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BOOK X.

INTRODUCTORY NOTE.

The discovery of the doctrine of incommensurables is attributed to
Pythagoras. Thus Proclus says (Comm. on Eucl. 1. p. 65, 19) that Pythagoras
“discovered the theory of irrationals!”; and, again, the scholium on the begin-
ning of Book x., also attributed to Proclus, states that the Pythagoreans were
the first to address themselves to the investigation of commensurability, having
discovered it by means of their observation of numbers. They discovered,
the scholium continues, that not all magnitudes have a common measure.
“They called all magnitudes measurable by the same measure commensurable,
but those which are not subject to the same measure incommensurable,
and again such of these as are measured by some other common measure
commensurable with one another, and such as are not, incommensurable with
the others. And thus by assuming their measures they referred everything to
different commensurabilities, but, though they were different, even so (they
proved that) not all magnitudes are commensurable with any. (They showed
that) all magnitudes can be rational (p77d) and all irrational (dAoye) in a
relative sense (us mpds 7¢); hence the commensurable and the incommensurable
would be for them nafural (kinds) (¢¥oe), while the rational and irrational
would rest on assumption or convention (Géoe).” The scholium quotes further
the legend according to which “the first of the Pythagoreans who made public
the investigation of these matters perished in a shipwreck,” conjecturing that
the authors of this story “ perhaps spoke allegorically, hinting that everything
irmational and formless is properly concealed, and, if any soul should rashly
invade this region of life and lay it open, it would be carried away into the
sea of becoming and be overwhelmed by its unresting currents.” There
would be a reason also for keeping the discovery of irrationals secret for the
time in the fact that it rendered unstable so much of the groundwork of
geometry as the Pythagoreans had based upon the imperfect theory of
proportions which applied only to numbers. We have already, after Tannery,
referred to the probability that the discovery of incommensurability must
have necessitated a great recasting of the whole fabric of elementary geometry,
pending the discovery of the general theory of proportion applicable to
incommensurable as well as to commensurable magnitudes.

It seems certain that it was with reference to the length of the diagonal of
a square or the hypotenuse of an isosceles right-angled triangle that Pythagoras
made his discovery. Plato (ZTheaetetus, 147 D) tells us that Theodorus of
Cyrene wrote about square roots (Suvdpuecs), proving that the square roots of

1 T have already noted (Vol. 1. p. 351) that G. Junge (Wann haben die Griechen das
Irrationale entdeckt?) disputes this, maintm'nin%) that it was the Pythagoreans, but not
obl

?lhagons, who made the discovery. Junge is iﬁed to alter the reading of the passage
Proclus, on what seems to be quite insufficient evi

ence ; and in any case I doubt whether
the point is worth so much labouring.

H. E. I1L. - I

NS



2 BOOK X

three square feet and five square feet are not commensurable with that of one
square foot, and so on, selecting each such square root up to that of 17 square
feet, at which for some reason he stopped. No mention is here made of /2,
doubtless for the reason that its incommensurability had been proved before,
i.e. by Pythagoras. We know that Pythagoras invented a formula for finding
right-angled triangles in rational numbers, and in connexion with this it was
inevitable that he should investigate the relations between sides and hypotenuse
in other right-angled triangles. He would naturally give special attention to
the isosceles right-angled triangle ; he would try to measure the diagonal, he
would arrive at successive approximations, in rational fractions, to the value
of /2 ; he would find that successive efforts to obtain an exact expression for
it failed. It was however an enormous step to conclude that such exact
expression was impossible, and it was this step which Pythagoras (or the
Pythagoreans) made. We now know that the formation of the side- and
diagonal-numbers explained by Theon of Smyrna and others was Pythagorean,
and also that the theorems of Eucl. 11. 9, 10 were used by the Pythagoreans
in direct connexion with this method of approximating to the value of /2.
The very method by which Euclid proves these propositions is itself an indica-
tion of their connexion with the investigation of ,/2, since he uses a figure
made up of two isosceles right-angled triangles.

The actual method by which the Pythagoreans proved the incommensura-
bility of \/z with unity was no doubt that referred to by Aristotle (A4nal. prior.
1.23,41a 26—7),a reductio ad absurdum by which it is proved that, if the diagonal
is commensurable with the side, it will follow that the same number is both
odd and even. The proof formerly appeared in the texts of Euclid as x. 117,
but it is undoubtedly an interpolation, and August and Heiberg accordingly
relegate it to an Appendix. It is in substance as follows.

Suppose AC, the diagonal of a square, to be commen- A B
surable with 425, its side. Let a : 8 be their ratio expressed
in the smallest numbers.

Then a > B8 and therefore necessarily > 1.

Now AC?*: AB*=ad*: B
and, since AC*'=24P8, [Eucl. 1. 47]
at= 22 ]

Therefore a® is even, and therefore a is even.
Since a : B is in its lowest terms, it follows that 8 must be odd.

Put a=2y;
therefore 47 =28,
or B =29

so that 82, and therefore 8, must be even.
But B was also odd :
which is impossible.

This proof only enables us to prove the incommensurability of the
gonal of a square with its side, or of ,/2 with unity. In order to prove
incommensurability of the sides of squares, one of which has #4ree times
area of another, an entirely different procedure is necessary ; and we find
‘act that, even a century after Pythagoras’ time, it was still necessary to use
arate proofs (as the passage of the Zheaetetus shows that Theodorus did)
establish the incommensurability with unity of /3, /5, ... up to ./17.

-



INTRODUCTORY NOTE 3

This fact indicates clearly that the general theorem in Eucl. X. g that sguares
whick have not to one another the ratio of a square number to a square number
have their sides incommensurable in length was not arrived at all at once, but
was, in the manner of the time, developed out of the separate consideration
of special cases (Hankel, p. 103).

The proposition x. 9 of Euclid is definitely ascribed by the scholiast to
Theaetetus. Theaetetus was a pupil of Theodorus, and it would seem clear
that the theorem was not known to Theodorus. Moreover the Platonic
passage itself (Zheaet. 147D sqq.) represents the young Theaetetus as striving
after a general conception of what we call a surd. “The idea occurred to
me, seeing that square roots (Svvdues) appeared to be unlimited in multitude,
to try to arrive at one collective term by which we could designate all these
square roots. ... I divided number in general into two classes. The number
which can be expressed as equal multiplied by equal (icov lodkis) I likened
to a square in form, and I called it square and equilateral.... The intermediate
number, such as three, five, and any number which cannot be expressed as
equal multiplied by equal, but is either less times more or more times less, so
that it is always contained by a greater and less side, I likened to an oblong
figure and called an oblong number. ... Such straight lines then as square the
equilateral and plane number I defined as length (pyjxos), and such as square
the oblong sgware roots (Svwwipes), as not being commensurable with the
others in length but only in the plane areas to which their squares are
equal.”

There is further evidence of the contributions of Theaetetus to the theory
of incommensurables in a commentary on Eucl. x. discovered, in an Arabic
translation, by Woepcke (Mémoires présentés & I Académie des Sciences, Xiv.,
1856, pp. 658—720). It is certain that this commentary is of Greek origin.
Woepcke conjectures that it was by Vettius Valens, an astronomer, apparently
of Antioch; and a contemporary of Claudius Ptolemy (2nd cent. A.D.).
Heiberg, with greater probability, thinks that we have here a fragment of the
commentary of Pappus (Ewklid-studien, pp. 169—71), and this is rendered
practically certain by Suter (Dse Mathematiker und Astromomen der Araber
und thre Werke, pp. 49 and 211). This commentary states that the theory
of irrational magnitudes ‘ had its origin in the school of Pythagoras. It was
considerably developed by Theaetetus the Athenian, who gave proof, in this
part of mathematics, as in others, of ability which has been justly admired.
He was one of the most happily endowed of men, and gave himself up, with a
fine enthusiasm, to the investigation of the truths contained in these sciences,
as Plato bears witness for him in the work which he called after his name. As
for the exact distinctions of the above-named magnitudes and the rigorous
demonstrations of the propositions to which this theory gives rise, I believe
that they were chiefly established by this mathematician; and, later, the
great Apollonius, whose genius touched the highest point of excellence in
mathematics, added to these discoveries a number of remarkable theories
after many efforts and much labour.

“For Theaetetus had distinguished square roots [puissances must be the
Swdpas of the Platonic passage] commensurable in length from those which
are incommensurable, and had divided the well-known species of irrational
lines after the different means, assigning the medial to geometry, the binomial
to arithmetic, and the apofome to harmony, as is stated by Eudemus the
Peripatetic.

“ As for Euclid, he set himself to give rigorous rules, which he established,

—2



4 BOOK X

relative to commensurability and incommensurability in general ; he made
precise the definitions and the distinctions between rational and irrational
magnitudes, he set out a great number of orders of irrational magnitudes, and
finally he clearly showed their whole extent.”

The allusion in the last words must be apparently to x. 115, where it is
proved that from the media/ straight line an unlimited number of other
irrationals can be derived all different from it and from one another.

The connexion between the medial straight line and the geometric mean
is obvious, because it is in fact the mean proportional between two rational
straight lines “commensurable in square only.” Since § (x + ) is the arithmetic
mean between x, y, the reference to it of the binomial can be understood.
The connexion between the apotome and the harmonic mean is explained by
some propositions in the second book of the Arabic commentary. The

harmonic mean between x, y is % , and propositions of which Woepcke

quotes the enunciations prove that, if a rational or a medial area has for one
of its sides a dinomial straight line, the other side will be an apotome of corre-
sponding order (these propositions are generalised from Eucl. x. 111—4); the

. 22y _ 2xy
fact is that prrgriatecur B (x—y).

One other predecessor of Euclid appears to have written on irrationals,
though we know no more of the work than its title as handed down by
Diogenes Laertius!. According to this tradition, Democritus wrote wepi
I\Gywy ypappav xai vaorav [3, two Books on irrational straight lines and
solids (apparently). Hultsch (Neue Jakrbiicher fiir Philologie und Pidagogik,
1881, pp. 578—9) conjectures that the true reading may be wepi adAdywv
ypappudv xAaordv, “on irrational broken lines.” Hultsch seems to have
in mind straight lines divided into two parts one of which is rational
and the other irrational (“Aus einer Art von Umkehr des Pythagoreischen
Lehrsatzes iiber das rechtwinklige Dreieck gieng zunichst mit Leichtigkeit
hervor, dass man eine Linie construiren kénne, welche als irrational zu
bezeichnen ist, aber durch Brechung sich darstellen lisst als die Summe
einer rationalen und einer irrationalen Linie”). But I doubt the use of xAagros
in the sense of breaking one straight line into parts; it should properly mean
a bent line, ie. two straight lines forming an angle or droken short of at their
point of meeting. It is also to be observed that vaordr is quoted as a
Democritean word (opposite to xevov) in a fragment of Aristotle (z02). I see
therefore no reason for questioning the correctness of the title of Democritus’
book as above quoted.

I will here quote a valuable remark of Zeuthen’s relating to the classifi-
cation of irrationals. He says (Geschichte der Mathematik im Altertum und
Mittelalter, p. 56) “Since such roots of equations of the second degree as are
incommensurable with the given magnitudes cannot be expressed by means
of the latter and of numbers, it is conceivable that the Greeks, in exact
investigations, introduced no approximate values but worked on with the
magnitudes they had found, which were represented by straight lines obtained
by the construction corresponding to the solution of the equation. That is
exactly the same thing which happens when we do not evaluate roots but content
ourselves with expressing them by radical signs and other algebraical symbols.
But, inasmuch as one straight line looks like another, the Greeks did not get

1 Diog. Laert. 1X. 47, p. 239 (ed. Cobet).




INTRODUCTORY NOTE 5

the same clear view of what they denoted (i.e. by simple inspection) as our
system of symbols assures to us. For this reason it was necessary to under-
take a classification of the irrational magnitudes which had been arrived at by
successive solution of equations of the second degree.” To much the same
effect Tannery wrote in 1882 (De la solution géométrigue des problemes du
second degré avan! Euclide in Mémoires de la Socidté des sciences physiques et
naturelles de Bordeaux, 2° Série, 1v. pp. 395—416). Accordingly Book x.
formed a repository of results to which could be referred problems which
depended on the solution of certain types of equations, quadratic and biquad-
ratic but reducible to quadratics.
Consider the quadratic equations
2+ 2ax.p+B.p*=0,

where p is a rational straight line, and a, B are coefficients. Our quadratic
equations in algebra leave out the p ; but I put it in, because it has always to
be remembered that Euclid’s x is a straight /ine, not an algebraical quantity,
and is therefore to be found in terms of, or in relation to, a certain assumed
rational straight line, and also because with Euclid p may be not only of the

form a, where a represents a units of length, but also of the form \/ % . a,

which represents a length “commensurable in square only” with the unit of
length, or /4 where 4 represents a number (not square) of units of arca.
The use therefore of p in our equations makes it unnecessary to multiply
different cases according to the relation of p to the unit of length, and has the
further advantage that, e.g., the expression p+ ./£.p is just as general as the
expression J/£.p+ ,/A.p, since p covers the form ,/%.p, both expressions
covering a length either commensurable in length, or “commensurable in
square only,” with the unit of length.
Now the positive roots of the quadratic equations

x*+2ax.p+fB.p*=0

can only have the following forms

x=pa+ 4°i‘—ﬁ)’ x'=p(a=va'-B) }

x=p(Va'+B+a), x/=p(Va’+B-a) |

The negative roots do not come in, since x must be a straight line. The

omission however to bring in negative roots constitutes no loss of generality,
since the Greeks would write the equation leading to negative roots in another
form so as to make them positive, 1.e. they would change the sign of x in the
equation.

Now the positive roots x;, x,’, x,, x5 may be classified according to the
character of the coefficents a, 8 and their relation to one another.

1. Suppose that a, 8 do not contain any surds, i.e. are either integers or
of the form m/n, where m, n are integers.
Now in the expressions for x,, x, it may be that

3
(1) B is of the form %a’.

Euclid expresses this by saying that the square on ap exceeds the square
on p/a®— B by the square on a straight line commensurable in length with ap.
In this case x, is, in Euclid’s terminology, a firs¢ binomial straight line,

and x,’ a first apotome.
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3
(2) In general, 8 not being of the form :%a‘,
x, is a _fourth binomial,
x)" a fourth apotome.
Next, in the expressions for x,, x;" it may be that
3 . -
(1) B is equal to % (a® + B), where m, n are integers, i.e. 8 is of the form
”" 3
”, — ’Il’ a’.
Euclid expresses this by saying that the square on pJa’+p exceeds the
square on ap by the square on a straight line commensurable in length with

P+ B, | o
In this case x, is, in Euclid’s terminology, a second binomial,

x5 a second apolome. \

(2) In general, 8 not being of the form ”,—'_”’;‘-, a,
%y is a fifth binomial,
x4 a fifth apotome.

II. Now suppose that a is of the form ,\/ g, where m, n are integers, and

let us denote it by ,/A.
Then in this case
% =p(JA+VA-B), xl'=P(~/)‘_"_VA"ﬁ)’
Zy=p (VA+ B+ /), x:'=P(“/A+ﬁ" NA).
Thus x,, x,’ are of the same form as x, x,"
If VA= in x,, x,' is not surd but of the form m/n, and if X +fin x5, x,
is not surd but of the form m/n, the roots are comprised among the forms
already shown, the first, second, fourth and fifth binomials and apotomes.

If VA - B in ay, xy' is surd, then

(1) we may have 8 of the form ’—:—-:A, and in this case

x, is a third binomial straight line,
x,' a third apotome;
t]
(2) in general, B not being of the form %
X, is a sixth binomial straight line,
x,' a sixth apotome.
With the expressions for x,, x,’ the distinction between the third and sixth
binomials and apotomes is of course the distinction between the cases

2
(1) in which 8= % (A + B), or B is of the form n"f’mi}"

and (2) in which 8 is not of this form.
If we take the square root of the product of p and each of the six
binomials and six apotomes just classified, i.e.

F(at V@), p (VT B ta),

A’
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in the six different forms that each may take, we find six new irrationals with
a positive sign separating the two terms, and six corresponding irrationals with
a negative sign. These are of course roots of the equations
x'+2ax?.p*+B.p'=0.
These irrationals really come before the others in Euclid’s order (x. 36—
41 for the positive sign and x. 73—78 for the negative sign). As we shall
see in due course, the straight lines actually found by Euclid are

I. p+ Jk.p, the binomial (7} éx 8o dvopdraw)
and the apotome (dworopj),
which are the positive roots of the biquadratic (reducible to a quadratic)
x—2(1+R)p*. 22+ (1-4)p'=
2. Bp+ Ko, the first bimedial (ix 8%0 péowv wpury)
and the first apotome of a medial (péons dworopy mpury),
which are the positive roots of
-2, Jk(1+ k) p*. 2+ k(1-R)p'=0.

3. o+ —;/% p, the second bimedial (&x Sbo péowv Sevrépa)

and the second apotome of a medial (péoms dworopr} Sevrépa),
which are the positive roots of the equation

“ k+x,x, (- )'P‘=°

4 NE \/l+~/x+k’ J2~/ Jr+k’

the major (irrational straight line) (uei{wv)
and the minor (irrational straight line) (\doowv),
which are the positive roots of the equation

x‘-zp’.x’+ k,p‘=

J2(1+k,)~/~/x+k’+k+~/—l T

the “side” of a rational plus a medial (area) (prrrov xai péoov Swnp.cw])

and the “side” of a medial minus a rational area (in the Greek 7 perd pyrod
péaov 10 SAov wowodoa),

which are the positive roots of the equation

-2 _p R
o JHe ‘x'*<r+k'>""°

5.

o

Adp \/
I+ -

NE J:+k’~/’ J1+/}’
the “side” of the sum of two medial areas (1 8o péoa Svvapérn)
and the “side” of a medial minus a medial area (in the Greek 7 perd péoov
péoov 10 GAov wowioa),
which are the positive roots of the equationk’

- 3 ¢ =

x—2,/A. 2% +A1+k'p o.
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The above facts and formulae admit of being stated in a great variety of
ways according to the notation and the particular letters used. Consequently
the summaries which have been given of Eucl. x. by various writers differ
much in appearance while expressing the same thing in substance. The first
summary in algebraical form (and a very elaborate one) seems to have been
that of Cossali (Origine, trasporto in Italia, primi progressi in essa dell
Algebra, Vol. 11. pp. 242—65) who takes credit accordingly (p. 265). In
1794 Meier Hirsch published at Berlin an Algebraischer Commentar iiber das
schente Buch der Elemente des Eubklides which gives the confents in algebraical
form but fails to give any indication of Euclid’s methods, using modern forms
of ‘proof only. In 1834 Poselger wrote a paper, Ueber das sehnte Buck der
Elemente des Euklides, in which he pointed out the defects of Hirsch’s repro-
duction and gave a summary of his own, which however, though nearer to
Euclid’s form, is difficult to follow in consequence of an elaborate system of
abbreviations, and is open to the objection that it is not algebraical enough
to enable the character of Euclid’s irrationals to be seen at a glance. Other
summaries will be found (1) in Nesselmann, Die Algebra der Griechen,
pp. 165—84; (2) in Loria, // periodo aureo della geometria greca, Modena,
1895, pp- 40—9; (3) in Christensen’s article “ Ueber Gleichungen vierten
Grades 1m zehnten Buch der Elemente Euklids” in the Zzitschrift fiir Math. u.
Physik (Historisch-literarische Abtheilung), xxx1v. (1889), pp. 201—17. The
only summary in English that I know is that in the Penny Cyclopaedia, under
“Irrational quantity,” by De Morgan, who yielded to none in his admiration of
Book x. “Euclid investigates,” says De Morgan, “every possible variety of lines
which can be represented by ,/( /@ + \/5), a and 5 representing two commen-
surable lines....This book has a completeness which none of the others (not
even the fifth) can boast of : and we could almost suspect that Euclid, having
arranged his materials in his own mind, and having completely elaborated
the 10th Book, wrote the preceding books after it and did not live to revise
them thoroughly.”

Much attention was given to Book x. by the early algebraists. Thus
Leonardo of Pisa (fl. about 1205 A.D.) wrote in the 14th section of his Lider
Abaci on the theory of irrationalities (de tractatu binomiorum et recisorum),
without however (except in treating of irrational trinomials and cubic irra-
tionalities) adding much to the substance of Book X.; and, in investigating
the equation

%%+ 247 + 10x = 20,

propounded by Johannes of Palermo, he proved that none of the irrationals
in Eucl. x. would satisfy it (Hankel, pp. 344—6, Cantor, 11, p. 43). Luca
Paciuolo (about 1445—1514 A.D.) in his algebra based himself largely, as he
himself expressly says, on Euclid x. (Cantor, 11, p. 293). Michael Stifel
(7486 or 1487 to 1567) wrote on irrational numbers in the second Book of
his Arithmetica integra, which Book may be regarded, says Cantor (11,, p. 402),
as an elucidation of Eucl. x. The works of Cardano (1501—76) abound in
speculations regarding the irrationals of Euclid, as may be seen by reference to
Cossali (Vol. 11, especially pp. 268—78 and 382—gg); the character of
the various odd and even powers of the binomials and apotomes is therein
investigated, and Cardano considers in detail of what particular forms of
equations, quadl:atnc, cubic, and biquadratic, each class of Euclidean irrationals
can be roots. Simon Stevin (1548—1620) wrote a Traité des incommensurables
grandeyrs en lagquelle est sommairement déclaré le contenu du Dixiesme Lsore
& Euclide (Ocuvres mathématiques, Leyde, 1634, PP. 2195qq.); he speaks thus
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of the book: “La difficulté du dixiesme Livre d’Euclide est i plusieurs
devenue en horreur, voire jusque i Yappeler la croix des mathématiciens,
matiére trop dure 2 digérer, et en la quelle n'apergoivent aucune utilité,” a
passage quoted by Loria (// periodo aureo della geometria greca, p. 41).

