causes
of social decay, breakdown of morality, crime, drunkenness, prostitution, etc. 2nd revised
edition. 2 volumes. Total of 2250pp. 6 x 9. T4A78 2 volume set, Clothbound $12.50

FOLKWAYS, W. G. Sumner. The great Yale sociologist's detailed exposttion of thousands of
social, sexual, and religious customs in hundreds of cultures from ancient Greece to Modern
Western societies. Preface by A G. Keller. Introduction by Wilham Lyon Phelps. 705pp.
535 x 8. S508 Paperbound $2.48

BEYOND PSYCHOLOGY, Otto Rank. The author, an early associate of Freud, uses psychoanalytic
techniques of myth-analysis to explore ultimales of human existence. Treats love, immor-
tality, the soul, sexual identity, kingship, sources of state power, many other topics which
illuminate the irrational basis of human existence 291pp. 53 x 8. 7485 Paperbound $1.73

ILLUSIONS AND DELUSIONS OF THE SUPERNATURAL AND THE OCCULT, D. H. Rawcliffe. A ra-
tional, scientific examination of crystal gazing, automatic writing, table turning, stigmata,
the Indian rope trick, dowsing, telepathy, clairvoyance, ghosts, ESP, PK, thousands of other
supposedly occult phenomena. Originaily titled ‘‘The Psychology of the Occult.” 14 illustra-
tions. 551pp. 53 x 8. T503 Paperbound $2.00



DOVER BOOKS

YOGA: A SCIENTIFIC EVALUATION, Kovoor T. Behanan. A scientific study of the physiclogical
and psychological effects of Yoqa discipline, written under the auspices of the Yale Uni-
versity Institute of Human Relations. Foreword by W. A. Miles, Yale Univ. 17 photographs.
90pp. 5% X 8. 7505 Paperbound $1.85

HOAXES, C. D. MacDougall, Delightful, entertaining, ‘yet scholarly exposition of how hoaxes
start, why they succeed, documented with stories of hundreds of the most famous hoaxes.
“A stupendous collection . . . and shrewd analysis, “NEW YORKER. New, revised edition.
54 photographs. 320pp. 53 x 8. T465 Paperbound $1.75

CREATIVE POWER: THE EDUCATION OF YOUTH IN THE CREATIVE ARTS, Hughes Mearns. Named
by the National Education Association as one of the 20 foremost books on education in
recent times. Tells how to help children express themselves in drama, poetry, music, art,
develop latent creative power. Should be read by every parent, teacher. New, enlarged,
revised edition. Introduction. 272pp. 53 x 8. T490 Paperbound $1.50

LANGUAGES

NEW RUSSIAN-ENGLISH, ENGLISH-RUSSIAN DICTIONARY, M. A. 0'Brien. Over 70,000 entries in
new orthography! Idiomatic usages, colloquialisms. One of the few dictionaries that indicate
accent changes in conjugation and declension. ‘“One of the best,” Prof. E. J. Simmons,
Cornell. First names, geographical terms, bibliography, many other features. 738pp. 4% x 6V¥4.

T208 Paperbound $2.00

MONEY CONVERTER AND TIPPING GUIDE FOR EUROPEAN TRAVEL, C. Vomacka. Invaluable, handy
source of currency regulations, conversion tables, tipping rules, postal rates, much other
travel information for every European country plus Israel, Egypt and Turkqu. 128pp. 32 x 5Va.

260 Paperbound 60¢

MONEY CONVERTER AND TIPPING GUIDE FOR TRAVEL IN THE AMERICAS (including the United
States and Canada), €. Vomacka. The information you need for informed and confident travel
In the Americas: money conversion tables, tipping guide, postal, telephone rates, etc.
128pp. 3¥2 x 5Y4. T261 Paperbound 65¢

DUTCH-ENGLISH, ENGLISH-DUTCH DICTIONARY, F. G. Renier. The most convenient, practical
Dutch-English dictionary on the market New orthography. More than 60,000 entries: idioms,
compounds, technical terms, etc. Gender of nouns indicated. xvin + 571pp. 5%2 X 6Va.

T224 Clothbound $2.50

LEARN DUTCH!, F. G. Renier. The most satisfactory and easily-used grammar of modern
Dutch. Used and recommended by the Fuibright Committee in the Netherlands. Over 1200
simple exercises lead to mastery of spoken and written Dutch, Dutch-English, English-Dutch
vocabularies. 181pp 4Ys x 7V T441 Clothbound $1.75

PHRASE AND SENTENCE DICTIONARY OF SPOKEN RUSSIAN, English-Russian, Russian-English.
Based on phrases and complete sentences, rather than isolated words; recognized as one of
the best methods of learning the idiomatic speech of a country. Over 11,500 entries, indexed
by single words, with more than 32,000 English and Russian sentences and phrases, n imme-
diately usable form Probably the largest list ever published. Shows accent changes in con-
jugation and declension; irregular forms listed in both alphabetical place and under main
form of word 15,000 word introduction covering Russian sounds, writing, grammar, syntax.
15-page appendix of geographical names, money, important signs, given names, foods,
special Soviet terms, etc. Travellers, businessmen, students, government employees have
found this their best source for Russian expressions. Originally pubhished as U.S. Government
Technical Manual TM 30-944. v + 573pp. 5% x 83. T496 Paperbound $2.78

