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NEW METHODS OF CELESTIAL MECHANICS
VOLUME III1

H. POINCARE

ABSTRACT

Integral invariants are introduced using the
steady motion of the fluid as an example. The use-
fulness of invariants in celestial mechanics is demon-
strated. Various forms of the three-body problem are
treated. Poisson stability is defined for the steady
motion of a liquid, the general and restricted three-
body problem. The theory of "consequents' is intro-
duced in the discussion. The existence, stability, and
properties of periodic solutions of the second type are
treated. These are related to the principle of least
action and the Darwin orbits. The concepts of kinetic
focuses and Maupertius focuses are introduced in the
discussion. Periodic solutions of the second type are
treated. Homoclinous and heteroclinous doubly asymptotic
solutions are discussed for the three-body problem.

CHAPTER XXII

INTEGRAL INVARTIANTS

Steady Motion of a Fluid

233. Ia order to clarify the origin and importance of the idea
of integral invariants, it is useful to start with a study of a par-
ticular example from the field of physics.

Let us consider an arbitrary fluid, and let u, v, w be the three
velocity components of the molecule which has the coordinates X, y, 2
at time t.

* Numbers given in the margin indicate pagination in the original
foreign text.
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We will consider u, v, w as functions of t, x, y, z, and we will
assume that these functions are given.

If u, v, w are independent of t and only depend on x, vy, Z, the
motion of the fluid is said to be steady. We will assume that this con-
dition is satisfied.

The trajectory of an arbitrary molecule of the fluid is therefore
a curve which is defined by the differential equation
dx _dy _d: (1)

u 4 w

If it were possible to integrate these equations, one would obtain /2

z = ¢1(¢, Zo, Yo, %0),
Y =01(8, 29, Yo, Z0),
3 = @3{(t, To, Yo, Z0),

such that x, y and z would be expressed as a function of time t and
their initial values xg, yg, zg.

If the initial position of a molecule were known, one could deduce
the position of this same molecule at time t.

Let us consider fluid molecules the group of which forms a certain
figure F; at the initial instant of time; when these molecules are dis-
placed, their group will form a new figure which will move while being
continuously deformed, and at the time t the group of molecules under
consideration will form a new figure F.

We will assume that the movement of the fluid is continuous, i.e.,
u, v, w are continuous functions of x, y, z; there are therefore certain
relationships between the figures Fy and F which are obvious from the
conditions of continuity.

If the figure Fy is a curve or a continuous surface, the figure F
will be a curve or a continuous surface.

If the figure F) is a simply connected volume, the figure F will
be a simply connected volume.

If the figure Fy is a curve or a closed surface, the same will hold
true for the figure F.

In particular, let us examine the case of liquids where the fluid
is incompressible, i.e., where the volume of a mass of fluid is invari-
able.



Let us assume that the figure Fy is a volume. At time t the mass
of fluid which fills out this volume will occupy a different volume
which will be nothing else than the figure F.

The volume of the mass of fluid did not change; thus, Fg and F
have the same volume. Therefore, one can write

ff drdyd;:ff[dzodyodzo; (2)

The first integral is extended over the volume F and the other over
the volume Fy.

We will then say that the integral /3

fffdxdjdz

is an integral invariant.

It is known that the condition of incompressibility can be expressed
by the equation

du  do  dw
dr d_y+dz

= 0.

(3)
The two equations (2) and (3) are thus equivalent.
Let us again consider the case of a gas, i.e., the case where the

volume of a mass of fluid is variable. Thus, the mass becomes invariable,
such that if one calls p the density of the gas, one has

/ffpdzd_yd:=fffpodrodyodz,. )

The first integral is extended over the volume F, the second over the
volume Fy. In other words, the integral

ff pdrdyds

is an integral invariant.

In this case, where the motion is steady, the equation of continuity
can be written as

dipu) d( d
T SR = (5)




The conditions (4) and (5) remain equivalent,

234. The theory of vortices of Helmholtz provides us with a
second example,

Let us assume that the figure Fy is a closed curve. The same
will hold true for the figure F.

Let us assume that the fluid, whether it is compressible or not,
is at a constant temperature, and is only subjected to forces which
have a potential. In order that the motion remains steady, it is
necessary that u, v, w satisfy certain conditions. It is not useful
to develop these conditions here.
Let us assume that they are satisfied. /4
Under this assumption, let us consider the integral

f(udr+vdy+wdz).

As the theorem of Helmholtz shows, it has the same value along the curve
F and along the curve Fy.

In other words, this integral is an integral invariant.

Definition of Integral Invariants

235. Due to the nature of the question, the examples which I have
just presented readily lead one to the consideration of integral invari-
ants.

It is clear that these invariants can be used by generalizing their
definition for cases which are much broader, in which it is not possible
to give a simple physical meaning to the invariants.

Let us consider differential equations of the form

dr _dy _ dz

X =y =7 =4 (1)

X, Y, Z are given functions of x, y, z.

If they could be integrated, one would obtain x, y, z as a function
of t and their initial values xg, yvg, Zg-.



1f we assume that the time is represented by t and X, y, 2z repre-
sent the coordinates of a moving point M in space, equations (1) de-
fine the laws of motion of this moving point.

If these equations are integrated once, one can find the position
of the point M at time t, if its initial position My, given by the
coordinates xg, Yo, 20> 15 known.

1f one considers moving points which obey the same law and the
group of which forms a figure F_ at the initial instant of time, the
group of these same points will form a different figure F at time t
which will be a line, a surface, or a volume depending on whether the
figure Fy is a line, a surface or a volume.

Let us consider a simple integral /5
f(Adx+de+Cdz), (2)
where A, B, C are the known functions of x, y, and z. If Fg is a line,
it may happen that this integral (2) extended over all of the elements
of the line F is a constant which is independent of time, and is conse-
quently equal to the value of this same integral extended over all of

the elements of the line Fy.

Let us now assume that F and Fy are surfaces, and let us imagine
the double integral

f (N dy ds + B'dz dz + C'dz dy), (3)
where A', B', C' are functions of x, y, and z. It may happen that this
integral has the same value which is extended over all the elements of

the surface F, or over all of those of the surface Fg.

Let us now assume that F and Fy; are volumes, and let us imagine the

triple integral
fffm dz dy ds; “

M is a function of x, y, z. It is possible that it may have the same
value for F and Fy.

In these different cases, we say that the integrals (2), (3) or (4)
are integral invariants.

It occasionally happens that the simple integral (2) will only have



the same value for the lines F and Fy if these two curves are closed,
or the double integral (3) will only have the same value for the
surfaces F and Fy if these two surfaces are closed.

We may thus say that (2) is an integral invariant with respect
to the closed curves and that (3) is an integral invariant with respect
to the closed surfaces.

236. The geometric representation which we have employed plays
no important role. We can thus lay it aside, and nothing prevents us
from extending the preceding definitions to the case in which the
number of variables is greater than three. Let us consider the /6
following equations

.d_zi_-—ﬁ— —-dx"_dt

X, 7 Xy T Xe T (1)
where X;, X5, ..., Xn are the given functions of x;, %X;, ..., X, If
one could integrate them, one would find x;, X,, ..., X, as functions

of t and of their initial values x?, xg, ey xg. In order to retain

the same terminology, we may call point M the system of values x;, xj,

«++s Xy, and the point My the system of values x?, xg, ooy xg.

Let us consider a group of points My forming a subset Fy and the
group of corresponding points M forming another subset (1),

We shall assume that Fy and F are continuous subsets having p
dimensions where p < n.

Let us consider an integral of the order p

fZAd’w, ()

where A is a function of x;, X3, ..., X,, and where dw is the product
of p differentials chosen among the n differentials

dx,, dI’, vy d.’l',,-

(1) The word subset is now commonly employed, so that I did not feel
it was necessary to recall the definition. Every continuous group
of points (or system of values) is named this way: In three-
dimensional space, an arbitrary surface is a subset having two di-
mensions, and an arbitrary line is a subset having one dimension.



It is possible to give this integral the same value for the two
subsets F and Fy. We may thus say that it is an integral invariant.

It may also happen that this integral has the same value for the
two subsets F and Fj, but only under the condition that these two sub-
sets are closed. It is thus an integral invariant with respect to the

closed subsets.

Other types of integral invariants may be also assumed. For
example, let us assume that p = 1 and that F and Fy may be reduced to
lines. It is possible that the integral /7

f(A,dz,-—«)— Aydzy+...+ A,,d_z-,,):fZA,-d.r,

has the same value for F and Fy, and is an integral invariant. This
may also be the case for the following integral

f\/: B, dz! + 22Cyz dz; dzy,

where B and C are like the A of the functions of x;, %3, ..., X. AS
I stated, it is possible that this integral may have the same value for

F and F;, and other similar examples may be readily envisaged.

The quantity p will be called the order of the integral invariant.

Relationships Between the Invariants and the Integrals

237. Let us again consider the system

dr, _ drs dr,

TXT x: =...=?{—"—=d‘. (1)

If one could integrate it, all of its integral invariants could be formed.

If integration were performed, the result could be presented in
the following form

Y11= Gy,
rq = Ca,
T (2)
Ya ™= Cn—h
g =L -4 C,;,



C,, C C_ are arbitrary constants, and the y's and z's are the given
1 n

0s tees
functions of the x's.

Let us change the variables by taking y's and z for the new variables,
instead of x's.

Let us now consider an arbitrary integral invariant. Under the
sign f (which will be repeated p times if the invariant is of the order
p), this invariant must include a certain expression, the function of the /8
x's and of their differentials dx. After a change in the variables, this
expression will become a function of the y's, z, and of their differentials
dy and dz.

Without changing the y's, in order to pass from one point of the figure
Fy to a corresponding point in the figure F, it is necessary to change
z into z + t. Therefore., when passing from an infinitely small arc of
Fy to the corresponding arc of F, the differentials dy and dz do not
change (the quantity t which is added to z is, in effect, the same for
the two ends of the arc). If one considers an infinitely small figure
Fy having an arbitrary number of dimensions and the corresponding figure
F, the product of a number (equalling that of the dimensions of Fy and F)
of differentials dy or dz will not change either when one passes from
one figure to the other.

In short, in order that an expression may be an integral invariant,
it is necessary and sufficient that z is not contained in it; the y's,
the dy's, and dz may be included in an arbitrary manner.

Let us consider an expression having the same form as that which we
discussed in the preceding section

Srado, (3)

This expression represents an integral of the order p, A is a function
of x;, xp, «.., X, dw is a product of p differentials chosen from the
n differentials

dry, dry, ..., dz,.

We would like to know whether this is an integral invariant. By
carrying out a change in variables as indicated above, we find that
expression (3) becomes

fEB dw',



B is a function of the y's and of z, dw' is a product of p differen-
tials chosen from the n differentials

(ly“ d)’,, ey d}’n~h dz.

In order that expression (3) be an integral invariant, it 1is
necessary and sufficient that all of the B's be independent of z and
only depend on the y's.

Just as in the preceding section, let us again consider the ex- /9
pression

f\EB;dx.’+QECi.kd$zd¢k, (4)

The Bi's and the Cy ;'s are functions of the x's.

After the change in the variables, this expression becomes

fy@}dx}*+v£€’,-_kdx}dz',‘;
For greater symmetry in the notation, I have set the following

, ) .
Ty=Yis (i=1,2 ..., A —1); zl, = 3,

In order that expression (4) be an integral invariant, it is
necessary and sufficient that all of the B';'s and the ¢';.x's be in-

dependent of z, and depend only on y.

Relative Invariants

238. We are now led to attempt to form the integral invariants
relative to the closed subsets. Let us first assume that p = 1, and
let us determine the condition by which the simple integral

f(A,dr,+A,d.r,+...+ Andz,) (1)

is an integral invariant with respect to closed lines.

Let us carry out the change in variables as indicated above,
and our integral will become

f(B. Ay Bydyy 4. .o+ Bpoydyn-y + Bpds),



which I can write again, taking the most symmetrical notation from the
end of the preceding section
fEB;sz. an

This simple integral, extended over a closed, one-dimensional subset —-
i.e., over a closed line -- may be transformed by the Stokes theorem /10
into a double integral extended over a non-closed, two-dimensional subset
-~ 1i.e., over a non-closed surface. We then have

) dB; dB o
fSB"dl“-Z‘/_E (—dT,I: — szf)dz,-dx,,. (2)

However, the integral of the second member of (2) must be an abso-
lute integral invariant, and not only with respect to the closed subsets,

We can therefore conclude the following:

In order that (1) be an integral invariant with respect to the
closed lines it is necessary and sufficient that the binomials

dB; dB;
dr;, ~ d7

all be independent of z.

Similarly, and more generally, let

fZAdw (3)

be an integral expression of the order P, having the same form as those
which were discussed in the preceding sections. We would like to know
whether this is an integral invariant with respect to the closed subsets
of the order p.

Let us assume that this integral is extended over an arbitrary
closed subset of the order p. A theorem similar to that of Stokes states
that it may be transformed into an integral of the order p + 1, extended
over an arbitrary subset, which may be closed or not closed, of the order
p + 1. The transformed integral may be written

dA
fzzkid—xk-dxkdw. (4)

One always takes the sign + if p is even, and the signs + and - al-
ternately if p is odd. [For additional details, refer to my report on

10



the residuals of double integrals (Acta Mathematica, Volume ViII), and
to my report contained in the Special Centenary Edition of the Journal
de 1'Ecole Polytechnique.]

The condition which is necessary and sufficient for (3) to be an
integral invariant of the order p with respect to closed subsets is /11
that (4) be an absolute integral invariant of the order p + 1.

239. Let us again consider expression (1) of the preceding section,
and let us assume that it is a relative invariant, that is, an integral

invariant with respect to closed lines.
Let us change it to the form (1') by our change in variables.
Let My be a point of Fy and
Y, Yo oeeey Y-ty B
be its coordinates (with the new variables).
Let M be the corresponding point of F and
Yy Y overs Yoty z+1

be its coordinates. The By's will be functions of the y's and of z, but
I will make z appear, writing By in the following form

Bi(3).

If the line Fy is closed, we will then have

[EBL(z+t)dx’,_.:f.‘:Bk(z)dz".,

%

that is, the expression

S[Bi(z + t)— Bi(3)] dzl (3)
is an exact differential which I set equal to dV. The function V will
depend not only on the y's and z, but also on t. In order that t = o,

it must be reduced to a constant.

If we assume that t is infinitely small and if we call B'k(z) the
derivative of By (z) with respect to z, expression (3) may be reduced to

£[¢B)(s)] dz}.

11



The expression
By (3)dz) (4)

is then an exact differential which I set equal to dU. The function U
which is thus defined will depend on the y's and z, but it will

no longer depend on t. I shall again make z appear by writing U(z).

It then happens that /12

ady
& =f332-<~'+'>dr’k=de<=+t)= Uz + 6)+f(1),

f(t) is an arbitrary function of t.

However, U(z) may be regarded as the derivative with respect to
z of another function W(z) which is also dependent on the y's, and we
will then have

d T
z\\(z+t)=U(z+ t).

On the other hand, since V must be reduced to a constant for t = o,
we may finally conclude that

V=W(z+t)—W(s)+o(t),
The quantity ¢(t) designates an arbitrary function of t only, and may
be assumed to be zero without essentially restricting the conditions of

generality.

One then finds

d
Bi(3) = 7= W(z)+ C;.
Cx is independent of z, so that the expression (1') may be reduced to

fdw +fEC* dz,,

and the first integral is that of an exact differential, and the second
integral is an absolute integral invariant.

240. In a similar way let us discuss a relative invariant which is
of a higher order than the first. Let us assume that

12



fEAdw

is this invariant which, after the change in variables, will become

fEBdm',

The integral
fE[B(z+t)—B(z)]dm'=J (1

must be zero, whatever may be the closed subset of order p over which it
is extended.

It must therefore satisfy certain"integrability conditions" which /13
are similar to those stating that a total differential of the first order
is an exact differential.

Let us now consider a subset V of p dimensions, which is not closed
and limited by a subset v of p - 1 dimensions which will serve as the
boundary for it.

The integral (1), which is extended over the subset V, will not be
zero. However, if it is calculated for other similar subsets v', V', etc.,
having the same boundary v, one will obtain the same value -- i.e., the
value of the integral (1) only depends on the boundary v.

It equals an integral of the order p - 1
J;fZde' (2)

which is extended over the subset v and where dw" designates an arbitrary
product of p - 1 differentials, while C is a function of the y's, z and t.

This integral (2) is clearly a function of t, which depends in addi-

tion on the subset v. Let us consider its derivative with respect to t.
We will have

d) R
:ﬁ*fZ:a"‘“‘f” SRR

As its last expression shows, this derivative does not change when one
changes t into t - h or when, at the same time, one transforms V (or v)
by changing z everywhere into z + h.

13



It can be concluded that J has the following form

J:f.‘:D(z—+—t)dw'—fED(z)a’w’,

D(z) 1is a function of x, y, z.

The integral
f.‘.‘.D(z)dw’ (3)

is of the order p - 1, but it may be readily transformed into an inte-
gral of the order p. It is sufficient to apply the transformaticn

which, in section No. 238, allowed us to change from the integral (3)

to the integral (4), and which is the opposite of that by which, in /14
the present section, we changed from the integral (1) to the integral

(2).

The integral (3), extended over the subset v, is therefore equal
to the integral of the order p

fXE(z)dw' (4)
extended over the subset V.
By analogy with the terminology employed for simple integrals, we

may say that the integral (4) is an exact differential integral. And,
in effect:

1. It is zero for every closed subset;
2, It may be reduced to an integral of lesser order.

Under this assumption, we will have

J=f£E(z+t)dm’—f§‘.E(z)(lw',

and the integrals are extended over the subset V.

However, this equation may also be written as follows

f.‘:[B(z+t)—E(z+t)] dw':fE[B(:.)—E(z)] v,
and it is valid for an arbitrary subset V.

This means that

14



fE[B(z)—E(z)]c[w'
is an absolute integral invariant.
We therefore arrive at the following result:

Every relative integral invariant is the sum of an exact differen-
tial integral and an absolute integral invariant.

241. In Section No. 238, we have seen how an absolute invariant
of the order p + 1 may be deduced from a relative invariant p.

The same procedure may also be applied to absolute invariants,
so that one could be tempted to continue to apply it and to construct
invariants of the order p + 2, p + 3, .... successively.

However, this procedure would have to be abandoned very quickly.

There is a case in which the procedure in question is illusory; /15
this is the case in which the invariant which one wishes to transform
is an exact differential integral. The integral invariant to which
the transformation would lead would then be also zero.

If an invariant of the order p is transformed, one obtains an in-
variant of the order p + 1, but this invariant is an exact differential
integral, so that if one wishes to transform it again, one obtains a
result which is also zero.

Relationship Between the Invariants and the
Variational Equation

242, Let us again consider the system

dr, Az, _dra _ 1)
X, X, =T X, = dt.

We may form the corresponding variational equations as they were
defined at the beginning of Chapter IV.

In order to form these equations, in equations (1) we change Xy
into x; + &4, and we disregard the squares of the £;'s. One thus
obtains the system of linear equations

db _ dXe, | d%

dXy
7t —E_:,lf dl‘, Eg—!—-. -+ Asn. (2)

U dx,

15



There is a close relationship which may be readily perceived
between the integrals of equations (2) and the integral invariants
of equations (1).

Let

F(&, ks, .-y En) = const,,

be an arbitrary integral of equatioms (2). This will be a homogene-
ous function of the £'s, which depends on the x's in an arbitrary
manner. I can always assume that this function F is homogeneous of
degree 1 with respect to the £'s. Because, if this were not the case,
I would only have to increase F to a suitable power in order to obtain
a homogeneous function of degree 1.

Let us now consider the following expression
fF(dr., Aoy oo dry), (3)

which is an integral invariant of system (1).
We should first note that the quantity under the sign f /16
F(dzy, dzy, ..., drg)

is an infinitesimal quantity of the first order, since dx1, dxp ... dxp are
infinitesimal quantities of the first order, and that F is homogeneous
of the first order with respect to the quantities.

The simple integral (3) is therefore finite.

Under this assumption, let us first assume that the figure Fg may
be reduced to an infinitesimal line, whose extremities have the following
coordinates

Ty, T, veay Thy

xl+Elr I!"""E!! DY zn‘*‘En-

The integral (3) may be reduced to a single element, and conse-
quently will equal
F(Ely' Eia ey En)-
Due to the fact that this expression is an integral of equations (2),

it will remain constant and will have the same value for the line Fy
and for the line F.

16



1f the line F;, and consequently the line F, are finite, we may
divide the line Fy into infinitesimal parts. The integral (3), ex-
tended over one of these infinitesimal parts of Fy, will equal the
integral (3) extended over the corresponding infinitesimal part of
F. The integral extended over the entire line Fy will equal the
integral extended over the entire line F.

Therefore, the integral (3) is an integral invariant.

q.e.d.