It will naturally be asked, what use did the Greek geometers actually
make of the theory of irrationals developed at such length in Book x.? The
answer is that Euclid himself, in Book x1ir,, makes considerable use of the
second portion of Book x. dealing with the irrationals affected with a negative
sign, the apofomes etc. One object of Book X111 is to investigate the relation
of the sides of a pentagon inscribed in a circle and of an icosahedron and
dodecahedron inscribed in a sphere to the diameter of the circle or sphere
respectively, supposed rational. The connexion with the regular pentagon of
a straight line cut in extreme and mean ratio is well known, and Euclid first
proves (x11. 6) that, if a ratfonal straight line is so divided, the parts are the
irrationals called apofomes, the lesser part being a first apotome. Then, on
the assumption that the diameters of a circle and sphere respectively are
rational, he proves (x111. 11) that the side of the inscribed regular pentagon is
the irrational straight line called minor, as is also the side of the inscribed
icosahedron (x11. 16), while the side of the inscribed dodecahedron is the
irrational called an apofome (xn1. 17).

Of course the investigation in Book x. would not have been complete if
it had dealt only with the irrationals affected with a negative sign. Those
affected with the positive sign, the dinmomials etc., had also to be discussed,
and we find both portions of Book x., with its nomenclature, made use of by
Pappus in two propositions, of which it may be of interest to give the enun-
ciations here.

If, says Pappus (1v. p. 178), 4B be the rational diameter of a semicircle, and
if A48 be produced to C so that BC is equal to the radius, if C.D be a tangent,

D

A F 8 o)

if £ be the middle point of the arc D, and if CE be joined, then CE is the
irrational straight line called minor. As a matter of fact, if p is the radius,

CE = (5-2/3) and CE=\/5.L‘J§ _ \/5_—{’_:5.
2 2
If, again (p. 182), CD be equal to the radius of a semicircle supposed

rational, and if the tangent DB be drawn and the angle A28 be bisected by
DF meeting the circumference in #, then DF is the excess by which the
binomial exceeds the straight line whick produces with a rational area a medial
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whole (see Eucl x. 77). (In the figure DX is the dinomial and KF the other
irrational straight line.) As a matter of fact, if p be the radius,

KD:p.‘/‘;‘/:',andKF:p.JJ—3:_i=p.(\/“/3:*/z -JJ3:J’).

Proclus tells us that Euclid left out, as alien to a selection of elements, the
discussion of the more complicated irrationals, “the unordered irrationals which
Apollonius worked out more fully” (Proclus, p. 74, 23), while the scholiast
to Book x. remarks that Euclid does not deal with all rationals and irrationals
but only the simplest kinds by the combination of which an infinite number
of irrationals are obtained, of which Apollonius also gave some. The author
of the commentary on Book x. found by Woepcke in an Arabic translation,
and above alluded to, also says that “it was Apollonius who, beside the
ordered irrational magnitudes, showed the existence of the unordered and by
accurate methods set forth a great number of them.” It can only be vaguely
gathered, from such hints as the commentator proceeds to give, what the
character of the extension of the subject given by Apollonius may have been.
See note at end of Book.

DEFINITIONS.

1. Those magnitudes are said to be commensurable
which are measured by the same measure, and those incom-
mensurable which cannot have any common measure.

2. Straight lines are commensurable in square when
the squares on them are measured by the same area, and
incommensurable in square when the squares on them
cannot possibly have any area as a common measure.

3. With these hypotheses, it is proved that there exist
straight lines infinite in multitude which are commensurable
and incommensurable respectively, some in length only, and
others in square also, with an assigned straight line. Let
then the assigned straight line be called rational, and those
straight lines which are commensurable with it, whether in
length and in square or in square only, rational, but those
which are incommensurable with it irrational.

4. And let the square on the assigned straight line be
called rational and those areas which are commensurable
with it rational, but those which are incommensurable with
it irrational, and the straight lines which produce them
irrational, that is, in case the areas are squares, the sides
themselves, but in case they are any other rectilineal figures,
the straight lines on which are described squares equal to
them,
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DEFINITION 1.

Stpperpa peyédn Aéyerar 1o 1¢ abrg pérpw perpovpeva, dovpperpa 8¢, dv
pdty évdéxerar xowdv pérpov yevéolar

DEFINITION 2.

Edbciar Suvdper ovpperpol elow, srav ta én’ avrav ﬂ‘rpti‘(mva T¢ abrg xwpiy
perpijra, dovpperpo 8¢, Srav Tois dw adriv Terpaywvors undev ddéxmTar xwpiov
xowdv pérpoy yevéolas.

Commensurable in square is in the Greek Svwdpec ovpperpos. In earlier
translations (e.g. Williamson’s) Surauer has been translated “in power,” but,
as the particular power represented by Siveues in Greek geometry is sguare,
T have thought it best to use the latter word throughout. It will be observed
that Euclid’s expression commensurable in square only (used in Def. 3 and
constantly) corresponds to what Plato makes Theaetetus call a square root
(8vrapus) in the sense of a surd. If a is any straight line, @ and a,/m, or
a/m and a,/n (where m, n are integers or arithmetical fractions in their
lowest terms, proper or improper, but not square) are commensurable in square
only. Of course (as explained in the Porism to X. 10) all straight lines
commensurable in length (mixed), in Euclid’s phrase, are commensurable in
square also ; but not all straight lines which are commensurable iz sguare are
commensurable in /ength as well. On the other hand, straight lines incom-
mensurable in square are necessarily incommensurable in Zength also; but not
all straight lines which are incommensurable in /ength are incommensurable
in square. In fact, straight lines which are commensurable in square only are
incommensurable ¢z length, but obviously not incommensurable in square.

DEFINITION 3.

Tovruy Swoxepévov Selxvvrar, dri 7 wporefeioy ebelg imdpyxovow ebeta
wAijfa drepor avpperpol Te kal dovpperpol ai pev ket pdvov, ai 8¢ xai Suvdper
xadeioOw odv 1 pév wporebeioa edfeta pymj, xai ai ravry cvpperpo eire prjket xai
Swvdpe dre Suvdpe povov pyrai, al 8¢ Tadry dovpperpor dhoyor xehelofwaar.

The first sentence of the definition is decidedly elliptical. It should,
strictly speaking, assert that “with a given straight line there are an infinite
number of straight lines which are (1) commensurable either (@) in square
only or (4) in square and in length also, and (2) incommensurable, either
(@) in length only or (4) in length and in square also.”

The relativity of the terms rational and frrational is well brought out in
this definition. We may set out any straight line and call it rational, and it
is then with reference to this assumed rational straight line that others are
called rational or irrational.

We should carefully note that the signification of rafional in Euclid is wider
than in our terminology. With him, not only is a straight line commensurable iz
length with a rational straight line rational, but a straight line is rational which
is commensurable with a rational straight line 7 sguare only. That is, if p is a

rational straight line, not only is %,p rational, where m, n are integers and
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m/n in its lowest terms is not square, but \/ ’—3 . p is rational also. We should

in this case call \/ g . p irrational. It would appear that Euclid’s termino-

logy here differed as much from that of his predecessors as it does from
ours. We are familiar with the phrase dppyros Sudperpos tijs meumados by
which Plato (evidently after the Pythagoreans) describes the diagonal of a
square on a straight line containing 5 units of length. This “inexpressible

diameter of five (squared)” means /50, in contrast to the pnm) Suiperpos, the
“expressible diameter” of the same square, by which is meant the approxi-

- m
mation / so-1, or 7. Thus for Euclid's predecessors PRy would

apparently not have been rational but dppyros, *“inexpressible,” i.e. irrational.

A I shall throughout my notes on this Book denote a rational straight line in
Euclid’s sense by p, and by p and ¢ when two different rational straight lines are
required. Wherever then I use p or o, it must be remembered that p, & may
have either of the forms @, \/£. a, where a represents a units of length, a being
either an integer or of the form m/n, where m, n are both integers, and £ is an
integer or of the form m/n (where both m, » are integers) but not square. In
other words, p, o may have either of the forms @ or ,/4, where 4 represents
A units of area and A4 is integral or of the form m/n, where m, n are both
integers. It has been the habit of writers to give @ and ,/a as the alternative
forms of p, but I shall always use /4 for the second in order to keep the
dimensions right, because it must be borne in mind throughout that p is an
irrational straight line.

As Euclid extends the signification of rafional (pyrds, literally expressible),
so he limits the scope of the term dAoyos (literally Aaving no ratio) as applied -
to straight lines. That this limitation was started by himself may perhaps be
inferred from the form of words “/e straight lines incommensurable with it
be called irrational.” Irrational straight lines then are with Euclid straight lines
commensurable neither in length nor in square with the assumed rational
straight line. /4. a where £ is not square is not irrational; 4. a is irrational,
and so (as we shall see later on) is (\/2+ \/A) a.

DEFINITION 4.

Kai 10 pév dmd rijs wporefelons edfeias rerpdywvov pyrov, xai Td& TovTe
ovpperpa pyrd, t& 8¢ Tovre dovpperpa dloya kakeiclw, xai ai Svwapevar adra
dhoyor, e pév Terpdywva €y, atrai ai wAevpal, el 8 Erepd Twa bBUypappa, ai
{oa abrols Terpdywva dvaypddovoar.

As applied to areas, the terms rational and irrational have, on the other
hand, the same sense with Euclid as we should attach to them. According
to Euclid, if p is a rational straight line in /4is sense, p? is rational and any
area commensurable with it, i.e. of the form £p* (where % is an integer, or of
the form m/n, where m, n_are integers), is rational ; but any area of the form
JE.p* is irrational. Euclid’s rational area thus contains 4 units of area,
where A4 is an integer or of the form m/n, where m, n are integers ; and his
frrational area is of the form /4. A. His irrational area is then connected
with his irrational s/rasight /ine by making the latter the square root of the
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former. This would give us for the irrational straight line /% . /4, which of
course includes /£. a.

ai Swdperar abrd are the straight lines the squares on which are equal to
the areas, in accordance with the regular meaning of 8Yvacfar. It is scarcely
possible, in a book written in geometrical language, to translate Svvapévy as
the square root (of an area) and 8vvacfar as 0 be the square root (of an area),
although I can use the term “square root” when in my notes I am using an
algebraical expression to represent an area ; I shall therefore hereafter use the
word “side” for Swapévy and “to be the side of” for Svvacfa, so that
‘“side” will in such expressions be a short way of expressing the “side of
a square equal to (an area).” In this particular passage it is not quite practi-
cable to use the words “side of ” or * straight line the square on which is equal
to,” for these expressions occur just afterwards for two alternatives which the
word Svwvapém covers. I have therefore exceptionally translated the straight
lines which produce them ” (i.e. if squares are described upon them as sides).

ai {oa avrois Terpdywra J.vayp&dbowat, literally ¢ the (straight lines) which
describe squares equal to them”: a peculiar use of the active of dvaypddew,
the meaning being of course “the straight lines on which are desceribed the
squares ” which are equal to the rectilineal figures.



BOOK X. PROPOSITIONS.

ProrposiTION 1.

Two unequal magnitudes being set out, if from the greater
there be subtracled a magnitude greater than its half, and from
that whick is left a magnitude greater than its half, and if
this process be repeated continually, theve will be left some
magnitude which will be less than the lesser magnitude set out.

Let 4B, C be two unequal magnitudes of which A28 is

the greater : K u .
I say that, if from 425 there be A—+— 8
subtracted a magnitude greater D £ % E

than its half, and from that which

is left a magnitude greater than its half, and if this process be
repeated continually, there will be left some magnitude which
will be less than the magnitude C.

For C if multiplied will-sometime be greater-than 45.
[cf. v. Def. 4]

Let it be multiplied, and let DE be a multiple of C, and
greater than 45 ;
let DE be divided into the parts DF, FFG, GE equal to C,
from AR let there be subtracted B/ greater than its half,
and, from AH, HK greater than its half,
and let this process be repeated continually until the divisions
in AR are equal in multitude with the divisions in DE.

Let, then, AK, KH, HB be divisions which are equal in

multitude with DF, FG, GE.
Now, since DE is greater than A5,

and from DFE there has been subtracted £G less than its
half,

and, from A B, BH greater than its half,

therefore the remainder GO is greater than the remainder /4.
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And, since GD is greater than /74,

and there has been subtracted, from GO, the half GF,

and, from A, HK greater than its half,

therefore the remainder D F'is greater than the remainder AKX
But DF is equal to C;

therefore C is also greater than A K.

Therefore AKX is less than C.
Therefore there is left of the magnitude 4.2 the magnitude
AK which is less than the lesser magnitude set out, namely C.
Q. E. D.

And the theorem can be similarly proved even if the parts
subtracted be halves.

This proposition will be remembered because it is the lemma required in
Euclid’s proof of xi1. 2 to the effect that circles are to one another as the
squares on their diameters. Some writers appear to be under the impression
that x11. 2 and the other propositions in Book xi1. in which the method of
exhaustion is used are the only places where Euclid makes use of x. 1; and it
is commonly remarked that x. 1 might just as well have been deferred till the
beginning of Book xn. Even Cantor (Gesch. d. Math. 15, p. 269) remarks
that “ Euclid draws no inference from it [x. 1], not even that which we should
more than anything else expect, namely that, if two magnitudes are incom-
mensurable, we can always form a magnitude commensurable with the first
which shall differ from the second magnitude by as little as we please.” But,
so far from making no use of X. 1 before xi1. 2, Euclid actually uses it in the
very next proposition, X. 2. This being so, as the next note will show, it
follows that, since x. 2 gives the criterion for the incommensurability of two
magnitudes (a very necessary preliminary to the study of incommensurables),
X. 1 comes exactly where it should be.

Euclid uses X. 1 to prove not only xiL 2 but xi1. 5 (that pyramids with the
same height and triangular bases are to one another as their bases), by means
of which he proves (x11. 7 and Por.) that any pyramid is a third part of the
prism which has the same base and equal height, and xi1. 10 (that any cone
is a third part of the cylinder which has the same base and equal height),
besides other similar propositions. Now x11. 7 Por. and x11. 10 are theorems
specifically attributed to Eudoxus by Archimedes (On the Sphere and Cylinder,
Preface), who says in another place (Quadrature of the Parabola, Preface) that
the first of the two, and the theorem that circles are to one another as the
squares on their diameters, were proved by means of a certain lemma which
he states as follows: “Of unequal lines, unequal surfaces, or unequal solids,
the greater exceeds the less by such a magnitude as is capable, if added
[continually] to itself, of exceeding any magnitude of those which are
comparable with one another,” i.e. of magnitudes of the same kind as the
original magnitudes. Archimedes also says (%c. csit.) that the second of
the two theorems which he attributes to Eudoxus (Eucl. X1 10) was
proved by means of ‘“a lemma similar to_the aforesaid” The lemma
stated thus by Archimedes is decidedly different from x. 1, which, however,
Archimedes himself uses several times, while he refers to the use of it
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in x1. 2 (On the Sphere and Cylinder, 1. 6). As 1 have before suggested
(The Works of Archimedes, p. xlviii), the apparent difficulty caused by the
mention of #7#0 lemmas in connexion with the theorem of Eucl. xi1. 2 may be
explained by reference to the proof of x. 1. Euclid there takes the lesser
magnitude and says that it is possible, by multiplying it, to make it some time
exceed the greater, and this statement he clearly bases on the 4th definition of
Book v., to the effect that “magnitudes are said to bear a ratio to one another
which can, if multiplied, exceed one another.” Since then the smaller
magnitude in X. 1 may be regarded as the difference between some two
unequal magnitudes, it is clear that the lemma stated by Archimedes is in
substance used to prove the lemma in X. 1, which appears to play so much
larger a part in the investigations of quadrature and cubature which have come
down to us.

Besides being employed in Eucl. x. 1, the ““Axiom of Archimedes” appears
in Aristotle, who also practically quotes the result of x. 1 itself. Thus he
says, Physics Vi1I. 10, 266 b 2, “ By continually adding to a finite (magnitude)
I shall exceed any definite (magnitude), and similarly by continually subtract-
ing from it I shall arrive at something less than it,” and 4. n1. 7, 207 b 10
“ For bisections of a magnitude are endless.” It is thus somewhat misleading
to use the term ‘Archimedes’ Axiom” for the “lemma” quoted by him,
since he makes no claim to be the discoverer of it, and it was obviously much
earlier.

Stolz (quoted by G. Vitali in Questions riguardants la geometria elementare,
pp. 91—2) showed how to prove the so-called Axiom or Postulate of Archimedes
by means of the Postulate of Dedekind, thus. Suppose the two magnitudes
to be straight lines. It is required to prove that, given two straight lines, there
always exists a multiple of the smaller whick is greater than the other.

Let the straight lines be so placed that they have a common extremity and
the smaller lies along the other on the same side of the common extremity.

If AC be the greater and 4.8 the smaller, we have to prove that there
exists an integral number # such that ». 48> AC.

Suppose that this is not true but that there are some points, like B, not
coincident with the extremity 4, and such that, » being any integer however
great, n. AB < AC; and we have to prove that this assumption leads to an
absurdity.

Y 8 [+

The points of 4C may be regarded as distributed into two ‘““parts,” namely
(1) points A for which there exists no integer » such that n. 45 > AC,

(2) points X for which an integer 7 does exist such that . 4K > AC.

This division into parts satisfies the conditions for the application of
Dedekind’s Postulate, and therefore there exists a point M such that the
points of AM belong to the first part and those of MC to the second part.

Take now a point ¥ on MC such that MY < AM. The middle point (X))
of AY will fall between 4 and M and will therefore belong to the first part ;
but, since there exists an integer # such that #.AY > AC, it follows that
2n. AX > AC: which is contrary to the hypothesis.



X. 2] PROPOSITIONS 1, 2 17

ProrosiTION 2.

If, when the less of two unequal magnitudes is continually
subtracted in turn from the greater, that whick is left never
measures the ome before it, the magnitudes will be incom-
mensurable.

For, there being two unequal magnitudes A8, CD, and
AR being the less, when the less is continually subtracted
in turn from the greater, let that which is left over never
measure the one before it ;

I say that the magnitudes 4.8, CD are incommensurable.
E A—28 8

C .1'_.* D

For, if they are commensurable, some magnitude will
measure them. :
Let a magnitude measure them, if possible, and let it be £;

let 4B, measuring FD, leave CF less than itself,
let CF measuring BG, leave AG less than itself,

and let this process be repeated continually, until there is left
some magnitude which is less than £.

Suppose this done, and let there be left 4G less than £.
Then, since £ measures A5,

while A8 measures DF,
therefore £ will also measure FD.
But it measures the whole CD also ;
therefore it will also measure the remainder CF.
But CF measures BG;
therefore £ also measures BG.
But it measures the whole 425 also;
therefore it will also measure the remainder 4G, the greater
the less:
which is impossible.
c Therefore no magnitude will measure the magnitudes A 5,
D;
therefore the magnitudes 4B, CD are incommensurable.
[x. Def. 1]
Therefore etc.

H. E. lIL 2
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This proposition states the test for incommensurable magnitudes, founded
on the usual operation for finding the greatest common measure. The sign
of the incommensurability of two magnitudes is that this operation never
comes to an end, while the successive remainders become smaller and smaller
until they are less than any assigned magnitude.

Observe that Euclid says “let this process be repeated continually until
there is left some magnitude which is less than £.” Here he evidently
assumes that the process z##/ some time produce a remainder less than any
assigned magnitude £. Now this is by no means selfevident, and yet
He’i%:rg (though so careful to supply references) and Lorenz do not refer to
the basis of the assumption, which is in reality x. 1, as Billingsley and
Williamson were shrewd enough to see. The fact is that, if we set off a
smaller magnitude once or oftener along a greater which it does not exactly
measure, until the remainder is less than the smaller magnitude, we take away
from the greater more than its kalf. Thus, in the figure, £D is more than the
half of CD, and BG more than the half of 4.8. If we continued the process,
AG marked off along CF as many times as possible would cut off more than
its half ; next, more than half 4G would be cut off, and so on. Hence along
CD, AB alternately the process would cut off more than half, then more than
half the remainder and so on, so that on Jof% lines we should ultimately
arrive at a remainder less than any assigned length.