PHRASE AND SENTENCE DICTIONARY OF SPOKEN SPANISH, Spanish-Enghsh, English-Spanish.
Compiled from spoken Spanish, emphasizing idiom and colloquial usage in both Castiian and
Latin-American. More than 16,000 entries containing over 25,000 idioms—the largest hist of
idiomatic constructions ever published. Complete sentences given, indexed under single words
—Ilanguage in immediately usable form, for travellers, businessmen, students, etc. 25-page
introduction provides rapid survey of sounds, grammar, syntax, with full consideration of irreg-
ular verbs. Especially apt In modern treatment of phrases and structure. 17-page glossary
gives translations of geographical names, money values, numbers, national holidays, important
street signs, useful expressions of high frequency, plus umque 7-page glossary of Spanish and
Spanish-American foods and dishes. Originally published as U.S. Government Techmical Man-
ual TM 30-90C. v + 513pp. 5% x 83. T495 Paperbound $1.78



CATALOG OF
SAY IT language phrase books

“‘SAY IT" in the foreign language of your choice! We have sold over ¥ million copies of these
1} IR books. The{ will not make you an expert linguist overnight, but they
everyday life abroad.

P useful 8!
do cover most practical matters o

Over 1000 useful phrases, expressions, with additional variants, substitutions.

Modern! Useful! Hundreds of phrases not available in other texts: ‘‘Nylon,” “air-condi-
tioned," etc.

The ONLY inexpensive phrase book completely indexed. Everything is available at a flip
of your finger, ready for use.

Prepared by native linguists, travel experts.

Based on years of travel experience abroad.

This handy phrase book may be used by itself, or it may supplement any other text or
course; it provides a living element. Used by many colleges and institutions: Hunter College;
Barnard College; Army Ordnance School, Aberdeen; and many others.

Available, 1 book per language:

Danish (T818) 75¢ Italian (T806) 60¢
Dutch T(817) 75¢ Japanese (T807) 60¢
English (for German-speaking people) (T801) 60¢ Norwegian (T814) 75¢
English (for Italian-speaking people) (T816) 60¢ Russian (7810) 75¢
English (for Spanish-speaking people) (T802) 60¢ Spanish (T811) 60¢
Esperanto (T820) 75¢ Turkish (T821) 75¢
French (T803) 60¢ Yiddish (T815) 75¢
German (T804) 60¢ Swedish (T812) 75¢
Modern Greek (T813) 75¢ Polish (T808) 75¢
Hebrew (T805) 60¢ Portuguese (T809) 75¢

LISTEN & LEARN language record sets

LISTEN & LEARN is the only language record course designed especially to meet your travel
needs, or help you learn essential foreign language quickly by yourself, or in conjunction with
any school course, by means of the automatic association method. Each set contains three
333 rpm long- playing records — 1% hours of recorded speech by emnent native
speakers who are professors at Columbia, N Y.U., Queens College and other leading univer-
sities. The sets are priced far below other sets of similar quality, yet they contain many
special features not found in other record sets:

* Over 800 selected phrases and sentences, a basic vocabulary of over 3200 words.
* Both English and foreign language recorded; with a pause for your repetition.
* Designed for persons with limited time; no time wasted on material you cannot use

immediately.

* Living, modern expressions that answer modern needs: drugstore items, ‘‘air-conditioned,”
etc.

.12'%.196 page manuals contain everything on the records, plus simple pronunciation
guides.

* Manual 1s fully indexed; find the phrase you want instantly.
* High fidelity recording—equal tc any records costing up to $6 each.

The phrases on these records cover 41 different categories useful to the traveller or student
interested in learning the living, spoken language: greetings, introductions, making yourself
understood, passing customs, planes, trains, boats, buses, tawis, nightciubs, restaurants,
menu items, sports, concerts, cameras, automobile travel, repairs, drugstores, doctors,
dentists, medicines, barber shops, beauty parlors, laundries, many, many more.

‘““Excellent . . . among the very best on the market,”” Prof. Mario Pei, Dept. of Romance
Languages, Columbia University. ‘‘Inexpensive and well-done . . . an ideal present,”
CHICAGO SUNDAY TRIBUNE. ‘‘More genuinely helpful than anything of its kind which | have
Erevuously encountered,”” Sidney Clark, well-known author of ‘‘ALL THE BEST'' travel books
ach set contains 3 33 rpm pure vinyl records, 128- 196 page with full
rgclord text, and album. One language per set. LISTEN & LEARN record sets are now avail-
able in—

FRENCH the set $4.95 GERMAN the set $4.95
ITALIAN the set $4.95 SPANISH the set $4.95
RUSSIAN the set $5.95 JAPANESE * the set $5.95

* Available Sept. 1, 1959
UNCONDITIONAL GUARANTEE: Dover Publications stands behind every Listen and Learn record
set. If you are dissatisfied with these sets for any reason whatever, return them within
10 days and your money will be refunded in full.