Conversely, let us assume that (3) is an integral invariant of
the first order, and

F(6e, 82y -0 8n)
will be an integral of the equations (2).
In reality, the integral (3) must be the same for the line Fg
and for the line F, whatever these lines may be, and particularly if
Fp is reduced to an infinitesimal element whose ends have the following
coordinates
z;  and z -+
As we have seen, the integral (3) may be reduced to /17
F(Ely Eh '--)En)- (4)
Since the integral is an invariant, this expression (4) must be constant.

It is therefore an integral of equatiomns (2). q.e.d.

Thus, an integral of equations (2) corresponds to each integral
invariant of the first order of equations (1), and vice versa.

243. Let us now determine to what the invariants of an order
higher than the first correspond.

Let us consider two particular arbitrary solutions of the equa-
tions (2). Let

51: Ezv sy EIH

(IR ITIERTTI 7T (5)

be these two solutions.

17



The following functions may exist
F(Z‘i, 2(1 E;)

which depend on the x;'s, the €;'s, and the Ei's at the same time.

No matter what the two chosen solutions, these functions may be re-
duced to constants which are independent of time.

In other words, the function F will be an integral of the system

U d%y _ dXy , dX o dXy
zi—d—zl—gi—!—'d—r—’sz-i—...-rd—nf,“ (6)
diy  dXe,, d\z dXy ,,

at —%;El+gasz+"'+2}:§ny

which the £;'s and the Ei’s satisfy.

Let us formulate a more definite hypothesis, and let us assume
that F has the form

SALCEibe— et
and the Ay, 's are functions of the x's alone.

It may then be stated that the double integral

J :f: Nivdridry

is an integral invariant of the equations (1).

Let us assume that the figure Fy may be reduced to an infinitesi- /18
mal parallelogram whose corners have the following coordinates at
t=o0

zy, xi+by mi+ b, i+ L+ L
The figure F will also be similar to an infinitesimal parallelo~
gram whose corners will have the following coordinates at t = t
zi, i+ i+, T+ L+ kL

The integral J will be reduced to a single element which will
have precisely the following value

EAM(EJE’k_ E"E;))

and -- since, under the hypothesis, this expression is an integral of
the system (6) —-- it will have the same value for the two figures F
and Fy.

18



Let us now assume that F and Fy are two finite surfaces. Let
us divide Fy into infinitesimal parallelograms, to each of which an
elementary parallelogram of F will correspond. The value of J is
therefore the same for each element of Fy and for the corresponding
element of F. It is therefore the same even for the entire surface
Fp; and for the entire surface F.

The integral J is therefore an integral imnvariant. q.e.d.

The converse of this may be proven in the same way as in the
preceding section.

244. The theorem is obviously general, and may be applied to
invariants of a high order than two. Let us present it for those of
the third order. Let us consider three special solutions of the equa-
tions (2), &5, £1, 51 These three solutions must satisfy the system

ETRIRNE AT

=

e _ d‘(ks )]
dt o dzy £

dEk d\k

dt dxt

If the system (7) includes an integral of the form
& & &)
BAcet| b B B l (8)
& & &
where the A's are functions of the x's, the triple integral

f}: Aiwrdridrydz; (9)

will be an integral invariant of the equations (1), and vice versa.

Transformation of the Invariants

245, With the invariants thus reduced to the integrals of the
variational equation, one may readily find several procedures which
make it possible to transform these invariants.

If one knew a certain number of integral invariants of the equa-
tions

19



dr; .
qr = (1)

one could deduce from each of them an integral of the variational equa-
tions

J _dek, (2)

At = e dz

By combining these different integrals, we will obtain a new
integral of equations (2), from which one may deduce a new invariant of
the equations (1).

Let us commence by studying the case of first-order invariants.

Let
(bh (ph ey (bl”

be a certain number of integrals of equations (1). These integrals
will be functions of the x;'s alone.

Now let

/F,(dx,-), fF,(dx,), fF,,(dz,~),

be q integral invariants of the first order of these same equations (1).
The functions under the sign f
Fi(dz;), Fi(dr), ..., F,(dz;)

will depend on the xy's and their differentials dx;'s. They will de- /20
pend on the x;'s in an arbitrary manner. However, with respect to
the differentials

dz‘“ dr,, ey dxll,

they must be homogeneous and of the first order.

Then

Fl(Ei)l F!(Ei)l ey Fll(E‘)

will be integrals of the equations (2) and will be homogeneous and
of the first order with respect to the £;'s.

20



Now let

G(’h, ‘1’,, ceey ‘bl"; F“ Fg, ey Fq): 9[¢k, F[],

be a function of the ¢'s and of the F's, which depends on the ¢'s in
an arbitrary manner, but which is homogeneous and of the first order
with respect to the F's.

Then

8P, Fi(§:)]

will be a new integral of the equations (2). 1In addition, this will
be a homogeneous function and of the first order with respect to the
£i's.

It thus results that \
8t Futdzn)
is an integral invariant of the first order of the equations (1).

The same result could be readily achieved when transforming the
invariants by changing the invariables of No. 237.

For example,

S Py Fy)
and

fs/b‘}+l“§+...+1-‘;

will be integral invariants.

246. The same calculation may be applied to invariants of a higher

order.

Let
By, Py, ..., Py,

be the p integrals of the equations (1), and let

‘/Fl(dz‘idxk), ng(dxidxk), . qu(dz;dzk),

21



be the q integral invariants of the second order. The F's will be

functions of the xi's and the products of the differentials

dz;dzry.

They will be homogeneous and of the first order with respect to these
products.,

Then

Fr(58k— &
will be integrals of the system (6).
If
e[+, F,/]

is an arbitrary function of the ¢'s and of the F's, which is homogeneous
of the first order with respect to the F's, the expression

8[ by, Fi(titi— k)]

will be an integral of the equations (6). It will be homogeneous in
addition, and of the first order with respect to the determinants

Eeli— Bt
As a result, the double integral
fe[-p“, F/(dz; dry)]
will be an integral invariant of the second order of equations (1).

247. Knowing several invariants of the same order, we thus have
the means of combining them to obtain other invariants of the same order.

When several invariants of the same order are known, the same pro-
cedure makes it possible to obtain new invariants of a different order.

For example, let
Sz, [Fuaen,

be two integral invariants of the first order. I assume, which is /22
the most general case, that F; and F, are linear and homogeneous func-
tions of the differentials dxy.

22



The expressions
Fi(k), Fa(d)

will be homogeneous and of the first order with respect to the Ei's,
and these will be integrals of equations (2).

In the same way,
Fi(§i), Fafk)
will be integrals of the equations (6).
As a result,
Fi(§)Fat i) — Fe(&) Fa(81) (10)
will be an integral of the system (6).
Since F; and F; are linear with respect to the Ei's, we will have
Fil+8)=Fi(8)+Fi(dl);  Fa(li-+ ) = Fa(t) 4 Fy(8)).

As a result, expression (10), which changes sign when one exchanges
the gi's and the gi'vs’ does not change when one changes Ei into gi + gi"

We may thus conclude that this expression (10) is a linear and
homogeneous function of the determinants

Eebe— bkl
and the coefficients depend on the x's alone, but not on the &'s and

L]
the £ 's,

An integral invariant of the second order of the equations (1) may
be therefore deduced from this expression (10).

Now let

/F,(da:,-), fF,(dz,-dr,,)

be two integral invariants of equations (1); the first is of the first
order and the second is of the second order. I shall assume that F;
and F, are linear and homogeneous functions, the first with resgect

to the n differentials dx;, the second with respect to the BADZ pro-

ducts

23



(II[ dxlr-

The functions 123
Fi(§), Fa(bile—Ed)
will be integrals of the system (6).
The expression

Fu (k) Fa (B8 — Bl + Fy(5) Fa(tibe— £RED)
+ Fy (89 Fa (it —EabD) (11)

will be an integral of the system (7).

On the other hand, it may be readily verified that it will be
linear and homogeneous with respect to the determinants

Ev bk

& & E?‘
TR TR

An integral invariant of the third order may thus be deduced from it.
Now let
f F,(dzidzy), f Fy(dzidzs)
be two invariants of the second order of equations (1).
We can deduce from it two integrals of equations (6) -- that is,

Fo(bibi— 8, Falhibe— 8B,

which I can write as follows, for purposes of brevity,

Fy (&), Fa(8E)-

Then the expression

Fi (8 FolF"E™) + F (8'E")Fa (BE)
+ F. (889 Fz(E"’E')+FA(E"'E')F=(E§') (12)
-+ F (88" )Fo(8'8") -+ FL(B'E) Fa(8™)
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will be an integral of the system obtained by adding the following
equations to the equations (7)

a5 _ Y Ak
dt'_zgchta'
In addition, this will be a linear and homogeneous function with

respect to the determinants forped w%th gﬂur of the quantities &; and
the corresponding quantities & , &5 » £y -

I shall continue to assume that F; and F, are homogeneous and
linear with respect to the products dxjdxy.

An integral invariant of the fourth order could thus be deduced
from expression (12).

It should be noted that this invariant does not become exactly
equal to zero when we set

F‘ == F’-
Expression (12), divided by 2, may be then reduced to

F(3)F(88") + Fi (G Fr (878) + By (B F (8F)-

An invariant of the fourth order may always be deduced from an
jnvariant of the second order. An invariant of the sixth order would
be obtained by the same procedure. More generally, an invariant of
the order 2p would be obtained from it (2p being an arbitrary even
number) .

248. 1In general, let

fou fr

be two arbitrary invariants of equations (1); the first is of the order

p, and the second is of the order q.

I shall assume that F; and F, are linear and homogeneous functions,

the first with respect to the products of p differentials dx, and the
second with respect to the products of q differentials.

Let

(n {2} P+
i iy ey Etp 7
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be p + q solutions of equations (2). These solutions will satisfy
the system of differential equations

(ﬂr;:” dXy 9y .
ok | L k=1,2,...,n50=1,2, ..., p+¢g).
a =t 3 P+q (13)

Then let F'; be the quantity which F; becomes when each product
of p differentials is replaced by the corresponding determinant formed
by means of the p solutions

g8, o

In the same way, let F'; represent the quantity which F, becomes
when each product of q differentials is replaced by the corresponding
determinant formed by means of the q solutions

EEP+“1 ££P+!)1 vy E&P+q)'
Then the product
FiF,
will be an integral of system (13).

Under this assumption, let us make the p + q letters

(o (1) et
t r Ty I

undergo an arbitrary permutation. The product F'; F'; will become
FiF;
and this will still be an integral of system (13).

We shall give this product the sign +, if the permutation under
consideration belongs to the alternate group —— i.e., if it may be re-
duced to an even number of permutations between two letters.

On the other hand, we shall assign the product the - sign, if the
permutation does not belong to the alternate group -- i.e., if it may
be reduced to an odd number of permutations between two letters.

In any case, the expression

+FiF} (14)

26
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will be an integral of system (13).

We have (p + q)! possible permutations; we will therefore obtain
(p + q)! expressions similar to (14). However, we shall only have

{(p +q)!
p!q!—~

which will be different. This is due to the fact that expression (14)
does not change when the p letters which are included in F", are only
interchanged among them, and, on the other hand, when the q letters
which are included in F'; are only interchanged among them.

Let us now take the sum of all the expressions (14). We shall
have an integral of system (13). However, this integral will be linear
and homogeneous with respect to determinants of the order p + q, which
can be formed with the letters

1 H e g

An invariant of the order p + q of equations (1) may thus be de- /26
duced.

If p = q and if F; is identical to F;, the invariant thus obtained
will be equal to zero if p is odd. However, this will no longer be the
case if p is even, as I explained at the end of the preceding section.

Other Relationships Between the Invariants and
the Integrals

249. Based on the knowledge of a certain number of invariants,
let us now trace the manner in which we may deduce one or several inte-
grals.

I shall first assume that we know two invariants of the nth order

/.\1 drydzy ... dzn,
and

fM’dz, dzy ... dz,,

where M and M' are functions of the x's. It may be stated that the
L]

ratio %%-will be an integral of equations (1).
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Let us consider the variational equatioms (2) and let

G H

be n arbitrary solutions which are linearly independent of these
equations.

These n solutions will satisfy a system of differential equa-
tions, which is similar to systems (6) and (7), which I shall designate
as system s.

Let A be the determinant formed by means of the n?‘'s letters
gi(k). Then
MA and M'a
will be integrals of system S. The same will also hold for the ratio
MV
M

and, since this ratio only depends on the x's, and not on the £'s, it
must be an integral of equations (1).

The same result may be obtained in another manner. 27

Let us perform the change in variables as was done in No. 237. Our
two integral invariants will become

fMJ dyidys. .. dya-, dz,
and

fM'J dyydys...dy,_dz

J designates the Jacobian or the working determinant of the old vari-
ables X], X9, «e., X, with respect to the new variables y;, yo, ...,

Yn-1» Z-
According to No. 237, MJ and M'J must only depend on

Jiy Yy ey Fa-i,
1

and this also holds for the ratio %%—. Since every function of the yy's

is an integral of equations (1), this ratio is an integral of equations

).

qg.e.d.
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250. This procedure may be varied in several ways.

For example, let

fF,(a'I,-), fF,(dr,~), fF,,(dx,~)

be the p linear invariants of the first order. Let us assume that we
also have

Fi=MFy+ MFy+...+ M, Fp,

and the M,'s depend only on the x's, and not on the differentials dx.

i

It may be stated that the M;'s, if p < n + 1, will be integrals
of equations (1).

Let Ajyx be the coefficient of dxk in Fi' We must then have
Avk= MyAe i+ MyAgp-t. ..+ MpA s

Let us perform the change in variables as was done in No. 237. Our
invariants then become

fxr',(dx;), fF’,(de), fF;(dx;).

I1f we also set /28

F;'=2A:'k ’k:
we must have
A= MyAyp+ My Ao My Al

We shall then have n linear equations, from which we may obtain
the M;'s, provided that p < n + 1.

According to No. 237, the A&k's depend only on the y's, and not
on z. The same is therefore true for the M;'s, that is, the M;'s are
integrals of equations (1).

251. Now let

F(‘t" Tay ooy 1',,)

be an integral. It is apparent that

dF dF dF
‘/‘<d~——1-l d,z‘l+ d—z” d.T,+.. '+EJ—'; d.z‘,,)
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will be an integral invariant of the first order.
One may then formulate the following question:

Let us consider an integral invariant of the first order

f(,\, dry+ Aydrs +. . 4 Andzn)

and let us assume that the term under the f sign is an exact differen-
tial. What will be the relationship between the integral of this exact
differential and the integrals of equations (1)?

In order to determine this, let us make the change in variables of
No. 237; our invariant will become

de :f(B,dj,+B2(bf,+...+ Buoy dyn-y+ Cd3).
The B's and the C's must depend on the y's, but not on z.

If this expression dU is an exact differential, the function U
must therefore have the following form

U=U;+2U;
Uy and U; are integrals of equation (1). We will then have 29

dU

T‘=U|.

If we return to the old variables xj, we will have

dU du ., dU dU
—[E_E.\,+ax—!.\,+...+mx,,.
It therefore results that
dU dU du
dz, 1 gy Xt g Xa .

is an integral of equations (1). If this expression is zero, we have

U =o, U = U,,
and U is an integral of equations (1).

252, We could cite numerous examples of this type. I shall only
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present one example.

Let us consider an invariant of the first order having the form

/ \'SB, drf - 2% Crp ds das = f NES
Let & be the discriminant of the quadratic form ¢.

Let us make the chanege in variables according to No. 237, and our
invariant will become

f\/: Bl 25 Cig dr, dx;r=f\/ﬁ>".

Let A' be the discriminant of the quadratic form ¢'.

Let J be the'Jacobian or the working determinant of the x's with
respect to the x' 's. We will have

A = AR,

The quantity &' will obviously be (like the B''s and the C"s) an
integral of equations (1). S

Now let an invariant of the nth order be
fAI deydry ... .dz,.
After the change in the variables according to No. 237, it becomes
f ) dr dxy ... dr),
and MJ must be an integral of equations (1).

I may conclude from this that

A'
MI?’
i.e.,

M

must be an integral of equations (1).
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Change in Variables

253. When the variables x; are changed in an arbitrary manner,
without affecting the variable t which represents time, it is only
necessary to apply the customary rules for the variable change for
single or multiple definite integrals to the integral invariants.
This is the procedure we have already followed several times.

However, when the variable t is changed, greater difficulty is
encountered. It would even appear a priori that this transformation
cannot Jlead to any result.

Let us consider the system

d‘:—,—:-'_'.,— —,;__. (l)

Let us introduce a new variable t; defined by the relationship

jz

dey — Z;

Z is the given function of x;, x5, ..., Xy

System (1) must become

dr dr
dty = 7,>‘_’, = _ dl‘,. 2
'TUIXY TN, A 2
Let us assume that the initial wvalues x?, xg, ceny xg represent the

coordinates of a certain point M; in space having n dimensionms.

If the motion of this point is defined by equations (1), with t /31

representing time, at the time t = 1 this point will move to M.

On the other hand, if the wmotion is defined by equations (2), with
ty representing time, at the time t; = 1 the point My will move to M'.

Let us now consider a figure Fjy occupied at the time zero by
different points Mg.

If the motion and the deformation of this figure are defined by
equations (1), at the time t = 7 it will become a new figure F.

If the motion is defined by equations (2), at the time tj = <t
the figure Fy will become a new figure F' which is different from F.
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Not only will F be different from F, but in general it will no
longer coincide with one of the positions occupied by F at a time which
ig different from the time t = T.

It thus appears that we have profoundly changed the given quantities
of the problem, and we must not expect that the invariants of (2) may be de-
duced from the invariants of (1). However, this is what occurs for
invariants of order n.

Let us make the change in variables of No. 237. System (1) will
become

d¢=_-y_‘=c_l_1= . =fi__."_‘l_—_-'_’_"1, (1')
o (] ] 1
and system (2)
_dy_dys _ _d¥aa _ds
d'l— o ——0— ————— ———'0 —-—7‘ (2')

We must then assume that Z is expressed as functions of the y's and of
Z.

Let us then set

with integration being performed with respect to z (the y's are
assumed to be constants), and starting with an arbitrary origin which
may depend on the y's.

System (2) becomes

dty = —dé(};—l = -d—’()),-!- == fi—“—'}’gﬂ‘ = f‘l‘l{l (2")

and will have the same form as ).

Then let /32

fM dzydzy. .. dz,

be an invariant of the order n of equations (1). When the variables are
changed according to No. 237, it becomes

f MJ dyydys... dyn-yds;
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J is the Jacobian of the x's with respect to the y's and z; MJ must
be a function of the y's.

And then
‘/.'\IJ dyydy,... dy -y ds,
will be an invariant of equatioms (2");
MJ

‘Z‘ d)’xd_}’z...d_)’n-’({l

will be an invariant of equations (2'), and finally

M
./“Z dr,dz,...dz,

will be an invariant of equations (2).

General Remarks

253", Let us consider a system of differential equations
dr;=X,dt, (1)
and their variational equations
db; = Z;dt. (2)

Let us assume that equations (1) include an integral invariant of
the first order
fEA[d.Z('

Expression IA;&; will be an integral of equations (2).
On the other hand, these equations (2) will have the solution

i =Xy

with ¢ being an arbitrary infinitesimal constant,

Let
T= ?i(t)
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be an arbitrary solution of equations (1). If e is a very small con-
stant

=0 (l+e)=u;(£)+E ‘fi—zif

will still be a solution of equations (1), and

dzx;

dt

= ?i(t+5)~?[(l):=a =Xy

will be a solution of equations (2).
It thus results that

SASi =2 AKX

must be a constant.
Therefore, LA;X; is an integral of equatioms (1).

Let us now assume that equations (1) include an integral invariant
of the second order

f‘/‘EAikdt{dzk.

ARG — D

Then

will be an integral of equations (2) and of equations (2'), which may
be deduced by changing the £;'s into gl .

Let us set
Ei= Xy,

with ¢ being a constant. This 1is permissible, because E& = e¢X; is a
solution of (2').

Then
EA (8 Xe— Xike)
will be an integral of (2). This shows that

‘/-3 A (Xpde; - X, drey)
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is an integral invariant of the first order of equations (1).

This procedure makes it possible to obtain an invariant of the 134
order n - 1, when one knows an invariant of the order n. The procedure
may sometimes be illusory, because the invariant which is thus obtained
may be equal to zero.

Let us now envisage an invariant having the following form

f}:(l\i -+ tBl)d.’t,'i,

where A{ and B are functions of the x's. We shall encounter invariants
having this form below.

Then
(A + tB;)¢,

will be an integral of equations (2). As a result,

Z(Ai+B)X,
must be a constant.

For purposes of brevity, let us set
®=IAXi; @, =%B/X,,
and the expression

D+ td,
must be a constant, which entails the condition

b b
WTld—“—F‘P,:o,

or
dd d([)’ . 3
de,:‘““q"*‘z_x? Xi=o. )

The Xj's, the A;'s, and the B;'s are functions of the x's. The
same holds true for
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ddb 700
P, b, Z T X fd_x“,‘ X,.