The method of finding the greatest common measure exhibited in this
proposition and the next is of course again the same as that which we use and
which may be shown thus:

b)a(p
pb

€)b(g
'3
d)c(r
rd
¢

The proof too is the same as ours, taking just the same form, as shown in the
notes to the similar propositions vir. 1, 2 above. In the present case the
hypothesis is that the process never stops, and it is required to prove that a, &
cannot in that case have any common measure, as /. For suppose that f is a
common measure, and suppose the process to be continued until the remainder
¢, say, is less than /.

Then, since / measures 4, 4, it measures a — g8, or c.

Since f measures 4, ¢, it measures 4 —g¢, or 4; and, since f measures ¢, d,
it measures ¢ — 74, or ¢: which is impossible, since ¢ < £,

Euclid assumes as axiomatic that, if / measures a, 4, it measures ma + nb.

In practice, of course, it is often unnecessary to carry the process far in
order to see that it will never stop, and consequently that the magnitudes are
incommensurable. A good instance is pointed out by Allman (Greek Ge
Srom Thales to Euclid, pp. 42, 137—8). Euclid proves in x11. 5 that, if 4B
be cut in extreme and mean ratio at C, and if
DA equal to 4C be added, then DB isalso cut D A c 8
in extreme and mean ratio at 4. This is indeed ) )
obvious from the proof of 11. 11. It follows conversely that, if BD is cut into
extreme and mean ratio at 4, and 4C, equal to the lesser segment 4.0, be
subtracted from the greater 4.8, AB is similarly divided at C.  We can then
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mark off from 4 C a portion equal to CB, and 4C will then be similarly divided,
and so on. Now the greater segment in a line thus divided is greater than
half the line, but it follows from x1i1. 3 that it is less than twice the lesser
segment, i.e. the lesser segment can never be marked off more than once from
the greater. Our process of marking off the lesser segment from the greater
continually is thus exactly that of finding the greatest common measure. If,
therefore, the segments were commensurable, the process would stop. But’it
clearly does not ; therefore the segments are incommensurable.

Allman expresses the opinion that it was rather in connexion with the line
cut in extreme and mean ratio than with reference to the diagonal and side
of a square that Pythagoras discovered incommensurable magnitudes. But
the evidence seems to put it beyond doubt that the Pythagoteans did discover
the incommensurability of ,/2 and devoted much attention to this particular
case. The view of Allman does not therefore commend itself to me, though
it is likely enough that the Pythagoreans were aware of the incommensura-
bility of the segments of a line cut in extreme and mean ratio. At all events
the Pythagoreans could hardly have carried their investigations into the in-
commensurability of the segments of this line very far, since Theaetetus is
said to have made the first classification of irrationals, and to him is also,
with reasonable probability, attributed the substance of the first part of Eucl.
XIIL, in the sixth proposition of which occurs the proof that the segments of a
rational straight line cut into extreme and mean ratio are apofomes.

Again, the incommensurability of ,/2 can be proved by a method
practically equivalent to that of x. 2, and without carrying the process very
far. This method is given in Chrystal's 7ext-
book of Algebra (1. p. 270). Let d, a be the B

diagonal and side respectively of a square < A

ABCD. Mark off AF along 4C equal to a.

Draw FE at right angles to 4C meeting BC

in E. E N

It is easily proved that d
BE =EF= FC, G’ @4
CF=AC-AB=d-a ... (1). |
CE=CB-CF=a-(d-a) & D
=2a-d......... (2)-

Suppose, if possible, that 4, a are commensurable. If 4, a are both
commensurably expressible in terms of any finite unit, each must be an
integral multiple of a certain finite unit.

But from (1) it follows that CZ, and from (2) it follows that CE, is an
integral multiple of the same unit.

And CF, CE are the side and diagonal of a square CFEG, the side of
which is ess than kalf the side of the original square. 1f a,, d, are the side and
diagonal of this square,

al = d- a }
d=z2a-d])°
Similarly we can form a square with side @, and diagonal 4, which are less

than half a,, 4, respectively, and a,, d; must be integral multiples of the same
unit, where

ay=d, - ay,
dy= 2a, - d,;
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and this process may be continued indefinitely until (x. 1) we have a square
as small as we please, the side and diagonal of which are integral multiples of
a finite unit: which is absurd.

Therefore a, 4 are incommensurable.

It will be observed that this method is the opposite of that shown in the
Pythagorean series of side- and diagonal-numbers, the squares being
successively smaller instead of larger.

ProrosITION 3.

Given two commensurable magnitudes, to find their greatest
common measure.

Let the two given commensurable magnitudes be 458, CD
of which A8 is the less;
thus it is required to find the greatest common measure of
AB, CD.

Now the magnitude 42 either measures CD or it does

not.
If then it measures it—and it measures itself also— A48 is

a common measure of A58, CD.

And it is manifest that it is also the greatest ;
for a greater magnitude than the magnitude 458 will not
measure AB5.

a a-f B

Cc 3 D

Next, let A8 not measure CD.

Then, if the less be continually subtracted in turn from
the greater, that which is left over will sometime measure
the one before it, because A8, CD are not incommensurable ;

. [cf. x. 2]
let AB, measuring £D, leave EC less than itself,

let £C, measuring /B, leave AF less than itself,
and let AF measure CE.
Since, then, AF measures CE,
while CE measures #25,
therefore AF will also measure #5.

But it measures itself also ;
therefore 4F will also measure the whole 425,
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But 4B measures DE;
therefore 4 F will also measure £D.
But it measures CE also;
therefore it also measures the whole CD.
Therefore AF is a common measure of A8, CD,

I say next that it is also the greatest.

For, if not, there will be some magnitude greater than AF
which will measure A8, CD.

Let it be G.

Since then G measures A5,

while 4B measures £D,
therefore G will also measure ED. -
But it measures the whole CD also;
therefore G will also measure the remainder CE.
But CE measures FB;
therefore G will also measure FB.
But it measures the whole A48 also,
and it will therefore measure the remainder AF, the greater
the less:
which is impossible.
Therefore no magnitude greater than 4 will measure
AB, CD;
therefore AF is the greatest common measure of 45, CD.

Therefore the greatest common measure of the two given
commensurable magnitudes 48, CD has been found.
Q E. D.

Porism. From this it is manifest that, if a magnitude
measure two magnitudes, it will also measure their greatest
common measure.

This proposition for two commensurable magnitudes is, mutatis mutandis,
exactly the same as vi1. 2 for numbers. We have the process

b)a(p
2

(g
gc
d)e(r

E

where ¢ is equal to »7 and therefore there is no remainder,
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It is then proved that 4 i$ a common measure of a, &; and next, by a
reductio ad absurdum, that it is the greafest common measure, since any
common measure must measure 4, and no magnitude greater than 4 can
measure 4. The reductio ad absurdum is of course one of form only.

The Porism corresponds exactly to the Porism to vir 2.

The process of finding the greatest common measure is probably given in
this Book, not only for the sake of completeness, but because in x. 5 a
common measure of two magnitudes 4, B is assumed and used, and therefore
it is important to show that such a measure can be found if not already
known.

PRropOSITION 4.

Given three commensurable magnitudes, to find their greatest
common measure.

Let A4, B, C be the three given commensurable magnitudes;
thus it is required to find the greatest
common measure of 4, B, C. A
Let the greatest conmon measure 8
of the two magnitudes A4, B be taken, ¢——
and let it be D ; [x. 3] )
then D either measures C, or does
not measure it.
First, let it measure it.
Since then D measures C,
while it also measures A4, B,
therefore D is a common measure of 4, B, C.
And it is manifest that it is also the greatest ;
for a greater magnitude than the magnitude D does not
measure A, B.

E— F—

Next, let D not measure C.
I say first that C, D are commensurable.
For, since A, B, C are commensurable,

some magnitude will measure them,
and this will of course measure A4, B also ;

so that it will also measure the greatest common measure of
A, B, namely D. [x. 3, Por.]

But it also measures C;
so that the said magnitude will measure C, D;
therefore C, D are commensurable.
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Now let their greatest common-measure be taken, and let
it be £. [x. 3]
Since then £ measures D,

while 2 measures A4, B,
therefore £ will also measure A4, B.
But it measures C also ;
therefore £ measures 4, B, C;
therefore £ is a common measure of A4, B, C.

I say next that it is also the greatest.

For, if possible, let there be some magnitude # greater than
E, and let it measure 4, B, C.
Now, since / measures A, B, C,

it will also measure A4, 5,

and will measure the greatest common measure of 4, 5.
[x. 3, Por.]
But the greatest common measure of 4, B is D;

therefore /" measures D.
But it measures C also;
therefore / measures C, D ;
therefore 7 will also measure the greatest common measure
of C, D. [x. 3, Por.]
But that is £;
therefore F will measure £, the greater the less :
which is impossible.
Therefore no magnitude greater than the magnitude £
will measure 4, B, C;
therefore £ is the greatest common measure of 4, B, Cif D
do not measure C,

and, if it measure it, D is itself the greatest common measure.

Therefore the greatest common measure of the three given
commensurable magnitudes has been found.

PorisM. From this it is manifest that, if a magnitude
measure three magnitudes, it will also measure thejr greatest
common measure.

Similarly too, with more magnitudes, the greatest common
measure can be found, and the porism can be extended.

Q E. D.
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This proposition again corresponds exactly to vir. 3 for numbers. As
there Euclid thinks it necessary to prove that, &, 4, ¢ not being prime to one
another, d and ¢ are also not prime to one another, so here he thinks it
necessary to prove that d, ¢ are commensurable, as they must be since any
common measure of a4, 4 must be a measure of their greatest common
measure 4 (X. 3, Por.).

The argument in the proof that ¢, the greatest common measure of 4, ¢, is
the greatest common measure of g, J, ¢, is the same as that in vi1. 3 and X. 3.

The Porism contains the extension of the process to the case of four
or more magnitudes, corresponding to Heron’s remark with regard to the
similar extension of ViL 3 to the case of four or more numbers.

ProrosiITION 5.

Commensurable magnitudes have to one another the ratio
whick a number has to a number.

Let A, B be commensurable magnitudes ;

I say that 4 has to B the ratio which a number has to a
number.

For, since 4, B are commensurable, some magnitude will
measure them,

Let it measure them, and let it be C.

A B (o]
D

And, as many times as C measures A4, so many units let
there be in D ;

ia)x;d, as many times as C measures B, so many units let there
in £, ‘

Since then C measures A according to the units in 2,
while the unit also measures D according to the units in it,

therefore the unit measures the number D the same number
of times as the magnitude C measures A ;

therefore, as Cis to A, so is the unit to D ; [viL. Def. 20]
therefore, inversely, as A is to C, so is D to the unit.
[cf. v. 7, Por.]

Again, since C measures B according to the units in £,
while the unit also measures £ according to the units in it,
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therefore the unit measures £ the same number of times as C
measures 5 ;

therefore, as C is to B, so is the unit to £.
But it was also proved that,
as A is to C, so is D to the unit ;
therefore, ex aequali,
as A is to B, so is the number D to £. [v. 22]

Therefore the commensurable magnitudes 4, B have to
one another the ratio which the number D has to the number £,
Q. E. D.

The argument is as follows. If a, 4 be commensurable magnitudes, they
have some common measure ¢, and

a = me,
b =ne,
where m, 7 are integers.
It follows that AT S S TN veeee(),
or, inversely, aic=m:1;
and also that c:b=1:m,
so that, ex aequali, azb=m:n

It will be observed that, in stating the proportion (1), Euclid is merely
expressing the fact that & is the same multiple of ¢ that m is of 1. In other
words, he rests the statement on the definition of proportion in viL Def. zo.
This, however, is applicable only to four numbers, and ¢, a are not numbers but
magnitudes. Hence the statement of the proportion is not legitimate unless
it is proved that it is true in the sense of v. Def. 5 with regard to magnitudes
in general, the numbers 1, m being magnifudes. Similarly with regard to the
other proportions in the proposition.

There is, therefore, a hiatus. Euclid ought to have proved that magnitudes
which are proportional in the sense of viI. Def. 20 are also propomonal in the
sense of v. Def. 5, or that the proportion of numbers is included in the
proportion of magnitudes as a particular case. Simson has proved this in his
Proposition C inserted in Book v. (see Vol. 11. pp. 126—8). The portion of
that proposition which is required here is the proof that,

if a=mb
c=md }
then a:b=c:d, in the sense of v. Def. 5.
Take any equimultiples ga, ¢ of a, ¢ and any equimultiples ¢8, ¢ of 4, 4.
Now pa=pmb
pe =pmd } )

But, according as pmé > =< ¢b, pmd > =< qd.
Therefore, according as ga > =< gé, pa >=<gqd.

And pa, pc are any equimultiples of 4, ¢, and ¢4, ¢4 any equimultiples
of 5, d.

Therefore a:b=c:d. [v. Def. s5.]
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ProrosiTiON 6.

If two magnitudes have to one another the ratio whick a
number has to a number, the magnitudes will be commensurable.

For let the two magnitudes 4, B have to one another the
ratio which the number D has to the number £ ;
s | say that the magnitudes 4, B are commensurable.
A " ; 8 c
)
E F
For let 4 be divided into as many equal parts as there
are units in D,
and let C be equal to one of them;
and let 7 be made up of as many magnitudes equal to C as
10 there are units in £.
Since then there are in 4 as many magnitudes equal to C
as there are units in D,

whatever part the unit is of D, the same part is C of A also;
therefore, as C is to A, so is the unit to D. [vi1. Def. 20]
15 But the unit measures the number D ;
therefore C also measures A.
And since, as C is to A, so is the unit to D,
therefore, inversely, as A4 is to C, so is the number D to the
unit. [cf. v. 7, Por.]
2  Again, since there are in 7 as many magnitudes equal
to C as there are units in £,
therefore, as Cis to F, so is the unit to £. [vi1. Def. 20]
But it was also proved that,
as A is to C, so is D to the unit;

25 therefore, ex aegualz, as A is to F, so is D to E. [v. 22]
But,as Disto £,sois Ato B;
therefore also, as A4 is to B, so is it to / also. [v. 11]

Therefore A has the same ratio to each of the magnitudes
B, F;
3o therefore B is equal to 7. [v. 9]
But C measures F~';
therefore it measures B also.
Further it measures A also;
therefore C measures 4, 5.
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35 Therefore 4 is commensurable with 5.
Therefore etc.

PorisM. From this it is manifest that, if there be two
numbers, as D, £, and a straight line, as 4, it is possible to
make a straight line [ /] such that the given straight line is to

. 40 it as the number D is to the number £,

And, if a mean proportional be also taken between A, £,
as B,

as A is to F, so will the square on A4 be to the square on 5,

that is, as the first is to the-third, so is the figure on the first
45 to that which is similar and similarly described on the second.
[vL 19, Por.]

But, as 4 is to F, so is the number D to the number £;

therefore it has been contrived that, as the number D is to
the number £, so also is the figure on the straight line A4 to
the figure on the straight line 5. Q E. D.

15. But the unit measures the number D; therefore C also measures A.
These words are redundant, though they are apparently found in all the Mss.

The same link to connect the proportion of numbers with the proportion
of magnitudes as was necessary in the last proposition is necessary here. This
being premised, the argument is as follows.

Suppose a:b=m:n,
where m, n are (integral) numbers.
Divide a into m parts, each equal to ¢, say,

so that a=me.
Now take 4 such that d=nc
Therefore we have a:c=m:1,

and c:d=1:m,

so that, ex aequals, a:d=m:n

= a : 4, by hypothesis.
Therefore b = d = ne,
so that ¢ measures & »n times, and a, 4 are commensurable.
The Porism is often used in the later propositions. It follows (1) that, if
a be a given straight line, and m, #» any numbers, a straight line x can be
found such that
a:x=m:n
(z) We can find a straight line y such that
a:y'=m:n
For we have only to take y, a mean proportional between a and x, as
frevli;>;§ly ]found, in which case @, y, x are in continued proportion and
V. .
° a:y=a:x
=m:n.
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ProrosITION 7.

Incommensurable magnitudes have not to one another the
ratio which a number has to a number.

Let 4, B be incommensurable magnitudes ;
I say that A4 has not to B the ratio which a number has to a
number. :

For, if A has to B the ratio which a number has to a
number, 4 will be commensurable with 5. [x. 6]

But it is not ; A
therefore 4 has not to B the ratio which a N
number has to a number.

Therefore etc.

ProrosiTiON 8.

If two magnitudes have not to one another the ratio whick
a number has to a number, the magnitudes will be incom-
mensurable.

For let the two magnitudes A4, B not have to one another
the ratio which a number has to a number ;
I say that the magnitudes 4, B are incom-
mensurable.
For, if they are commensurable, 4 will have to B the
ratio which a number has to a number. [x. 5]
But it has not ;
therefore the magnitudes 4, B are incommensurable.

Therefore etc.

A
B

PropPosITION 9.

The squares on straight lines commensurable in length have
to onc another the ratio whick a square number has to a square
number ; and squares which have to ome another the ratio
whick a square number has to a square number will also have
their sides commensurable in length. But the squares on
straight lines incommensurable in length have not to ome
another the ratio whick a square number has to a square
number ; and squares whick have not to one another the ratio
whick a square number has to a square number will not have
their sides commensurable in length either.
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For let A, B be commensurable in length ;

I say that the square on 4 A 8
has to the square on B the P

ratio which a square number Py

has to a square number. —

For, since A4 is commensurable in length with 5,
therefore 4 has to B the ratio which a number has to a
number. [x-5]

Let it have to it the ratio which C has to D.

Since then, as 4 is to B, so is C to D,
while the ratio of the square on A4 to the square on B is
duplicate of the ratio of A to 5,
for similar figures are in the duplicate ratio of their corre-
sponding sides ; [v1. 20, Por.]
and the ratio of the square on C to the square on D is duplicate
of the ratio of C to D,
for between two square numbers there is one mean proportional
number, and the square number has to the square number the
ratio duplicate of that which the side has to the side ; [vi. 11]
therefore also, as the square on A4 is to the square on B, so
is the square on C to the square on D.

Next, as the square on A4 is to the square on A5, so let
the square on C be to the square on D ; )

I say that 4 is commensurable in length with B.

For since, as the square on A4 is to the square on B, so is
the square on C to the square on D,

while the ratio of the square on A4 to the square on B is
duplicate of the ratio of 4 to B,

and the ratio of the square on C to the square on D is duplicate
of the ratio of C to D,

therefore also, as 4 is to B, so is C to D.

Therefore 4 has to B the ratio which the number C has
to the number D ;

therefore A4 is commensurable in length with 5. [x. 6]

Next, let A be incommensurable in length with 2 ;

I say that the square on A4 has not to the square on 2 the
ratio which a square number has to a square number.

For, if the square on A4 has to the square on B the ratio
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which a square number has to a square number, 4 will be
commensurable with 5.
But it is not ;

therefore the square on 4 has not to the square on B the
ratio which a square number has to a square number.

Again, let the square on A4 not have to the square on B
the ratio which a square number has to a square number ;

I say that 4 is incommensurable in length with 5.

For, if A is commensurable with B, the square on 4 will
have to the square on B the ratio which a square number has
to a square number.

But it has not ;

therefore A4 is not commensurable in length with 5.
Therefore etc.

PorisM. And it is manifest from what has been proved
that straight lines commensurable in length are always com-
mensurab%e in square also, but those commensurable in square
are not always commensurable in length also.

[LemMma. It has been proved in .the arithmetical books
that similar plane numbers have to one another the ratio
which a square number has to a square number, [vie. 26]

and that, if two numbers have to one another the ratio which
a square number has to a square number, they are similar
plane numbers. [Converse of vii1. 26]

And it is manifest from these propositions that numbers
which are not similar plane numbers, that is, those which
have not their sides proportional, have not to one another
the ratio which a square number has to a square number.

For, if they have, they will be similar plane numbers:
which is contrary to the hypothesis.

Therefore numbers which are not similar plane numbers
have not to one another the ratio which a square number has
to a square number. ]

A scholium to this proposition (Schol. x. No. 62) says categorically that
the theorem proved in it was the discovery of Theaetetus.
If a, & be straight lines, and
azb=m:n,
where m, n are numbers,
then @ =m:
and conversely.
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This inference, which looks so easy when thus symbolically expressed, was
by no means so easy for Euclid owing to the fact that a, 4 are straight lines,
and m, n numbers. He has to pass from a : 4 to @*: 4* by means of v1. 20, Por.
through the duplicate ratio; the square on a is to the square on 4 in the
duplicate ratio of the corresponding sides a, 6. On the other hand, m, n
being numbers, it is viiL. 11 which has to be used to show that m?®: »? is the
ratio duplicate of m : n.

Then, in order to establish his result, Euclid assumes that, ¢f fwo ratios are
equal, the ratios whick are their duplicates are also equal. This is nowhere
proved in Euclid, but it is an easy inference from v. 22, as shown in my note
on VI 22. :

The converse has to be established in the same careful way, and Euclid
assumes that ratios the duplicates of which are equal are themselves equal.
This is much more troublesome to prove than the converse; for proofs I refer
to the same note on V1. 22.

The second part of the theorem, deduced by reductio ad absurdum from
the first, requires no remark.