DOVER BOOKS
ART HISTORY

STICKS AND STONES, Lewis Mumford. An examination of forces influencing American archi-
tacture: the medieval tradition in early New England, the classical influence in Jefferson’s
time, the Brown Decades, the imperial facade, the machine age, etc. ‘A truly remarkable
book,” SAT. REV. OF LITERATURE. 2nd revised edition. 21 illus. xvii + 2289g. 5% x 8.

T202 Paperbourtd $1.60

THE AUTOBIOGRAPHY OF AN IDEA, Louis Sullivan. The architect whom Frank Lioyd Wright
called ‘‘the master,” records the development of the theories that revolutionized America's
skyline. 34 full-page plates of Sullivan's finest work. New introduction by R. M. Line.
xiv + 335pp. 53a x 8. T281 Paperbound $1.85

THE MATERIALS AND TECHNIQUES OF MEDIEVAL PAINTING, D. V. Thompson. An invaluable
study of carners and grounds, binding media, pigments, metais used in painting, al fresco
and al secco techniques, burnishing, etc. used by the medieval masters. Preface by Bernard
Berenson. 239pp. 53 x 8. T327 Paperbound $1.85

PRINCIPLES OF ART HISTORY, H. Wélfflin. This remarkably instructive work demonstrates the
tremendous change in artistic conception from the 14th to the 18th centuries, by analyzing
164 works by Botticelli, Durer, Hobbema, Holbein, Hals, Titian, Rembrandt, Vermeer, etc.
and pointing out exactly what is meant by ‘‘baroque,” ‘‘classic,’”” “primitive,” ‘‘picturesque,’
and other basic terms of art history and criticism ‘‘A remarkable lesson in the art of
seeing,” SAT. REV. OF LITERATURE. Translated from the 7th German edition. 150 illus.
254pp. 68 x 9Y4. T276 Paperbound $2.00

FOUNDATIONS OF MODERN ART, A. Ozenfant. Stimulating discussion of human creativity from
paleclithic cave painting to modern painting, architecture, decorative arts. Fully illustrated
with works of Gris, Lipchitz, Leger, Picasso, primitive, modern artifacts, architecture, indus-
trial art, much more. 226 illustrations. 368pp. 618 x 9V4. T215 Paperbound $1.93

HANDICRAFTS, APPLIED ART, ART SOURCES, ETC.

WILD FOWL DECOYS, ). Barber. The standard work on this fascinating branch of folk art,
ranging from Indian mud and grass devices to realistic wooden decoys. Discusses styles,
types, periods, gives full information on how to make decoys. 140 ilfustrations (including
14 new plates) show decoys and provide full sets of plans for handicrafters, artists, hunters,
and students of folk art. 281pp. 7% x 103. Deluxe edition. T11 Clothbound $8.50

METALWORK AND ENAMELLING, H. Maryon. Probably the best book ever written on the
subject. Tells everything necessary for the home manufacture of jewelry, rings, ear
pendants, bowis, etc. Covers matenals, tools, soldering, filigree, setting stones, raisin
pattern~, repoussé work, damascening, niello, cloisonné, polishing, assaying, casting, an
dozens of other techmiques. The best substitute for apprenticeship to a master metalworker.
363 photos and figures. 374pp. 5Y2 x 8Va. T183 Clothbound $7.50

SHAKER FURNITURE, E. D. and F. Andrews. The most illuminating study of Shaker furniture
ever written. Covers chronology, craftsmanship, houses, shops, etc. Includes over 200
photographs of chairs, tables, clocks, beds, benches, etc. ‘“Mr. & Mrs. Andrews know all
there 1s to know about Shaker furniture,” Mark Van Doren, NATION. 48 full-page plates.
192pp. Deluxe cloth binding. 7% x 10%. T7 Clothbound $6.00

PRIMITIVE ART, Franz Boas. A great American anthropologist covers theory, technical vir-

tuosity, styles, symbolism, patterns, etc of primitive art. The more than 900 illustrations

will interest artists, designers, craftworkers. Over 900 1llustrations. 376pp. 53 x 8.
T25 Paperbound $1.95

ON THE LAWS OF JAPANESE PAINTING; H. Bowie. The best possible substitute tor lessons
from an oriental master. Treats both spirit and technique, exercises for control of the
brush; inks, brushes, colors; use of dots, lines to express whole moods, etc. 220 1llus.
132pp. 6% x 9V, T30 Paperbound $1.9S