The identity (3) can only occur if we also have identically
and

The first relationship shows us that 2; is an integral of equations 1. /35
253". Let
& = const,

be an integral of equations (2). The function ¢ must be of a specific
form, a whole and homogeneous polynomial with respect to the Ei's, where
the coefficients depend on the xy's in an arbitrary manner.

Let m be the degree of this polynomial. The expression

S

(where ¢' is nothing else than ¢, where the £;'s were replaced by the
differentials dx;) will be an integral invariant of equations V.

Under this assumption, let I be an arbitrary invariant of the
specific form &.

Let us make the change in variables according to No. 237, and the
equations (1) will become

a"

&

dy: d
T @ Th
and, if one employs nj and ¢ to designate the variations of ¥y and z,
the variational equations of (1') will be reduced to

dn, _df

W_ dt = 0.
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With these new variables, ¢ will have the specific form ¢(, which is whole,
homogeneous, and has the degree m with respect to the ni’s and Z.

The coefficients may be arbitrary functions of the y;'s. However,
according to the theory presented in No. 237, since we are dealing

with an integral invariant, these coefficients cannot depend on z.

The x;'s are functions of the y's and of z, and the following
relationships between the variations may be deduced

o dz; dz;
EI—Z;,:},; Tkt 7; c (4)

The §'s are therefore linear functions of the n's and of 7, and the de-
terminant of these linear equations (4) is nothing else than the Jaco- /36
bian of the x's with respect to y and to z. T have called the Jacobian

J.

One then passes from the form ¢ to the form &; by linear substi-
tution (4), whose determinant is J.

Let Iy be the invariant of ¢y, which corresponds to the invariant
I of &. We will have

I=1le
with p being the degree of the invariant.
However, Iy is a function of the coefficients of &; and, conse-
quently, a function of the y's, which is independent of z. It is

therefore an integral of equations (1).

Let M be the last multiplier of equatioms (1), in such a way that
we have

M,

dz;
and that
fM dzydzy ... dx,
is an integral invariant of the order n.

We have seen in No. 252 that MJ will be an integral of equations
(1). Therefore,
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L (MI)? = I\»

will be an integral of equations (1). An integral of these equatioms
therefore corresponds to each invariant of the form 9.

Now let C be a covariant of the form ¢, having the degree p with
respect to the coefficients of ¢, and the degree q with respect to the
variables §£.

If Cy is the corresponding covariant of ¢y, we will have

C == Cylr.

The coefficients of Cy are functions of the coefficients of &g,
and they are therefore independent of z. The same holds true for
those of

Co(M))r = CMe.

Therefore, C)[r is an integral of equations (2); therefore,
f Y

is an integral invariant of equations (1), where C' is none other than
C, where the £;'s have been replaced by dxj.

We therefore have a method of forming a great number of integral
invariants. The particular case in which p is zero (i.e., the case of
the so-called absolute invariants or covariants) merits particular
attention. If C, for example, is an absolute covariant of ¢

fve

will be an integral invariant of equations (1). One may therefore
form a new integral invariant without knowing the last multiplier M.

The same procedure may be applied to integral invariants of higher

order. For example, let

/ S A drides

be an integral invariant of the second order. The bilinear form

P == Aik(sis;\"—' E-‘E’l)
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which is an integral of equations (2) and (2') is comnected with this
integral invariant.

Every invariant or covariant of this form, multiplied by one
appropriate power of M, will be an integral of equations (2), (2')
and will consequently produce a new integral invariant.

In the same way, if one has a system of integral invariants, a
system of forms which are similar to ¢ may be deduced from it, which
will be integrals of equations (2), (2'). An integral of equations
(1) will correspond to every invariant of this system of forms. An
integral invariant of equations (1) will correspond to every covariant
of this system of forms.

For example, let F and F; be two quadratic forms with respect to

the £'s. They become F' and F} when the £1's are replaced by the dif-
ferentials dxj. Let us assume that F and F; are integrals of (2) and

that, consequently,
VAGALH

are integral invariants of (1).

Let us consider the form 3

]

F—JF,

where A is an unknown. When stating that the discriminant of

this form is zero, we shall obtain an algebraic equation of degree n
in A, for which the n roots will obviously be absolute invariants of
the system of forms F, F;. These will therefore be integrals of equa-
tions (1).

However, this is not all. Let X}, Ay, ..., A, be these roots,
and F and F; can be written in the form

F =AY+ A .. .+ 2,A2

ny

Fi= Al+ Al+...+ AR

with Ay, A, ..., An being the linear forms which may be determined by
purely algebraic operations.

The quantities A;, A, ..., A, may be regarded as the covariants
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of zero degree of the F, F; system, 50 that

f’\’n Su fA;

are the integral invariants of equations (1), if A designates what
Ai becomes when the Ei‘s are replaced by the differentials dx,.

However, there would be an exception if the equation for A had
multiple roots. For example, if A; were equal to X, it could no
longer be stated that

yEEY
are integral invariants, but only that
SRR

is an integral invariant.

Now let

f.‘: Appdridzy, fE Bixdz,dxyg

be two integral invariants of the second order. The two bilinear {39
forms

b = SA(Ebr—Eebl)
@, = SB(Bibk— Exk)
will be integrals of (2) and (2").

The most interesting case is that in which n is even; therefore,

let n = 2m.

Let us consider the form
& —Ad,

and let us make its determinant equal to 0. We shall have an algebraic
equation for A of degree n = 2m. However, the first term in this

41



equation is a perfect square, so that it may be reduced to an equa-
tion of order m. The m roots

)‘11 )\2) M Xl"

will be integrals of equations (1), for the same reason as above.

Now ¢ and ¢; can be written in the form
i=m

P = Z 2i(P;Qi— Q:FY)

i—x

Py = E(P;Q; — Q:Py)

and the P;'s and the Qi's are 2m linear polynomials with respect to the
£'s. The P&'s and the Qj's are the same polynomials, where the £;'s
have been replaced by the &''s .

Then the expressions

D,Q’I - Ql p’h pﬂQ;—sz;, ey PIIIQ;n_'(QH;I);n

will be covariants of the system ¢, ¢;, and comsequently integrals of
(2), (2') to which the integral invariants will correspond.

There would be an exception to this if the equation for X had
multiple roots.

If we have, for example,
A=)y
it could no longer be stated that the two expressions
P1Q} —P{Q,, P,Q,—P;Q,
are integrals of (2), (2'), but only that their sum
PiQi—Pi Qi+ P,Q, — pyq,

is an integral of (2), (2').
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CHAPTER XXTII.

FORMATION OF INVARTIANTS

Use of the Last Multiplier

254. There is an integral invariant which may be formed very [41
readily when the last multiplier of the differential equations is known.

Let
dx, dry _ _ dza
-2 =X

= dt, eh)

be our differential equations.

Let us assume that there is a function M of x;, X9, ««., Xp, SO
that we also have, identically

d(MX,)  d(MX,) diMX,)
iz + = 4ﬂ-.4-——35;————0.

This function M is called the last multiplier.

It may then be stated that the integral of the order n

szde,dx,...dx,,

is an integral invariant. Let us assume that equations (1) have been
integrated; expressing xj, X2, ..., Xp as functions of t and of n
integration constants

Ay, Xy sy CGp,

the integral J will become

J:fM Adayday . . . d2a.

The quantity A is the Jacobian or the functional determinant of the x's

with respect to the a's. We will then have 142

d} dM A

E = le](la’...dfla.
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However,
dMA o da aM

—_— = ) hadng i
dt ! at+ A dt’
M D
dt dz;
On the other hand, _|dry dwy o dza|
day day da,

I may only write the first line of this determinant; the others may be
deduced from it by changing a; to ap, a3z, ..., an.

Therefore, A + dt %% must be the Jacobian of the

T+ dt if;T' =x;4- X; dt
with respect to the a's., This will be the product of the Jacobian of
the x;'s with respect to the a's -- i.e., of A, and the Jacobian of the
xy + Xydt's with respect to the x;'s which I shall call D. I may write
dA

A—i—dlm = A.D.

However, the Jacobian D may be readily formed. The elements of the
principal diagonal are finite, and that belonging to the itll line and
to the it column may be written

dX,

'+dth,'

The other elements are infinitely small; that belonging to the ith
line and to the kiR column (i 2 k) may be written

Xy

dt -, -
e

It thus results that, neglecting terms on the order of dt?, we
will have

D:I+dt2%5,
¥

from which it follows that /43
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dy dX;
dt AZ dzy
One may conclude that

dM A N X, N dMX) _
S =N g e azh Gt AZ =0

from which we finally have

(U_o
=

Equations of Dynamics

255. In the case of equations of dynamics, a great number of inte-

gral invariants may be readily formed. From Sections 56 on, we
learned how to form a certain number of integrals of the variational

equations, and in the preceding chapter we learned how to deduce inte-

gral invariants from them.

The first integral (equatioms 3, Vol. I, p. 167) is as follows
18— 8+ b — 8y na +. .. = const.

The integral invariant which may be deduced from it is as follows
5, :/(dz, dyi+drydys+...4+dT,yn).

It is of the second order and is of the greatest importance for the

statements which will follow. A little farther on (still p. 167, Vol.

I obtained a second integral which I may write

ke B BD R
LY YRR YR ¥

p = const.
be Ee Bk B2

Tk Mk Tk Mk

The integral invariant which I may deduce from it is of the fourth
order and may be written as follows

Iy = f % dzydy: deg dy.

D,
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The summation indicated by the sign I may be extended over the ELE—E—ll [44
combinations of the indices i and k.
In the same way, the integral
J; :f.‘.: ({I,‘({)’"(lfk ’[)’/x ({I/({J’,,

where the summation is extended over n(n - 1)6(n =2) combinations of

the three indices i, k and 1, will still be an invariant, and so on.

We thus obtain n integral invariants if we have n pairs of conjugate
variables. One of these invariants J; will be of the second order;
another J, will be of the fourth order; another J3 will be of the sixth
order, ..., and the last J, will be of the order 2n.

However, it is not necessary to assume that these invariants are all
different., At the end of No. 247, T stated that from an invariant of
the second order, one can always deduce an invariant of the fourth order,

an invariant of the sixth order, and so on. The invariants Jj, Jo, ...,
Jn which T have just defined are none other than those which may be deduced
from the first of them.

These invariants may be considered in another way. At the beginning
of page 169, Volume I, I demonstrated the manner in which one could de-
duce the Poisson theorem from the integral (3) on page 157, or — which
amounts to the same thing —- from the integral invariant J;.

Following the same procedure with the invariant J,;, one would obtain
a theorem similar to that of Poisson.

Let

‘f’, (P’! (bh 'bh

be four integrals of the equations of dynamics.

Let

Ak

be the Jacobian of these four integrals with respect to

Tiv Yis Thky Yk
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The expression
LA,

where the summation is extended over all combinations of the indices
i,k, will still be an integral.

A similar theorem would be obtained by commencing with any of /45
the invariants J3, Jy, <., Jp-

However, according to the statements which I have just made, none
of the theorems is different from that of Poisson in reality.

However, from among all of these invariants, great importance may
be attributed to the last of them

J. :fd.r‘d_y, drydy,.. . dr,dyn.
It could be obtained by the procedure given in the preceding section.
It is known that the equations of dynamics have unity as the last
multiplier.
256. I shall now assume that the x's designate the rectangular
coordinates of n points in space, and I shall employ the notation given

on page 169 of Vol. 1.

On page 170, we obtained the following integral of the variational
equations

Y’L’J — ? o £ = const.

<ed M Ard :E

The corresponding integral invariant may be written

AN <J’,f’z _av c,x)

ad\ m i

In the same way, the invariant

f(d.}’n‘*‘ dysz 4.+ dYia)

corresponds to the integral

. . 14 = const.
The invariant

‘/‘E(r“ dyai—y1i dTey — Tai Ayyi + Yo dzyg)
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corresponds to the integral
Et(-’vu”hi—‘)’nfzi— Ty 4- yati) = const,

However, none of these invariants is of great interest, since they
may be immediately deduced from the integrals of energy, center
of gravity, and area.

This does not heold for the following, which occurs when the 46
function V is homogeneous with respect to the x's.

In No. 56, we learned that if V is homogeneous of degree -1, the
variational equations have the integral

P ki dVv
E2xpi ki +yridai) = 3t [2 (M ~ drn E/.-.')] + const.,
¥4

m;

or, removing the indices, we have

Lz +yi) = 3[21(3:—12 _ E> -+ const.

m dr

It may be stated more generally that if V is homogeneous of order
P, the same procedure leads to the following integral

__av

%l 7 4
Z(2zy, ~py£)=(2—p)52‘("7:‘ Ir

)-+ const.,
from which we obtain the integral invariant

~ (s - T (p— ' (rdr _ av
J .f..(zx({; pydr)-+(p 2)tf2‘( - 2z dzx),

an invariant which has a very special nature since it depends on time.

The second integral may be written
—~ )f’ .
JeZ (),

and is therefore an integral of an exact differential, It may be readily
seen that



is none other than the energy constant, which I shall call C.

The invariant J is of the first order; it is therefore an inte-
gral taken along an arc of an arbitrary curve. Let Cg and C; be
the values for the energy constant at the two ends of this arc.

This arc is the figure which we have called Fjy in the preceding
chapter. When this figure is deformed to become F, Cy and C; do not
change, as 1 explained in the preceding chapter.

As a result, we have

J :f.‘.‘.(zz'd)' —py dry--{p—2)t{(Ci— Co)-

The integral
/‘E('Lr dy - aydr)

is therefore not constant when figure F (which is reduced to an arc

of a curve here) is deformed; however, these variations are proportional

to time.

The integral is constant, if the two ends of the arc correspond
to a single value for the energy constant.

In particular, this is also true if the arc of the curve is
closed. This integral is therefore a relative invariant, as I desig-
nated it in the preceding chapter.

However, if one assumes that the arc of the curve is closed, an
arbitrary exact differential may be added under the [ sign without
changing the value of the integral. For example, we may add

2(zdy +y dz),

with an arbitrary constant coefficient.
Thus, the integrals

f):_ydx, f):a:dy

are also relative invariants.
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We saw in No. 238 that an absolute invariant of the second order
may always be deduced from a relative invariant of the first order.
The invariant of the second order which is thus obtaired is none other
than

J1= [ Sdcdy,
which we studied above.
This is the case in which the expression
S(2x dy — py dx),
which appears under the f sign, becomes an exact differential. This 48
is the case in which p = -2, which would occur if the attraction, in-
stead of following Newton's law, followed the inverse of the cube of
the distance. We then have

f,‘:(zx dy — pydz)=Zazy.

The quantity I2xy is therefore a polynomial of the first degree with
respect to time, and since

d
Soary=Iamr 5 = 7 Smut,

the expression tmx? is a polynomial of the second degree with respect
to time.

Jacobi reached this result at the beginning of his Vorlesungen.*
However, in general,

EZ(2xdy —pydz)

is not an exact differential.

In the special case of Newtonlan attraction, our invariant takes
the following form

fﬂ(zxdy+y dz)—-3¢(C,— C,).

Integral TInvariants and Characteristic Exponents

257. It may be asked whether there are other algebraic integral
invariants in addition to those which we have just formed.

* Translator's Note: English title is Lectures.
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Either the method of Bruns, or the method which I employed in
Chapters IV and V, may be employed. As we have seen, the integral
invariants correspond to the integrals of the variational equations,
and the same procedures could be applied to these equations as are
applied to the equations of motion themselves.

However, it may be more advantageous to modify these procedures,
at least with respect to form.

Let us set an arbitrary system of differential equations

dr;
riR (1)
and their variational equations /49
I _ ¢ X 2
&= (2)

Let us first try to determine the integral invariants of first
order having the form

f(Bldz,+B,dx,+...+B,,dx,.), (3)

in which the expression under the sign f is linear with respect to the
differentials dx, and where the B's are algebraic functions of the x's.

These invariants correspond to the linear integrals of equatioms

(2).

What are the conditions under which equations (2) have integrals
which are linear with respect to the £'s and algebraic with respect to
the x's?

Let us assume that values are assigned to the x's which correspond
to a periodic solution of period T. The coefficients of equations (2)
will be the known functions of t, which will be periodic and have the
period T. One can then derive the general solution of equations (2) in
the following form

8= TpAgentdng 4)

The y; 1 's are periodic functions of t the a3 's are characteristic ex-
i,k p > k
ponents, and the Ay's are integration constants.

We can then solve the linear equations (4) with respect to the
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unknowns Akeakt, and we will obtain

Agent = 38,8, 4 (5)
The 6; ,'s are periodic functions of t.
i,k P

There will therefore be n relationships of the form (5) between
the £'s, and there will be no others.

If equations (1) and (2) include q different integrals which are
linear with respect to the £'s and algebraic with respect to the x's,
some of these q integrals may cease to be different when the x's are
replaced by the values corresponding to one of the periodic solutions
of equations (1).

What may then be done? /50
Let

Hi= Byl -+ Bya-+...+Buby=const. (i=1,2,...,9)

be these q linear integrals, where the B's will be algebraic functions
of the x's, which will correspond to q integral invariants of the form

(3).

They are different -- i.e., there are no identical relationships
between them having the following form

By I+ By Ty 4. ..+ 8, H, =0, (6)

where the coefficients B are constants. Neither does the following form
occur

G4 Yyl 3, I, = o, (6")
with the y's being integrals of equations (1).

Is it then possible that there may be a relationship between them
having the following form

Pl o Uy +. . 4 i (6™)

¢ =0,

with the ¢'s being arbitrary functions of the x's alone. According to
No. 250, if the same relationships hold, the ratios of the functions
¢ must be the integrals of equations (1).
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We will therefore have

el Dy Of]

—— = — 7,
4

1'(1 e q)l

with the y's being integrals, and consequently

'!J] ”1>l' “.Jq ”2 B e e 'jJ,I ”,] — 0,
which is contrary to our hypothesis.

An identity relationship of the form (6") cannot therefore exist
between the Hj's.

However, if the values corresponding to one special solution,
whethet it is periodic or not, are assigned to the x's, it could happen
that the first term of (6) vanishes identically. It could happen even if
equation (6), which isjnot identically satisfied whatever may be the Lél
x's, would hold when the x's are replaced by the appropriately chosen
functions of t, that is, by those functions which correspond to a
special scolution.

Every special solution under which this phenomenon is produced, I
shall designate as a singular solution.

Under this assumption, two cases may be presented.

The case in which the periodic solutions of equations (1) are all
singular;

Or, the case in which they are not all singular.

258. Let us consider a singular solution S. Let us set

: BiBag+ BaBay+.. . By.q = Bg,
from which it follows VTRt + BgBr.g=Bx

Bubi+ Bakyr.. .t Baly = By Hy+ By Hy .. .+ B H,

Since relationship (6) was not identically verified, we do not have iden-
tically

B;=B;=...=B.=o0. (N
However, since relationship (6) must be verified by the solution S,

these relationships (7) (which are algebraic, according to our hypotheses)
must be satisfied for the values of the x's which correspond to the
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solution S.

Now let us set

r__ dBi . dBi - dB{
g—X:'dE—i-‘\gd—r—’—l—...—t—)\ndxn,
and thus
dB; dB; 4B’
Bi=X{—— + X3 — +... adad |
{ ldxl-**‘(: d.t,+ +x"dx,.,

The solution S must obviously satisfy the relationships
(7")
Bi=o0o (i=1,2,...,n), :

and the relationships

Bi=o (i=1,2, ..., n) (@A)
and so on.

We shall therefore successively form the relationships (7), (7"),
(7"), etc., and we shall stop when we have arrived at a system of re-
lationships which will only be the result of those which will have been /52
previously formed.

Relationships (7), (7'), (7"), etec., will be algebraic according
to our hypotheses, and all of them together will form what I have
called in No. 11 a system of invariant relationships.

Therefore, if a system of differential equations permits a singular,
periodic solution, it will permit a system of algebraic invariant rela-
tionships.

It is probable that the three-body problem permits no other alge-
braic invariant relationships except those which are already known. I
am still not able to prove this.

Under this assumption, let us assume that we have several singular
solutions. For each of them, we must have

ﬁxBi.x—*'?'zBi.z +...+BgBig=o0. (8)

Only the constants B will not be the same for two different singular
solutions. It is therefore not apparent that these two singular
solutions must satisfy one and the same system of invariant relation-
ships. However, this is what takes place, as we shall prove.

54



In order to formulate our ideas, let us assume that q = 4; the
line of reasoning would be the same in the case of q > 4. Let us con-
sider the n relationships

8, B+ BaBi -+ 2aBi+ 3. B =o ({=1,2, ..., n) a7

Let us form the Table T of the 4 n coefficients B. All of the
determinants formed by means of the four columns in this table must

be zero.

If this is not the case, we shall obtain one or more relationships
which must be satisfied by all the singular solutions, which will in-
clude only the x's and which will not include the indeterminate g!s.

If they are identically equal to zero, let us consider three of
the relationships (17), and we may deduce the following from them

M, M, M, M,

BB R R
The M's are minors of the first order of Table T.
We will therefore have /53
M+ MyHy+ M;Hy + M, H, =o. (18)

This relationship (18) must be identical, because the coefficient of &
is one of the determinants of Table T, which I assume to be identically
Zero.