In the Greek text there is an addition to the Porism which Heiberg
brackets as superfluous and not in Euclid’s manner. It consists (1) of a sort
of proof, or rather explanation, of the Porism and (z) of a statement and
explanation to the effect that straight lines incommensurable in length are
not necessarily incommensurable in square also, and that straight lines
incommensurable in square are, on the other hand, always incommensurable
in length also.

The Lemma gives expressions for two numbers which have to one another
the ratio of a square number to a square number. Similar plane numbers
are of the form pm . pn and gm . gn, or mnp* and mng®, the ratio of which is
of course the ratio of g* to ¢

 The converse theorem that, if two numbers have to one another the ratio
of a square number to a square number, the numbers are similar plane
numbers is not, as a matter of fact, proved in the arithmetical Books. It is
the converse of viiL 26 and is used in 1X. 10. Heron gave it (see. note on
vi 27 above).

Heiberg however gives strong reason for supposing the Lemma to be an
interpolation. It has reference to the next proposition, X. 10, and, as we shall
see, there are so many objections to x. 1o that it can hardly be accepted as
genuine. Moreover there is no reason why, in the Lemma itself, numbers
which are nof similar plane numbers should be brought in as they are.

[ProposiTION 10.

To find two straight lines incommensurable, the one in
length only, and the other in square also, with an assigned
straight line.

Let A4 be the assigned straight line;

thus it is required to find two straight lines incommensurable,
the one in length only, and the other in square also, with 4.

Let two numbers B, C be set out which have not to one
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another the ratio which a square number has to a square
number, that is, which are not similar plane )

numbers ; A
and let it be contrived that, 0
as B is to C so is the square on A to z
the square on D c
—for we have learnt how to do this—
[x. 6, Por.]
therefore the square on A is commensurable with the square
on D. [x. 6]

And, since B has not to C the ratio which a square number
has to a square number,

therefore neither has the square on A4 to the square on D the
ratio which a square number has to a square number ;

therefore 4 is incommensurable in length with D. [x. 9]
Let £ be taken a mean proportional between A, D ;

therefore, as A is to D, so is the square on 4 to the square
on £, . [v. Def. 9]

But A4 is incommensurable in length with D ;
therefore the square on A4 is also incommensurable with the
square on £ ; [x. r1]
therefore A is incommensurable in square with £.

Therefore two straight lines D, £ have been found in-
commensurable, D in length only, and £ in square and of
course in length also, with the assigned straight line A4.]

It would appear as though this proposition was intended to supply a
justification for the statement in x. Def. 3 that #f ¢&s proved that there are an
infinite number of straight lines (2) incommensurable in length only, or
commensurable in square only, and (4) incommensurable in square, with any
given straight line.

But in truth the proposition could well be dispensed with; and the
positive objections to its genuineness are considerable.

In the first place, it depends on the following proposition, X. 11 ; for the
last step concludes that, since

@:y’=a:x,
and a, x are incommensurable in length, therefore @2 ? are incommensurable.
But Euclid never commits the irregularity of proving a theorem by means of
a later one. Gregory sought to get over the difficulty by putting X. 10 after
X. 11; but of course, if the order were so inverted, the Lemma would still be
in the wrong place.

Further, the expression éuafoper ydp, *“‘for we have learnt (how to do this),”
is not in Euclid’s manner and betrays the hand of a learner (though the same
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expression is found in the Sectio Canonis of Euclid, where the reference is
to the Elements).

Lastly the manuscript P has the number 10, in the first hand, at the top
of X. 11, from which it may perhaps be concluded that x. 10 had at first no
number.

It seems best therefore to reject as spurious both the Lemma and x. 10.

The argument of X. 10 is simple. If a be a given straight line and m, »
nurgb%rs which have not to one another the ratio of square to square, take x
such that

at:x*=m:»n, [x. 6, Por.)
whence 4, x are incommensurable in length. [x. 9]
Then take y a mean proportional between 4, x, whence ’
at:yi=a:x [v. Def. 9]

~Jm: ],

and x is incommensurable in length only, while y is incommensurable in
square as well as in length, with a.

PROPOSITION 11.

If four magnitudes be proportional, and the first be com-
mensurable with the second, the third will also be commensurable
with the fourth ; and, if the first be incommensurable with the
second, the third will also be incommensurable with the fourth.

Let 4, B, C, D be four magnitudes in proportion, so
that, as 4 is to B, so is C

to D, A B
and let 4 be commensurable cC—— D
with B ;

I say that C will also be commensurable with D.
For, since 4 is commensurable with 3,
therefore 4 has to B the ratio which a number has to a
number. [x. 5]
And, as Aisto B,sois Cto D;
therefore C also has to D the ratio which a number has to a
number ;
therefore C is commensurable with D. [x. 6]

Next, let 4 be incommensurable with 7 ;
I say that C will also be incommensurable with D.

For, since A is incommensurable with 5,
therefore A has not to B the ratio which a number has to a
number. [x. 7]

H. E. 11 3
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And,as Aisto B,sois Cto D;

therefore neither has C to D the ratio which a number has to
a number ;

therefore C is incommensurable with D. [x. 8]
Therefore etc.

I shall henceforth, for the sake of brevity, use symbols for the terms
“commensurable (with)” and “incommensurable (with)” according to the
varieties described in x. Deff. 1—4. The symbols are taken from Lorenz
and seem convenient. _

Commensurable and commensurable with, in relation to areas, and com-
mensurable in length and commensurable in length with, in relation to straight
lines, will be denoted by ~.

Commensurable in square only or commensurable in square only with (terms
applicable only to straight lines) will be denoted by ~.

Incommensurable (with), of areas, and incommensurable (with), of straight
lines will be denoted by .

Incommensurable in square (with) (a term applicable to straight lines only)
will be denoted by «~.

Suppose a, 4, ¢, d to be four magnitudes such that

a:b=c:d
Then (1), if @ ~ 4, : a:b=m:n where m, n are integers, [X. 5]

whence c:d=m: n,
and therefore cnd. [x. 6]
(2) If avs, a:b+m:n, [x. 7]

so that c:d+m:n,
whence cvd [x. 8]

ProrosiTioN 12.

Magm’tudes.commensuraéle with the same magnitude are
commensurable with one another also.

For let each of the magnitudes 4, B be commensurable
with C;
I say that A is also commensurable with 5.

A (o] B
D

—F
G —L

For, since A is commensurable with C,

therefore 4 has to C the ratio which a number has to a
number. [x. 5]

e
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Let it have the ratio which D has to £.
Again, since C is commensurable with 5,

therefore C has to B the ratio which a number has to a
number. [x-5]

Let it have the ratio which # has to G.

And, given any number of ratios we please, namely the
ratio which 2 has to £ and that which # has to G,

let the numbers /7, K, L be taken continuously in the given
ratios ; [cf. v 4]

so that, as D is to £, so is H to X,
and, as Fisto G, sois K to L.
Since, then, as A isto C, so is D to E,
while, as D is to £, so is H to K,
therefore also, as 4 is to C, so is /£ to XK. [v. 11]
Again, since, as Cis to B, so is F to G,
while, as Fisto G, sois K to L,

therefore also, as Cis to B, sois K to L. [v. 11]
But also, as 4 is to C, so is A to K ;
therefore, ex aequali, as A is to B, so is A to L. [v. 22]

Therefore A has to B the ratio which a number has to a
number ;

therefore A is commensurable with 2. [x. 6]

Therefore etc.
Q. E. D.

We have merely to go through the process of compounding two ratios in
numbers.

Suppose a, b each ~¢.
Therefore a:c=m:n, say, [x. 5]
c:b=p:¢, say.
Now m:n=mp: np,
and pig=np:ng
Therefore a:c=mp: np,
c:b=np:ng,
whence, ex aeguali, a:b=mp: ng,
so that anb. [x. 6]
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ProrosITION 13.

If two magnitudes be commensurable, and the one of them
be incommensurable with any magnitude, the remaining one
will also be tncommensurable with the same.

Let 4, B be two commensurable magnitudes, and let one
of them, A, be incommensurable with

any other magnitude C; A
I say that the remaining one, 5, will c
also be incommensurable with C. 8

For, if B is commensurable with C,
while A is also commensurable with B,
A is also commensurable with C. [x. 12]
But it is also incommensurable with it :
which is impossible.
Therefore B is not commensurable with C;
therefore it is incommensurable with it.
Therefore etc.

LEMMA.

Given two unequal stvaight lines, to find by what square the
square on the greater is greater than the square on the less.

Let AB, C be the given two unequal straight lines, and
let 4B be the greater of them ;

thus it is required to find by what 0
square the square on 45 is greater
than the square on C.

c
Let the semicircle ADB be de- A B
scribed on AB, :
and let 4D be fitted into it equal to C; [av. 1]
let DB be joined.

It is then manifest that the angle A D28 is right, [ur 31]
and that the square on AZ8 is greater than the square on
AD, that is, C, by the square on D2AB. [r 47]

Similarly also, if two straight lines be given, the straight
line the square on which is equal to the sum of the squares
on them is found in this manner.



Lemma, x. 14] PROPOSITIONS 13, 14 37

Let AD, DB be the given two straight lines, and let it be
required to find the straight line the square on which is equal
to the sum of the squares on them. :

Let them be placed so as to contain a right angle, that
formed by 4D, DB ;
and let 425 be joined.

It is again manifest that the straight line the square on
which is equal to the sum of the squares on 4D, DB is AB.

[r. 47]
Q. E. D.

The lemma gives an obvious method of finding a straight line () equal to
~/a* = 5% where g, 4 are given straight lines of which a is the greater.

PROPOSITION 14.

If four straight lines be proportional, and the square on
the first be greater than the square on the second by the square
on a straight line commensurable with the first, the square on
the third will also be greater than the squarve on the fourth by

5 the square on a straight line commensurable with the third.

And, if the square on the first be greater than the square
on the second by the squarve on a straight line incommensurable
with the first, the square on the thirvd will also be greater than
the squarve on the fourth by the square om a straight line in-

‘10 commensurable with the third.

Let 4, B, C, D be four straight lines in proportion, so
that,as 4 isto B, sois Cto D;

and let the square on 4 be greater than | _ _
the square on B by the square on £, and
15 let the square on C be greater than the
square on D by the square on F;

I say that, if 4 is commensurable with £,
C is also commensurable with 7

and, if 4 is incommensurable with £, C is
20 also incommensurable with Z.

For since, as 4 is to B,so is C to D,

therefore also, as the square on A is to the square on B, so is
the square on C to the square on D. [v1. 22]

But the squares on £, B are equal to the square on A4,
25 and the squares on D, F are egual to the square on C.

E F
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Therefore, as the squares on £, B are to the square on
B, so are the squares on D, F to the square on D ;

therefore, separando, as the square on £ is to the square on
B, so is the square on £ to the square on D ; [v. 17]

30 therefore also, as £ is to B, so is Fto D ; [vi. 22]
therefore, inversely, as B is to £, so is D to F.
But, as 4 is to B, so also is C to D;
therefore, ex aequalz, as A is to £, so is C to F. [v. 22]

Therefore, if 4 is commensurable with £, C is also com-
35 mensurable with #|

and, if 4 is incommensurable with £, C is also incommen-
surable with £ [x. 11]

Therefore etc.

3, 5, 8, 10. Euclid speaks of the square on the ﬁrst (third) being greater than the square
on the second (fourth) by the square on a straight line commensurable (mcommensurablel
““ with itself (¢avrg),” and similarly in all like phrases throughout the Book. For cl
sake I substitute ¢“the first,” * the third,” or whatever it may be, for *itself” in thse cases.

Suppose a, 4, ¢, d to be straight lines such that
@:b=c:d coooent i (1)
It follows [vi. 22] that @:B=cd (2).
In order to prove that, convertendo,
a: (a! b:)_‘-! . (‘-1 d')
Euclid has to use a somewhat roundabout method owing to the absence of a
convertendo proposition in his Book v. (which omission Simson supplied by

his Prop. E).
It follows from (z) that

{(@-8)+ 8} P ={(E-d) + ) : 7,

whence, separando, (@-8):8=(-42" : d% [v. 17]
and, inversely, B:(a—-8)=d*: (¢*-d").
From this and (2), ex aeguali,
al:(a—8)=c: (c’—d’) [v. 22]
Hence a:N@=F=c: - [vi. 22]
According therefore as  a~or v /o' = &,
cnoruAZa, [x. 11]
If a ~ o = F, we may put Ja’ b’ ka, where % is of the form m/n
and m, n are integers. And if ~a®-#=4a, it follows in this case that

Nt Sdr = ke
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. PrOPOSITION 15,

If two commensurable magnitudes be added together, the
whole will also be commensurable with each of them,; and, if
the whole be commensurable with onme of them, the original
magnitudes will also be commensurable.

For let the two commensurable magnitudes 48, BC be
added together ; 5
I say that the whole AC is also A - o
commensurable with each of the
magnitudes A8, BC.

For, since AB, BC are commensurable, some magnitude
will measure them.

Let it measure them, and let it be D.

Since then D measures AB, BC, it will also measure the
whole AC.

But it measures A8, BC also;

therefore 2 measures AB, BC, AC;

therefore 4C is commensurable with each of the magnitudes
AB, BC. [x. Def. 1]
, Next, let AC be commensurable with 45 ;

I say that AB, BC are also commensurable.

For, since AC, AB are commensurable, some magnitude
will measure them,

Let it measure them, and let it be D.

Since then D measures CA, AB, it will also measure the
remainder BZC.

But it measures A28 also;

therefore D will measure A8, BC;
therefore A8, BC are commensurable. [x. Def. 1]
Therefore etc.

(1) If a, 4 be any two commensurable magnitudes, they are of the form
me, nc, where ¢ is a common measure of a, & and m, n some integers.

It follows that a+b=(m+n)c;
therefore (a + 4), being measured by ¢, is commensurable with both & and 4.

(2) If a + & is commensurable with either a or 4, say 4, we may put
a+ b=me, a=nec, where ¢ is a common measure of (a+ ), a, and m, » are
integers.

Subtracting, we have b=(m—n)e,
whence & ~ a.
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ProrosITION 16.

If two incommensurable magnitudes be added together, the
whole will also be incommensurable with eackh of them ,; and, tf
the whole be incommensurable with ome of them, the original
magnitudes will also be incommensurable.

For let the two incommensurable magnitudes 48, BC be
added together ;

I say that the whole 4AC is also incommensurable A
with each of the magnitudes 45, BC.

For,if CA, AB are not incommensurable, some
magnitude will measure them.

Let it measure them, if possible, and let it be D. 8l

Since then D measures CA, A5,
therefore it will also measure the remainder BC.

But it measures A8 also; 4 c
therefore D measures 45, BC.

Therefore A8, BC are commensurable ;
but they were also, by hypothesis, incommensurable :
which is impossible.

Therefore no magnitude will measure CA, AB;
therefore CA, AB are incommensurable. [x. Def. 1]

Similarly we can prove that 4C, CA are also incom-

mensurable.
Therefore AC is incommensurable with each of the magni-

tudes 48, BC.

Next, let 4C be incommensurable with one of the magni-
tudes 4B, BC.
First, let it be incommensurable with 43 ;

I say that 4B, BC are also incommensurable,

For, if they are commensurable, some magnitude will
measure them.

Let it measure them, and let it be D.

Since then D measures A8, BC,
therefore it will also measure the whole 4C.

But it measures 427 also ;

therefore D measures CA, AB,
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Therefore CA, AB are commensurable ;
but they were also, by hypothesis, incommensurable :
which is impossible.

Therefore no magnitude will measure 4B, BC;
therefore A8, BC are incommensurable, [x. Def. 1]

Therefore etc.

LEMMA,

If to any straight line there be applied a parallelogram
deficient by a square figure, the applied parallelogram s equal
Lo the rectangle contained by the segments of the stvaight line
vesulting from the application.

For let there be applied to the straight line 428 the
parallelogram A0 deficient by the

square figure DB ; D
I say that 4D is equal to the rectangle
contained by AC, C5. - 4

This is indeed at once manifest ;
for, since DA is a square,
DC is equal to CB;

and AD is the rectangle AC, CD, that is, the rectangle 4AC,
CAB. .

Therefore etc.

If a be the given straight line, and x the side of the square by which the
applied rectangle is to be deficient, the rectangle is equal to ax — 2% which is
of course equal to x(a—x). The rectangle may be written xy, where
x+y=a. Given the area x (a- x), or xy (whete x+y=a), two different
applications will give rectangles equal to this area, the sides of the defect
being x or a—x (x or y) respectively; but the second mode of expression
shows that the rectangles do not differ in form but only in position.

ProrosITION 17.

If there be two unequal straight lines, and to the greater
there be applied a parallelogram equal to the fourth part of
the square on the less and deficient by a square figure, and if
it divide it into parts whick are commensurable in length, then

s the square on the greater will be greater than the square on
the less by the square on a straight line commensurable with
the greater.

And, if the square on the greater be greater than the square
on the less by the square on a straight line commensurable with
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10 the greater, and if there be applicd to the greater a parallelogram
equal to the fourth part of the square on the less and deficient
by a square figure, it will divide it into parts whick are com-
mensurable in length. :

Let 4, BC be two unequal straight lines, of which BC is

15 the greater,
and let there be applied to BC a parallel- A
ogram equal to the fourth part of the
square on the less, A, that is, equal to r
the square on the half of 4, and deficient |

20 by a square figure. Let this be the g% & (o
rectangle BD, DC, [cf. Lemma]-
and let BD be commensurable in length with DC;

I say that the square on BC is greater than the square on 4
by the square on a straight line commensurable with BC.

25 For let BC be bisected at the point £,
and let £F be made equal to DE.

Therefore the remainder DC is equal to BF.
And, since the straight line BC has been cut into equal
_parts at £, and into unequal parts at D,

3 therefore the rectangle contained by BD, DC, together with

the square on £, is equal to the square on £C; [ 5]

And the same is true of their quadruples;
therefore four times the rectangle 8D, DC, together with
four times the square on DZE, is equal to four times the square
sson £EC.

" But the square on 4 is equal to four times the rectangle
BD, DC;

and the square on DF is equal to four times the square on
DE, for DF is double of DE. -

©  And the square on BC is equal to four times the square
on EC, for again BC is double of CE.

Therefore the squares on A4, DF are equal to the square
on BC,

so that the square on BC is greater than the square on 4 by
45 the square on DF.

It is to be proved that BC is also commensurable with DF.
Since BD is commensurable in length with DC,

therefore BC is also commensurable in length with CD. [x. 15]
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But CD is commensurable in length with CD, BF, for

5o CD is equal to BF. [x. 6]

Therefore BC is also commensurable in length with BF,

CcD, [x. 12]

so that BC is also commensurable in length with the remainder

FD; [x. 15]

ss therefore the square on BC is greater than the square on A4
by the square on a straight line commensurable with BC.

Next, let the square on BC be greater than the square on
A by the square on a straight line commensurable with BC,

let a parallelogram be applied to BC equal to the fourth part
6o of the square on A and deficient by a square figure, and let
it be the rectangle 5D, DC.
It is to be proved that BD is commensurable in length
with DC.
With the same construction, we can prove similarly that
6s the square on BC is greater than the square on 4 by the
square on FD. -
But the square on BC is greater than the square on A
by the square on a straight line commensurable with BC.
Therefore ZC is commensurable in length with #D,

70 so that BC is also commensurable in length with the remainder,
the sum of BF, DC. [x. 15]

But the sum of BF, DC is commensurable with DC, [x. 6]

so that BC is also commensurable in length with CD; [x. 12]

and therefore, sgparando, BD is commensurable in length

7s with DC. . [x 15]
Therefore etc.

45.  After saying literally that ‘“the square on BC is greater than the square on A by the
square on DF,” Euclid adds the equivalent expression with ddvaras in its technical sense,
% BL dpa 7his A ucifor dvwarar 7§ AZ. As this is untranslatable in English except by a
paraphrase in practically the same words as have preceded, I have not attempted to
reproduce it

This proposition gives the condition that the roots of the equation in x,
ax-—x‘=ﬁ(= i—’, say),
are commensurable with g, or that x is expressible in terms of a and integral
numbers, i.e. is of the form %'a. No better proof can be found for the fact

that Euclid and the Greeks used their solutions of quadratic equations for
numerical problems. On no other assumption could an elaborate discussion
of the conditions of incommensurability of the roots with given lengths or
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with a given number of units of length be explained. In a purely geometrical
solution the distinction between commensurable and incommensurable roots
has no point, because each can equally easily be represented by straight lines.
On the other hand, on the assumption that the numerical solution of quadratic
equations was an important part of the system of the Greek geometers,
the distinction between the cases where the roots are commensurable and
incommensurable respectively with a given length or unit becomes of great
importance. Since the Greeks had no means of expressing what we call an
irrational number, the case of an equation with incommensurable roots could
only be represented by them geometrically ; and the geometrical representations
had to serve instead of what we can express by formulae involving surds.

Euclid proves in this proposition and the next that, x being determined
from the equation

x, (a - x) are commensurable in length when /a*— 2, a are so, and incom-
mensurable in length when Na* =B, a are incommensurable ; and conversely.