HANDBOOK OF ORNAMENT, F. S. Meyer. One of the largest collections of copyright-free tradi-
tional art: over 3300 Line cuts of Greek, Roman, Medieval, Renaissance, Baroque, 18th and
19th century art motifs (tracery, geometric elements, flower and animal motifs, etc.) and
decorated objects (chairs, thrones, weapons, vases, jewelry, armor, etc.). Full text. 3300
lustrations. 562pp. 538 x 8. T302 Paperbound $2.00

THREE CLASSICS OF ITALIAN CALLIGRAPHY. Oscar OE , ed, Exact reproductions of three
famous Renaissance calligraphic works: Arrighi's OPERINA and IL MODO, Tagliente's LO
PRESENTE LIBRO, and Palatino’s LIBRO NUOVO. More than 200 complete alphabets, thousands
of lettered specimens, in Papal Chancery and other beautiful, ornate handwriting. Intro-
duction. 245 plates. 282pp. 6¥8 x 9%4. T212 Paperbound $1.95

THE HISTORY AND TECHNIQUES OF LETTERING, A. Nesbitt. A thorough history of lettering
from the ancient Egyptians to the present, and a 65-page course in lettering for artists,
Every major development in lettering history 1s illustrated by a complete alphabet. Fully
analyzes such masters as Caslon, Koch, Garamont, Jenson, and many more. 89 aiphabets, 165
other specimens. 317pp. 53 x 8. T427 Paperbound $2.00



CATALOG OF

LETTERING AND ALPHABETS, J. A. Cavanagh. An unabridged reissue of *‘Lettering,’ containing
the full discussion, anaiysis, Illustration of 89 basic hand lettering tyles based on Caslon,
Bodoni, Gothic, many other types. Hundreds of techmical hints on construction, strokes,
pens, brushes, etc. 89 alphabets, 72 lettered specimens, which may be regroducad permission-
free. 121pp. 93 x 8. * T53 Paperbound $1.28

THE HUMAN FIGURE IN MOTION, Eadweard Muybridge. The largest collection in print of
Muybridge's famous high-speed action photos. 4789 photographs In more than 500 action-
strip-sequences (at shutter speeds up to 1/6000th of a second) illustrate men, women,
children—mostly undraped—performing such actions as walking, running, getting up, Iylnq
down, carrying objects, throwing, etc. “An unparalleled dictionary of action for all artists,’
AMERICAN ARTIST. 390 full-page plates, with 4789 photographs. Heavy glossy stock, reinforced
binding with headbands. 77 x 10%. T204 Ciothbound $10.00

ANIMALS IN MOTION, Eadweard Muybridge. The largest collection of animal action photos
in print. 34 different animals (horses, mules, oxen, goats, camels, pigs, cats, lions, gnus,
deer, monkeys, eagles—and 22 others) in 132 characteristic actions. All 3919 photographs
are taken In series at speeds up to 1/1600th of a second, offering artists, biologists, car-
toonists a remarkable opportumity to see exactly how an ostrich’s head bobs when running,
how a flion puts his foot down, how an elephant’s knee bends, how a bird flaps his wings,
thousands of other hard-to-catch detalls. ““A really marvelous series of plates,” NATURE.
380 full-pages of plates. Heavy glossy stock, reinforced binding with headbands. 7% x10%.

T203 Clothbound $10.00

TNE BOOK OF SIGNS, R. Koch. 493 symbols—crosses, grams, astrological, biological
symbols, runes, etc.—from ancient manuscripts, cathedrals, coins, catacombs, pottery. May
be reproduced permission-free. 493 illustrations by Fritz Kredel. 104pp. 638 x 9Ya.

T162 Paperbound $1.00

A HANDBOOK OF EARLY ADVERTISING ART, C. P. Hornung. The largest collection of copyright-
free early advertising art ever compiled. Vol. |: 2,000 illustrations of animals, old automo-
biles, buiidings, allegoncal figures, fire engines, Indians, ships, trains, more than 33 other
categories! Vol Il: Over 4,000 typographical spec 5 0 R Gothic, Barnum, Oid
English faces; 630 ornamental type faces; hundreds of scrolls, Initials, flourishes, etc. “‘A
remarkable collection,” PRINTERS' INK.

Vol. I: Pictorial Volume. Over 2000 iliustrations. 256pp. 9 x 12. T122 Clothbound $10.00

Vol. i1: Typographical Volume. Over 4000 speciments. 319pp. 9 x 12.  T123 Clothbound $10.00
Two volume set, Clothbound, only $18.50

DESIEN FOR ARTISTS AND CRAFTSMEN, L. Wolchonok. The most thorough course on the
creation of art motifs and designs. Shows you step-by-step, with hundreds of examples and
113 detailed exercises, how to create original designs from geometric patterns, plants,
birds, amimals, humans, and man-made objects. “‘A great contribution to the field of design
and crafts,” N. Y. SOCIETY OF CRAFTSMEN More than 1300 entirely new illustrations.
xv + 207pp. 7% x 10%. T274 Clothbound $4.93

HANDBOOK OF DESIGNS AND DEVICES, C. P. Hornung. A remarkable working collection of
1836 basic designsand variations, all copyright-free. Variations of circle, line, cross, diamond,
swastika, star, scroll, shield, mani\: more. Notes on symbolism. ‘‘A necessity to every
designer who would be original without having to labor heavily,” ARTIST and ADVERTISER.