We shall therefore have a relationship of the form (6"), which is
opposed to our hypothesis, unless one only assumes that all of the M's
are identically zero.

If all of the minors of the first order of Table T are identically
zero, let us form the minors of the second one.

Let M'";, M'5 , M'3 be three of these minors obtained by taking
three arbitrary columns in the table and by cancelling the lines 1 and
4 for M';, 2 and 4 for M, , 3 and 4 for Mj3.

It will become

M} T 4+ MyH, + M Hy = o. (19)

This relationship must be identical, because the coefficient of g, in
the first member is one of the minors of the first order of T which I
have assumed to be identically zero.
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This would still be a relationship of the form (6"), unless one
only assumes that all of the minors of the second order M are identi-
cally zero.

If this is the case, it will become identically

Bill;— By Hy=o,
which is still a relationship of the form (6").

It may therefore only be the case that all of the determinants of
Table T vanish identically. We shall therefore have at least
one relationship (and, consequently, a system of invariant relationships)
which must be satisfied by all the singular solutions of equations (1).

It may be immediately concluded that all of the solutions of equa-
tions (1) cannot be singular.

But this is not all; we may expand our definition of singular
solutions.

We have just defined the singular solutions with respect to q /54
integrals H; of equations (2) which are linear with respect to the £'s
and which correspond to q invariants (linear and of the first order)
of equations (1).

In the same way, we may provide a definite definition of the singu-
lar solutions with respect to q arbitrary integrals

H,, H, ..., H,

of equations (2) and of equations (2') obtained by replacing the £'s
by the £' s,

These integrals must be homogeneous and of the same order, both
with respect to the £'s and with respect to the £''s. They will be
whole polynomials with respect to these variables, but they will not be
necessarily linear with respect to the &'s. They may therefore corres-
pond to integral invariants of a higher order, or to integral invariants
of the first order, but which are not linear.

In addition, these integrals must be different -- i.e., they must
not satisfy identically a relationship of the form (6), (6') or (6").

I may then state that a special solution § is singular if a rela-

tionship (6) is satisfied for the values of x which correspond to this
solution.
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We shall then have

H;= ZBy:As,

The quantity Ap is a monomial formed by the product of a certain number
of factors 51, €2y +vvs Ens EY, E' cees Ep ralsed to a suitable power,
and the By 4 's are algebraic functions of the x's.

We shall first set, as was done above,
B, =BBiy+ BiBia+.. .+ ﬁqBi-q’

and no changes need be made in the line of reasoning pursued above. We
shall arrive at the same conclusion.

Every singular solution with respect to the q integrals Hj satis-
fies one and the same system of algebraic invariant relationships.

These results are still valid if one envisages the integrals in
the following form

H" == Bi_i5| -+ Bz.iﬁz-“ .. -+Bn.iEn —+- Bn+(.i’El -+ BIH—!.itE!‘*‘- . -+B2n.itEn

The definition of the singular solutions, with respect to these /55
integrals, will still be the same, and these singular solutions will
satisfy one and the same system of algebraic invariant relationships.

The proof presented above need only be repeated, without any
changes. The coefficients of the quantltles By i —— which will play
the same role in this proof as the &;'s -- may be either the Ei's,

the products of £; and of E', or the products of the form tgy.

259. T do not wish to delve into the reasons for my belief that
all periodic solutions cannot be singular solutions in the case of the
three-body problem.

This would take me too far afield from my subject; I shall return
to this later. In the meantime, I shall provisionally assume that this
proposition is correct, only observing that it is very unlikely that all
of the periodic solutions of the three-body problem satisfy a system of
invariant relationships, which would be necessary -- according to the
preceding section —- in order that they may be singular. We shall
again employ the notation and the numbering of equations in No. 257.

If equations (1) and (2) include q different integrals which are
linear with respect to the £'s and algebraic with respect to the x's,
these q integrals will still be different when the x's are replaced by
the values corresponding to a non-singular periodic solution.
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By stating that these q integrals are constants, and by replacing
the x's by the values corresponding to a periodic solution in the
equations thus obtained, one will obtain q equations of form (5), but
where the exponent oy will be zero. These q equations must therefore
be included among equations (5). Therefore, in order that equations
(1) include q different integral invariants which are linear with
respect to the x's, it is necessary that q of the characteristic ex-
ponents ok be zero for every non-singular periodic solution.

Let us now try to determine the integral invariants of the form

f\/SA,-dx,’-+ 2By dz; dry :f/l’(dx[). (7)

These invariants will correspond to the integrals of equations (1) and /56
(2) which are quadratic with respect to the £'s. The integral

will correspond to the invariant (7); this integral must be quadratic
with respect to the £'s and algebraic with respect to the x's. In this
equation, let us replace the x's by the values corresponding to a non-
singular periodic solution. We shall have

F*(%;) = const., (8)

where F* is a quadratic polynomial which is homogeneous with respect
to the &'s, whose coefficients are periodic functioms of t.

It must be possible to deduce all equations of the form (8) from
equations (5) in the following manner.

When dealing with a problem of dynamics -- in particular, in the
case of the three-body problem -- we have seen that the characteristic
exponents are palrwise equal and have the opposite sign. We can there-
fore group equations (5) by pairs. Let us set

A.{'ca‘l == Elir{)ik: (5 ' )
Bire-ut = 2, £,0,. (5")

When multiplying equations (5') and (5") by each other, we will obtain
an equation of the form (8), and all equations of the form (8) must be
linear combinations of the equations thus obtained.

If we therefore assume that equations (1) have the canonical form
of the equations of dynamics, and that they contain p pairs of conju-
gate variables, we shall have p pairs of equations similar to (5'")
and (5"). Comnsequently, for each periodic solution, we shall have p
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equations of the form (8) which are linearly independent.

Let us choose one equation from these p equations and their linear
combinations for instance;F*(Ei). Let us follow the same procedure for
all of the other periodic solutions. We shall then have a certain poly-
nomial F*(£;) which is homogeneous and of the second degree with respect

to the £'s, whose coefficients will be functions of the x's which are
only defined for values of x which correspond to a periodic solution.

We must now determine whether the selection may be made in such
a way that the coefficients of F* are algebraic functions of the x's,
or even of the known functions of the x's. I shall simply pose this
problem, without attempting to solve it at the present time.

Let us now try to determine the invariants of the second order --
i.e., those having the form of a double integral

JIr

where F is a linear function of the products dxjdxj (the coefficients

of this linear function ere naturally functions of the x's). These
invariants of the second order will have the following significance.

Let us select equations (1) and (2) once again (we shall always

/57

retain the numbering given in No. 257), and let us form in addition the

equations

By AN,
AU T dde, (2a)

They will lead us to equations which are similar to (5), and which I
may write as follows

Apent = 5Ei8;. (5a)
They only differ from equations (5) because the letters are accented.
According to the preceding chapter, the invariants of the second

order will then correspond to those of the integrals of (1), (2) and
(2a), which are linear with respect to the determinants

&8k — kbl

and algebraic with respect to the x's.

Let F(E8k— Edl)
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be one of these integrals. If the x's are replaced by the values
corresponding to a periodic solution, we will obtain an equation

having the form /58

F*(8:8% — & 80) = const, (9)
where F* will be a linear function with respect to the determinants
Eifi— Eudi
and whose coefficients will be periodic functions of t.

We have now determined the manner in which all relationships of
the form (9), relative to a given periodic solution, may be formed.

In the case of equations of dynamics, equations (5a) may be
divided into pairs like equations (5). Let

Ajemt = S0, (5a")

Bhe-mt = L84, (5a")

be one of these pairs. Let us multiply (5a') by (57), (5a") by (5"), and
let us subtract. We shall obtain an equation having the form (9). Each
pair of equations will give us one, and all other equations of the form
(9) will only be linear combinations of those which thus may be formed.

Let us choose one equation from among all equations of the form
(9) thus obtained. Let us follow the same procedure for all other
periodic solutions. We shall then have a relationship

F*(Eik —Euki) = const.

whose first term will be a linear function of the determinants. The
coefficients of this linear function will be functions of the x's which
are only defined for values of the x's corresponding to a periodic
solution.

We must now determine whether the selection may be made so that
these coefficients are algebraic functions or even the known functions
of the x's.

Let us now return to the linear invariants of the first order.
According to No. 29, the form of equations (4), and consequently that
of equations (5), is modified when two or more characteristic expo-
nents become equal.

If, for example, nine of these exponents equal zero, we may write
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the corresponding equations (5) in the following form /59

Pk:—‘ 515«'0/4-» (10)

The quantity Py designates a whole polynomial with respect to t, having
constants for coefficients.

These polynomials are of the degree q - 1 at most. In order to
specify this more precisely, the number of polynomials is q. The
first may be reduced to a constant, the second is of degree one at
most, the third is of degree two at most, and so on, and finally the
last is of degree q - 1 at most.

In the case in which the degree of this last polynomial reaches
its maximum and is equal to q - 1, the polynomial before the last is
a derivative of the last, the q — 2nd one the derivative of the q - 1lst
one, and so on.

In every case, the q polynomials may be divided into several
groups. In each group, the first polynomial may be reduced to a con-
stant, and each of them is the derivative of the following.

In order that there may be p linear integral invariants, it is
not sufficient that p of the characteristic exponents are zero. It is
necessary that p of the polynomials Py be reduced to constants (or,
which i1s the same thing, that these polynomials be at least divided
into p groups).

From the point of view of our study, what is then the signifi-
cance of equations (10) where Py may not be reduced to a constant?

In No. 216 we defined an integral invariant whose role is very
important. This invariant has the form

fl’%‘lf[“x.

where F and F; are functions which are algebraic with respect to the
x's, and linear with respect to the differentials dx.

A similar invariant corresponds to an integral of equations (2)
having the following form

oty = const.,,

where F and F; are functions which are algebraic with respect to the
x's, and linear with respect to the £'s.
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In this integral, if T replace the x's by the values which corres-
pond to a periodic solution, we shall have /60

F* <+ ¢tF} = const,, (11)

where F* and F} are functions which are linear with respect to the £'s,
whose coefficients are periodic functions of t.

We have now determined the manner in which we may obtain all rela-
tionships of (11) starting with equations (10).

Let us consider two polynomials Py, the first being reduced to a
constant, and the second being of the first degree; the first is the
derivative of the second. The corresponding equations (10) may be
written

A= ZE0, (10")

As+ Ayt =20 (10™)

where the 6i's and the 8&'5 are periodic 1in t. We may thus deduce
TE0;— ¢3E0; = const.,
which is a relationship of the form (11).
We should note that equation (10'), raised to the square, provides

us with a relationship of form (8), and that a relationship of form (9)
may be deduced from equations (10') and (10'"), that is,

(ZE:0,)(Z8i0;)—(28:0:)(2E0;) = const.

260. Let us apply this procedure to the three-body problem, and
let us determine what may be the maximum number of integral invariants,
of the several types studied in the preceding section, for this problem.
That is:

The first type: 1linear invariants with respect to the differen-
tials dx;

The second type: invariants where the function under the sign f
is the square root of a second-degree polynomial with respect to the
differentials of the x's;

The third type: invariants of the second order, which are linear
with respect to products of the differentials dxjdxy;
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The fourth type: invariants having the form considered at the
end of the preceding section -- i.e., having the form /61

JfF%‘Q[F“

These different types of invariants correspond to different types
of integrals of equations (2) and (2a), that 1is:

The first type: linear integrals with respect to £'s;
The second type: quadratic integrals with respect to the £'s;

The third type: linear integrals with respect to the determinants
' - 1 .
Eii K €& i}
The fourth type: integrals having the form

¥ "r-[F“
where F and Fl are linear with respect to the £&'s.

We may assume that it is extremely probable that none of the
periodic solutions of the three-body problem is singular.

In the three-body problem, the number of degrees of freedom 1s six;
the number of characteristic exponents is twelve. According to the
ideas presented in No. 78, there are six, and six alone, which vanish;
the six others are equal pairwise, and have the opposite sign. There
are therefore six equations of form (10) and six polynomials P, of
which four are of degree zero and two are of degree ome. Or, ere
are three pairs of equations having the form ("), (5"), four equa-
tions having the form (10'), and two equations having the form (10",

Let us therefore determine how many independent invariants of
each type there will be.

I shall state more precisely what I mean. I do not regard n in-
variants of the first type as independent

/Fh /‘l:’:) A /'Fm

or n invariants of the second type

Sves fves o [V

or n invariants of the third type
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Sfeo ffee e S

or n invariants of the fourth type

fF" f“' an (Fi- @+ (Fy),

when there is an identical relationship between F;, Fp, ..., F, having
the form

PP+ P Fyr - b, Fp o,

where ¢;, %, ..., &, are integrals of equations (1).

It is apparent that we cannot have more than four invariants of
the first type, i.e., no more than the number of equations (10'")
already known.

We cannot have more than thirteen invariants of the second type,
of which three will come from the three pairs of equations having the
form (5') and (5"), and the six others will be obtained by means of
the squares of the four equations (10') and of their products by pairs.
These last ten exist in actuality. However, they are not independent
of the four invariants of the first type, since they may be deduced by
the procedure given in No. 245. We may therefore have three new in-
variants.

We cannot have more than eleven invariants of the third type, of
which three will come from the three pairs of equations having the form
(5') (5"). Six will be obtained by combining the four equations (10')
by pairs; two will be obtained by combining the two equations (10")
with the corresponding equation (10').

Seven of these invariants are known. One 1s the invariant J; of
No. 255; the six others are those which may be deduced from the four
equations (10'), but they may not be regarded as independent of the
four invariants of the first type, since they may be deduced by the
procedure given in No. 247,

We may therefore have four new invariants of the third type.

Finally, we may not have more than two invariants of the fourth
type, 1.e., no more than the number of equations (107).

One of these invariants is known, that of No. 256; we may still
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have a new invariant.

It is probable that these new invariants, the possibility of which
was not excluded in the preceding discussion, do not exist. However, /63
in order to prove this, we must resort to other procedures -- for
example, procedures similar to those of the method advanced by Bruns.

Use of Kepler Variables

261. The invariant of the fourth type in No. 256 may be written
in still another form.

Let us set an arbitrary system of canonical equations

¥

dx; dF dyi _
=& == qa L

L)Y
dt T dyd de

Let us consider the following integral taken along an arbitrary
curve arc

J :f(rx dyi+Zydys+.. .+ Zadya).

Let us assume that we are writing the equations of the curve arc along
which integration is performed, expressing the x's and the y's as a
function of the parameter a, and that the values of this parameter
which correspond to the ends of the arc are ag and aj. The integral J
will equal

2, dy
:f Px - jda.
o dx

Let us assume that we are considering our curve arc like the figure F
in the preceding chapter, which varies with time and may be reduced to
Fo for t = 0.

Then the x's, the y's and the functions of the x's and the y's,

dF dF

such as F, =’ dy’

«.., will be functions of o and of t.

We shall have
dJ O dz dy dry
P [[‘ZW m]d‘ *‘f[”—(u (11]"“

or
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d[‘ dy . d [dIf
f(mz; z] da *f[ (u<}'1£)]‘l’
when integrating by parts

IJJ . .l :/F {1_}’ G (Zr‘ (IL ‘{‘[:
de _j[ i Ly <11]‘h+/' 1 dv dx](h [E”','/g;]-

However, /64
zggﬁfgz_+ dF dr _ dF
dy da = Ledzx dz~ da’
and therefore dl P dF Ja=0,
— = — Xz - .
du dz {14,

(2)

If we assume that F is homogeneous and has the degree p with respect
to the x's, it will become
aF

Iz pF.
dr =

Let C be the energy constant, so that the equation of energy
may be written

IF=G.

Let €Cp and C; be the values of this constant which correspond to
ag and o;; it will become

dJ
Zi =—=p)(Ci—Cy). (3)

Therefore, strictly speaking, J is not an invariant. However, its
derivative, with respect to time, is constant and -- to use the expres-
sion defined in the preceding section, it is an invariant of the fourth
type.

262. Let us now assume that F presents another type of homogeneity.
Let us divide the pairs of conjugated variables into two classes,
and let us use xq, yy to designate the pairs of conjugated variables of

the first class, and let us use xi, y'{ to designate the pairs of con-
Jugated variables of the second class.
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I shall assume that F is homogeneous of the order p with respect
to the xi's, to the (x' )2 's, and to the (¥' )Z's, so that we have

. AR X dF dF
L‘—— - Ll ’ . i
bd.v+23(x dz’ +r :l_?)"pr'

Let us then set

1f[2(x dy) + % E(x'dy’——‘y'dz:’)]

or

«
1 dy 1 d I dxv
J= s L L8 _p2F
j; [ z d1+2>‘(x da 4 (la)]da’

from which it follows that

. o dr dy dz' dy dy' dx
(1: f[ i dE 2; E('JE—W da)]“’“

dry’ dz
p¥
+f[ ”d dt (7 Zdi Y dadt)]da

a’[‘ dy 1 dF dx’ dF dy
f[ d_y d1+;E<E dz d_y da:)]d‘z

1 d dF d dF
/[ da dr+9.2( dx dx' +‘y521_f’)]d1’

or, integrating by parts,

or

dJ & dr dz' dF dy df dz’ a’x dF dy )d
j; Z(ﬂ da dy v dr dx d_y dz ) “*

&= .
3 dF iy ({F d[‘)"ld.__’.'l.
[ErZE+ ( ey + ' a7 ) o,
or
dl —
= =[F—PFLZ
or finally
B o (1= p)(Ci— Co)y

dt
which shows that J is still an invariant of the fourth type.

263. Let us apply the preceding statements to the three-body
problem, and let us determine the change in the invariant of No. 256



with the different variables chosen.
In No. 11, we used the following as variables

8L, BG, e, gL, PG, fe,
A & 0, i, g, 0.

F is homogeneous of degree -2 with respect to the variables of the
first series. Therefore,

f[p(L dl+Gdg +8d)+ §/(L'dl'+ G'dg'+ 0" 20)] - 3¢(Cs— Co)

will be an invariant.

The same homogeneity remains if the following variables are chosen, /66
as in No. 12,

A W, Z, N, H, T,
PV T A U T

Therefore,

f(AdA + Hdh +Zdf 4 NdV+ Wk + 7. 7) 4 3¢(Cy— Go)

will be an invariant.
If the following are chosen as variables (see No. 12)

AN P, P,
PSR VO N 7 9,

the function F will be homogeneous of degree -2 with respect to the A's,
to the £'s, to the n's, to the p's, and to the q's.

As a result,
JEaAD +dn—n &b+ pdg — g dp)+ 66(Ci— Co)

1s an invariant.

The sign I indicates that the term which is deduced when the letters
are accented must be added to each term. Thus, we have

Zfdny =tdy+ ¥tdy.
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If finally we select the variables of Nos. 131 and 137

we shall see that
\/‘[-).A\ dh 2 N W - S(xpeds — apedey) ] - 60(Cp— Cy)

will be an invariant of the fourth type.

Remarks on the Invariant Given in No. 256

264. 1In No. 256, we considered the case in which the x's designate
the coordinates of n points in space, and in which the equations of dy-

namics take the following form [67
iz Y
it T dz’

where V is homogeneous of degree p with respect to the x's.
We have seen that in this case

] =f3(2fvdf S py de)+(p - 2)t(Ci—Cy)

is an invariant of the fourth type.

Two special cases merit particular attention. Let us assume that

P =12
and we then have

J:z\/,‘.l(xd_y -y dz)

and J is an invariant of the first type.

In particular, this is what occurs when one assumes several material
points which attract each other in direct ratio to distance. This may be
readily verified.

In this case, we have
x = A cosh¢ -+ Bsint

and
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y=—mIAsinht+ mAB cosit,

where A is an absolute constant, while A and h are integration con-
stants which are different for different pairs of conjugated variables.
It then becomes

de = cosht dA 4-sink ¢t dB,
/= — mhsinke dA -+ m ) cosht dB,

from which it follows that

zdy —ydr = mMAdB--BdA),
which shows that
J :z)\me(AdB-—-BdA)

is an invariant, since time has disappeared, and that only the integration
constants and their differentials enter.

Now let us set p = -2. This is the case which holds when several /68
material points attract each other in inverse ratio to the cube of
their distance.

The invariant J then becomes

J=o { 2(zdy +ydz)—4t(Ci- Co)

Here, the quantity under the sign f is the exact differential of the
expression

S =Zzy,

so that if the values of S corresponding to the two ends of the inte-
gration arc are designated by Sg and S;, it becomes

J :(2S|—4C|l)+(250—400t).

In particular, if we assume that one of the ends of the integration

arc corresponds to a special situation of the system, where the n materi-
al points are at rest and are located at a very great distance from each
other, the mutual forces will be very small, so that the velocities of
these material points will remain very small for a very long period of
time, and the distances will remain very large. As a result, Cy will be
zero, as well as S;, both for all values of t and for t = 0, and we will
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still have
J=25|—4C,t.