Observe the similarity of his proof to our algebraical method of solving
the equation. a being represented in the figure by BC, and x by CD,

EF=ED=;—x

E] 2
and x(a-x)+ (;3 - x) = % , by Eucl. 11. s.
If we multiply throughout by 4,
4x(@a—x)+4 (S—x)'=a’,

whence, by (1), B+ (a—2x)=a,
or &8 = (a-22),
and Na* =B =a—2x.

We have to prove in this proposition
(1) that, if x, (2 — x) are commensurable in length, so are a, N

(2) that, if @, va* - #* are commensurable in length, so are x, (¢ — x).

(1) To prove that a, @ — 2x are commensurable in length Euclid employs
several successive steps, thus.

Since (a — x) ~ x, anx [x. 15]
But ’ x ~o2x. [x. 6]
Therefore an2x [x. 12]
~ (a-ax). [x. 15]
That is, an~Ja— 4.
(2) Since a ~ Ja* - &, ana-2x,
whence a ~ 2x. [x. 15]
But 2x ~ X; [x. 6]
therefore » an~x, [x. 12]

and hence (a-x)~ax. [x. 15]
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_ It is often more convenient to use the symmetrical form of equation in
this and similar cases, viz.

B
Xy = e
x+y=a
The result with this mode of expression is that
(1) if x ~y, then a ~ J/a'=#; and
(2) if a ~ Vo —#, then x ~ .

The truth of the proposition is even easier to see in this case, since
(x-yy=(a*-5)

ProrpositTioN 18.

Lf there be two unequal straight lines, and to the greater
there be applied a parallelogram equal to the fourth part of
the square on the less and deficient by a square figure, and
tf 12 divide it into parts whick are incommensurable, the square
on the greater will be greater than the square on the less by
the square on a straight line incommensurable with the greater.

And, if the square on the greater be greater than the square
on the less by the square on a straight line tncommensurable
with the grealer, and if there be applied to the greater a
parallelogram equal to the fourth part of the square on the

less and deficient by a square figure, it divides it inlo parts
which are incommensurable.

Let 4, BC be two unequal straight lines, of which BC is
the greater,
and to BC let there be applied a parallelogram equal  ®
to the fourth part of the square on the less, 4, and |
deficient by a square figure. Let this be the rect-
angle BD, DC, [¢f. Lemma before x. 17] gl M
and let BD be incommensurable in length with DC;

I say that the square on BC is greater than the ©°|
square on A by the square on a straight line incom-
mensurable with BC.

For, with the same construction as before, we can prove
similarly that the square on BC is greater than the square on
A by the square on FD.

It is to be proved that BC is incommensurable in length
with DF.

(o]
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Since BD is incommensurable in length with DC, .

therefore BC is also incommensurable in length with CD.
[x. 16]

But DC is commensurable with the sum of BF, DC; [x. 6]
therefore BC is also incommensurable with the sum of BF,

DC; [x. 23]
so that BC is also incommensurable in length with the remainder
FD. [x. 16]

And the square on BC is greater than the square on A4
by the square on FD;
therefore the square on BC is greater than the square on 4
by the square on a straight line incommensurable with BC.

Again, let the square on BC be greater than the square on
A by the square on a straight line incommensurable with BC,
and let there be applied to BC a parallelogram equal to the
fourth part of the square on 4 and deficient by a square figure.
Let this be the rectangle 5D, DC.

It is to be proved that BD is incommensurable in length
with DC.

For, with the same construction, we can prove similarly
that the square on BC is greater than the square on A by
the square on FD.

But the square on BC is greater than the square on 4 by
the square on a straight line incommensurable with BC;

therefore BC is incommensurable in length with /D,
so that BC is also commensurable with the remainder, the

m of BF, DC. [x. 16]
But the sum of BF, DC is commensurable in length with
5 [x. 6]

ierefore BC is also incommensurable in length with DC,

. [x. 13]

» that, separando, BD is also incommensurable in length with
- [x. 16]

Therefore etc.

With the same notation as before, we have to prove in this proposition that
) if (@ — x), x are incommensurable in length, so are a, ~/a® — #, and
) if @, ¥a*— & are incommensurable in length, so are (a-x), x.

Or, with the equations
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(x) if x vy, then @ v J/a* -, and
(2) if av Ja'— 5, thenx v y.

The steps are exactly the same as shown under (1) and (2) of the last
note, with  instead of ~, except only in the lines “x ~ 2x” and “2x ~ x”
which are unaltered, while, in the references, x. 13, 16 take the place of x.
12, 15 respectively.

[LEMMA.

Since it has been proved that straight lines commen-
surable in length are always commensurable in square also,
while those commensurable in square are not always com-
mensurable in length also, but can of course be either
commensurable or incommensurable in length, it is manifest
that, if any straight line be commensurable in length with a
given rational straight line, it is called rational and commen-
surable with the other not only in length but in square also,
since straight lines commensurable in length are always
commensurable in square also.

But, if any straight line be commensurable in square with
a given rational straight line, then, if it is also commensurable
in length with it, it is called in this case also rational and
commensurable with it both in length and in square; but, if
again any straight line, being commensurable in square with a
given rational straight line, be incommensurable in length
with it, it is called in this case also rational but commensurable
in square only.]

PRroPOSITION 19.

The rectangle contained by rational straight lines commen-
surable in length is rational.

For let the rectangle 4C be contained by the rational
straight lines 48, BC commensurable in

length ; D
I say that AC is rational.

For on AZ let the square 4D be de- c
scribed ;
therefore A0 is rational. [x. Def. 4]

And, since A8 is commensurable in A B8

length with BC, ’
while A28 is equal to BD,
therefore BD is commensurable in length with BC.



48 BOOK X [x. 19

And, as BD is to BC, sois DA to AC. [vi. 1]
Therefore DA is commensurable with 4C. © [x11]
But DA is rational ;

therefore AC is also rational. [x. Def. 4]

Therefore etc.

There is a dlﬁiculty in the text of the enuncnatlon of this proposntlon
The Greek runs ro vro prav pijxe crvp.,.l.crpwv xard Twa TOV rpoupmu:vmv
Tporwy evfeuiv mepiexopevov opboyaviov pyrov éorw, where the rectangle is
said to be contained by ‘‘rational straight lines commensurable in length 7z
any of the aforesaid ways.” Now straight lines can only be commensurable
in length in one way, the degrees of commensurability being commensurability
in length and commensurability in square only. But a straight line may be
rational in two ways in relation to a given rational straight line, since it may
be either commensurable i Zength, or commensurable m square only, with the
latter. Hence Billingsley takes xard rwa rav mpoepnuévwy Tporwy with pyrav,
translating stralght lines commensurable in length and rational in any of the
aforesaid ways,” and this agrees with the expression in the next proposition
“a straight line once more rational in any of the aforesaid ways”; but the
order of words in the Greek seems to be fatal to this way of translating
the passage.

The best solution of the difficulty seems to be to reject the words “in
any of the aforesaid ways” altogether. They have reference to the Lemma
which immediately precedes and which is itself open to the gravest suspicion.
It is very prolix, and cannot be called necessary; it appears moreover in
connexion with an addition clearly spurious and therefore relegated by
Heiberg to the Appendix. The addition does not even pretend to be Euclld’s,
for it begins with the words “for /e calls rational straight lines those..
Hence we should no doubt relegate the Lemma itself to the Appendlx
August does so and leaves out the suspected words in the enunciation, as I
have done.

Exactly the same arguments apply to the Lemma added (without the
heading “ Lemma”) to X. 23 and the same words “in any of the aforesaid
ways” used with “rmedial straight lines commensurable in length” in the
enuncnatlon of x. 24. The sa|d Lemma must stand or fall with that now in
question, since it refers to 1t in terms: “And in the same way as was explained
in the case of rationals..

Hence I have bracketed the Lemma added to x. 23 and left out the
objectionable words in the enunciation of x. 24.

If p be one of the given rational straight lines (rational of course in the
sense of X. Def. 3), the other can be denoted by %p, where £ is, as usual, of
the form m/n (where m, n are integers). Thus the rectangle is &p’, which is
obviously rational since it is commensurable with p>.  [x. Def. 4.]

A rational rectangle may have any of the forms aé, 4a’, 24 or A, where
a, b are commensurable with the unit of length, and A with the unit of area.

Since Euclid is not able to use %4p as a symbol for a straight line
commensurable in length with p, he has to put his proof in a form corre-
sponding to

P’ hkp’=p: kp,
whence, p, 4p being commensurable,. p?, £p* are so also. [x. 11]
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PROPOSITION 20.

If a rational area be applicd to a rational straight line, it
Pproduces as breadth a straight line vational and commensurable
in length with the straight line to whick it is applied.

For let the rational area 4C be applied to A5, a straight
line once more rational in any of the aforesaid
ways, producing BC as breadth ;

I say that BC is rational and commensurable in
length with B4.

For on A2 let the square 4D be described ;
therefore 4D is rational. [x. Def. 4]
But AC is also rational ;

therefore DA is commensurable with 4C.
And, as DA is'to AC, so is DB to BC. c

VI, I
Therefore DA is also commensurable with BC; [x. 11]

and DB is equal to BA ;
therefore A8 is also commensurable with BC.
But AZB is rational ;

therefore BC is also rational and commensurable in length
with 45,

Therefore etc.

The converse of the last. If p is a rational straight line, any rational area
is of the form £p® If this be “applied” to p, the breadth is £p commensurable
in length with p and therefore rational. We should reach the same result if
we applied the area to anotker rational straight line . The breadth is then

2 2

m
=—4%. o or o, say.
o .0 n

ProrposiTION 21.

The rectangle contained by vational straight lines commen-
surable in square only is irrational, and the side of the square
equal to it is irrational. Let the latter be called medial.

For let the rectangle AC be contained by the rational
straight lines A58, BC commensurable in square only ;

H. E IIL 4
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I say that AC is irrational, and the side of the square equal
to it is irrational ;

and let the latter be called medial. D
For on AR let the square 4D be described ; :
therefore A D is rational. [x. Def. 4] B A

And, since 4B is incommensurable in length
with BC,
for by hypothesis they are commensurable in ¢
square only,
while 4B is equal to BD,
therefore DB is also incommensurable in length with BC.
And, as DB is to BC, sois AD to AC; [vi. 1]
therefore DA is incommensurable with 4C. [x. 11]
But DA is rational ;
therefore AC is irrational,

so that the side of the square equal to 4C is also irrational.
[x. Def. 4]

And let the latter be called medial.
Q. E. D.

A medial straight line, now defined for the first time, is so called because
it is a mean proportional between two rational straight lines commensurable
in square only. Such straight lines can be denoted by p, p /4. A medial
straight line is therefore of the form /p'\J£ or #¥p. Euclid’s proof that this is -
irrational is equivalent to the following. Take p, p,/# commensurable in
square only, so that they are incommensurable in length.

Now p:pJl=p:p'Jk,
whence [x. 11] p*,/% is incommensurable with p* and therefore irrational
[x. Def. 4], so that \/p>/Z is also irrational [#/d.).

A medial straight line may evidently take either of the forms /a,/B or
/4B, where of course B is not of the form #4.

LEMMA. -

If there be two straight lines, then, as the first is to the
second, so is the square on the first
to the rectangle contained by the
two straight lines.

Let /£, EG be two straight
lines. )

I say that, as F£ is to £G, so is the square-on FE to
the rectangle /£, EG.

E a

D
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For on FE let the square DF be described,
and let GD be completed.

Since then, as F£ is to £G, so is FD to DG, [vi. 1]
and FD is the square on FE,
and DG the rectangle DE, EG, that is, the rectangle FE, EG,
therefore, as /£ is to £G, so is the square on FE to the
rectangle FE, EG.

Similarly also, as the rectangle GZ£, EF is to the square
on £F, that is, as GD is to FD, so is GE to EF.

Q. E. D.

If a, 4 be two straight lines,
: a:b=a:ab.

ProrosiTioN 22.

The square on a medial straight line, if applied to a
rational straight line, produces as breadth a straight line
rational and incommensurable in length with that .to which it
is applied.

Let A be medial and CA rational,

and let a rectangular area BD equal to the square on 4 be
applied to BC, producing CD as
breadth ; '
I say that CD is rational and incom-
mensurable in length with CA5. G
For,since 4 is medial, the square
on it is equal to a rectangular area
contained by rational straight lines
commensurable in square only.
[x. 21]
Let the square on it be equal to GF.
But the square on it is also equal to BD ;

therefore BD is equal to GF.
But it is also equiangular with it;

and in equal and equiangular parallelograms the sides about
the equal angles are reciprocally proportional ; [vi. 14]

therefore, proportionally, as BC is to £G, so is EF to CD.
Therefore also, as the square on BC is to the square on
EG, so is the square on £F to the square on CD. [v1. 22]

4—2
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But the square on CA is commensurable with the square
on EG, for each of these straight lines is rational ;

" therefore the square on £F is also commensurable with the

square on CD. - [x. 11]
But the square on £F is rational ;
therefore the square on CD is also rational ; [x. Def. 4]

therefore CD is rational.

And, since £F is incommensurable in length with £G,
for they are commensurable in square only,
and, as £F'is to £G, so is the square on £F to the rectangle

FE, EG, [Lemma]
therefore the square on £F is incommensurable with the
rectangle FE, EG. [x. 11]

But the square on CD is commensurable with the square
on EF, for the straight lines are rational in square ;

and the rectangle DC, CB is commensurable with the rect-
angle FE, EG, for they are equal to the square on 4 ;

therefore the square on CD is also incommensurable with the

rectangle DC, CB. [x. 13)
But, as the square on CD is to the rectangle DC, CB, so
is DC to CB; [Lemma]

therefore DC is incommensurable in length with CB.  [x. 11]

Therefore CD is rational and incommensurable in length
with CB.
Q. E. D.

Our algebraical notation makes the result of this proposition almost self-
evident. We have seen that the square of a medial straight line is of the form
J&.p% 1f we “apply” this area to another rational straight line o, the

2

breadth is V5P,
o

2
This is equal to “/ko_, Plo= JE. %‘a, where m, n are integers. The latter

straight line, which we may express, if we please, in the form ./# . o, is clearly
commensurable with o in square only, and therefore rational but incom-
mensurable in length with o.

Euclid’s proof, necessarily longer, is in two parts.

Suppose that the rectangle J£.p*=0.x.

Then (1) a:p=.Jk.p:x, [v1. 14])
whence ot p'=4hp*: 2% [vi. 22]

But ¢® ~ p?, and therefore 4p? ~ 2 [x. 11]
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And 4p? is rational ;

therefore 2% and therefore x, is rational. [x. Def. 4]
(2) Since JJ&.p ~p, JE.pvp.
But [Lemma) JE.pip=tpt: JR. P

whence ko' v JE. P [x. 11]
But /4. p* = ox, and 4p? ~ 5* (from above) ;

therefore sAoox; [x. 13]

and, since 2#*:ox=x:0, [Lemma]

X v oo

ProposITION 23.

A straight line commensurable with a medial straight line
s medial.
Let A be medial, and let B be commensurable with A4 ;

I say that 2 is also medial.
For let a rational straight line CD

be set out, A 8
and to CD let the rectangular area C£ ¢
equal to the square on 4 be applled
producing £D as breadth ;
therefore £ is rational and incommen-
surable in length with CD. [x. 22]

And let the rectangular area CF E D

equal to the square on & be applied to
CD, producing DF as breadth.
Since then A is commensurable with B,

the square on A is also commensurable with the square on 5.
But £C is equal to the square on 4,
and CF is equal to the square on 5;
therefore £C is commensurable with CF.
And, as ECis to CF, so is ED to DF; [vr 1]
therefore £D is commensurable in length with DF.  [x. 11]
But £D is rational and incommensurable in length with
DC;
therefore DF is also rational [x. Def. 3] and incommensurable
in length with DC. [x. 13]

Therefore CD, DF are rational and commensurable in
square only.
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But the straight line the square on which is equal to the
rectangle contained by rational straight lines commensurable
in square only is medial ; . [x. 21]

therefore the side of the square equal to the rectangle CD,
DF is medial.

And B is the side of the square equal to the rectangle
CD, DF;

therefore 2 is medial.

Porism. From this it is manifest that an area commen-
surable with a medial area is medial.

[And in the same way as was explained in the case of
rationals [Lemma following x. 18] it follows, as regards medials,
that a straight line commensurable in length with a medial
straight line is called medial and commensurable with it not
only in length but in square also, since, in general, straight
lines commensurable in length are always commensurable in
square also.

But, if any straight line be commensurable in square with
a medial straight line, then, if it is also commensurable in
length with it, the straight lines are called, in this case too,
medial and commensurable in length and in square, but, if in
square only, they are called medial straight lines commen-
surable in square only.]

As explained in the bracketed passage following this proposition, a straight
line commensurable with a medial straight line in square only, as well as a

straight line commensurable with it in length, is medial.
Algebraical notation shows this easily.

If k*p be the given straight line, Ak*p is a straight line commmensurable

in length with it and J/A. #p a straight line commensurable with it in square
only.
But Ap and JA.p are both rational [x. Def. 3] and therefore can be

expressed by p’, and we thus arrive at k‘*p , which is clearly medial.

Euclid’s proof amounts to the followmg

Apply both the areas ./£.p' and AL J&.p* (or A Jk.p%) to a rational
straight line o.

The breadths /4.2 ; and A /4 .% (or AJE. ;) are in the ratio of the

areas ,/k. ﬁ’ and AL/4.p* (or AJk.p?) themselves and are therefore com-
mensurable.

Now [x. 22] J&.2 1s rational but incommensurable with o.

Therefore Ak . % (or Ak %) is so also;
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whence the area A% /. p* (or A /&. p') is contained by two rational straight

lines commensurable in square only, so that Ao (or JA. k*p) is a medial
straight line.

It is in the Porism that we have the first mention of a medial area. It is
the area which is equal to the square on a medial straight line, an area, there-

fore, of the form k*p’, which is, as a matter of fact, arrived at, though not
named, before the medial straight line itself (x. 21).

The Porism states that )tk*p’ is a medial area, which is indeed obvious.

PROPOSITION 24.

The rectangle contained by medial straight lines commen-
surable in length is medial.

For let the rectangle AC be contamed by the medial
straight lines 45, BC which are commensurable
in length ; o
I say that 4C is medial.

For on AR let the square 4D be described ;
therefore 4.0 is medial.

And, since A8 is commensurable in length
with BC,

while A8 is equal to BD, D

therefore DB is also commensurable in length
with BC;

so that DA is also commensurable with AC. [vi 1, x. 11]
But DA is medial ;
therefore .4 C is also medial. [x. 23, Por.]
Q. E. D.

There is the same difficulty in the text of this enunciation as in that of
x. 19. The Greek says “medial straight lines commensurable in length in
any of the aforesaid ways”; but straight lines can only be commensurable in
length in one way, though they can be medial in two ways, as explained in the
addition to the preceding proposition, i.e. they can be either commensurable
in length or commensurable in square only with a gruex medial straight line.
For the same reason as that explained in the note on x. 19 I have omitted
“in any of the aforesaid ways” in the enunciation and bracketed the addition
to X. 23 to which it refers. '

k*p and M*p are medial straight lines commensurable in length. The
rectangle contained by them is Mip’, which may be written k*p” and is there-
fore clearly medial.

Euclid’s proof proceeds thus. Let x, Ax be the two medial straight lines
commensurable in length,

Therefore xl:x. Ax=x:Ax
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But x ~ Ax, so that x*~ x. Ax. [x. 1]
Now 2* is medial [x. 21];
therefore x . Ax is also medial. [x. 23, Por.]

We may of course write two medial straight lines commensurable in length
in the forms -mk*p, n#p; and these may either be mJa /B, nJaB, or
myAB, nd/4B.

PROPOSITION 25.

The rectangle contained by medial straight lines commen-
surable in square only is either rational or medial.

For let the rectangle 4C be contained by the medial
straight lines 458, BC which are

commensurable in square only ; A F a
I say that AC is either rational
or medial.
For on AB, BC let the 5 5 c Woom
squares 40D, BE be described ;
therefore each of the squares o &
AD, BE is medial. K__N
Let a rational straight line L

FG be set out,

to FG let there be applied the rectangular parallelogram GA
equal to 4D, producing F/ as breadth, .

to /M let there be applied the rectangular parallelogram /X
equal to A C, producing //K as breadth,

and further to KV let there be similarly applied VL equal to
BE, producing KL as breadth ;

therefore FH, HK, KL are in a straight line.
Since then each of the squares 40, BE is medial,
and 4D is equal to GH, and BE to NL,
therefore each of the rectangles GH, VL is also medial.
And they are applied to the rational straight line /G ;

therefore each of the straight lines 7/, KL is rational and
incommensurable in length with #G. [x. 22]

And, since 4D is commensurable with BE,
therefore GH is also commensurable with VL.
And, as GH is to NL, so is FH to KL ; [vr. 1]

therefore // is commensurable in length with KZ.  [x. 11]
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Therefore /A, KL are rational straight lines commen-
surable in length;

therefore the rectangle ~/, KL is rational. [x. 19]

And, since DB is equal to BA, and OB to BC,
therefore, as DB is to BC, so is AB to BO.