204 plates. 240pp. 53 x 8.
T125 Paperbound $1.80

THE UNIVERSAL PENMAN, George Bickham. Exact reproduction of beautiful 18th century
book of handwriting. 22 complete alphabets in finest English roundhand, other scripts, over
2000 elaborate flourishes, 122 calligraphic illustrations, etc. Material is copyright-free. ‘“‘An
essentlal part of any art lLibrary, and a book of permanent value,”” AMERICAN ARTIST. 212
plates, 224pp. 9 x 13%. T20 Clothbound $10.00

AN ATLAS OF ANATOMY FOR ARTISTS, F. Schider. This standard work contains 189 full-page
plates, more than 647 illustrations of all aspects of the human skeleton, musculature, cutaway
portions of the body, each part of the anatomy, hand forms, eyelids, breasts, location of
muscles under the flesh, etc. 59 plates illustrate how Michelangelo, da Vinci, Goya, 15 others,
drew human anatomy. New 3rd edition enlarged by 52 new illustrations by Cloquet, Barcsay.
“The standard reference tool,” AMERICAN LIBRARY ASSOCIATION. ‘‘Excellent,” AMERICAN
ARTIST. 189 plates, 647 illustrations. xxvi + 192pp. 7% x 10%. T241 Clothbound $6.00

AN ATLAS OF ANIMAL ANATOMY FOR ARTISTS, W. Ellenberger, H. Baum, H. Dittrich. The largest,
richest animal anatomy for artists in English. Form, musculature, tendons, bone structure,
expression, detairled cross sections of head, other features, of the horse, lion, dog, cat, deer,
seal, kangaroo, cow, bull, goat, monkey, hare, many other animals. ‘‘Highly recommended,”
DESIGN. Second, revised, enlarged edition with new plates from Cuvier, Stubbs, etc. 288
illustrations. 153pp. 1138 x 9. T82 Clothbound $6.00

ANIMAL DRAWING: ANATOMY AND ACTION FOR ARTISTS, C. R. Knight. 158 studies, with full
accompanying text, of such ammais as the gorilla, bear, bison, dromedary, camel, vuliture,
pelican, n{uam, shark, etc., by one of the greatest modern masters of animal drawing.
Innumerable tips on get life expression into your work. ‘‘An excellent reference

how to
work,’ SAN FRANCISCO CHRONICLE. 158 illustrations. 156pp. 10% x 8%,
T426 Paperbound $2.00



DOVER BOOKS

THE CRAFTSMAN‘S HANDBOOK, Cennino Cenninl. The finest English transiation of W LIBRO
DELL' ARTE, the 15th century Introduction to art technique that is both a mirror of Quatro-
cento life and a source of many useful but -nearly forgotten facets of the painter's art.
4 {llustrations. xxvli + 142pp. D. V. Thompson, transiator. 6% x 9%. T54 Paperbound $1.50

THE BROWN DECADES, Lewis Mumford. A picture of the “buried renaissance"” of the post-
Civil War fulod. and the (oundm'gﬁ of modern architecture (Sullivan, Richardson, Root,
a

Rnebllnz“, andscape development (Marsh, Olmstead, Eliot). and the graphic arts (Homer,
Eakins, Ryder). 2nd revised, enlarged edition. Bibliography. 12 illustrations. xw <+ 266 ?.p
5% x 8. T200 Paperbound $1.65

STIEGEL GLASS, F. W. Hunter. The story of the most highly esteemed earldy American gilass-
ware, fully illustrated. How a German adventurer, ‘‘Baron’’ Stiegel, founded a glass empire;
detalled accounts of individual gl k. “This p work is reprinted in an edition
even more beautiful than the original,’" ANTIQUES DEALER New introduction by Helen
McKearin. 171 illustrations, 12 in full color. xxii + 338pp. 7% x 10%.

T128 Glothbound $10.00

THE HUMAN FIGURE, ). H. Vanderpoel. Not just a picture book, but a complete course by a
famous figure artist Extensive text, illustrated by 430 pencil and charcoal drawings of
both male and female anatomy. 2nd enlarged edition. Foreword. 430 illus. 143pp. 6% X 9V4.