We will therefore have

S=12Ct+B,

where B is a new constant, and C is the energy constant, or else

Zzy =2Ct+ B,

or

dr
X —— =
e - 2Ct + B,

or, performing integration,

max?
r;_i—;—- =C24+ Bt A,
where A is a third constant.

This is the result which Jacobi obtained at the beginning of his
Vorlesungen ilber Dynamik (Lectures on Dynamics).

Case of the Reduced Problem /69

265. We may reconsider the question which we discussed in No. 260,
considering the problems pertaining to the three-body problem, which are,
however, somewhat simplified.

I shall first consider what I have designated as the restricted
problem, i.e., the problem discussed in No. 9 where two masses describe
concentric circumferences, while the third, infinitesimal mass moves in
the plane of these two circumferences.

There are then two degrees of freedom. There is one pair having
the form (5'), (5"), one equation (10') and one equation (10") (see
No. 259).

Therefore, we can have at best an invariant of the first type,
which is already known, two invariants of the second type, of which one
is known, two invariants of the third type, of which onme is known, and
one invariant of the fourth type, which 1s already known.
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We can also consider the plane problem —— i.e., the problem of
three bodies moving in one plane.

Finally, we may assume that the number of degrees of freedom
has been reduced by the procedure given in No. 16. Let us make this
assumption in the case of the general problem. We shall then arrive
at what I have designated as the general reduced problem. Let us
assume that this is true in the case of the plane problem; we will
then arrive at what I have designated as the plane reduced problem.

A resumé of the discussion which would be followed in these
different cases is given in the following table.

Problems
Re- Plane General|{ Reduced| Reduced
stricted Plane General
Number of degrees of

freedom ..vvivverannnnn 2 4 6 3 4
Number of pairs 5",

(5") sovevsnnannnecnens 1 2 3 2 3
Number of equations (10') 1 2 4 1 1
Number of equations (10") 1 2 2 1 1
Maximum number of possible

invariants:

First type vecaveeven 1 2 4 1 1

Second type seseesses 2 5 13 3 4

Third type «secesenss 2 5 11 3 4

Fourth type «.e.vven. 1 2 2 1 1
Maximum number of possible

new invariants:

First type ceeseroees 0 0 0 0 0
Second type ...iveenen 1 2 3 2 3
Third type .eevevenns 1 3 4 2 3
Fourth type .ovivevss 0 1 1 0 0
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GHAPTER XXIV

USE OF INTEGRAL INVARIANTS

Test Procedures

266. In Volume II we discussed different procedures for finding /71
series which formally satisfy the equations of the three-body problem.
Since these series may be of great practical importance and since they
are only attained at the price of long and difficult computatioms,
every method which one may find to verify these computations may be
very valuable. The consideration of integral invariants provides us
with one method which is of interest.

Let us call X, (1i=1, 2, 3, 4, 5, 6) the coordinates of two

planets (as we stated in Section No. 11 and as we have always done since,
the first must be related to the Sun, the second to the center of gravity
of the first and of the Sun). On the other hand, let us call Yi the com-

ponents of their momentum. These quantities Xy and y; may be developed

in series in the following manner.

Let us recall the results of Chapters XIV and XV, in particular,
those obtained in No. 155. In these chapters, instead of the twelve

variables Xy and vy which I have just defined, in order to define the

positions of two planets we employed twelve other variables

r 14
A, A, Ry, Ay, o1 0y O3, Gy Ti, Tay T O

In addition, we introduced six arguments

while setting i Wy, W Wy, Wy, W,

Wi = n;t + 15;; wi=njt 45,
and six other integratiomn constants

' 7o 10 '0
Aoy Ap, ZP, Y, &P, =z,

and we found that the equations of motion could be satisfied in the [72
following way.

The quantities
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!
A, A, M—wy, M—wy 3, Ty

may be developed in powers of u and of the x&?‘s . Each term is

periodic with respect to the w's and the v 's, and depends in addition
on the two integration constants Ag and Ap.

The constants nj and ng_ may be developed in powers of u and of
the x',0's, and depend on Ay and Ay in additionm.
i 0 0

The Efi's and the K?i's are six integration constants.

Finally,
Adh+ Nd\, + Za, dvy

is an exact differential when the twelve variables A, A, o and T are
replaced by their expansions, and when the w's and the w' s are regarded
as six independent variables and the quantities Ag, Ag, fio are regarded

as constants in these expansions.

Our quantities X; and v3 which I have just defined may be ex-
pressed readily by means of the twelve variables A, A, 0 and T.

It may be concluded tbat x4 and y4 may be developed in series in
powers of uy and of the xﬁp s, as well as according to the cosines and
the sines of multiples of the w's and the w's . In addition, each co-
efficient depends on A and Aj.

The expression
Szidy:

will be an exact differential, if the w's and the w's are regarded as

six independent variables and Ay, Ao, x&o are regarded as constants.

We need barely point out that the series thus obtained are not
convergent. They are only of value with respect to formal calculations,
which gives them, however, a certain practical utility as I explained
in Chapter VIII.

Nevertheless, if we substitute these expansions for the xi's and
the yi's in the expression of an integral invariant, the result of this
substitution must, from the formal point of view, satisfy the conditions
which must be satisfied by an integral invariant. This provides me with
the verification procedure to which I wish to draw attention.
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267. We saw above that /73

/E(zxdy+ydr)-3£(c,—co) (1)
is an integral invariant.

In order that we may make use of this invariant, we are going to
perform a change of variables which is similar to that given in No. 237.

In order to have greater .symmetry in the notation, let us set

- I L
wi=w;ey ((=1,2,3,4) i = R+, W = Wi+

Ap= &1, AE;:Ez; -T;°=Ei+1-

We have seen that we may develop the x's and the g's in series
depending on the w's, the w' s, the A, Ny, and the x} 's - i.e., with
our new notation, the w;'s and the £i's =1, 2, 3, 4, 5, 6).

For new variables we may then take the Ei's and the wi's, and then
the differential equations of motion will take the form

O g

[just as in No. 237, equatioms (1) become, after the change in variables,

Y - 92 _ g
0 1

as we have seen].

The ni's are functions of the Ei's alone.
However, it is more advantageous to select other variables. Due

to the fact that the six ny's are only functions of the six g;'s, nothing

prevents us from taking the nj's and the wi's as variables, instead of

the £;'s and the wj's, so that the differential equations become

dns = f‘& = dt. (3)

o ng

An integral invariant of the first order will take the form
3 _—_f(EAgdnH— £Bidw;),

where A and B are functions of the ni's and the wj's.
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I may assume that figure F is a curve arc for which the equations, /74
which are variable with time, have the following form

n,:ﬂ(a, [): w,:f;(a, (),

where the variables n; and wy are expressed as functions of time t
and of a parameter a which varies from ay to a; when the arc F is en-
tirely traversed. The equation of the arc Fy will then be

ni=fi(a,0)  wi=fi(a o).

With these stipulations, I may then write

]
] = \-\Aili‘.'.i_)_[} (_I‘Y’ da,
. Y da da

from which it follows that
IA; dny  dB; dw d? CANTTPA
= [ Yy (Eredne | AP dwy RS
dt f 3 (dt & Tar dz Ai dt da + B dt <11)

However, we have

i’\_x —~3%n dA;

dt L dw;,

dBi dB[

q TER g
‘dzll,v . ? Wy (l/;r,l-
7 - — 0, _—— =
dt dx dt dx dx’

from which it finally follows that

dJ 7\
o sl d = __l _ - A8
7 f ! [( n; ( 3 n T -} ) dw; T, n ;/(;;

If J is an absolute integral invariant, we must therefore have

4B (4)
Zpng Jor =0
dA
Seng Zl——w: = — B, (5)

Let us now determine what occurs in the case when the A's and the
B's are periodic functions of the w's and may be, consequently, devel-
oped in trigonometric series,.

Let us first consider equation (4), and let us set
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B = N[heos(mywy—. .. - mgwe) 4 b sin(myw;-1-. . 4 mews)],

where the b's and the b''s depend on the ny's.

Equation (4) becomes [75

S(myng+. .. meng)[— bsin(mywy+. ..+ ngwg)
-1 b cos{mywy ...+ mgws)] =0,

which may only hold if

Dy Ny -+, .- Mg Ng = 0,

(6)
or if
O = b':o.

However, the m's are integer constants, and the n's are our inde-
pendent variables between which no linear relationship may hold. Equa-
tion (6) therefore entails the following

my== Mg =..,= Mg —= 0.

This means that the trigonometric expansion of Bj may be reduced to
its known term -- i.e., By is a function of the ni's alone, and is
independent of the w's.

Let us now pass to equation (5). Let us set
A;== (@ cosw -+ a'sinw),
writing w, for purposes of brevity, instead of

My L g g,
Equation (5) may then be written
S(myny ...+ mgng)(— a sinw + @’ cosw) = — By,
Let us first comsider a term which is dependent on the w's, i.e.,

such that m;, my, ..., my are not zero at the same time. We shall
then have

MRt .. MgNg 2 0.

In the second term, By does not depend on the w's. This second
term contains neither a term for cosw, nor a term for sinw. As a
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result, we have
a - a =-=0.

Therefore, Ay does not depend on the w's, and may be reduced to
the known term of its trigonometric expansion, a term which depends
only on the ny's.

However, equation (5) may then be reduced to /76
B;=o.
In general, every linear absolute, integral invariant of the
first order, where the term under the sign f is algebraic with respect

to the x's and the y's and, consequently, periodic with respect to the
w's, must have the following form

fEA;dn;,

where the Aj's depend only on the ny's. In reality, this is what occurs
for the absolute invariants which we know and which are obtained by
differentiating the integrals of area, emergy or motion of the center
of gravity.

However, the relative invariant
J :f!‘.(zxdy + y dz)

deserves more attention. We have seen that

J —3¢(Cy— Cy)

(where Cy and C; are the values of the energy constant at the two
ends of the arc Fy) is an integral invariant. We shall therefore have

o =3(C, - Co)= 3fdc. (7

If we set
J :f.‘:(;\,'dn,-—{— B;dw;),

equation (7) becomes

f ‘ [dn (X/. ny g—\_ + )+ diw;Spng dl:B;‘] /E dn;,
v. l
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because the energy constant C is only a function of the ni's.

Equations (4) and (5) must therefore be replaced by the following

equations [77
Son GBE o (4")
dwy,
dAy dC
B0 T = 3 dmy — B (5")

The A's and the B's must be periodic functions of the w's.

If we treat equations (4') and (5') just the same as we treated
equations (4) and (5), we find the following:

1. The Bi's are independent of the w's;
2. The A;'s are independent of the w's;

3. And that

Q.
53
Il
=

We finally obtain

E(rxdy +yde)=ZA;dn;+ 32%?« dw;,
£
where the Aj's depend only on the ny's.

In other words, expressions
viloa &, dx
‘(L‘T‘ dny + i dny
or

dy; dx;
% (ﬁxi i 4+ i ;I—E;) (8)

do not depend on the w's and are only functions of either the £'s or
the n's, depending on whether everything is expressed as a function of the
£'s and the w's, or as a function of the n's and the w's.

In the same way, we shall have
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. dy; tf iC
e(am 2 e GoE) =3 G (9

dwy dny,

As I have already stated the x;'s, the y;'s, and C are developed
in powers of u and of the x& s. Expressions {8) and the two terms in
equations (9) may therefore also be developed in powers of these quanti-
ties.

All of the expansion terms of expressions (8), which are expanded
in powers of u and of the xi 's, must therefore be independent of the /78
w's.

On the other hand, each expansion term of the first member of 9)
must equal the corresponding term of the second member.

We thus have numerous procedures for verifying our computations.

268. I have stated that

T x; d_y[
is an exact differential, if the £i's are regraded as constants, and
the w's are regarded as independent variables.

We then obtain

/Mw@%yh)3/u—d%
dC 1] ¥
or, since the EEI s depend only on the &'s, they must be consequently

regarded as constants

fi‘(zxdy—;—ydﬂ:32§%w

from which it follows that

f~xdy+f"‘(a‘dy+ydx)—= 32 (ZC

from which we finally have

dC
¥ = —_— iy —
f vdy =3 E dn; w; — Tzy.

Let us briefly return to the notation given in No. 162. In this

(10)



section, just as in No. 152, we chose the following as variables

A Al a7
» + Iy (11)
)'I; )‘,n iy

and we set
d5 = (A — Ag)dh -+ (N — Ay My = Sopd oy —d(s] i)

On the other hand, the variables (11), just as the variables xy,
yi, are conjugate variables. As a result, just as I have explained
several times, the expression

Sridyi— Ny -- N Dy — Lodri = dU

is an exact differential. I should add that the function U may be {79
readily formed, which may be consequently regarded as a known function
of the xy's and the y;'s.
We then have
dC
S=32<_i7z_1 wi— Zay — U=—Agphy— Agg Al —adin. a2)
Just as when the procedure outlined in Chapter XV is applied, one

is led to formulate the function S, and equation (12) furnishes us with
the desired verification in a new form,

Relationship to a Jacobi Theorem

269. It is known that at the beginning of his Vorlesungen iiber
Dynamik, Jacobi demonstrated the fact that, in the case of Newtonian
attraction, the mean value of the kinetic energy equals, with the
exception of a constant factor, the mean value of the potential energy,
assuming that the coordinates may be expressed by the trigonometric
series having the same form as those which we are presently studying.

This Jacobi theorem is directly related to the preceding state-
ments. The equations of motion may be written

dr; _ dy: _ dv
i (R Tkl o

from which it follows that

H
Y _v=qg
trm;
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Then -V represents the potential energy, C the total energy, and

2
JYi
a2m;

the kinetic energy.

On the other hand, due to the fact that V is homogeneous of
degree -1, we shall have

a’V _ d}’z
_v__zzr-l.m_le —Jt—v

T
yi _ 1y, 9,
amg—azy‘ dt
The energy equation may therefore be written
1 ([.ti (l)’,r__
5 2yigp rEey =G

Let us take equations (9) from No. 217 and let us add them, after
having multiplied them respectively by n,. We shall have

d 1 dx;
Ei(lmisk”k ﬁéi = YiZing E&i = 3E;nxk T

If we note that

Zn dr _dzx
& diwwg  dt

(since %%E = ny), we may conclude that

2(21-’ %’, +}/‘- gﬁ): 3“:’1/: ﬁ%'

When making a comparison with the energy equation, we find that

which shows that C must be homogeneous of degree %—with respect to the

n,'s, which could be seen directly. The mean value of a function U,

which I shall designate by the notation [U], will be zero if U is the
derivative of a periodic function. We shall therefore have
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\‘_ ,O,Ii d)’i -
“lf* ar v d—t]—o

and, connecting this with the energy equation, we obtain

from which we have

This is the Jacobi theorem.

I1f the partial derivatives %%— are considered instead of the total /81
k

derivatives %%3 similar results would be obtained. We would obtain

o : _d)/_'_ i _(EEL —
-“(I' dwyg Ji dwg/ +O

dy: dC
DT o LA —= O
[“' i cltvk] =3 dny’

[Em dx,-] _ 5 dC,

dwi T dng

and consequently

Application to the Two-Body Problem

270. 1In particular, the preceding considerations may be applied
to the two-body problem. Let us consider a planet and the Sun, and
let us refer the planet to axes having fixed directions and passing
through the Sun. Consequently, let us consider the relative motion of
the planet with respect to the Sun.

Let X, X2, X3 be the three coordinates of the planet; let yi,
yo, y3 be the three components of angular momentum.

Let £, n, ¢ be the three coordinates of the planet with respect
to particular axes, i.e.: The major axis of the orbit, a parallel
line to the minor axis, and a perpendicular line to the orbital plane.
We shall have
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oy = gk R 4 R,
vy Mk - hym + G,

xy Nt on Mg -i- ALY

where the h's are constants which are connected by the well-known rela-
tionships which indicate that the transformation of coordinates is
orthogonal.

In the same way, we shall have
g , dn . g
}“';: }J./l“ Hzl lllhi':[—t‘f" }lk[ HE’

where p is the mass of the planet.

It is now evident that ¢ is zero, and that £ and n are functions
of one single argument w, which is the mean anomaly, and of two constants,
which are the major axis a and the eccentricity e.

In addition, the h's are the functions of the three Euler angles,
or more generally, of three arbitrary functioms w;, wy;, w3 of these /82
three angles.

Thus, the x's and the y's are functions of w, a, e, and of the

w's.

If we designate C as the energy constant and n as the mean
motion, we shall then have

2(21‘1d—+ 123) 3‘%

and, in addition, the expressions

dyi dz;
2("" dog T tz(,,k)
must be independent of w,.

Some of the statements were apparent beforehand, and provide us
with no new verification.
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In actuality, the 9%i1s are linear functions of the xi's whose
duy
coefficients depend on the w's and are such that

l’.l‘,’ .
Cdwg T

As a result, we may write the following identity

a dp o
dr, dz, dr,

"dor T ¥ dor T % day

=& &y T3

CPII( o} 9}

where the o's are arbitrary constants and the ¢§'s are the given func-

tions of the w's. In the same way, we shall have

dys a oy ag |
“ g T Ay T e, T2 21 T
?7 @}

As a result, we have

S oy ,._ff%“')'

FARN oy T A g

This expression must be reducible to a constant which is independent of /83
w, and -- since we have three similar relationships which one obtains
by setting k = 1, 2, 3 -- we may write

Y3Ta— ya2¥;3 == const.
HY1T3— yaxy = const,

YaTy— y1&p == const.
However, this 1s not a new result; these are the area equations.

Let us now investigate the expression

. , _dy,- . dr;
Z(”' da i d_a>'

Let us determine the manner in which the x's and the y's depend on a.
The x's include a as a factor, and the y's include an, because we have

dz; ([Z‘g

Vi ey TRy
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We therefore have

dvi _m dyi e yedn

da a’ da a n da’

Our expression therefore becomes

Txiyi (3~ -4~ 2 dn) .

73 n da

It may be readily verified that it is zero. According to the third
law of Kepler, we have

nta’ = const.,

from which it follows that

We have still not obtained a new procedure for the proof.

We must now examine the two expressions

dy; dx;
e WL TRy = WY
E(zx; v A tlsv) ’

. d}/i . ’.[ri — I
z(),‘b, 7[6-' -+ Vi s ) = I.

e and w remain to be varied. We can therefore only vary the w's,
i,e., the direction of the major axis of the orbit. We may 184
therefore choose particular axes and may set

3 cOSpw
z,:&:a[——;e—i—EJp-.(pe)'- P ]’
x,.—:-r‘:-;a‘/[—« ci[EJP_,(pe)S'EEE].

1'3:C:0-

The functions J are Bessel functions. The index p under the sign I
includes all the integer values from -« to +«, with the exception of O.

We may therefore deduce the following

yi=— wanl, ((pe)sinpw
ya=  panyl ety (pe)cospw.

Expression W becomes the following, if the common factor pan is re-
moved,
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» o Cospw
JeXl,ypeospw —ati, 7‘0— Zhpapeospwa [B1, ysinpw]t

" sin pw .
—2(1-eN Il ‘Tpp— Tpapsinpw +(1--e)[s], cospw]t =z W

For purposes of brevity, I have written J everywhere, instead of

p-1
Jp_l(pe)-
We must then have
W -3 ﬂ:.
n
However, C=-— l;-lj;y ntad—=m,

where m designates the mass of the Sun plus that of the planet. We
therefore have

(oS P P
2

and

o L

3 {ji =-—pmin 3= —pa'a.
(¥
However, since
W= patnV,

we find W — .

When identifying the similar terms, we have a series of relation- /85
ships between the Bessel functions J.

A study of expression E leads us to a series of relationships
which are similar, in which the Bessel functions J and their first
derivatives will be included this time,

271. Numerous examples of these particular applications could be
provided. For example, after having treated the case of Keplerian
motion as we have just done in the preceding section -- i.e., after
having taken into account terms of the degree zero with respect to the
disturbed masses -—- one could apply the same principles to the entire
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group of terms of degree 1. There is no doubt that this would lead
to interesting results.

Using the same procedure, we could also study the secular varia-
tional equations which we discussed in Chapter X. 1In place of the
integral invariant

f)l('zr;(ly,‘—i—y,'dr,-),

we would have the advantage of employing similar invariants which we
defined in Nos. 261, 262, 263.

We shall put these questions aside.

Application to Asymptotic Solutions

272. Let us apply these principles to asymptotic solutions. Let
us take the coordinates x4y and the

dx;
}"-:.—: Inlgt“
as the variables. Let us consider the invariant
J :f)l(z:r dy -1- y dx).

We know that if C is the energy comstant, and Cj and Cp are the
values of this constant at the two ends of the integration line,

we shall have

J -—3¢(Cy— Cy) = const. (1)

If we consider a system of asymptotic solutioms, it will have the
following form: The xi's and the yi's will be developed in powers of

Ajent, Agent, .., Agent,

where the coefficients are periodic in t + h, where
A, Aw oo, Ax, A

are k + 1 arbitrary constants.