But, as DB is to BC, sois DA to AC, [vi. 1]
and, as AR is to BO, sois AC to CO; (]
therefore, as DA is to AC, sois AC to CO.

But AD is equal to GH, AC to MK and CO to NL;
therefore, as GH is to MK, so is MK to NL ;
therefore also, as FH is to HK, sois HK to KL ; [vi.1,v.11]

therefore the rectangle 7/, KL is equal to the square on /K.

[vr. 17]
But the rectangle 7/, KL is rational ;

therefore the square on AKX is also rational.
Therefore AKX is rational.
And, if it is commensurable in length with /G,
HN is rational ; [x. 19]
but, if it is incommensurable in length with 7G,
KH, HM are rational straight lines commensurable in square
only, and therefore /N is medial. [x. 21]
Therefore AN is either rational or medial.
But AN is equal to AC;
therefore 4AC is either rational or medial.
Therefore etc. -

Two medial straight lines commensurable in square only are of the form

k* Py '\/ Al B [

The rectangle contained by them is Jk.k*p’. Now this is in general
medial ; but, if /A =% /& the rectangle is £2%0%, which is rational.

Euclid’s argument is as follows. Let us, for convenience, put x for # , SO

that the medial straight lines are x, /A . x.
Form the areas 2% x. \/A. x, Ax?,

and let these be respectively equal to ow, ov, ow, where o is a rational
straight line.

Since 2%, Ax® are medial areas,
S0 are ou, ow,
whence #, w are respectively rational and ~ .
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But a8~ Al

so that ou ~ aw,

or UOAW ciieiiniiiniiri (1).
Therefore, , 2 being both rational, #w is rational . ...(2).
Now 2 A= A at A

or ou: oY =00v: oW,

so that u:U=0:w,

and . ww =0
Hence, by (2), 2%, and therefore , is rational ........................... (3)

Now (a) if 7 ~ o, ov or \/A. 27 is rational;
(B) if v v o, so that ¥ ~ o, ov or /A . x* is medial.

" PROPOSITION 26.

A medial area does not exceed a medial area by a rational
area.

For, if possible, let the medial area 45 exceed the medial
area AC by the rational area
DB A F E

and let a rational straight line
EF be set out ;

to £F let there be applied the K G
rectangular parallelogram F/A
equal to 45, producing £H as H
breadth,

and let the rectangle ~G equal to 4 C be subtracted ;
therefore the remainder BD is equal to the remainder X'/,
But DZB is-rational ;
therefore K/ is also rational.
Since, then, each of the rectangles 4B, AC is medial,
and A28 is equal to /A, and AC to FG,
therefore each of the rectangles F/, FG is also medial.
And they are applied to the rational straight line £F;

therefore each of the straight lines /£, EG is rational and
incommensurable in length with £/ [x. 22]

And, since (DB is rational and is equal to K/,
therefore] XK'/ is [also] rational ;
and it is applied to the rational straight line £F;
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therefore G/ is rational and commensurable in length with
EF. [x. 2zo0]

But £G is also rational, and is incommensurable in length
with £F;

therefore £G is incommensurable in length with G/A.  [x. 13]

- And, as £G is to GH, so is the square on £G to the
rectangle £G, GH ;

therefore the square on £G is incommensurable with the
rectangle £G, GH. [x 11]

But the squares on £G, GH are commensurable with the
square on £G, for both are rational ;

and twice the rectangle £G, GA is commensurable w1th the

rectangle £G, GH, for it is double of it; [x. 6]
therefore the squares on £G, G/ are incommensurable with
twice the rectangle £G, GH ; [x. 13]

therefore also the sum of the squares on £G, GH and twice
the rectangle £G, GH, that is, the square on £H [ 4), is

incommensurable with the squares on £G, GA. [x. 16]
But the squares on £G, GH are rational ;
therefore the square on £/ is irrational. [x. Def. 4]

Therefore £/ is irrational.
But it is also rational :
which is impossible.

Therefore etc.
Q. E. D.

“ Apply ” the two given medial areas to one and the same rational straight

line p. They can then be written in the form p. k*p, p- )@p.

The difference is then (/& — /A) p*; and the proposition asserts that this
cannot be rational, i.e. (\/# — \/A) cannot be equal to #. Cf. the proposition
corresponding to this in algebraical text-books.

To make Euclid’s proof clear we will put x for k’}p and y for X&p.
Suppose p(x—3)=ps

and, if possible, let pz be rational, so that z must be rational and ~ p ...(1).
Since px, py are medial,

x and y are respectively rational and v p ............... (2).
From (1) and (2), Yz
Now y:z=y:yz

so that yYoye
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But DAk kel )
and 2y8 ~ y8.
Therefore Py +3t o 2ys,
whence (y+3)? v (P +99,
or 2o ( }" + Z’).

And (y*+ 2% is rational ;

therefore x*, and consequently =, is irrational.
But, by (2), x is rational :

which is impossible.
Therefore psz is not rational.

ProrosiTiON 27.

70 find medial straight lines commensurable in square only
which conlain a rational rectangle.

Let two rational straight lines 4, B commensurable in
square only be set out ;
let C be taken a mean proportional between
A, B, [vi. 13] 0
and let it be contrived that, °
as Aisto B,sois Cto D. [v113] 8

Then, since A, B are rational and com-
mensurable in square only,

the rectangle A, B, that is, the square on C
[vt. 17], is medial. [x. 21]

Therefore C is medial. [x. 21]
And since, as 4 is to B, sois C to D,

and A4, B are commensurable in square only,

therefore C, D are also commensurable in square only. [x. 11]
And C is medial ;

therefore D is also medial. [x. 23, addition]

Therefore C, D are medial and commensurable in square
only.

I say that they also contain a rational rectangle.
For since, as A is to B, sois C to D,

therefore, alternately, as A is to C, so is B to D. [v. 16]
But,as 4 isto C,sois Cto B;

therefore also, as C is to B, so is B to D ;

therefore the rectangle C, D is equal to the square on 5.
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But the square on 2 is rational ;
therefore the rectangle C, D is also rational.

Therefore medial straight lines commensurable in square
only have been found which contain a rational rectangle.

Q. E. D.
Euclid takes two rational straight lines commensurable in square only, say
'S k*p.
Find the mean proportional, i.e. Hp.
Take x such that p: kip = k*p EF SN (1).

This gives x = £%p,
and the lines required are Ho, .
For (a) #p is medial.
And (B), by (1), since p ~ #p,
kip ~ ki P
whence [addition to x. 23], since k*p is medial,

kfp is also medial.
The medial straight lines thus found may take either of the forms

(1) VaJB, A/é—;/—‘g or (2) V4B, \/;_j__ﬁ

ProrosiTION 28.

7o find medial straight lines commensurable in square only
which contain a medial rectangle.

Let the rational straight lines 4, B, C commensurable in
square only be set out ;

let D be taken a mean proportional between 4, B, [vi. 13]
and let it be contrived that,

as Bisto C,sois D to E. [v1. 12]
[ ]
A
8 D
c E

Since A, B are rational straight lines commensurable in
square only, _
therefore the rectangle 4, B, that is, the square on D [vi. 17],
is medial. [x. 21]
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Therefore D is medial. [x. 21]
And since B, C are commensurable in square only,

and, as Bisto C,sois D to E,

therefore [, £ are also commensurable in square only. [x 11]
But D is medial ;

therefore £ is also medial. [x. 23, addition]

Therefore D, E are medial straight lines commensurable
in square only.

I say next that they also contain a medial rectangle.
For since, as Bis to C, sois D to E,

therefore, alternately, as B is to D, so is C to E. [v. 16]
But, as Bisto D, sois D to 4 ;

therefore also, as D isto A, sois Cto E;

therefore the rectangle 4, C is equal to the rectangle D, E.
[v. 16]
But the rectangle A4, C is medial ; [x. 21]
therefore the rectangle D, £ is also medial.
Therefore medial straight lines commensurable in square
only have been found which contain a medial rectangle.
Q. E. D.

Euclid takes three straight lines commensurable in square only, i.e. of the
form p, k&p, Ad , and proceeds as follows.

Take the mean proportional to p, # , Le. .é*p.
Then take x such that

k*p : )\*p = k*p N (1),
so that x = Mp/#t,
Hp, h"’p/k* are the required medial straight lines.
For k*p is medial.
Now, by (r), since k*p ~ )«*p,
p X,

whence x is also medial [X. 23, addition], while ~ k*p.

Next, by (1), Ay x = #p #p
= P:p
whence x. k*p =} ?, which is medial.

The straight lines o, )t‘}p/ki of course take different forms according as
the original straight lines are of the forms (1) @, /B, J/C, (2) J4, /B, JC,
(3) /4, b, JC, and (4) 4, /B, .
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E.g in case (1) they are Ja /B, \/JB’

in case (2) they are Y43, \/%“%—4,
and so on.
LEMMA 1.

To find two square numbers suck that their sum is also
square.

Let two numbers A5, BC be set out, and let them be
either both even or both odd.

Then since, whether an even A ) 6 B
number is subtracted from an
even number, or an odd number from ‘an odd number, the
remainder is even, [1x. 24, 26]
therefore the remainder AC is even.

Let AC be bisected at D.

Let AB, BC also be either similar plane numbers, or
square numbers, which are themselves also similar plane
numbers.

Now the product of 48, BC together with the square on
CD is equal to the square on BD. (11. 6]

And the product of 4B, BC is square, inasmuch as it
was proved that, if two similar plane numbers by multiplying
one another make some number, the product is square. [ix. 1]

Therefore two square numbers, the product of A5, BC,
and the square on CD, have been found which, when added
together, make the square on BD.

And it is manifest that two square numbers, the square
on BD and the square on CD, have again been found such
that their difference, the product of 458, BC, is a square,
whenever 4B, BC are similar plane numbers.

But when they are not similar plane numbers, two square"
numbers, the square on B2 and the square on 2DC, have been
found such that their difference, the product of 425, BC, is
not square.

Q E. D.

Euclid’s method of forming right-angled triangles in integral numbers,
already alluded to in the note on 1. 47, is as follows.

Take two similar plane numbers, e.g. mnp®, mng®, wkick are either both even
or botk odd, so that their difference is divisible by 2.
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Now the product of the two numbers, or #*#%%, is square, [1x. 1]
and, by 11. 6,

mnp? . mng® + (”—m‘”’ : mnq')’ = (mnp’ : mny’)”

50 that the numbers mnpg, } (mnp* — mng?) satisfy the condition that the sum
of their squares is also a square number.

It is also clear that }§ (mnp® + mng®), mnpg are numbers such that the
difference of their squares is also square.

LEMMA 2.

To find two square numbers such that their sum is not
square.

For let the product of A5, BC, as we said, be square,
and CA4 even,
and let CA4 be bisected by D.

E 3
A& ®o F & 8
It is then manifest that the square product of 4B, BC

together with the square on CD is equal to the square on BD.
' [See Lemma 1]

Let the unit D £ be subtracted ;
therefore the product of 45, BC together with the square on
CE is less than the square on BD.

I say then that the square product of 428, BC together
with the square on C£ will not be square.

For, if it is square, it is either equal to the square on BE,
or less than the square on BE, but cannot any more be
greater, lest the unit be divided.

First, if possible, let the product of 428, BC together
with the square on CZ£ be equal to the square on BE,
and let GA be double of the unit DE.

Since then the whole 4 C is double of the whole CD,
and in them 4G is double of DE,
therefore the remainder GC is also double of the remainder £C;
therefore GC is bisected by £.

Therefore the product of GB, BC together with the square
on CE is equal to the square on BE. (1. 6]

But the product of 48, BC together with the square on
CE is also, by hypothesis, equal to the square on BE;
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therefore the product of GB, BC together with the square on
CE is equal to the product of 458, BC together with the
square on CE.

And, if the common square on CZ be subtracted,
it follows that 428 is equal to G5 :
which is absurd.

Therefore the product of 458, BC t(fether with the square
on CE is not equal to the square on BE.

I say next that neither is it less than the square on BE.
For, if possible, let it be equal to the square on BF,
and let /A be double of DF.
Now it will again follow that ZZC is double of CF';
so that CH has also been bisected at 7,
and for this reason the product of /7B, BC together with the
square on FC is equal to the square on BF. [m. 6]
But, by hypothesis, the product of 4B, BC together with
. the square on CE is also equal to the square on BF.

'ﬁms the product of /7B, BC together with the square
on CF will also be equal to the product of 4B, BC together
with the square on CE':
which is absurd.

Therefore the product of 4.8, BC together with the square
on CE is not less than the square on BE.

And it was proved that neither is it equal to the square

on BE.
Therefore the product of 4.8, BC together with the square
on CE is not square.
Q. E. D.

We can, of course, write the identity in the note on Lemma 1 above (p. 64)
in the simpler form

- 2 + 3
mp*. mg* + (’"”2'"7') = (PELmL,
where, as before, mg®, mgq® are both odd or both even.
Now, says Euclid,

mpt . mg® + (’"P’:—M' - 1)’ is not a square number.

This is proved by reductio ad absurdum.
H. E. 1L 5
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. mp — mg*\* .
The number is clearly less than mp*. mg® + (—z—f) , i.e. less than
(mp’ + mg’)’
-— )"
If then the number is square, its side must be greater than, equal to, or
less than (r_np’_:m_q’_ I), the number next less than m_p’_:_my:

But (1) the side cannot be > (’_’ﬁ:_l‘f_ x) without being equal to
mp’ + mg*
2

, since they are consecutive numbers.

ORI B RY (Lo RNy I (S AR P 1)
If then mp*. mg* + (’1‘”—;”1’ _ x)’ is also equal to ("‘_P’_;f_"'_i’ _ ,)"’

we must have (mp? — 2) mg* = mp* . mg®,
or mp'— 2 =mp*:

which is impossible.
(3) If m)’.mq’«%-(ztf—:gg-’— 1)’<(M— 1)’,
. suppose it equal to (M— r)’.

But [11. 6] (mp* - 27) mg* +(m}” mg' ) (,,,,s,,_ mg )
Therefore

(mp® = 27) mg* + ("iz—’"l'— ) —mp g + (””’—2”'—9'-:) :

which is impossible.
Hence all three hypotheses are false, and the sum of the squares
]
mp* . mg* and (mp’ mg _ 1) is not square.

ProrosITiON 29.

To find two rational straight lines commensurable in square
only and suckh that the square on the greater is greater than
the square on the less by the square on a straight line commen-
surable in length with the greater.

For let there be set out any rational straight line 425,
and two square numbers CD, DE such that their difference
CE is not square ; [Lemma 1]

let there be described on A8 the semicircle 4 FB,
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and let it be contrived that,
as DC is to CE, so is the square on BA to the square
on AF. [x. 6, Por.]

Let B be joined. F
Since, as the square on B4 is to
the square on AF, so is DC to CE,

therefore the square on BA has to
the square on AF the ratio which the £

number DC has to the number CE'; 5 +— b

therefore the square on BA is com-

mensurable with the square on AF. [x. 6]
But the square on 4B is rational ; [x. Def. 4]

therefore the square on 4 F is also rational ; [#2.]

therefore AF is also rational.

And, since DC has not to CE the ratio which a square
number has to a square number,
neither has the square on B4 to the square on AF the ratio
which a square number has to a square number ;
therefore 4B is incommensurable in length with 4F.  [x. 9]

Therefore BA, AF are rational straight lines commen-
surable in square only.

And since, as DC is to CE, so is the square on BA to
the square on 4F, ‘
therefore, convertendo, as CD is to DE, so is the square on
AB to the square on BF. [v. 19, Por., m1. 31, 1. 47]

But CD has to DE the ratio which a square number has
to a square number ; '
therefore also the square on 425 has to the square on BF
the ratio which a square number has to a square number ;
therefore 4B is commensurable in length with BF. [x. 9]

And the square on 4B is equal to the squares on AF, FB;
therefore the square on A2 is greater than the square on A F
by the square on BF commensurable with 45.

Therefore there have been found two rational straight
lines BA, AF commensurable in square only and such that
the square on the greater A5 is greater than the square on
the less AF by the square on B commensurable in length
with 4B8.

Q E. D.

5—12
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Take a rational straight line p and two numbers m? #* such that (m* — »*)
is not a square.
Take a straight line x such that

MM — =P X e (1),
m —n’

whence xt= i P
and x=pN1-A, wherek:i.

Then p, pa/1 — 2 are the straight lines required.

It follows from () that A p?
and x is rational, but x v p.

By (1), convertendo, mint=pt:p* -},

so that /o —a% ~ p, and in fact = Zp.
According as p is of the form a or /4, the straight lines are (1) g, ~/a* - &
or (2) /4, NA-#A.

ProrosiTION 30.

To find two rational straight lines commensurable in square
only and suck that the square on the greater is greater than
the square on the less by the square on a straight line incom-
mensurable in length with the greater.

Let there be set out a rational straight line 45,
and two square numbers CE, ED
such that their sum CD is not

square ; [Lemma 2] ~

let there be described on A5 the

semicircle AFB,

let it be contrived that,

as DC is to CE, so is the square A 8
on BA to the square on AF, S

[x. 6, Por.]
and let /B be joined.

Then, in a similar manner to the preceding, we can prove
that BA, AF are rational straight lines commensurable in
square only.

And since, as DC is to CE, so is the square on B4 to
the square on AF,
therefore, convertendo, as CD is to DE, so is the square on
AB to the square on BF. [v. 19, Por., m. 31, 1. 47]

But CD has not to DE the ratio which a square number
has to a square number;
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therefore neither has the square on 42 to the square on BF
the ratio which a square number has to a square number ;

therefore 4B is incommensurable in length with BF.  [x. 9]

And the square on A2 is greater than the square on 4F
by the square on B incommensurable with A425.

Therefore 4B, AF are rational straight lines commen-
surable in square only, and the square on 423 is greater than
the square on AF by the square on B incommensurable in
length with 45.

Q. E. D.
In this case we take m* #? such that m?+ 72 is not square.
Find « such that m+ndimd=pt: 2P,
m’
whence X = o e P,
. p n
or x = where 2= —.
Ji+ &' ”m

Then p, JT—PTTF satisfy the condition.

The proof is after the manner of the proof of the preceding proposition
and need not be repeated.
According as p is of the form a or ,/4, the straight lines take the

form (1) a, \/a’—%, that is, ¢, ¥Va* — B, or (2) J4, VA — B and
JA, Ja-#.

ProrosiTION 31I.

To find two medial straight lines commensurable in square
only, containing a rational rectangle, and suck that the square
on the greater is greater than the squarve onm the less by the
square on a straight line commensurable in length with the
grealer.

Let there be set out two rational straight lines 4, B
commensurable in square only and such that the
square on A, being the greater, is greater than
the square on B the less by the square on a
straight line commensurable in length with 4.

X. 2

And let the square on C be equal t(g thgg
rectangle 4, B.

Now the rectangle 4, B is medial; [x. 21]
therefore the square on C is also medial ;

therefore C is also medial. [x. 21]
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Let the rectangle C, D be equal to the square on 5.

Now the square on A is rational ;
therefore the rectangle C, D is also rational.

And since, as A4 is to B, so is the rectangle A4, B to the
square on B,
while the square on C is equal to the rectangle 4, 5,
and the rectangle C, D is equal to the square on 5,
therefore, as A is to B, so is the square on C to the rectangle
G D.

But, as the square on C is to the rectangle C, D, so is C
to D;
therefore also, as 4 is to B, sois C to D.

But A is commensurable with 2 in square only ;
therefore Cis also commensurable with D in square only. [x. 11]

And C is medial ;
therefore D is also medial. [x 23, addition)

And since, as 4 is to B, sois C to D,
and the square on A is greater than the square on B by the
square on a straight line commensurable with 4,
therefore also the square on C is greater than the square on
D by the square on a straight line commensurable with C.

[x. 14]

Therefore two medial straight lines C, D, commensurable
in square only and containing a rational rectangle, have been
found, and the square on C is greater than the square on D

by the square on a straight line commensurable in length
with C.

Similarly also it can be proved that the square on C
exceeds the square on D by the square on a straight line
incommensurable with C, when the square on A is greater
than the square on B by the square on a straight line incom-
mensurable with 4. [x. 30]

I. Take the rational straight lines commensurable in square only found
in X. 29, i.e. p, pV1 = 2.
Take the mean proportional p (1 — k’)* and x such that
p(-At: pVT-B=pV1—R: x .

Then p (1 —k’)*, x, or p(1 -, p(r —/1~’)2 are straight lines satisfying the
given conditions.
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For (a) p*¥1 - # is a medial area, and therefore p (1 -2 is a medial
straight line ........cooiiiiiiiiiiiii (1);
and x.p(1 - k’)* = p?(1 - #%) and is therefore a rational area.

B) p,p(1- k’)*, pN1 -2, x are straight lines in continued proportion, by
construction.
Therefore p:pV:-k’:p(r—k’)*:x ........................ (2).
(This Euclid has to prove in a somewhat roundabout way by means of the
lemma after X. 21 to the effect that a : & = ab : %)

From (2) it follows [X. 11] that x ~ p (1 - #); whence, since p (1 — &)t is
medial, x or p (1 — k’)’ is medial also.