T432 Paperbound $1.45

PINE FURNITURE OF EARLY NEW ENGLAND, R. H. Kettell. Over 400 illustrations, over 50
working drawings of early New England chairs, benches, beds cupboards, mirrors, sheives,
tabies, other furmfure esteemed for simple beauty and character ‘‘Rich store of illustra-
tions . . . emphasizes the indiwvidudhity and varied design,”” ANTIQUES. 413 illustrations,
55 working drawings 475pp. 8 x 10% T145 Clothbound $10.00

BASIC BOOKBINDING, A. W. Lewis. Enables both beginners and experts to rebind old books
or bind paperbacks tn hard covers Treats materials, tools; gives step-by-step instruction in
how to collate a book, sew it, back it, make boards, etc 261 illus. Apgendlces. 155pp.
5% x 8. T169 Paperbound $1.3§

DESIGN MOTIFS OF ANCIENT MEXICO, ). Enciso. Nearly 90% of these 766 superb desué\s from
Aztec, Oimec, Totonac, Maya, and Toltec origins are btainable elsewhere! Contains
plumed serpents, wind gods, amimals, demons, dancers, monsters, etc Excellent applied
design source. Originally $17.50. 766 illustrations, thousands of mohifs. 192pp. 648 x 9Vi.
T84 Paperbound $1.88

AFRICAN SCULPTURE, Ladislas Segy. 163 full-page plates illustrating masks, fertility figures,
ceremonial objects, etc , of 50 West and Central African tribes—95% never before illustrated.
34-page introduction to African sculpture ‘‘Mr. Segy 1s one of its top authorities,”” NEW
YORKER 164 full-page photographic plates Introduction Bibliography. 2448:: 6V x 9V,
T396 Paperbound $2.00

THE PROCESSES OF GRAPHIC REPRODUCTION IN PRINTING, H. Curwen. A thorough and prac-
tical survey of wood, {tnoleum, and rubber engraving, copper engraving, drypoint, mezzotint,
etching, aquatint, steel engraving, die sinking, stenciliing, hthography (extensively); photo-
graphic reproduction utilizing line, continuous tone, photoengravure, colln(gpe. every other
process in general use Note on color reproduction Section on bookbinding. Over 200 illustra-
tions, 25 in color 143pp. 5% x B8Vk. T512 Ciothbound $4.00

CALLIGRAPHY, J. G. Schwandner. First reprinting in 200 years of this legenaary book of
beautiful handwriting Over 300 ornamental imitials, 12 complete calligraphic alphabets, over
150 ornate frames and panels, 75 calligraphic pictures of cherubs, stags, lions, etc., thou-
sands of flourishes, scrolls, etc., by the greatest 18th century masters All material can be
copied or adapted without permission Historical introduction 158 full-page plates. 368pp.
9 x 13 T475 Clothbound $10.00

* * ¥

A DIDEROT PICTORIAL ENCYCLOPEDIA OF TRADES AND INDUSTRY, Manufacturing and the
Technical Arts in Plates Selected from ‘‘L’'Encyclopédie ou Dictionnaire Raisonné des Sciences,
des Arts, et des Métiers,” of Denis Diderot, edited with text by C Gillisjpie. Over 2000
illustrations on 485 full-page plates Magnificent 18th centurz engravings of men, women,
and children working at such trades as milling flour, cheesemaking, charcoal burning, mining,
siiverplating, shoeing horses, making fine glass, printing, hundreds more, showing details
of machinery, different steps. in sequence, etc A remarkable art work, but also the largest
collection of working figures in print, copyright -free, for art directors, designers, etc.
Two vols. 920pp 9 x 12 Heavy library cloth T421 Two volume set 518.50

® % %

SILK SCREEN TECHNIQUES, J. Biegeleisen, M. Cohn. A practical step-by-step home course in
one of the most versatile, least expensive graphic arts processes How to build an inexpensive
silk screen, prepare dStellﬂls'n prtmtt, ach|e8ve spet|:|al tzeoxltures,s‘zse cgtl}or. etc. Every step
explained, diagramme illustrations, n color PP. X 4.

P » ciee T433 Paperbound $1.45



CATALOG OF
PUZZLES, GAMES, AND ENTERTAINMENTS

MATHEMATICS, MAGIC AND MYSTERY, Martin Gardner. Astonishing feats of mind reading,
mystifying ‘‘magic’” tricks, are often based on mathemalical principles anyone can learn,
This book shows you how to perform scores of tricks with cards, dice, coins, knots, numbers,
etc., by using simple principles from set theory, theory of numbers, topology, other areas
of mathematics, fascinating in themselves. No special knowledge required. 135 illus. 186pp.
3 x 8. T335 Paperbound $1.00

MATHEMATICAL PUZZLES FOR BEGINNERS AND ENTHUSIASTS, 6. Mott-Smoth. Test your
problem-solving techniques and powers of inference on 188 challenging, amusing puzzles
based on algebra, dissection of plane figures, permutations, probabilities, etc. Appendix of
primes, square roots, etc. 135 illus. 2nd revised edition. 248pp. 53 x 8.