If these values of the xi's and the yy's are substituted in the
energy equation, the first member is always developed in powers of

l\leall, r\,“a‘, Ceny Akealt’



where the coefficients are periodic in t + h. Since it must be inde-
pendent of t, it will also be independent of Ay, A, ..., Ak and h.

If the values of the xi's and yi's are substituted in equation
(1), we shall have

Cl = Cﬂ,
and, consequently,

J = const.

In J, the expression under the sign f, is developed in powers of

Ajent, Agedt, .., Ajenut;

The coefficients are periodic in t + hj it depends linearly on the
k + 1 differentials

d\,, dA,, ..., dAy dh,
We must therefore have

. d dx
}-<2$J{—i +y m):consl.,

d d (2)
( z(”"d—i +ya,—7i> = conslL.

The first terms of equations (2) are developed in powers of the

Aieait's. All terms of this development must be zero, except for the
known term. One thus obtains a multitude of relationships between ast /87
the coefficients of the development of the xi's in powers of the Aje 's.

By way of an example, I shall confine myself to considering the
first term, and I shall write

Ty X,' —4- 7.,'¢\ exf

where Xy and Z; are periodic in t + h.

We may deduce
yi oo Kt Aet (7 als)]

where Xj and ZE_ designate the derivatives of Xj and Z;.

Neglecting all terms in e20t  otc., we then have
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dy dz el AN (T . o
W T Al IR BPRL B ARSEYA TS WA N
}_,(,‘r ax vty d:\) et [P X (2 al) - ]

We therefore have

Xm(2XZ' - 2aX7 - X'Z)=o,

which provides us with the first relationship between the coefficients
X and Zi'

The relationship

vl @ a2\ _
~<zr drn Y an ) Teomst

furnishes us with another one which, in reality, would not differ from
the first, since -- when it is combined with the first relationship --
an equation is obtained which is an immediate consequence of the energy
principle.
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CHAPTER XXV

INTEGRAL INVARIANTS AND ASYMPTOTIC SOLUTIONS

Return to the Method of Bohlin

273. Before proceeding any further, I must supplement some of
the results given in Chapters VII, XIX and XX. I would first 1like
to sum up the results which I wish to compare and which will serve as
my point of departure.

We saw in Chapter VII that if a system

dor;
"t

== N (i =1,2, ..., ) (1)
has a periodic solution
il (2)

and if we set
ri— I? -+ Eiv

the £;'s may be developed in increasing powers of

(3)

Agent,  Nyetd Loy Apetat,

where the coefficients are periodic functions of t. The A;'s are inte-

gration constants; the oi's are the characteristic exponents of the
periodic solution 2).

The series always satisfy equations (1) formally. They are con-
vergent under certain conditions, which we have discussed in No. 105.

There is an exception in the case where we have a relationship
having the following form between the exponents a .

1Y 1+ Eal - z=o0 (4)

where the coefficients B are whole, positive, or zero, and the coeffi-
cient y is whole, positive, or negative. (See Volume I, page 338,
line 5. When writing this relationship, I assumed that the unit of

91

/88



time was chosen so that the period of the solution (2) equalled 2w).

If there is a relationship having the form (4), the £'s cannot
be developed in powers of the quantities (3), but in powers of these
quantities (3) and of t.

This is precisely what occurs if the equations (1) have the
canonical form of the equations of dymamics. In actuality, in this
case two of the exponents are zero, and the others are equal in pairs
and have the opposite sign.

In the case of equations of dynamics [or, more generally, when
there is a relationship having the form (4)], we were still able to
obtain a result., It is sufficient to give special values to the inte-
gration constants A, so as to cancel the values of these constants
corresponding to a zero exponent, and one of the two corresponding to
each pair of equal exponents having opposite signs. [More generally,
the constant A corresponding to one of the exponents included in the
relationship having the form (4) would be cancelled, so that there
would no longer be a relationship having this form between the ex-
ponents corresponding to the constants A which are not zero, ]

For example, if

Xy =< = ==
1= =0, gy= o—ay, o= — o, c1 @ny=—ay (n even),

we would make

Ai=A;=o, Aj=o, A;=o0, Cee Ap-1=o0.

The £'s may then be developed in powers of those quantities (3)
which are not zero. However, we shall no longer have the general solu-
tion of equations (1), but a special solution depending on the number

of arbitrary constants which is less than n (i.e., == in the general
2

case of the equations of dynamics).

We have thus arrived at the asymptotic solutions: We have done
this by cancelling a certain number of constants A, not only those
which we have set equal to zero for the reason which I have just given,

but also those which we had to cancel in order to satisfy the conver-
gence conditions given in No. 105. /90

For the time being, I shall not deal with the development of the
£'s in powers of u or of Y.
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In Chapter XIX I studied the method derived by M. Bohlin, which is
basically only an application of the Jacobi method, since the problem
is reduced to obtaining a function S which satisfies an equation with
partial derivatives. Only this function S has a form which is particu-
larly suitable for the case in which there is approximately a linear
relationship having whole coefficients between the mean motions. The
cases which are of greatest interest to us are those which are similar
to that which I have designated as the limiting case (No. 207). 1In

this section, we saw that the function S may be developed in powers of
vi, in the following form

S == Sy -+ /Syt 1Sy -. ..
and that
das,

dyy

is periodic with the period 27 with respect to

PATIEN € TORN Fn
(employing the notation in the section indicated above).

However, the results may be simplified by performing the change in
variables which was discussed in No. 209 and 210.

In section No. 206, I defined n + 1 functions

LN C: Ei
which are periodic with respect to the variables

Ju Yu o oo, Y,
and which I regarded as generalizations of periodic solutioms.

In No. 210, we set the following

TIEE RN NS h—t e (6>1)

. . d . d
Ty ik r—yld—;_ ‘(;751'
The equations retain the canonical form with the new variables xi, yi.
Only the new equations have the following invariant relationships /91

-Z"l:d';:}f":o,
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which, with respect to the new canonical equations, may be regarded
as generalizations of periodic solutions, just as is the case for

Ty =T Fi1== & = E!'v
with respect to the old ones.

Without limiting the conditions of generality, we may assume that
our canonical equations imply the following invariant relationships

Ty === Yy =0.

1f this is the case, we saw in No. 210 that y; = 0 is a simple

zero for the derivatives EER, and a double zero for the derivatives
dyi

s 1> ).

dyi

Thus S, or rather S - Sp, may be developed in powers of ¥, and
the expansion will begin with a term of the second degree. We shall
have

S == So*?' :‘:g.}’ﬁ”i' -‘:J)’:l"*_zb]}_!_"' (5)

where the I's are series depending on y2, ¥3, «+:s ¥p and are developed

in powers of Yu. 1In addition, it may be seen that the I's are periodic
functions of yo, ¥35 ««+s ¥p-

Unfortunately, this is not sufficient for our purposes.

The function S, which is defined by equation (5), depends only
onn - 1 arbitrary constants .

l’g, .’L‘g, MRS T?n
whereas n would be required for the complete solution of the problem.

In order to pursue the study in greater detail, we shall resort
to the change in variables, given in No. 206. If we employ the nota-
tion given in this section -- i.e., if we set

7y = 1 dy, 71 dB
Zy == - — . ;= Wi — Lt = v ey
2 V', — V (Y A dwy

and if we define, just as in the indicated section, the variables xa,
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u;, vy, and the functions T and V, the derivatives of V with respect
to v; and to the zj's will be periodic functions of the zi's (see
Volume II, p. 361).

Let us examine in greater detail the equations which appear at
the beginning of page 363 (Vol. II) and which are written

Y= 0(011_}/21)’3) "'\y")’
Th = Ll 0y Yoy Yoy ooy V)

Regarding y,, y¥3, ..., ¥, as constants, let us consider the following
equations (always just as in the indicated section)

y1="0(w), xy=Li(er)

When we vary v,), the point (xj, y;) will describe a curve which I
wish to study. Let us assume that we vary x|, instead of varying the
constants x5, x%, ..., X', and we shall obtain an infinity of curves

corresponding to different values of x\.
We assumed above that the following invariant relationships hold
Ty=ri=y =0
which are like a generalization of periodic solutioms.
The following point will correspond to these relationships

Ty =Y1=0

i.e., the origin of the coordinates. I would like to study our curves
in the vicinity of this point.

Let us assign to x} the value corresponding to the special function

S defined by equation (5), and we shall have
Ty 23y - 38 L

The corresponding curve passes through the origin. By changing
Vi into -7y, we would obtain a second curve passing through the origin.
We therefore have two curves crossing at the origin. The center

curves may pass near the origin, without reaching it and without inter-
secting each other, so that all of our curves together will look like

(in terms of their general form in the immediate vicinity of the origin)

the figure formed by a series of hyperbolas having the same asymptotes

/93
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and formed by their asymptotes.

274. 1In order to study these curves and their corresponding
functions S in greater detail, let us limit ourselves to the case in
which there are only two degrees of freedom.

Let us assume that the change in variables of No. 208 was performed
in such a way that

Ty Ty =yy=o

is a periodic solution, which amounts to stating that for
Tyi= Ty =y =0

we have

F __dF AF

dy, T dyy T dz,

Let us develop F in increasing powers of x;, X7, and y;. The term
of degree 0 would only depend on y;, and since we must have

dF*-o
dys

it will be reduced to a constant. Since F is only defined up to
a constant, we may assume that this term of degree zero is zero.

Let us try to find the terms of the first degree. Since

ar _ v _
d:v|—@;ho

there will be no other terms of the first degree except for a term for
Xo.

Let us now set

ay ey, yi=ceyl, Zyim E1XY,  Yi= Y4
It can be seen that F may be divided by ¢? and that, if one sets

T = el

the equations retain the canonical form and become
dzy;  dF’ dy’; JT

dr Ty, de T dny 1)
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In addition, F' will be developed in powers of ¢ in the form
FazFgy+eFl+eFp+.. .5

F' can be developed, on the other hand, in powers of x|, xb, ¥1. The
coefficients are periodic functions of yb. We shall have finally

Fi=Hay+ Az3+ 2Bz |y + Cy?
where H, A, B and C are periodic functions of y%.

We shall apply a method which is similar to that of Bolin to our
equations. In this method, the parameter ¢ will play the same role
that the parameter y played in Chapter XIX.

Let us remove our accents which have become useless, and let us
. . 1 \ \i 14
write Xis Vi F, Fi instead of %y, yj, F', Fi.

I would first like to state that I may always assume

H=1.

If this were not the case, I would choose the following for new variabl
d
zy=Hzy, yi= —{;—’

The canonical form of the equations would not be changed, since

xr3dyy —Fadys =0

is an exact differential.

In addition, yg increases by a constant when Y, increases by

2n. 1 may always select the unit of time in such a way that this con-
stant equals 2n. Then every periodic function of y, having the period
21 will be a periodic function of y* with period 2w. The form of the
function F will not be changed; only the first term sz will be reduced

*
to x o e
Let us therefore assume that H = 1.
I may now state that we may assume
A=C=o, B = const.

Let us form our canonical equations (1) assuming that € = 0, and we
have

/94
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dy, . dxy dr

[ ) ,
gr T h 7[?'—:'—%—2(“411’*‘0)1)
th d
i(%' _—.:—‘—lf—' = —2(Ax;+ By)
dX2
and an equation for EE—-which I may replace by the equation of energy

¥y+ Az} -+ 2Briy, - Cyt = const.
The equations

(11‘|

d
(l;;:_‘z(Bx!“‘C)’x); == 2(\zy - By

are linear equations having periodic coefficients. In virtue of No. 29,
they will have the following for a general solution

- U —
Ty WO+ iy Y= wz.o,-i—w,qa,,

W= 2edYs svy == Febys
] 1 R ]

where ¢, ¥, ¢;, ¥; are periodic functions of y,; o and B are integration
constants, and a and b are constants.

It may be readily seen that b = -a and that ¢y, ~— ¢¢; 1s a constant,
which I may set equal to 1.

Under this assumption, let us make a new change in variables,
setting
zi=xio+ Y i=2orE i,
zy =+ e+ 2Kz + Ly 3 ya=
where H, K, L are functions of y,, chosen in such a way that the canonical

form of the equations is not changed. For this purpose, it is sufficient
that

a dyy—zydy + xadys— z, dyy
be an exact differential,

It may be seen that x;dy; — xdy} equals an exact differential in-
creased by the amount

_4n

a

(¢ (19" o2 +r P (Y —9b) + 22y (a0 - oY)

The quantities ¢', ¢d;, ... designate the derivatives of $, ¢1, ... with

98



. respect to yo.

In order that the canonical form of the equations is not changed,
it is sufficient to set

2l =¢¢'—o0;  2K=oi¢' —edl;  2L=diy— vl

It may be seen that H, K, L are periodic functions of yjy, from
which it follows that the form of the function F will not be changed
either.

However, if we set € = 0, our equations must have the solution

Z| = ae+ays; yi=PBe-an,

from which it follows that

Without limiting the conditions of generality, we may assume that

H=1, A=C=o, B = const.
from which it follows (since we have removed the accents)
Fo=x;+2Bx,y:.

We shall follow this procedure from this point on.

Let us perform a change in variables, setting

Ty =4, log%l =20,
Since !

d(x y)

ly,— udv =
ridy,—udv 2

is an exact differential, the canonical form will not be changed.
We then thave
:,:ev\/ﬁ; .y,:e-“\,/;.

The function F may then be developed in powers of

g, Ty, Yu, e, e ¥, ey, e-in.
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We have
[Fg—=wy+2Bu.

Let us write F in the following form
Flry, 1 ya, v)

and let us define a function S by the Jacobi equation

dS dS
G (Rl R p o)
l(a’_y, dv’ 7 ”)
where C is a constant. Let us develop S and C in powers of ¢
Se-1-:28, 4228, ..o,
]

S":
Co:Coa-:Cy-22C 4. ...

In order to determine Sz, S;, Sz, ..., by a recurrence method, we
shall have the following equations

dS, dS,

MUY SIS

dys 2 dv o

asy o dSy o

g, B gy =G (2)
Ba B ag,

rl)fg dy

As T have already done previously, I shall designate every known
function by ¢. In the second equation (2), I assume that Sj; is known.
In the third equation, I assume that S; and S; are known, and so on.

Let us set
Sy = agyy+ Buv
with the condition
ay+ 2B 30 = Co.

Since Cy is arbitrary, the two constants ap and Bp may be chosen
arbitrarily. Nevertheless, it is important that we do not set 83 = 0.
Following 1is the reason for this.

Let us assume that it has been shown that
s, dS,

A a4 }-2r d%"
(lv—‘ Sde T T e

may be developed in powers of
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g, e ey,

We may conclude (if By is not zero) that the same holds true for

J§i+e¢6,%:“_;:;ﬂgz
dv Tde T T de

since the quantity under the radical may be reduced to Bg for e = 0. /98
This conclusion could not be reached if Bj; were zero. It is important
that this conclusion may be reached, due to the presence of the radical

Yu in F.

Let us now consider the second equations (2). The function ¢
which it includes depends on v and on y;, and has the following form

& = EA,,.,,.C’"""I”J’- <+ Ago-

The coefficients A are constants which may depend on ag and on Bg.
The indices m and n may take all whole, positive, negative, or zero
values. When removing it from the sign ¥, I have shown the term in which
these two indices are zero.

The second equation (2) then gives us the following

A jppemvring,
in+aBm

S|= 11}’;4—?]9"{"2

with the condition
¢1+2Bp|= A00+C|.

Except for this condition, the conmstants a;, B; and C; are arbitrary.
I shall therefore assume that

al=p1=0-

I shall determine S, by the third equation (2). Due to the fact
that this equation has exactly the same form as the second, it will be
treated in the same manner, and so on.

To sum up, the derivatives %%—-and %% may be developed in powers
2

of

£, e*F, exiYs,

1f one compares this analysis with that given in No. 125, it may
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be seen that there is an exact analogy between them. However, instead
of having only imaginary exponentials

eiiy,’ e*‘-’,’, . exly,,'
we here have real exponentials

ety

275. Once the function S has been determined, by applying the
Jacobi method, we may arrive at series which are similar to those
given in No. 127,

The function S depends on v, on y,, and the two constants ap and
Bg. The energy constant

C=Co4+:zCi+...
is a function of ap and By.

As a solution of our canonical differential equations, we then have
the following equations
ds . a3 d3 s

N4+ o= ——; Nyl Ty = ——;
dxy

a5

Ty = — U= —;
dy,’ dv’

<

U dGC
n=— - Ny = — — =

“ H
da,’ i

where w; and wy; are two new integration constants.

It may be first seen that n; and n;, which depend on oy and Ry,
may be developed in powers of ¢.

In addition, S may be developed in powers of ¢ and, if I set
e = 0, T have the following as the first approximation

_dS, _ds, o
T= g, TR = go =i
dS, ds,
n.t—rm,=m=y,; n1z+m,=d?}0:v.

We have four equations from which we may obtain x5, u, yo and v

developed in powers of ¢, depending on ap, Bg, N} t + E}, np, t + Gé.

By pursuing a line of reasoning exactly like that given in No. 127,

we may see that
Xy Uy, yy—(nit+w), v—(ngl—+Ty)
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may be developed in powers of
E, Cxi(n‘t+m'," exln i+,
The same will hold true for Yu, Xy, and yi.

I would like to add that all of these quantities may be developed
in powers of

€, dp, exi(n,u—m',), \,/3—06:"1“'571), \/go_c—(n,ta-m,?,
and S — Sy may be developed in powers of
£, %y, €F, ‘/ﬁe", ‘/ﬁ-ﬂ-e_v-
If we set for the time being /100

r—{(nit+w )=z, v—{nyl +w,) = z,

the two equations

= 93 ds
'l‘t+m'—TazL., n,t—e-m::;g_o
will take the form
S = ey, 3= e, (3)

where Y, and y3 may be developed in powers of
g, @, exnermd B elntrm) S e—tnt-n) g, g,

land, for example, we have

—_— Yramt Z: 2 F3
\/.Boev:\/poen,um.(l—a—T‘—r-—" -+ L +,,_>,

and similar formulas for e*1¥2, and vVBje™V].

In order to prove the postulate presented above, it is suffi-
cient to apply the theorem given in No. 30 to equatioms (3).

Let us now compare the results obtained with that given in Chapter
VII, which T reiterated at the beginning of this chapter.

We saw in Chapter VII that, in the vicinity of the periodic solu-

tion
.‘.Z’l=yl=;1‘2:0,
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the variables xj, y1, X2, y» may be developed in powers of

— , .
e*"“.‘*mx’, A (.”‘.’, 1\'(’_".1, et l;

where A, A' are integration constants. nY and n', are absolute con-
stants, depending only on the period of the periodic solution and the
characteristic exponents.

We have just seen that these same variables must be developed in
powers of

xilnd+ Q- 3
etiln, m'.): \/i'juefll,l+m,” ‘/I’joe-—(n,h-m,)'

The two results clearly are in agreement. We may first set
A= /B2, A = /Bpe V2,

In addition, n; and n, are constants, but constants which may be /101
developed in powers of e, ag and Bg, and which may be reduced to n'| and
ny for € = ag = By = O.

We may then write, for example,
el = enyt, e(n,—n’.)!,

and may then develop the second factor in powers of e, ag, Bg. In
addition, the second factor will then be developed in powers of t.

It is for this reason that we saw in Chapter VII the time t and its

powers emerge from the exponential and trigonometric signs, which could
have led to a certain amount of difficulty in certain cases. The pre-
ceding analysis shows that this difficulty was entirely artificial.

If 1 now wish to compare out result with those given in Chapter XIX,
I shall consider the curves

Yi=08(ey), x=Li(¢)

whose definition I presented at the end of No. 273. 1In order to obtain
the equations for these curves, I need only take the expressions of

x; and y; and assign a constant value to oy, Bg, n; t + @). Then y;
and x; may be developed in powers of

Xt +03,)

When nyt + W, is varied, it may be seen that the curves have the
form which I described at the end of No. 273.

In conclusion, I should point out that all of these results are
only valid from the formal point of view. The series only converge in
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the case of asymptotic solutions, for which one obtains the equations

by setting

Qo — .
2o =0, Wy = -~ X,

I mean by this, setting

\/ﬁ—ocmaz A, VBe @ =o,

or even setting

I mean by this, setting
V/?—;em’ =0, é:e“aa = ;\"

where A and A' designate the finite constants.

276. Let us proceed to the case in which there are more than two
degrees of freedom. The preceding results may be generalized in two

different manners.

/102

In order to explain this, it is sufficient to assume three degrees

of freedom. It may happen that we may wish to study our equations in
the vicinity of a system of invariant relationships

Ty=Ty=T3=)1=0,

which play the role of a generalization of the periodic solutions, in

the sense of that given in No. 209.

It may also happen that we wish to study them in the vicinity of

a true periodic solution

T\ =Ty =3 =Y 1= Y2 = 0

In the first case, there are four invariant relationships and one
linear relationship between the mean motions, a relationship which we

have represented in the following form, employing the change in variables

of No. 202 if necessary

n,=o.