(y) From (2), since p, p¥1 — A satisfy the remaining condition of the

problem, p (1 =A%, p(1 - 2 do so also [x. 14].
According as p is of the form a or /4, the straight lines take the forms

Py il A
® Ja “ JaJa’—b"
Yy ey BT Y A-#A4
or (2) \/A (A - PA), m) .

II. To find medial straight lines commensurable in square only contain-
ing a rational rectangle, and such that the square on one exceeds the square
on the other by the square on a straight line incommensurable with the former,
we simply begin with the rational straight lines having the corresponding

property [Xx. 30}, viz. p, «/_x_pT;" and we arrive at the straight lines

P P
+#R (+m)t
According as p is of the form a or /4, these (if we use the same
transformation as at the end of the note on Xx. 30) may take any of the forms

(r) V‘-’T“’:E: a:/‘»/—___j—.—iij’

a -
or  (2) YAA-B), .—‘;‘J%,
or YA(4-5), wi{—f__%;s.

ProrosITION 32.

To find two medial straight lines commensurable in square
only, containing a medial rectangle, and suck that the square
on the greater is greater than the square on the less by the
square on & straight line commensurable with the greater.
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Let there be set out three rational straight lines 4, B, C
commensurable in square only, and such that the square on 4
is greater than the square on C by the square on a straight
line commensurable with A, . [x. 29]

and let the square on D be equal to the rectangle 4, 5.
A :

B
o—

Therefore the square on D is medial ;
therefore D is also medial. [x. 21]

Let the rectangle D, E be equal to the rectangle 5B, C.
Then since, as the rectangle 4, B is to the rectangle B, C,
sois A to C,

while the square on D is equal to the rectangle 4, B,
and the rectangle D, E is equal to the rectangle B, C,
thelzfore, as A4 is to C, so is the square on D to the rectangle
D, E.
But, as the square on D is to the rectangle D, £, so is D
to £ ;
therefore also, as A4 is to C, so is D to £.
But A4 is commensurable with C in square only ;
therefore D is also commensurable with £ in square only. [x.11]
But D is medial ; '
therefore £ is also medial. [x. 23, addition]
And, since, as A is to C, so is D to £,

while the square on A is greater than the square on C by
the square on a straight line commensurable with A4,

therefore also the square on D will be greater than the square
on £ by the square on a straight line commensurable with D.

[x. 14]
I say next that the rectangle D, £ is also medial.

For, since the rectangle B, C is equal to the rectangle D, £,
while the rectangle B, C is medial, [x 21]
therefore the rectangle D, £ is also medial.

] Therefore two medial straight lines D, £, commensurable
in square only, and containing a medial rectangle, have been
found such that the square on the greater is greater than the
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square on the less by the square on a straight line commen-
surable with the greater.

Similarly again it can be proved that the square on D
is greater than the square on £ by the square on a straight
line incommensurable swith ), when the square on 4 is
greater than the square on C by the square on a straight line

incommensurable with 4. [x. 30]
1. Euclid takes three straight lines of the form p, p J/A, pV1 -4,
takes the mean proportional p)\* between the first two ..................... (1),
and then finds x such that
p:\* p)t*—p‘\/l—k’ i (2),

whence x = pA* Ji-7,
and the straight lines pA, pA# »/T — 2 satisfy the given conditions.

Now (a) pAt is medial.

(B) We have, from (1) and (2),

pipVI—F=pAix i, (3),

whence x ~ pli ; and x is therefore medial and ~ p)\*.

@ x.pM=p A pNT-F

But the latter is medial ; [x 21]
therefore x. pA*, or p:\* . p)k* NT= 2 is medial.

Lastly () p, p »/1 — # have the remaining property in the enunciation ;
therefore p)ti, p)\i N1 —# have it also. [x. 14]

(Euclid has not the assistance of symbols to prove the proportion (3) above.
He therefore uses the lemmas ad:4c=a:c and d*:de=d: ¢ to deduce from
the relations

ab=d? }
and d:b=c:e
that a:ic=d:e)

The straight lines pA*, p)\*J 1 — 4% may take any of the following forms
according as the straight lines first taken are

(1) a, VB, J&*=8, (2) J4, VB, JA-%4, (3) J4, b, JA-P4.
' —— NB@-2)

(1) WaJB, ~VaJB °

o 47, L2,

sNA—F4
Q) NoJd, =g
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II. If the other conditions are the same, but the square on the first
medial straight line is to exceed the square on the second by the square on a
straight line sncommensurable with the first, we begin with the three straight

lines p, p A/A, :/I_Pff” and the medial straight lines are

prd
N+
The possible forms are even more various in this case owing to the more
various forms that the original lines may take, e.g.

(1) a, JB, Na-C;
(2) J4, 6, NA-¢;
(3) V4, 4 JA-C;
(@) J4, JB, NA-7;
() J4, JB, JA-C;
the medial straight lines corresponding to these being

PA*r

(1) ~a JB, Jp_ﬁ;);
o 7,
(3) VEJ4, %;
(4) Y4B, i‘%—*;—"’;
(5) V4B, %—@'
LEMMA.

. Let ABC be a right-angled triangle having the angle 4
right, and let the perpendicular 4D be

drawn; ' A

I say that the rectangle CB, BD is

equal to the square on B4,

the rectangle BC, CD equal to the § o c
square on C4,

the rectangle 8D, DC equal to the square on 4D,

and, further, the rectangle BC, 4D equal to the rectangle
B4, AC. .
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And first that the rectangle CB, BD is equal to the square
on BA.

For, since in a right-angled triangle 4D has been drawn
from the right angle perpendicular to the base,
therefore the triangles 48D, ADC are similar both to the
whole 4 BC and to one another. [vi. 8)

And since the triangle 4.BC is similar to the triangle 45D,
therefore, as CBis to BA, sois BA to BD; * [v1. 4]
therefore the rectangle CB, BD is equal to the square on 4 5.

[v1. 17]

For the same reason the rectangle BC, CD is also equal

to the square on AC.

And since, if in a right-angled triangle a perpendicular
be drawn from the right angle to the base, the perpendicular
so drawn is a mean proportional between the segments of the
base, [v1. 8, Por.]

therefore, as BD is to DA, so is AD to DC;
therefore the rectangle 8D, DC is equal to the square on 4D.

[vi 17]
I say that the rectangle BC, 4D is also equal to the rect-

angle BA, AC.
For since, as we said, ABC is similar to ABD,
therefore, as BC is to CA, so is BA to AD. i 4]
Therefore the rectangle BC, AD is equal to the rectangle
BA, AC [v1. 16]

Q. E. D.

ProrosiTiON 33.

To find two strazght lines incommensurable in square whick
make the sum of the squares on them rational but the rectangle
contained by them medial.

Let there be set out two rational straight lines 458, BC
commensurable in square only
and such that the square on the
greater 4 B is greater than the F
square on the less BC by the
square on a straight line in- .
commensurable with 4253, A EB O ©
(x. 30]
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let BC be bisected at D,

let there be applied to 4.3 a parallelogram equal to the square
on either of the straight lines BD, DC and deficient by a
square figure, and let it be the rectangle A£, EB ; [v. 28]

let the semicircle 4B be described on A5,
let £F be drawn at right angles to 45,
and let AF, FB be joined.
Then, since A5, BC are unequal straight lines,

and the square on A28 is greater than the square on BC by
the square on a straight line incommensurable with 45,

while there has been applied to 4B a parallelogram equal to
the fourth part of the square on BC, that is, to the square on
half of it, and deficient by a square figure, making the rect-
angle AE, EB,

therefore A is incommensurable with £5. [x. 18]

And, as AE is to EB, so is the rectangle B4, AE to the
rectangle A8, BE,

while the rectangle B4, AE is equal to the square on AF,
and the rectangle A8, BE to the square on BF;

therefore the square on AF is incommensurable with the
square on FB;

therefore AF, FB are incommensurable in square.
And, since AZB is rational,
therefore the square on 423 is also rational ;

so that the sum of the squares on AF, FB is also rational.
[1 47]
And since, again, the rectangle 4, EB is equal to the
square on EF,

and, by hypothesis, the rectangle 4, £B is also equal to the
square on B0,

therefore FZ is equal to BD ;

therefore BC is double of FE,

so that the rectangle 4B, BC is also commensurable with the
rectangle 48, EF.

But the rectangle 458, BC is medial ; [x. 21]
therefore the rectangle 4B, EF is also medial. ~ [x. 23, Por.]
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But the rectangle A5, EF is equal to the rectangle AF,
FB; [L.emma]

therefore the rectangle AF, FAB is also medial.

But it was also proved that the sum of the squares on these
straight lines is rational.

Therefore two straight lines AF, FB incommensurable
in square have been found which make the sum of the
squares on them rational, but the rectangle contained by them
medial.

Q E. D

Euclid takes the straight lines found in x. 30, viz. p, :/—%9 .
1

He then solves geometrically the equations
xty=p }

-
Y CEY)
If x, y are the values found, he takes », » such that

0= px
tf:Py} ................................. (2),

and , v are straight lines satisfying the conditions of the problem.
Solving algebraically, we get (if x> y)

_P L =e( __*
x—3(1+~/1+b” ’ 2\’ ~/x+k’)’

whence u=-2L ,/1+—b—
’ 7; N1+ £

Euclid’s proof that these straight lines fulfil the requirements is as follows.

................... ceeee(3)

(a) The constants in the equations (1) satisfy the conditions of x. 18;

therefore x vy
But xiy=ut:908
Therefore 7 RVE

and «, v are thus éncommensurable in square.

(B) 1+ v*=p* which is rational.

) By (1) Vo= ——.
By (2), wo=p. “/5
Ap,
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2
But —”— is a medial ar
N1+ &

therefore wv is medial.
P may have any of the three forms

Since p, NPy
I
(1) @ NG =B, (2) J4, NA=-B, (3) J4, NA-7,

u, v may have any of the forms

A+ NAB A—\JAB
(2) P s
3) N/A+:~/A’ A-—:JA.

ProrosITION 34.

To find two straight lines incommensurable in square which
make the sum of the squaves on them medial but the rectangle
contained by them rational.

Let there be set out two medial straight lines 45, BC,
commensurable in square only, such that the rectangle which
they contain is rational, and the square on 428 is greater than
the square on BC by the square on a straight line incom-
mensurable with 45 ; [x. 31, ad fin.]

A F B E [}

let the semicircle 4028 be described on A28,

let BC be bisected at £,

let there be applied to 425 a parallelogram equal to the square

on BE and deficient by a square figure, namely the rectangle

AF, FB; [v1. 28]

therefore 4F is incommensurable in length with 7B. [x. 18]
Let #D be drawn from F at right angles to A5,

and let AD, DB be joined.
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Since A F is incommensurable in length with 725,
therefore the rectangle 24, AF is also incommensurable with
the rectangle 48, BF. [x. 11]

But the rectangle B4, AF is equal to the square on 4D,
and the rectangle 4.8, BF to the square on D5 ;
therefore the square on 40 is also incommensurable with the
square on DA.

And, since the square on 428 is medial,
therefore the sum of the squares on 4D, DB is also medial.

[ 31, 1. 47]
And, since BC is double of DF,
therefore the rectangle 4.8, BC is also double of the rectangle
AB, FD.
But the rectangle 45, BC is rational ;

therefore the rectangle 48, FD is also rational. [x. 6]
But the rectangle A8, FD is equal to the rectangle 4D,
DB; [Lemma]

so that the rectangle 4.0, DB is also rational.

Therefore two straight lines 40, DB incommensurable
in square have been found which make the sum of the squares
on them medial, but the rectangle contained by them rational.

Q E.D.

In this case we take [x. 31, 2nd part] the medial straight lines

p )
(1+49% 1+t
Solve the equations

P
xhy=—" 4
@ +Pf') ........................... (1).

M
Take %, v such that, if x, y be the result of the solution,

and », v are straight lines satisfying the given conditions.
Euclid’s proof is similar to the preceding.
(a) From (1) it follows [x. 18] that
X vy,
whence RVE
and », v are thus incommensurable in square.
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3
®8) "’+”‘=./_P.',._p’ which is a medial area.
1

() w=—F_ Jay

——, which is a rational area.

1+ 4

Therefore v is rational.

To find the actual form of », v, we have, by solving the equations (1)

(if x>y),

(WNT+B+4),
z(1+ a)t
y=z(1+p)!(Jl+k’ k);
and hence a/«/1+k’+
~/z(1+
~/z(r+k’)J”+P .

may take (see note

Bearing in mind the forms which

[
(r+ fa)* (1 + 48
on X. 31), we shall find that »,  may have any of the forms

® J(a+JBZJa’— ’ \/(a—,,/BzJa’—B;

(2) \/(A/A+ ,Jf) JA-B \/(./A— Jl:) JA-3

@ ~/(./A+b:~/A—b’, J(~/A—61JA—#.

ProrosiTION 35.

7o find two straight lines incommensurable in square whick
make the sum of the squares on them medial and the rvectangle
contained by them medial and morveover incommensurable with
the sum of the squares on them.

Let there be set out two medial straight lines 48, BC
commensurable in square only, containing a medial rectangle,
and such that the square on 428 is greater than the square on
BC by the square on a straight line incommensurable with

B; [x. 32, ad fin.]

-
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let the semicircle 4.DB be described on ARB,. -
and let the rest of the construction be as above,

A - ‘.:F.B ¢
Then, since AF is mcommensurable in length ‘with FB
[x. 18]
AD is also mcommensurable in square with D2A. [x. u]
And, since the square on 4B is medial, 2
therefore the sum of the squares on 4D, DB is also medial.
o [ 3n I 47)

And, since the rectangle AF, FB is equal to the square
on each of the straight lines BE, DF, -

therefore BE is equal to DF;
therefore BC is double of FD

so that the rectangle 425, BC is also double of the rectangle
AB, FD.

But the rectangle 45, BC is. medlal
therefore the rectangle A5, FD is also medial. [x. 32, Por.]

And it is equal to the rectangle AD, DB;
[Lemma after x. 32]

therefore the rectangle 4D, DBis also medial.

And, since A8 is incommensurable in length with BC,
while CB is commensurable with BE, :
therefore 423 is also incommensurable in length with BE

[x. 13]
so that the square on 425 is also incommensurable with the
rectangle AB, BE. [x. 11]

But the squares on 4D, DB are equal to the square on
AB, (1. 47]

and the rectangle A B, FD, that i is, the rectangle 4D, DB, is
equal to the rectangle AB BE;

therefore the sum of the squares on 4D, DB is incommen-
surable with the rectangle AD, PB.

H. £ I 6
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Therefore two straight lines 40, DB incommensurable
in square have been found which make the sum of the squares
on them medial and the rectangle contained by them medial
and moreover incommensurable with the sum of the squares

on them. -
Q. E. D.

Take the medial straight lines found in x. 3z (2nd part), viz.

pk*, pki/d 1+ 4

Solve the equations

x+y= pk* (
N P eereeeesesereienieiisiianen 1)
NS '
4(1+ )
and then put w=p\t . x ()
................................. X
V= pk* 54
where x, y are the ascertained values of x, y.
Then u, v are straight lines satisfying the given conditions.
Euclid proves this as follows.
(a) From (1) it follows [x. 18] that x © y.
Therefore o v,
and VRV
B8) #* + v*=p* /A, which is a medial area.................. (3)-
(2] §Y = pX* . ‘j 5
1 p'J/A e g, .
== ’ h ............ N
2 Vit which is a medial area : ({;),
therefore wv is medial.
;
s 1,1 P\
@ e TR
. ? JA
h Y WL L
whence . P ey
That is, by (3) and (4),
(@ +v%) v uv.
The actual values are found thus. Solving the equations (1), we have
=0 A
2 NITY N
1
y =P-A_ (‘ - A ’
) 2 NFEY:
ot J &
whence “="— —_
V2 ' NTY 2

-\
=T/ Nyl
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According as p is of the form @ or ,/4, we have a variety of forms for
%, v, arrived at by using the same transformations as in the notes on X. 30
and X. 3z (second part), e.g.

 JEAOE | [ETOTE,
o JTEAOTE | [TA= OB,

W4+ JB WA-9JB.
(3) \/ ) J G
and the expressions in (2), (3) with & in place of \/5.

ProrosiTION 36.

If two rational straight lines commensurable in square
only be added together, the whole is trrational; and let it be
called binomial.

For let two rational straight lines 48, BC commen-
s surable in square only be added
together ;

I say that the whole AC is ir- A 8 ¢
rational.
For, since 4B is incommensurable in length with BC—
10 for they are commensurable in square only—
and, as AB is to BC, so is the rectangle 4B, BC to the
square on BC, .
therefore the rectangle 48, BC is incommensurable with the
square on BC. [x. 11]
15 But twice the rectangle A8, BC is commensurable with
the rectangle 4B, BC [x. 6}, and the squares on A8, BC are
commensurable with the square on BC—for AB, BC are
rational straight lines commensurable in square only— [x. 15]
therefore twice the rectangle A8, BC is incommensurable
20 with the squares on A58, BC. [x. 13]
And, componendo, twice the rectangle AB, BC together
with the squares on A8, BC, that is, the square on 4C [1. 4],
is incommensurable with the sum of the squares on 45, BC.

[x. 16]
But the sum of the squares on A8, BC is rational ;

25 therefore the square on 4C is irrational,
so that AC is also irrational. [x. Def. 4]
And let it be called binomial. Q. E. D.

6—2
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Here begins the first hexad of propositions relating to compound irrational
straight lines. The six compound irrational straight lines are formed by
adding two parts, as the corresponding six in Props. 73—78 are formed by
subtraction. The relation between the six irrational straight lines in this and
the next five propositions with those described in Definitions 11. and the
Props. 48—s53 following thereon (the first, second, third, fourth, fifth and
sixth binomials) will be.seen when we come to Props. 54—59; but it may be
stated here that the six compound irrationals in Props. 36—41 can be found
by means of the equivalent of extracling the sguare root of the compound
irrationals in x. 48—s3 (the process being, strictly speaking, the finding of the
sides of the squares equal to the rectangles contained by the latter irrationals
respectively and a rational straight line as the other side), and it is therefore
the further removed compound irrational, so to speak, which is treated first.

In reproducing the proofs of the propositions, I shall for the sake of
simplicity call the two parts of the compound irrational straight line x, y,
explaining at the outset the forms which x, y really have in each case; x will
always be supposed to be the greater segment.

In this proposition x, y are of the form p, /4. p, and (x +y) is proved to
be irrational thus.

x ~~y, so that x v y.

Now x:y=x:ay,
so that a* v ay.
But a* ~ (2? + %), and ay ~ 2xy;
therefore : (2*+ %) v 22y,
and hence (x* + 5% + 2x) v (2 +57).

“ But (x? + »?) is rational ;
therefore (x + y)* and therefore (x +y), is s7rational.

This irrational straight line, p + \/&. p, is called a dinomsal straight line.
This and the corresponding apotome (p— \/k.p) found in x. 73 are the
positive roots of the equation

HA—2(1+4)p'. 2+ (1-k)p'=0.

ProrosiTION 37.

If two medial straight lines commensurable in square only
and containing a ralional rectangle be added together, the
whole is irrational; and let it be called a first bimedial.
straight line.

For let two medial straight lines 48, BC commensurable
in square only and containing
a rational rectangle be added 3 r
together ;
I say that the whole AC is irrational.

For, since 4B is incommensurable in length with BC,

therefore the squares on 48, BC are also incommensurable
with twice the rectangle 458, BC; [cf x. 36, Il 9g—z0]
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and, componendo, the squares on 4B, BC together with twice
the rectangle 4.8, BC, that is, the square on AC [u. 4), is
incommensurable with the rectangle 453, BC. [x. 16]

But the rectangle 48, BC is tational, for, by hypothesis,
AB, BC are straight lines containing a rational rectangle ;
therefore the square on AC is irrational ;

therefore AC is irrational. [x. Def. 4]
And let it be called a first bimedial straight line.
Q E. D.

Here x, y have the forms k*p, k’p respectively, as found in x. 27.
Exactly as in the last case we prove that
2+ 52 o 2xy,
whence (x +y) v 2.
But xy is rational ; :
therefore (x + )%, and consequently (x + y), is frrational.

The irrational straight line #o + Bp is called a first bimedial straight line.

This and the corresponding first agofome of a medial (#p - Bp) found in
X. 74 are the positive roots of the equation

o2 Jh(1+A) .+ k(11— AP pi=o.

ProrosiTION 38.

If two medial straight lines commensurable in square only
and containing a medial rectangle be added together, the whole
is trrational,; and let it be called a second bimedial straight
line.

s For let two medial straight lines 4.8, BC commensurable
in square only and containing
a medial rectangle be added A .B_ o
together ; o H a
I say that AC is irrational.