T198 Paperbound $1.00

LEARN CHESS FROM THE MASTERS, F. Reinfeld. Play 10 games against Marshall, Bronstein,
Najdorf, other masters, and grade yourself on €ach move. Detailed annotations reveal prin-
ciples of play, strategy, etc. as you proceed. An excellent way to get a real insight into the
game. Formerly titled, ‘‘Chess by Yourself.” 91 diagrams. vii 4+ 144pp. 5% x 8.

T362 Paperbound $1.00

REINFELD ON THE END GAME IN CHESS, F. Reinfeld. 62 end games of Aiekhine, Tarrasch,
Morphy, other masters, are carefully analyzed with emphasis on transition from middle
game to end play. Tempo moves, queen endings, weak squares, other basic principles clearly
llustrated. Excellent for understanding why some moves are weak or incorrect, how to avoid
errors. Formerly titled, ‘‘Practical End-game Play.” 62 diagrams. vi + 177;[!. 53 x 8.

T417 Paperbound $1.25
101 PUZZLES IN THOUGHT AND LOGIC, C. R. Wylie, Jr. Brand new puzzies you need no special
knowledge to solve! Each one is a gem of ingenuity that will really ch#iienge your problem-
solving technique. Introduction with simplified explanation of scientic puzzie solving. 128pp.
53 x 8. T167 Paperbound $1.00

THE COMPLETE NONSENSE OF EDWARD LEAR. The only complete edition of this master of
entle madness at a popular price. The Dong with the Luminous Nose, The Jumblies, The
wl and the Pussycat, hundreds of other bits of wonderful nonsense. 214 himericks, 3 sets
of Nonsense Botany, 5 Nonsense Alphabets, 546 fantastic drawings, muth more. 320pp.
53% x 8. . 7167 Paperbound $1.00

28 SCIENCE FICTION STORIES OF H. G. WELLS. Two complete novels, ‘“Men Like Gods'' and
‘‘Star Begotten,’’ plus 26 short stories by the master science-fiction writer of all time.
Stories of space, time, future adventure that are among the all-time classics of science
fiction. 928pp. 534 x 8. T265 Clothbound $3.95

SEVEN SCIENCE FICTION NOVELS, H. G. Wells. Unabridged texts of ‘“The Time Machine,”
“The Island of Dr. Moreau,’”” ‘‘First Men in the Moon,” ‘The Invisible Man,” “The War
of the Worlds,”” ‘“The Food of the Gods,” ‘‘In the Days of the Tomet.”’ ‘‘One will have to go
far to match this for entertainment, excitement, and sheer pleasure,” N Y. TIMES. 1015pp.
Y% x 8. T264 Clothbound $3.85

MATHEMAGIC, MAGIC PUZZLES, AND GAMES WITH NUMBERS, R. V. Heath. More than 60 new

puzzies and stunts based on number properties multiplying large numbers mentally, finding

the date of any day in the year, etc. Edited by J. S. Meyer. 76 illus. 129pp 53& x 8.
T110 Paperbound $1.00

FIVE ADVENTURE NOVELS OF H. RIDER HAGGARD. The master story-teller's five best tales of

mystery and adventure set against authentic African backgrounds ‘‘She,” ‘‘King Solomon’s

Mines,”” ‘‘Allan Quatermain,”” ‘‘Allan’'s Wife,”” ‘“Maiwa’s Revenge.” 821pp. 53 x 8.
T108 Clothbound $3.88

WIN AT CHECKERS, M. Hopper. (Formerly ‘‘Checkers.’”) The former World's Unrestricted
Checker Champion gives you valuable lessons in openings, traps, end games, ways to draw
when you are behind, etc. More than 100 questions and answers anticipate your problems.
Appendix. 75 problems diagrammed, solved 79 figures. x1 + 107pp. 53 x 8.

71363 Paperbound $1.00

CRYPTOGRAPHY, L. D. Smith. Excellent introductory work on ciphers and their solution,

history of secret writing, techniques, etc. Appendices on Japanese methods, the Baconian

cipher, frequency tables. Bibliography. Over 150 problems, solutions. 160pp. 5% x 8.
T247 Paperbound $1.00

CRYPTANALYSIS, H. F. Gaines. (Formerly, ‘‘Elementary Cryptanalysis.”’) The best book available
on cryptograms and how to solve them. Contains all major techniques- substitution, transposi-
tion, mixed alphabets, multafid, Kasiski and Vignere methods, etc. Word frequency appendix.
167 problems, solutions. 173 figures. 236pp. 53 x 8. T97 Paperbound $1.95

FLATLAND, E. A. Abbot. The science-fiction classic of life in a 2-dimensional world that is
considered a first-rate introduction to relativity and hyperspace, as well as a scathing
satire on society, politics and rehigion. 7th edition. 16 illus. 128pp. 53k x 8.