In the second case, there are five invariant relationships and

two linear relationships between the mean motions, which we have repre-

sented in the following form
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We shall begin with the first case, and we shall set
F = etF'; Ty =2, yi=r¢ey), Ty=e'7y, x3=c¢lz,"

The equations remain canonical equations, and F' may be developed in
powers of €, in the following form

F=Fy+eF,+....
We then have
Fo= hyay+ A3z’ + Az '+ 2B 7,y + Cry,

or, removing the accents which have become useless, we have /103

Fo=lyzy+ hyzy - Arl+ 2Bz ya- Cyt.

The functions h;, h3, A, B, C depend only on y, and yj3, and are periodic
with the period 2n with respect to these two variables.

I am going to perform the change in variables of No. 274 again.
Everything which I have stated remains valid, but only from the formal
point of view.

In order that I may apply the principles of formal calculation, it
is necessary that there be a parameter with respect to the powers of
which the expansions may be performed. This will be the parameter u.

F and, consequently, hj, hj, A, B, C may be developed in whole
powers of u. I should add that, for y = 0, B and C may be reduced to
0 and that h,, hj, A may be reduced to constants which I designate as
h%, h? and A _.

2 3 0
Let us try to integrate the following equations

drs

d
e L)

dt
I shall try to perform integration in such a manner that
Yr =Y i —rh

are periodic functions having the period 27 of the two new variables
y» and y5 which must themselves have the following form

Yi=mt+rm., ¥y gt .

The quantities n, and nj are constants which may be developed in powers
of u; W, and w3 are integration constants.
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Equations (1) then take the form

dys dya
dyy '

ny

We shall set

(2)

fp == ) y./z(,v”+ e
yimyla a2yt
n; = nd 4 p..e'i”+ ‘u.‘lnﬂ—"z‘ 4.
k
and we shall assume that the n(~)'s are constants, that the

hgk) t

(2)

s are

periodic functions of y; and o% y3 (the hg's may be reduced to con-

stants, as we have seen), and finally that the y

(k)
i

s are periodic

functions of y% and y%j, except for the yg's, which may be reduced to

Yy

In equations (2), we shall equate the equations having similar

powers of u, and we shall have a series of equations which will enable

us to determine the y§k)'s and nik)'s by a recurrence method.

These equations may be written

Ay}

dyy
dy'h

UZ
ny =
2
Ay
Ay
oyl 2
R Y
s odyy

+ n}
= ng -
e dy'
i
dyy

I shall designate eve

1

LIS

known function by ¢&.

== ‘—hg:
dyto 1y0
n} A Y 2 g,
dyy e
0
- ,!!22) '_ZZ,,Z 4 ,,rsﬂ f{l_'!_ = b,

tly2 ‘l.)’:s

tion the yg's, the yil)'s, the ng's, and the n{l)'s, and so on.

We then have

IV yn ri=vy

0 J0
nY = Ay,

so that equations (3) may be reduced to

(1.},(21)

P + nlt=d,
dyi
—(l—fz— -+ Il(,“ = 'I),

(3

In the second equation,
I assumed that the y(o 's and the n£°)'s are known; in the third equa-

(3"

/104
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to which we must add the following equations

/i) 7y

Ey A

A el S VR EP LRSI (3"
UY s Y3

which may be deduced from the second equation (2), just as equations
(3') are from the first equation (2).

All of these equations may be integrated in the same manner. Let
us take, for example, the first equation (3'). The function ¢ which
it contains (like all the other functions ¢) is periodic in y'y and y's.
We shall set n§1 equal to the mean value of this function, and by em- /105

ploying the procedure which we have already applied several times we
shall be able to satisfy our equation by a function ygl) which is

periodic in y', and y';3.

Having thus determined y, and y3 as functions of y% and y%, I may
2 3 2 3

set
. (l}’z dyJ
Ty =Ty _—d_}"’ -+ T3 d__y’, ’
;o dy, dy;
BERGL TG

It is apparent that
I’xd)":'*'-z"ad)’;“l':d)’z—‘zad.}’:;
which is zero, is an exact differential and, consequently, that the

canonical form of the equations is not changed when one takes
x%, X3, y», y3 for new variables, instead of x5, X3, Y2, V3.

The form of the function F is not changed either, but it may be
seen that we have the identity

r
— Ny Ty — N7y = hy&s + by,

which shows that the coefficients of x% and of x'; may be reduced to
constants.

I may therefore assume that hy and h3 are constants.

I shall make this assumption from this point om.

Let us now integrate the equations
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dz, dy,

_d;-zz(B.z';+Cy1), W—’:‘—?(Axl‘*B}’l)r
or, which is the same thing
dr, dr,
llgmﬁ-ll;d—ﬂ——'l-(Bzi‘f‘ C}'i)r (4)
dy dy
hs E + Ay W; = a(Az,+ Byy).

Let us try to satisfy these equations by setting

Ty = esz, Yi= eats,

where a 1is a constant, z and s are periodic functions of y; and y3.

The equations become /106
ds ds
Ny s -1- fiy dys —as = —2(Bz+Cs),
: (4"
Ity ol hy ds as == 2(ANz+ Bs).

dy (_l_; 3

Let us develop A, B, C in powers of u in the following form

A= Nget-pAg+-o o,
B=By-+-uBy+...,
C = Co -t- ‘U.Cz el

We should point out that Ay is a constant and that By = Co = 0.
In the same way, let us develop h; and hj
hi=hi v uhla-. ...

The coefficients of these expansions are known quantities. .On the
other hand, let us develop the unknowns z, s and a in increasing powers
of /i in the following form

@ (ll\/‘l—l.'i»*[l-zflﬁ—((311.\/;—)—...,
3 = 3 \/;c_-»}- 3k - I3k \/E»%—...,

s = s sy b s

In order to present the equations in a more symmetrical form, I
shall write the expansion of A in the form

A=Ay -k "\l\/(I Ak A \/:7--}—- Ay,

We need only recall that A;, A3, As, ... are zero. The same holds
true for the expansions of B and C.

Under this assumption, in equations (4'), I shall equate the
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coefficients having similar powers of p. I shall employ (4' p) to
designate the two equations obtained by equating, on the one hand,

2l
the coefficients of u in the first equation (4') and, on the other
hand, the coefficients of u%-in the second equation (4').
The equations (4' 0) and (4' 1) will determine a;, sy and zp;
The equations (4' 1) and (4' 2) will determine aj, s; and 2z3;
The equations (4' 2) and (4' 3) will determine a3, sy and z3;
and so on.

I mean by this that equations (4' p) will determine s_ and )
up to a constant, that they will determine a_, and will cogplete

the determination of Sp-1 and z_, which are determined by equations

P
(4" p-1), up to a constant.

If we recall that
By=B,=Co=C,=o,
it may be seen that equations (4' 0) may be written

s,y ds,

1] 0 p—
g hy o —+ 1 a7, =0, oo
?;oﬁ&;40“°_0- ( )
Yy, Ny, T
and equations (4' 1) may be written
1z, iz
g h (([},; ~+ A :1),; — a3 = — 20,3y,
47 1
o 451 0 951 ( )
[ hg d_ﬂ -+ h3 27_’ —a;Sg =273,
and equations (4' 2) may be written
ihz%—i—hg%}——a,z,—alz,-:—zB,zl—QC,s.—9.C350-+—f1’,
ays 3
[ 47 2
'lz%%—}-/zg-(%s_—z——aﬁso—agsx: 2Ag21+2A13+2DB3s + P ( )
9 3

[the letters ¢ designate the known periodic functions in y, and

Yy which are zero in equations (4' 2), but which I have written
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nevertheless because they will appear in the following equations].

Equations (4' 0) indicate that z; and s; are constants. Let us
now proceed to equations (4' 1), and let us equate the mean values of
the two terms. We have

—ayzy = —135[Ca],

— a8 =124A03,

which determines aj, sy and z;. For a;, we obtain two equal values

having the opposite sign. Equations (4' 1) then determine, up to

constant terms, z, and s;, which are periodic functions of y, and yj. /108
We can therefore assume that the following are known

s3—[s:] and si—[s:]-

Let us turn to equations (4' 2) and let us equate the mean values
of the two terms. We shall obtain two equations, from which we may
obtain aj, [2z5] and [s;].

If the mean values of the two t2rms are equal, equations (4' 2)
will provide us with z3 and s;, up to constant terms, in the form
of periodic functions of y; and ys.

This procedure may then be continued.

Since we have found two values for a the equations (4') will
have two solutions. Let

a—a, 3 w10, S.*:(?]’

a = -—a, P g k’{, F &!/1

be these two solutions. The general solution of equations (4) will be

xy = Aty - Be-atd,

Y1 A e - Be-atd,,
We may always assume

o, —— | p—
gh— oy =1

We will then see, as was the case in No. 274, that if we set

= 2o+, Yi==re1+rv
Ty== oy 1Lt - o W2, vy -+ Loy, Y= Y
3= 2y I+ 2 1G22, Y+ Ta ', Ya=0h

and if H,, K, Lp, H3, K3, L3 are the suitably chosen periodic functions
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of yo and y3, the canonical form of the equations will not be changed.

The form of F will not be changed either, but B will be reduced
to a constant, and A and C will be reduced to O.

We may always set
B = const., A - C—o,

The rest of the computation may be performed as was done in Nos.
274 and 275, and the following conclusion will finally be reached.

; and y; may be developed in powers of €,%u, of /109
three constants ag, oy and By, of e=(nt®@), of =im-@l, and of

The variables x.

VBoetmetmd (/B e~tmital, The constants nj, o} and n, may themselves be

developed in powers of ¢, Yu, ag o'y and By.

] 3

277. Let us proceed to the second generalization method, and let
us assume that we wish to study the equations in the vicinity of a true
periodic solution having the form

Ty =Ty = Ty=yi=ys=0.
We shall set

—— ’ i — r —_— — J — r
F=eaF, =, yi=¢y, Ty = LT, Y=ty

,
&y = elxy, Yi=Y3»

from which it follows that
F=F,+eF+....
The equations remain canonical equations, and we have
Fo= h:v',+¢(z'",y',, %, Ya)s

where ¢ is a homogeneous quadratic form in x, ¥y}, x%, y2. The co-
efficients of ¢ and h are periodic functions of y3 = ¥'3.

However, we shall remove the accents which have become useless,
and we shall simply write

F9= hx;+‘1’(1‘1, Y1, Ty, .71)'

Just as in No. 274 and 276, it may be shown that we may always assume
that h may be reduced to a constant.

Let us now consider the equations
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dz, do dj‘ de
_— e e — ——y

ary _ _ 4 = B2

de — dt — dy, dt dx,
dry _de  dys 4%,
dt ~ dyy’ dt ~  dz,

They are linear and have periodic coefficients. Their general solution

will have the form
zy=Ajealor + Ayeatoy  + Ay ebfos  + Aje—btly, y,
ri=Ayeslo + Age~atgy 4 Ajetloy 4+ Aje~tto, .
Ty=A e8¢ 3+ Age=alo s Agebloya+ Avetin,,,
1= A e s+ Ay + Agettoy i+ Arebigy,.

The A's are integration constants, and the ¢'s are periodic functions /110

of y3.
It may be readily shown that expression

Qi1 9k — PLaQk A+ QLaPhe T RinThs

is zero, except in the two following cases

i=r, k=2; {=3, k=4

In these two cases, this expression may be reduced to a constant, which

I may set equal to 1.

Let us now set

o

Ty = T Q1.1 “+ ¥ Ca. 4+ Ty P31 —+ )y Doty
— J

Y1 =201+ @32 T, O30+ Y% Pis,
— r

Ty = | Pr.3+ ¥y Pra+ Th 913+ ¥y 00,

Y2 =914+ ¥ 02+ Ty 034 + ¥y 0u.

It may then be seen that

z1dy, — y1dxy + Tadyy — yadz,
=z dy' — ¥\ dz\ + z, dyy, — yy dz'y + Ydy,,

where y is a homogeneous quadratic form with respect to ®1, Y1s %2, Y2
whose coefficients are periodic functions of yj.

If we then set

.z‘,=x’r_i ’
3 2’ J’a—}’,,

the expression
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a:‘d_y,+z-,dy,+x;dy.—x',d]"—x',dy',—xgdy',

will be an exact differential, and the canonical form of the equa-
tions is not changed.

The form of the function F is not changed, only Fjy may be reduced
to

hz'y+ A,y + Bz, 5},
where h, A and B are constants.

We shall then set

,
'
Ty = Uy, Iog—i’.‘ =20,
1
.
J ’
Ty Yy = U, ]og%‘- = 204,

and the calculation may be performed as was done in Nos. 275 and 276, /111
The following conclusion will be reached.

The xi's and the y;'s may be developed in powers of e of three
constants ag, Bg and B'g, of cint+w and of

\/B;e"‘l R ‘/ﬁoe—(u,u—m,)’

Nt et ar , »
‘/k'oed’l‘m'y ‘/Aeze_r":l*m;‘.

The expoments nj, n, and n%b may themselves be developed in powers of
€, ag, By and Bg.

This generalization may be directly applied when there are n degrees
of freedom. The first case, which is the case given in the preceding
section, corresponds to that in which there are n + 1 invariant relation-
ships and one single linear relationship between the mean motions. This
is what we discussed in Chapter XIX,

The second case, which is what we are discussing in the present
section, corresponds to that in which there are 2n - 1 invariant rela-
tionships describing a true periodic solution, and where there are n - 1
linear relationships between the mean motions. This is the case of asymp-
totic solutions which we discussed in Chapter VII.

However, there are intermediate cases in which we have n - q invar-
iant relationships and q linear relationships between the mean motiomns.
Then the xi{'s and the yi's may be developed in positive or negative
powers of q real exponentials and of n - q imaginary exponentials.
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Relationship with Integral Invariants

278. Let us assume that the canonical equations

deg  dF J.g?,- - dl (i=1,2, ..., n) (1)

e T odyy o de T dayg
have a periodic solution with the following form
= a (b)Y, yees Gt k),
where h is an integration constant. Let T be the period, in such a way

that ¢i and wi may be developed in series of sines and cosines of the

multiples of 27 (t + h).
T

Let us consider the solutions which are near this periodic /112
solution. According to the preceding statements, they may be written in
the following form: =xy and yj will be developed in powers of 2n - 2
quantities which are conjugate by pairs, and which I shall call

Ajend, Aje—xt
’ —
Age%st, Aje—at
...... s
Aoy etant, Al_y e %nf,

The A's and the A''s are arbitrary integration constants. The ex-
ponents a may themselves be developed in powers of Ay, AoA'y, ...,

Ap-185-1-

In addition, the expansion coefficients of x; and of y; are periodic
functions of t + h, having period T. These coefficients (just like the
exponents o) depend, in addition, on the energy constant C.

We know that there is an integral invariant

f.\l dx; dy;, (2)

from which it follows that, if B and y are two integration constants,
we must have

O/ dxy dyy vy dry\ )
S ) e

We could write this equation in another form. Let us assume that B
is increased by 8B, and that as a result for xi, yi, Aieait, cery WE
have the following increases:
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\ N ~
0Ly oy, oAjet,

On the other hand, let us assume that y is increased by §'y, and that
as a result we have the following increases for Xis Yy oo

15 A
9, S ¥i,

Our equation may be written
S8 dyi— 3y a'r;) = const., (3)

The second number is a constant. By this I mean that it is a
function of the integration constants multiplied by &BS&'y.

We obviously have /113
BN ext = ext(3A 4 132),

On the other hand, we have

- d?"l N [ W d d[‘ - —wf
GEL= g oG+ 1/1, sh +> d(z\;,t,"l‘) ke +Ed(‘\Ae J“l) e

(lz da
~ —__ N S l\ \
P = 3G -1- >{d(1\hA|\ S(AxAK).

It can thus be seen that Gxi and Gyi have the following form

Y= i tnygy Syi= ety
N
Sy =8 + L 43 S, =t + ¢35 0,

1.4 are linear with respect to §C, Sh, and to the

SAe®t’g and SA' em%t's, In addition, they may be developed in powers of
the Ae®t's and the A'e~at's and the sines and the cosines of the multiples

Where Ei, El.i, ni! n

of jF (t + h). The expressions of G'xi, §! y; may be readily obtained,

It is sufficient to change § into §' in those of Gxi and Gyi. It may
be then seen that equation (3) may be written in the following form

D+ E¢+- IFe2 = const,

from which it follows that

D = S(bimi—Eimi),
| DIEE Z‘.(Ei'r}'l_,‘-—?‘“f)g,i -t- El,i'ﬁli—gll.i?}i))
F-= E(Ei.i’?'|_i’-‘sll.i"il.l')

are developed in powers of the Ae®t A'e~%t's and the sines and cosines

of the multiples of %;—(t + h), and they are bilinear with respect to
the
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A

2 ~
0‘\02,) Ol,e‘a’; BC, 8/1:

nt - o) ,
K “\cu) oyl\e'at) 8’0, 6’/1.

The first term must be independent of t, and we shall have
E .. [F .= o,

which has already provided us with certain verification relationships
which must be satisfied by the expansions of the x;'s and the yy's.

Thus, D must be independent of t. It will therefore be linear /114
with respect to the following determinants

SAk B AL -« M ALBAY,
AN (BAR S Ay — 30, ¥ Ag),
O AREAL Y C— &AL 30), (4)
AL(BAR 8 A — 3" Ak BR)
(SC 3R -8 3Ch)

(or with respect to similar determinants determined from the former

by interchanging A, with A'y,, or A; with A'.).
k k ;| ]

The coefficients will be developed in powers of the ApAy's, and
will depend in addition om C.

The time must disappear. The exponentials must therefore disappear,
which can only happen if each factor Ae®t is multiplied by a factor

A'e™@t or 6A'e Ot or §'A'e"OL,

A new series of verification relationships may thus be deduced from
this.

279. Among the o) exponents, some are imaginary, and others are

real. Among the real exponents, some are positive, and others are nega-
tive. However, since I may arbitrarily choose an exponent which I may
call o) from between two exponents which are equal and have opposite

sign, I shall not limit the conditions of generality by assuming that Oy
is positive if it is real.

Let us now cancel the coefficients Ay which correspond to an
imaginary exponent, or to a positive exponent.

We will then have the following, if ap is real

Ar=o0, AkZo
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and if & is imaginary

Mg = Al = o.

In addition, I shall set

€=,

H

where C0 is the value of the energy constant which corresponds to the
periodic solution under consideration,

Qur series will then be convergent, and will represent the asymp-
totic solutions which we studied in Chapter VII. They include h and
the A''s, which correspond to negative exponents, as arbitrary constants.

We shall therefore have 2n equalities which will express the xi‘s f115
and the yi's as functions of t and of these constants h and Aﬂ. If we

eliminate t, h and the Aﬂ‘s between these 2n equalities, we shall have

a certain number of invariant relationships between the yi's.

If a group of values of the x,'s and the y,'s is regarded as repre-
senting a point in space having 2n dimensions, “these invariant relation-
ships will represent a certain subset V of this space, This is what I
shall designate as the asymptotic subset.

Let us reconsider the integral invariant

f X dx; dy;

and let us extend the integration over a portion of this asymptotic
subset V. In other words, let us assume that every system of values of
the xi's and the yi's, which form a part of the integration region,

satisfies our invariant relationships.

I may state that the integral invariant will be zero.

It is sufficient for me to demonstrate the fact that

E{8ai ¥y~ 8y 8 x;) = o,
and this is apparent, because we have

Ag—=o, G = Cy,

from which it follows that
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 which shows that all of the expressions (4) are cancelled. We can also

set

C:COI
Axzy,  Ar=o0 (for real ay),
Av=Ay=0 (for imaginary o).

We shall have obtained a new serles of asymptotic solutions and, comse-
quently, a new asymptotic subset to which the same conclusions will

apply.

The procedure which we followed for the invariant (2) could be
followed for an arbitrary bilinear invariant (invariant of the third
type, No. 260), i.e., having the form /116

ffEde;dxk. (5)

where B is a function of the x;'s and of the y;'s and where one or two
of the differentials dxj, dxy may be replaced by dy; or dyy under the
sign L.

The expression
IB(3z; 8 zp — Sz 8 i)

will still be linear with respect to the quantities (4). This would

still apply to a quadratic invariant (invariant of the second type,
No. 260) having the form

[ VEB dad, (6)

where B is a function of the xi's and the y;'s, and where one or two of
the differentials dxj, dxy may be replaced by dy;, dyy under the sign I.

It may be seen that the expression

EB dx; 8z

must be linear with respect to the expressions

‘ 3ALBAYL,
) ALABAL A, (4!)
( AL BAL8C,

8C3h
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and to those which may be deduced from them when interchanging Ay and
A'k, Ay and A'j.

For every asymptotic subset, the invariant (5), like the invariant
(6), must be cancelled.

Another Discussion Method

280, This same study may be pursued farther, while presenting it
in a different form.