1o For let a rational straight
line DE be set out, and let the
parallelogram DF equal to the g f
square on A4 C be applied to DE,
producing DG as breadth. [ 44]

15 Then, since the square on 4C is equal to the squares on
AB, BC and twice the rectangle 48, BC, [ 4]

let £H, equal to the squares on 4.8, BC, be applied to DE;
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therefore the remainder HF is equal to twice the rectangle
AB, BC.

2  And, since each of the straight lines 45, BC is medial,
therefore the squares on AB, BC are also medial.

But, by hypothesis, twice the rectangle 458, BC is also
medial.
And EH is equal to the squares on 45, BC,

25 while 7/ is equal to twice the rectangle 458, BC;
therefore each of the rectangles £/, HF is medial.
And they are applied to the rational straight line DE';

therefore each of the straight lines DA, HG is rational and
incommensurable in length with DE. [x. 22]

30 Since then 48 is incommensurable in length with BC,

and, as A B is to BC, so is the square on 4B to the rectangle
AB, BC,

therefore the square on 425 is incommensurable with the rect-

angle AB, BC. [x. 11]
35 But the sum of the squares on 45, BC is commensurable
with the square on 425, [x. 15]
and twice the rectangle A8, BC is commensurable with the
rectangle 4B, BC. [x. 6]
Therefore the sum of the squares on A8, BC is incom-

s mensurable with twice the rectangle 4.8, BC. [x. 13]

But £/ is equal to the squares on 45, BC,
and A F is equal to twice the rectangle 458, BC.
Therefore £H is incommensurable with A7,

so that D/ is also incommensurable in length with ZG.
[vr 1, x. 11]

45 Therefore DH, HG are rational straight lines commen-
surable in square only ;

so that DG is irrational. [x. 36]
But DE is rational ;

and the rectangle contained by an irrational and a rational
so straight line is irrational ; [cf. x. 20]

therefore the area DF is irrational,
and the side of the square equal to it is irrational.  [x. Def. 4]

PO WS
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But A4C is the side of the square equal to DF';
therefore AC is irrational.

ss  And let it be called a second bimedial straight line.
Q. E. D.
After proving (L 21) that eack of the squares on 4.8, BC is medial, Euclid
states (IL 24, 26) that EA, which is equal to the sum of the squares, is a
medial area, but does not explain why. It is because, by hypothesis, the
squares on A8, BC are commensurable, so that the sum of the squares is
commensurable with either [x. 15] and is therefore a medial area [x. 23, Por.}

In this case [X. 28, note] x, y are of the forms iy, Abp it respectively. .
Apply each of the areas (x*+3?) and 2y to a rational straight line o, i.e.

su
ppose % + y? = ou,
2xy = ov.
Now it follows from the hypothesis, X. 15 and X. 23, Por. that (z* + %) is
a medial area ; and so is 2xy, by hypothesis ;
therefore ou, ov are medial areas.

Therefore each of the straight lines #, v is rationaland v & ........ (1).
Again xvy;

therefore x* v xy.
But 2~ x4y and xy ~ 23y;

therefore x'+ 92 v 2xy,

or oU v o0,

whence 7RO (2).

Therefore, by (1), (2), %, v are rational and ~-.

It follows, by x. 36, that (« + ) is irrational.

Therefore (¥ + v) o is an irrational area [this can be deduced from x. 20
by reductio ad absurdum),

whence (x + y)% and consequently (x +y), is irrational.

i .
The irrational straight line &p + %’ is called a second bimedial straight
line.
. . . A
This and the corresponding second agotome of a medial (k*p— ey p)
found in x. 75 are the positive roots of the equation
k+A (A=)

#oa et B o,

ProposITION 39.

If two straight lines incommensurable in square which
make the sum of the squares on them rational, but the rectangle
contained by them medial, be added together, the whole straight
line is irvational : and let it be called major.
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For let two straight lines A8, BC incommensurable in
square, and fulfilling the given con- - : o ~
ditions {x. 33], be added together ; A : ) )
I say that AC is irrational. '

. For; since the rectangle 45, BC is medial;

twice the rectangle 4.8, BC is also medial.  [x. 6 and 23, Por.]
~ But the sum of the squares on A5, BC is rational ;
therefore twice the rectangle 458, BC is incommensurable
with the sum of the squares on A58, BC, ,

so that the squares on 45, BC together with twice the rect-
angle A5, BC, that is, the square on AC, is also incommen-

surable with the sum of the squares on 458, BC; [x. 16]
therefore the square on AC is irrational,
so that AC is also irrational. R - [x Def. 4]

And let it be called major.
: ' Q. E. D.

Here z, y are of the form found in X. 33, viz.
P J L * P [ %
N TR BN T R
By hypothesis, the rectangle xy is medial ;

therefore 2xy is medial.
Also (x* + 37 is a rational area.

Therefore x2+y' v 2y,
whence ’ (Z+y) v (22 +Y),
so that (x + )", and therefore (x + y), is irrational.

The irrational straight line L \/ I+ _*_ +-L \/ I
' e ' N2 1+4& 2

LR
Lo i+ A
called a major (irrational) straight line.
This and the corresponding minor irrational found in x. 76 are the
positive roots of the equation

y 2
. x‘—zp?.x’+l—+-‘e—,p“=o,

ProrosiTION 40.

If two straight lines incommenswrable in square whick
make the sum of the squares on them medial, but the rectangle
contained by them vational, be added together, the whole straight
line is yrrational,; and let it be called the side of a rational
plus a medial area. - ‘ L B
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For let two straight lines 4.8, BC incommensurable in
square, and fulfilling the given con-
ditions [x. 34], be added together ; A B O
I say that 4C is irrational. '
For, since the sum of the squares on 45, BC is medial,
while twice the rectangle 4B, BC is rational,
therefore the sum of the squares on 43, BC is incommen-
surable with twice the rectangle 48, BC;
so that the square on AC is also incommensurable with twice
the rectangle 4.8, BC. [x. 16]
But twice the rectangle 45, BC is rational ; '
therefore the square on AC is irrational.
Therefore AC is irrational. [x. Def. 4]
And let it be called the side of a rational plus a
medial area.

Q. E. D.
Here x, y have [x. 34] the forms

ms/\/x+k'+k J_1+ )JJ1+P .y 2

In this case (x* + %) is a medial, and 2xy a rational, area; thus
2+ o 23y,
Therefore (x +y) v 2xp,
whence, since 2xy is rational,
(= + »)%, and consequently (x + ), is irrational.
The irrational straight line
~/.2(_1;__\/«/x+k’+k+le(l NNy I k
is called (for an obvious reason) the “side” of a ralwﬂal Plus a medial (area).

This and the corresponding irrational with a minus-sign found in x. 7%
are the positive roots of the equation

”“m—”' "’*(xw)"' =o.

PROPOSITION 41. -

If two straight lines incommensurable in square whick
make the sum of the squares on them medial, and the rectangle
contained by them medial and also incommensurable with the
sum of the squares on them, be added together, the whole straight
line is irvational ; and let it be called the side of the sum
of two medial areas.
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For let two straight lines 458, BC incommensurable in
square and satisfying the given conditions
[x. 35] be added together ;

I say that AC is irrational.

Let a rational straight line DZ be set out,
and let there be applied to D £ the rectangle
DF equal to the squares on 4B, BC, and G F
the rectangle G/ equal to twice the rectangle
AB, BC;
therefore the whole D/ is equal to the square
on AC. [11. 4]

Now, since the sum of the squares on
AB, BC is medial,

.and is equal to DF,
therefore DF is also medial.

And it is applied to the rational straight line DE';
therefore DG is rational and incommensurable in length with
DE. [x. 22]

For the same reason GX is also rational and incommen-
surable in length with GZ, that is, DE.

And, since the squares on 4B, BC are incommensurable
with twice the rectangle 483, BC,

DF is incommensurable with G ;
so that DG is also incommensurable with GX. [vi. 1, x. 11]

And they are rational ;
therefore DG, GK are rational straight lines commensurable
in square only ;
therefore DX is irrational and what is called binomial. [x. 36]

But DE is rational ;
therefore DH is irrational, and the side of the square which
is equal to it is irrational. [x. Def. 4]

But AC is the side of the square equal to 7D ;
therefore AC is irrational.

And let it be called the side of the sum of two medial
areas.

K H

D E

A B ¢

Q. E. D.
In this case x, y are of the form

ok l__+ 2 ot \/_r ~_*
N Jii B W2 Ji B
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By hypothesis, (x* +*) and 2xy are medial areas, and

PV 2EY (x).
¢ Apply’ these areas respectively to a rational straight line o, and suppose
S5 SRR (2).
Xy = ov
Since then ox and ov are both medial areas, , v are rational and both
AT © 0 ooiniiiiiiiiiiiiie e ettt e e 3)
Now, by (1) and (2),
oU v av,
so that RVE 3

By this and (3), #, v are rational and ~.

Therefore [x. 36] (# + v) is irrational.

Hence o (¢ + v) is irrational [deduction from x. 20).
Thus (x + y)* and therefore (x + ), is irrational.
The irrational straight line

pat J_ N A
— I+ —=+"-A/ I — —=
NES Vi Va2 NI+ B
is called (again for an obvious reason) the “side” of the sum of two medials
(medial areas). ) ]

This and the corresponding irrational with a minus sign found in x. 78
are the positive roots of the equation

kﬂ
- 3 AT P
-2 /. 2y +'\I+k’p o.

LEMMA.

And that the aforesaid irrational straight lines are divided
only in one way into the straight lines of which they are the
sum and which produce the types in question, we will now
prove after premising the following lémma.

Let the straight line 43 be set out, let the whole be cut
into unequal parts at each of
the points C, D,
and let 4 Cbe supposed greater
than DB ;

I say that the squares on AC, CB are greater than the squares
on AD, DB.

For let A8 be bisected at £.
Then, since AC is greater than DB,

let DC be subtracted from each ;

therefore the remainder 4D is greater than the remainder C5.
But AE is equal to £5;

therefore DE is less than £C;

A o E © B8
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therefore the points C, D are not equidistant from the point
of bisection.

And, since the rectangle AC, CB together with the square

on EC is equal to the square on £5, [ 5]
and, further, the rectangle 4D, DB together with the square
on DE is equal to the square on £B, (]

therefore the rectangle 4C, CB together with the square on
EC is equal to the rectangle 4D, DB together with the
square on DE.

And of these the square on DE is less than the square
on EC;
therefore the remainder, the rectangle AC, CB, is also less
than the rectangle 4D, DB,
so that twice the rectangle 4C, CB is also less than twice
the rectangle 4D, DB.

Therefore also the remainder, the sum of the squares on
AC, CB, is greater than the sum of the squares on 40, DB.

Q. E. D.
3. and which produce the types in question. The Greek is xowovedv Td xpoxeluera
ey, and I have taken efdy to mean “types (of irrational straight lines),” though the expression
might perhaps mean * satisfying the conditions in question.”

This proves that, if x +y=u+9, and if %, 7 are more nearly equal than
x, y (i.e. if the straight line is divided in the second case nearer to the point

of bisection), then
(= +yY)> (1 + 2°).
It is first proved by means of 11. 5 that
2xy < 21,
whence, since (x +y)* = (¥ + v)%, the required result follows.

ProrosiTiON 42.
A binomzial straight line is divided into ils terms at one

point only.

. Lerz#Rbe a binomial straight line divided into its terms
at C; ‘ )
therefore AC, CB are rational ;- - & B
straight lines commensurable in -
square only. " &x. 36]

1 say that A8 is not divided at another point into two
rational straight lines commensurable in square only.
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For, if possible, let it be divided at D also, so that 4D,
DB are also rational straight lines commensurable in square
only.

It is then manifest that 4C is not the same with D2A.

For, if possible, let it be so.

Then AD will also be the same as CB,

and, as AC is to CB, so will BD be to DA;

thus A2 will be divided at D also in the same way as by the
division at C:

which is contrary to the hypothesis.

Therefore AC is not the same with DB.

For this reason also the points C, [ are not equidistant
from the point of bisection.

Therefore that by which the squares on AC, CB differ
from the squares on 4D, DB is also that by which twice
the rectangle 4D, DB differs from twice the rectangle
AC, CB,
because both the squares on 4C, CB together with twice the
rectangle 4C, CB, and the squares on 4D, DB together
with twice the rectangle AD, DB, are equal to the square
on AB. [11. 4]

But the squares on AC, CAB differ from the squares on
AD, DB by a rational area,

for both are rational ;

therefore twice the rectangle 4D, DB also differs from twice
the rectangle 4C, (B by a rational area, though they are
medial [x. 21]:

which is absurd, for a medial area does not exceed a medial
by a rational area. [x. 26]

Therefore a binomial straight line is not divided at different
points ;
therefore it is divided at one point only.

Q E.D.
This proposition proves the equivalent of the wellknown theorem in
surds that,
if a+ Jb=x+ .y,
then a=x, b=y,
and if Ja+ Jb=Jx + .y,

then a=x, b=y (ora=y, b=x).
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The proposmon states that a binomial straight line cannot be split up into
terms (8vdpara) in two ways. For, if possnble, let

x+y=x+y,
where x, y, and also ', y', are the Zrms of a binomial straight line, &', y’
being different from x, y (or y, x).

One pair is necessarily more nearly equal than the other. Let &/, " be
more nearly equal than x, y.

Then (2 +%) — (2 + ') = 22y’ — 2xp.
I;Iow by hypothesis (x?+ %), (x + ) are rationa/ areas, being of the form
P+ Ap*;
but 2x'y, 2xy are medial areas, being of the form /. p*;
therefore the difference of two medial areas is rational :
which is impossible. [x. 26]
Therefore %', y' cannot be different from x, y (or y, x).

ProrosiTION 43.

A first bimedial straight line is divided at one point only.

Let AB be a first bimedial straight line divided at C, so
that AC, CB are medial straight
lines commensurable in square
only and containing a rational
rectangle ; [x. 37]
I say that 428 is not so divided at another point.

For, if possible, let it be divided at D also, so that 4D,
DB are also medial straight lines commensurable in square
only and containing a rational rectangle,

Since, then, that by which twice the rectangle 4D, DB
differs from twice the rectangle AC, CA is that by which the
squares on 4C, CAB differ from the squares on 4D, DB,

while twice the rectangle 4D, DA differs from twice the
rectangle AC, CB by a rational area—for both are rational—

therefore the squares on AC, CAB also differ from the squares
on AD, DB by a rational area, though they are medial :

which is absurd. [x. 26]

Therefore a first bimedial straight line is not divided into
its terms at different points;

therefore it is so divided at one point only.

D ¢ B

Q. E. D.

A S aa

—~~
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In this case, with the same hypothesis, viz. that
x+y=x"+y,
and x’, y’ are more nearly equal than x, y,
we have as before (2" + %) — (2" + 3) = 2a'y’ — 2.
But, from the given properties of x, y, and &', y/, it follows that 2xy, 2x’y’
are rational, and (2*+3*), (x* +y™) medsal, areas.
Therefore the difference between two medial areas is rational :

which is impossible. ) [)g. 26]

ProrosiTION 44.

A second bimedial straight line is divided at one point only.

Let A8 be a second bimedial straight line divided at C,
so that AC, CB are medial straight lines commensurable in
square only and containing a medial rectangle ; [x. 38]

it is then manifest that C is not at the point of bisection,
because the segments are not commensurablé¢ in length.

I say that 45 is not so divided at another point.

A D 0 ®
E M H N
. a K

For, if possible, let it be divided at D also, so that AC is
not the same with DB, but 4C is supposed greater ;
it is then clear that the squares on AD, DB are also, as we
proved above [Lemma), less than the squares on 4C, CB;
and suppose that 4D, DB are medial straight lines commen-
surable in square only and containing a medial rectangle.
Now let a rational straight line £/ be set out,
let there be applied to £ the rectangular parallelogram £X
equal to the square on 45,
and let £G equal to the squares on 4C, CB be subtracted ;
therefore the remainder /7K is equal to twice the rectangle
AC, CB. * [ 4]
Again, let there be subtracted £LZ, equal to the squares
on AD, DB, which were proved less than the squares on
AC, CB [Lemma] ;
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therefore the remainder MK is also equal to twice the rect-
angle AD, DB.

Now, since the squares on AC, CB are medial,
therefore £G is medial.

And it is applied to the rational straight line £F;
therefore £/ is rational and incommensurable in length with
EF. [x 22)

For the same reason
HN is also rational and incommensurable in length with ££.

And, since AC, CB are medial straight lines commen-
surable in square only,
therefore AC is incommensurable in length with C5.

But, as AC is to CB, so is the square on AC to the rect-
angle AC, CB;
therefore the square on 4AC is incommensurable with the rect-
angle AC, CA. o [x 11]

But the squares on AC, CB are commensurable with the
square on AC ; for AC, CB are commensurable in square.

[x. 15]
And twice the rectangle AC, CB is commensurable with

the rectangle 4C, CB. [x. 6]
Therefore the squares on AC, CB are also*incommen-
surable with twice the rectangle AC, C5. [x. 13]

But £G is equal to the squares on AC, CAB,
and AK is equal to twice the rectangle AC, CB;
therefore £G is incommensurable with 7K,
so that £/ is also incommensurable in length with ZN.
VL I, X. I7
And they are rational ; [ ]
therefore £H, HN are rational straight lines commensurable
" |uare only.
3ut, if two rational straight lines commensurable in square
be added together, the whole is the irrational which is
d binomial. [x. 36]
Cherefore £V is a binomial straight line divided at /A, .
n the same way £M, MN will also be proved to be
nal straight lines commensurable in square only ;
EN will be a binomial straight line divided at different
:s, A and M.

Ea > N -
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And EH is not the same with M.

For the squares on AC, CB are greater than the squares
on AD, DB.

But the squares on 4D, DB are greater than twice the
rectangle AD, DB ; '

therefore also the squares on 4C, CB, that is, £G, are much
greater than twice the rectangle AD, DB, that is, MK,
so that £/ is also greater than MN.

Therefore £H is not the same with M. QE D

As the irrationality of the second bimedial straight line [x. 38] is proved by
means of the irrationality of the binomial straight line [x. 36}, so the present
theorem is reduced to that of x. 42.

Suppose, if possible, that the second bimedial straight line can be divided
into its terms as such in two ways, i.e. that

x+y=x"+y,

where 2', 5’ are nearer equality than x, y.

Apply #* +5°, 2xy to a rational straight line o, ie. let

x* +y' = ou,
2xy =o0v.

Then, as in X. 38, the areas x*+ )% 2xy are medial, so that ou, ov are
medial ;
therefore u, v are both rational and v o ....cccccvviniiiiiiiiiiiiniinnia. (1)

Again, by hypothesis, x, ¥ are medial straight lines commensurable in
square only ;

therefore xovy.
Hence xt vy,
And 2~ (22 +y%, while xy ~ 2xy;
therefore (=* + ") v 2xy,
or ou v ov,
and hence BOV i (2).

Therefore, by (1) and (2), , v are rational straight lines commensurable
in square only ;

therefore » + o is a binomial straight line.
Similarly, if 2™ +y?=0%' and 21y’ =ov,
«' + 7' will be proved to be a binomial straight line.
And, since (x +y)*=(x"+5'), and therefore (% + ) = (¥ + 2'), it follows that
a binomial straight line is divided as such in two ways:
which is impossible. [x. 42]
Therefore x +y, the given second bimedial straight line, can only be so
divided in one way.
In order to prove that » + v, »' + ¢/ represent a different division of the
same straight line, Euclid assumes that '+ y*> 2ay. This is of course an

easy inference from 11. 7; but the assumption of it here renders it probable
" that the Lemma after X. 59 is interpolated.

H. E. 1L 7
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PropPosITION 45.
A major straight line is divided at one and the same point
only.

Let AB be a major straight line divided at C, so that
AC, CB are incommensurable in

square and make the sum of the > 2 B
squares oA AC, CB rational, but the
rectangle 4C, CB medial ; [x. 39]

I say that A2 is not so divided at another point.

For, if possible, let it be divided at D also, so that 4D,
DB are also incommensurable in square and make the sum
of the squares on 4D, DA rational, but the rectangle con-
tained by them medial.

Then, since that by which the squares on AC, CB differ
from the squares on 4D, DB is also that by which twice the
rectangle 4D, DA differs from twice the rectangle AC, CB,

while the squares on AC, CB exceed the squares on 4D,
DB by a rational area—for both are rational—

therefore twice the rectangle 4D, DB also exceeds twice the
rectangle AC, CB by a rational area, though they are medial :

which is impossible. [x. 26]
_ Therefore a major straight line is not divided at different

points ;

therefore it is only divided at one and the same point.

Q. E. D.

If possible, let the major irrational straight line be divided into terms in
two ways, viz. as (¥ +y) and (x" +y’), where &', y are supposed to be nearer
equality than =z, y.

We have then, as in X. 42, 43,

(= + %) — (22 +p?) = 2x"y' — 2x.

But, by hypothesis, (x*+3*), (x?+y?) are both rational, so that their

difference is rational.

Also, by hypothesis, 2x'y’, 2xy are both media/ areas ;

therefore the difference of two medial areas is a rational area :

which is impossible. [x. 26]
Therefore etc.

- .
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ProrosiTION 46.
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