T1 Paperbound $1.00
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HOW TO FORCE CHECKMATE, F. Reinfeld. (Formerly ‘‘Chalienge to Chessplayers ') No board
needed to sharpen your checkmate skill on 300 checkmate situations Learn to plan up to
3 moves ahead and play a superior end game. 300 situations diagrammed, notes and full
solutions. 11lpp 5% x 8 7439 Paperbound $1,28

MORPHY'S GAMES OF CHESS, P. W. Sergeant, ed Play forcefully by following the techniques
used by one of.the greatest chess champions 300 of Morphy's games carefuily annotated to
reveal principles Bibllography New introduction by F Reinfeld 235 diagrams x + 35Zp’p.
5% x 8. T386 Paperbound $1.

MATHEMATICAL RECREATIONS, M. Kraitchik. Hundreds of unusual mathematical puzziers and
odd bypaths of math, elementary and advanced Greek, Medieval, Arabic, Hindu problems,
figurate numbers, Fermat numbers primes, magic, Euler, Latin squares, fairy chess, latruncles,
reversl, Jinx ruma, tetrachrome other positional and permutational games Rigorous solutions
Revised second edition 181 illus 330pp 538 x 8 T163 Paperbound $1.75

MATHEMATICAL EXCURSIONS, H. A. Merrill. Revealing stimulating insights into elementary
math, not usually taught in school 90 problems demonstrate Russian peasant multiplication,
memory systems for p1, magic squares, dyadic Systems, division by inspection, many more
Solutions to difficult problems 50 1llus 538 x 8 T350 Paperbound $1.00

MAGIC TRICKS & CARD TRICKS, W. Jorfsen. Best introduction to tricks with coins, bills,
eggs, ribbons, slates, cards, easily performed without elaborate equipment Professionai
routines, tips on presentation misdirection etc Two books bound as yone 52 tricks with
cards, 37 tricks with common objects 106 figures 224pp 53 x 8 T909 Paperbound $1.00

MATHEMATICAL PUZZLES OF SAM LOYD, selected and edited by M. Gardner. 177 most ingenious
mathematical puzzles of America's greatest puzzle originator based on arithmetic, algebra,
game theory, dissection, route tracing operations research, probability, etc 120 drawings,
diagrams Solutions 187pp 53 x 8 T498 Paperbound $1.00

THE ART OF CHESS, J. Mason The most famous general study of chess ever written More
than 90 openings, middie game end game, how to attack, sacrifice, defend exchange, form
general strategy Supplement on ‘‘How Do You Play Chess?’’ by F Reinfeld 448 diagrams.
356pp. 536 x T463 Paperbound $1.83

HYPERMODERN CHESS as Developed in the of its Greatest Exponent, ARON NIMZOVICH
F. Reinfeld, ed Learn how the game s greatest innovator defeated Alekhine, Laskar, an
many others, and use these methods in your own game 180 diagrams 228pp 53 x 8

T448 Paperbound $1.35

A TREASURY OF CHESS LORE, F. Reinfeld, ed Hundreds of fascinating stories by and about
the masters, accounts of tournaments and famous games aphorisms, word portraits, littie
known incidents, photographs etc, that will delight the chess enthusiast, captivate the
beginner 49 photographs (14 full page plates), 12 diagrams 315pp 5% x 8

T458 Paperbound $1.75

A NONSENSE ANTHOLOGY, collected by Carolyn Wells. 245 of the best nonsense verses ever
written nonsense puns absurd arguments, mock epics, nonsense ballads, ‘‘sick’ verses, dog-
Latin verses, French nonsense verses, limericks Lear, Carroll, Belloc, Burgess, nearly 100
other writers Introduction by Carolyn Wells 3 indices Title, Author, First Lines xxxin +
279p. 5% x 8 T499 Paperbound $1.25

SYMBOLIC LOGIC and THE GAME OF LOGIC, Lewis Carroll. Two delightful puzzie books by
the author of ‘Alice' bound as one Both works concern the symbolic representation of
fraditional logic and together contain more than 500 ingemous, amusing and instructive
syllogistic puzziers Total of 326pp 534 x 8 T492 Paperbound $1.50

PILLOW PROBLEMS and A TANGLED TALE, Lewis Carroll. Two of Carroll s rare puzzle works
bound as one “Pillow Problems contain 72 original math puzzies The puzzies in “A Tangied
Tale” are given in delightful story form Total of 291pp 53 x 8 T493 Paperbouna $1.50

PECK'S BAD BOY AND HIS PA, G. W Peck Both volumes of one of the most widely read
of all American humor books A classic of American folk humor, also invaluable as a portrait
of an age 100 original illustrations Introduction by E Bleiler 347pp 53 x 8

T497 Paperbourid $1.38

Dover publishes books on art, musie, philosophy, hiterature, languages, history, social
xciences, psychology, handcrafts, orientalia, puzzles and entertarminents, chess, pets
and gardens, books erplaiming science, imtcrmediate and higher mathematics math-
ematical physics, engineering, biological scrences, earth sciences, classics of science, etc.
Write to.
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