For example, we shall assume that we are dealing with a problem of
dynamics, that the x4's are the coordinates of different points of
matter of the system, and that the conjugate variables y; are the com- /117
ponents of their momentum. We plan to study the integral invariants
which are algebraic with respect to the xi's and to the yi's, and to
determine whether one may exist in addition to the one which is known,
and which is written -

ffz dzidy;.

We have seen that, in the vicinity of a periodic solution, the Xq's

and the yi's may be developed in powers of the Aect's ..., We are going to
consider these expansions again, but we shall assume that the value of

the energy constant corresponding to the periodic solution is zero,

so that the expansions will not only proceed in powers of the Aecl'g,

but even in powers of C. In addition, they will depend on t + h.

By equating the xi's and the y;'s to these expansions, we obtain

2n equations, which we shall solve with respect to the Ae®t's, C and
t + h.

We have
Alenl:fk:
A’ke"xl’:f;u
C=®,
aul+ﬁo=2:l—,-“(t+/l)=6. (7)

We should point out that agy, like oy, may be developed in powers
of C and of the Akﬁk's. It may be seen that fy, fk, ¢, cos®, sinO are

uniform functions of the x;'s and the y;'s in the vicinity of the
periodic solution. In addition, the x4's and the yi's may be developed
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in powers of the f;'s, the fk's, and ¢, and according to the sines and
cosines of the multiples of O.

On the other hand, the expression

S8y 3y — Ay 8 xy) (3)

which corresponds to the invariant (2), or the similar expressions which
would correspond to another bilinear invariant of the form (5), must be
developed in powers of the f;, f}, ¢'s and be bilinear with respect to /118

Y, i 8B, 28,
fr, 81, ¥, .
In addition, when we replace fj, f', ¢, O by their values (7),

this expression must be independent of t. The time t may be Introduced
in three different ways:

1. In the exponential form;
2. In the form of the cosine or sine of the multiples of (t + h);

3. Outside of the exponential and trigonometric expressions (and,
as we shall see, of the second degree and more).

It must not enter in any of these three ways.

1. In order that it does not enter in the exponential form, it
is necessary and sufficient that the expression be linear with respect to
the following quantities which are similar to (4)

U S — 8 fulbfh

Sel 5w [ —3f; 8 fi),
S8 b — 3 3, (8)

? Si(3fi3'0 - ¥ fi 30),

(2030 - 3" 20),

where the coefficients may be developed in powers of the fi's, f}'s, and
of ¢.

2. In order that t does not enter in the trigonometric form,

it is necessary and sufficient that our expression does not depend on
©, but only on its variations 6, §'0.
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3. We must now determine the condition under which t does not enter
outside the exponential and trigonometric expressions. We should point
out that we have

e eB (3N 1 Ayt By,
3/,’\ -z e- ﬁ(xl(a.\’k~ AZ‘ ¢ 61/()’

~

D o= GC, 6O = 3:30 -t- ¢ 310.

(9)

We may distinguish five types of terms in our expression, depending
on whether they contain as a factor a quantity (8) included in the first,
second, third, fourth, or fifth line of the table (8).

Under this assumption, if we replace Gfk, ... by their values (9),

we shall see that the five types of terms include as a factor, respec- /119
tively,
(3AL S A — BALY AL) + ¢[ 824 8 (A A%) — §ar 3(AkAL)],
ALAS(BAL A, — 3A, ¥ Ax) ) i
-+ A',‘A',t[Ak(Sak S'A/-— o ag8A;)— A/(aa/ S Ax—oay 3AL)]
+ ALALA A 13 ( a8 ay— duy 8 az),
',‘(SAkS’C—B'A;,BC)+AkA',‘t(aakB’C—a’akSC), (10)
',‘(SA/‘S'B.,— S ALSBo)+ AkA'/‘l(SZkS'Bo—- & ax8f0)
- AL t(BAs ' ao— B Ay Bto) + AxA% 11 (32x 8 ap — 3'as 33,),
(aC S'Bo— 3'C 8?0)-}‘ t(SC 8'10 —3'C 810).'

It may be seen that the time can enter in the second power.

Let us first make the terms for t2 disappear. They may only begin
with terms of the second type or of the fourth type,

It may be stated that the coefficient of

t’(Sa,,S'aj— Saja’ak)

must be zero.

In actuality, due to the fact that the virtual displacements in the
constants are arbitrary, we may assume that all the Gai's vanish, with

the exception of 6ak, and in the same way it may be assumed that all the
G'aj's vanish with the exception of 6'% .

All the terms in t? cancel, with the exception of the term in
LT TR TR TAN

There would be an exception if there were a relationship between the
n - 1 exponents @ - We could no longer assume that all the Gai's
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cancel except one, unless the last one itself cancels too.

There are now four terms of the second type which result in terms
in

12(Gay S’a,—- Sa; & ag).
For purposes of brevity, I may write them in the following form
Yrwy+ $atog 4+ Yawy - Pewy;

The y's are developed in powers of the fy, f& and of ¢. I have employed
w; to designate the expression which appears in the second line of the

table (8): /120
wy, may be deduced from w; by interchanging fic and f'g,
w3 may be deduced from w; by interchanging fj and f'j,

wy, may be deduced from w; by making these two permutations at the
same time.

In order that the terms in t? disappear, it is necessary and suffi-
cient that
“f’l“‘q’z‘"‘\?r‘-%t}l‘:o.

(11)

If this condition is fulfilled, our four terms
Yy Wy Yy + Y03 4+ Yytog
will provide us with the following terms in t

(s — b)Yt AR AR S0 8/ (A ) — 8 ax (A, A))]
—i—(t{;z———#,)t:\jt\}Laij 6'(1\‘4\'/“)— B’aj 8(:\/‘1\")]

Let us now consider terms of the fourth type, which we shall group
together by pairs. Let the following be one group of two terms

1wy Yooy,

where ¥; and Y, may be developed in powers of C and of the AkAk's,whereuh

is the expression included on the fourth line of the table (10), and where
wp is that which is deduced by interchanging A and A& and changing oy to

—ak.
In order that the terms in t? disappear, it is necessary that

‘{’!'—_‘h

and then the terms in t may be reduced to
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v

YL E{ALA) B a,— (AL AL B ).

281, Our terms in t now proceed in powers of C, and of the AgAL's,
and according to the &'s and the ¢''s of qag, ag, C, AkAk' We must now
make these terms vanish. I shall state that they are zero when we set

C=o, ArAY=o,
without assuming that 8C, &'C, 8'AA', & A AL are zero.

In our invariant, let By be that which the coefficient of the term
in  (8fyd'f - 6fkS'fy) becomes when we set C = ApAy =0,

Let Dy be that which the coefficient of the term containing /121

S (2fed0 — 803 fi)
becomes, and Dy that which the coefficient of the term containing
(e 38— D)

becomes. We must also have identically

sz[azkal(AkA'k)— a’aka(,\,‘.l\’,‘.)]
+ EDk[8(ApAL)Cag— 8 (ArAL) 82, ]+ Dy(8C &'ay— 3 Cdxy) = 0.

For purposes of brevity, let us write Yy instead of Akﬂk, Yo instead
of C and
du, v)

instead of sus

We have
IBxd (2, 14) 4+ EDkd (v, @)+ Dod(v0, @) =0

or

dry . dxy . dxg L
I Bs -(—1?/- a{ 1) {/,-)-4— ZID; (T‘{; d(‘k, .Ij)-'}— Dy ;1? 0(*{0, vj)=o0.

Under the sign £ or I, k may take on the values 1, 2, ..., n~1 and
j may take on the values 0, 1, 2, ..., n-1.

When setting the coefficient of a(yj, Yk) equal to zero, we obtain

dz; dwy dz, S day (12)
B/‘TH—BJ'd—Y-’;—Dkd—Y/ +D/E = Q.
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By setting the coefficient of 3(yg» Yj) equal to zero, we have

dz; day dx
it —D; == + Dy 5— =o.
T T Ty T (12")
These equations indicate that
— Doxodye+ Z(Bka/\——D/,do)d‘yk (13)

is an exact differential.

We must set yj = 0 in equations (12) and (12'). The %%'s are there-

fore constants. The aj's are therefore linear functions of the y's.

In actuality, as we have seen, the o's may be developed in powers of /122

the y's. However, the result which we have just obtained is only valid
if we neglect the squares of the v's, and if we stop the expansions of
the o's at the terms of the first degree. In additionm, the B's and D's
are constants. The expression (13) is therefore the exact differential
of a polynomial of the second degree.

In order to carry this investigation further, let us express the

ak's not only as functions of

Yor Yty cery fn-1

but also as functions of

o, Y1 ey Yn-ts

In order to avoid any confusion, let us employ 3 to designate the deriva-
tives chosen with respect to the new variables, and the d's to designate
the derivatives chosen with respect to the old variables.

It may then be seen that
EB/‘-’,U, l[“"-—}—tl‘xo:‘;DJ‘”
is an exact differential, which entails the following conditions

02 _py 0m (14)

o T o

1f one knew the relationships between the a's and the y's,
these equations would allow us to determine the coefficients By.

We can express ZDjyj as a function of the variables

oy Y1y Yy ey Yaet

while writing
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ED,q; = Eyag+ ZExvke
The Ek's will be given by the equations

Ay (14')

Ex =By d—%>
and E; may be chosen arbitrarily.

It is necessary that equations (14) be compatible, which requires
certain conditions in the case of n > 3

day 0z; d1; _ da; dxj dag (15)

3?,- Iy o1k Ik dye Oy

These conditions (15) will always be fulfilled, since there is
always an integral invariant /123

fS dz;dy;.

If there are several integral invariants which do not wvanish iden-
tically for the periodic solution under consideration, a system of
values of the coefficients B; and E; must correspond to each of these
invariants.

If equations (14) have q solutions which are linearly independent,
we may calculate the corresponding values of the E 's by means of equations
(14'). Since Ej remains arbitrary, we shall have q + 1 systems of values,
which are linearly independent, of the coefficients Bi and Ei'

We may therefore have q + 1 different integral invariants (if the
periodic solution under consideration is not singular, with the meaning
attributed to this word in No. 257), but we cannot have any more.

282, I stated above that conditions (15) were definitely fulfilled;
there may still be some doubt on this point. If equations (14) have q

different solutions, we may have q + 1 invariants. If there is only one
invariant, we could assume that q = 0. The presence of a single invariant

f Sdzidy;

would not enable us to state that equations (14) definitely have a solu-
tion.

This is the doubt which I wish to dispel.

I would first like to note that in the case of the three-body
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problem, there are not one, but two integral invariants.

In Volume I, Chapter IV, we studied the variational equations of
this problem.

On pages 170 and 172 we obtained the following integrals

] i,
}% —E(R; t = const. (1)
2‘.(211}-&—)/&)—-3!( '}%—E%E) = const. (2)
In the same way, we could obtain [124
¥ dv ., '
F—ZEE = const. (l )
E(zrr,‘+_y£')—3t( »,%—— %E') = const. (2")

Let us multiply (2') by (1), (1') by (2), and let us subtract. We
then have

; \

P CAREAE RCEL RS

m

— VAEAROE =
2( T S(2x7 + y§) = const.

mnm

(16)

The first term is linear with respect to the determinants having the
form

, , .
none— mens, nibe— ik Eife— Bekie

We therefore have an integral of the variational equations, and we
may deduce from it a new bilinear integral invariant.

In the case of the three-body problem, we therefore have at least gq=1,
and it may be stated that conditions (15) are fulfilled.

283. TIs this still true in the general case? Let us assumé that it
is not. Then all the coefficlents which we have called Bi must be zero,

as well as all of the Ep's, with the exception of Eg.

Therefore, when we attribute the values corresponding to the periodic
solution under consideration to the x;'s and the yi's, i.e., when we set

C=AAYk=0,

the coefficients of the terms in &fx8'f'y - §£f} 8fy must vanish, and
only the terms in
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Si(8fud'0 —203f1)
(30¥0 —t88'®).
remain.

OQur invariant must therefore vanish when we have

8 =88 =o.

This 1s not the case for the invariant /125

deI[d]i

to which the following expressiom corresponds

2(81',6')'; — a}’isl-z,') :

Let us set
= Za;3x; + b3y,
Ea,la':c,- -+ .‘:b,~8'_y,-.

We must have an equation of the form

2 P N S . .
_(OI,O)’, o.}'zoxt)~Z(G(SZ'i—"I)iS)/,»)S(C'Q‘]-iH:_eiav]i)

. v o N ~
Said' x5,y ) 2(edxi 4 e 3y,).

However, this is impossible, since the first term is a bilinear form
with determinant 1, and the second is a bilinear form with determinant O.

We must therefore conclude that conditions (15) are always fulfilled.

284, Let us now try to determine whether equations (14) may have
several solutions.,

Let

By, B, ..y B,
B,. B,. ..., B,

be these two solutions and let us assume that we do not have

Be _ B:,
B ~ B’
and then the two equations
B',,g% = B;g—;‘:
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S

will impl
) pLiy o oy
o °
Then the indices
I, .., 2, R

will be divided into a certain number of groups, as many groups as there

different values for the ratio Two indices will belong to the same /126

ey
T
By
group, if they correspond to the same value of the ratio —%.
By

In order that oy depends on y; (or o4 on yk), it 1s necessary that
the indices i and k belong to the same group.

In order to formulate these ideas clearly, let us assume that there
are only two groups containing the indices, respectively,

r, 2, V2
41 42, ..., R—1.
Then s PR
Ty, X2y sy Ip
will depend only on
Togy, 1y Y2, e Yo
and
Xprty Zpray ooy Gy
will depend only on
gy Yp+1s Yp+as vy Y-t

It then appears that the characteristic exponents o form several indepen-
dent groups, in such a way that the oy 's of one group do not depend on the
products AjAﬁ corresponding to another group.

The periodic solutions for which this condition will be produced
(or for which there would be one relationship between the ay's) may be
called particular solutions.

We therefore arrive at the following conclusion:

In order that there be another algebraic invariant, in addition to
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those which we know, it would be necessary that &sll the periodic solu-
tions be particular solutions, or thac they all be singular solutions,
with the meaning given in No. 257.

I shall not try to demonstrate the fact that this condition could
not occur in the three-body problem, but this would seem to be very
unlikely.

Quadratic Invariants /127

285. Let us now study the quadratic invariants from the same point
of view, i.e., the integral invariants having the form

f VF,

where F is a quadratic form with respect to the differentials dxi, dyi.

Let us set
F=:sldz; dry,
where the H's are functions of the x's and the y's, and where the product
dxidxk may be replaced in certain terms by the product dxidyk or dyidyk.

We may then write the following equation which is similar to equation
(3) of No. 278

Y1 3x; dxy == const, ¢8)

On the other hand, we find in No. 278 that
Srp=bim by Syi mieb
We may then write equation (1) in the form
D - Bt 4-TF¢? = const.,
where D, E, F may be developed in powers of the A:tvs, Aé”“t;; and of the

sines and cosines of the multiples of %1 (t + h), and where D, E, F are
quadratic with respect to the

SAext, dNe-nt, G, Eh,
We must therefore have
ET; l:rzo’

and, in addition, D must be independent of t, which shows that D must be /128
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linear with respect to the following expressions

3AL BAL,
AL} BALBA,,
Al 3Ax 3C,
N SN 3R,
eC 3h,
or with respect to the expressions which may be deduced by interchanging
Ay and A}, or Ay and AE.

The coefficients will be developed in powers of the products Ay Ay
and of C (if one assumes that the periodic solution corresponds to the
zero value of the energy constant).

286. Let us return to equations (7) given in No. 280, and let us
pursue the same line of reasoning as given in No. 280. We shall find that
the expression

N =slir dr,

must satisfy the follow ag conditions when the x4y's and yi's are replaced
by their expansions as functions of the fy, fk, ¢ and 0's:

1. It must be linear with respect to the following quantities:

LS 3w sf

_f';,af;,- ’:‘1—’, (8')
Jofi 00,
b 29,

S a0
ob?00?,

g a.f/. aflh

where the coefficients are developed in powers of the fkfk's and of 9.
2. It will not depend on ©, but only on §0.

3. 1If these conditions are fulfilled, expression T will not include
the time, neither in the exponential form nor in the trigonometric form.

We must now determine the condition under which the time is not
included outside either the exponential or trigonometric terms.

Let us consider equations (9) again from Section No. 280. We shall

find that the following terms will correspond to the different terms /129
given in the Table (8'):

131



SAx AL+ E(AREAL Sy — ALBAs aik) — A,_Aj‘.ﬂ(aak)!,
AQ.AQ-GA;, 3:\/ -+ A".A}t(,\kaz‘. 81\/ -+ AJ Eaj 0‘1\‘-)
+A/.».\'/‘Aj:\} 2 azk Baj,

ALdA 20 - ApAl 132, 5C, (10")
;\’,..8‘\;,8{30+,\’,\.1(61\/\.6104-;\* 82,,8,30) -+ .\M\".z?hk?}:o,

A A - - \ o

aC a3 + ¢2C 31y cCe, A33 20830 8xp -+ £23a,

Let us first make the terms in t? vanish.

The entire group of these terms is a quadratic form with respect to

o ~
6xg, o1y, (S} a’n*!-

This quadratic form must be zero.

The coefficient of Gukéajtz must therefore be zero. However, there
are four terms which could introduce the product tzdakéaj; these are the

terms in .
Suliofedfsn Fulidfudfy Fad58fuifsn Sufiefidf).

For purposes of brevity, let us designate these four expressions by
Wy, w2, w3, Wy. The entire group of our four terms may then be written

d{l Wy - '}Jﬂug —+- "{3 Dy -+ '.!/;m“
where 1, Y2, ¥3 and $, may be developed in powers of the fyf'y's and of ¢,
In order that the coefficient of t26ak6aj vanish, we must have identically
Y1+ b+ by -y =0,

In the same way, the coefficient of t262ak must vanish.
It arises from terms in

iifir SRR, SRR

For purposes of brevity, let us designate these three expressions by
wp, wh, wh, and the entire group of the three terms by

0 Py -
where 1, Vo, V5 may be developed in powers of the fkfk's and of 9.
In order that the coefficient of t262ak may vanish, we must have /130

Sefa(93--93)— 4 —=o. (11)
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For the periodic solution, we must have

Ni=fish=fi=.=fog= a0

All the terms including as a factor one of the expressions appearing
on the 2nd, 3rd, or 4th lines of the Table (8') must then vanish,
because each of these expressions includes fy or f} as a factor.

The only terms of expression I which do not vanish for the
periodic solution are therefore the terms in

Yidfi, b, b1, St

Equation (11) shows that ' contains fkfk as a factor. Therefore,
the term Y}j6fy8f] must also vanish. We then have only the terms in

sbr, Able, et

The first does not include t, the second includes it in the first
power ; and the third includes it in the second power.

Due to the fact that this third term is the only one which includes
t?, it must be zero. If it is zero, the second term will also be zero,
due to the fact that it is the only one which includes t.

Finally, all the terms of 1 vanish for the periodic solution,
except the term in 6§¢2.

In the general problem of dynamics, just as in the case of the three-
body problem which we have designated as the restricted problem, the general
reduced problem, and the planar reduced problem, we have a quadratic in-

variant, but no more than one.

I may write the energy equation in the following form
F == const .

This invariant is nothing else than
J vy,
and the term in 682 which does not vanish corresponds to this invariant.

If there is a quadratic invariant, other than that which is knowm, /131
this invariant must vanish for all points of the periodic solution.

In other words, this periodic solution must be singular in the sense
of the meaning given in No. 257.
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There would be an exception, if the n exponents

Aoy, X1y, gy .--y Tpy

were not independent of each other, but if there were one relationship
between them. In this case, the coefficient of t?2, which is a quad-
ratic form with respect to the n variables

o o
exg, Say, ..., &%y,

could vanish without all of its coefficients being zero, since
these n variables will no longer be independent.

To sum up, in order that there may be other quadratic invariants, in
addition to those which we are acquainted with, it is necessary that all
periodic solutions be singular or particular.

It is very unlikely that this will be the case for the three-body
problem.

Case of the Restricted Problem

287. We may conceive of another discussion method which we shall only
apply to the case of the restricted problem. The discussion presented in
No. 257 has presented the possibility of two quadratic invariants, of which
one is known. Let us assume that these two quadratic invariants exist, and
let 1 be the quadratic form corresponding to one of these invariants.
According to the preceding statements, II may include terms in

3A3f1, [18f180, fidfied, f£1e/138, Afidfyle, (1)
FofL, fi8f, 0, fpis, b,
~ On the other hand, N is a quadratic form with respect to the
quantities

8.1:,, 3.1:'2, a)’n 5}’3.
whose coefficients are the algebraic functions of x;, x,, ¥,, Y,- /132

Following are the variables x, and vy which we shall select. 1In this

i
problem, which I have called the restricted problem, two of the bodies de-

scribe concentric circumferences, and the third (whose mass is zero) moves
in the plane of these circumferences. I shall refer this third body to
moving axes turning uniformly around the center of gravity of the first
two. One of these axes will constantly coincide with the line joining
these two first bodies. I shall use x, and x, to designate the co-

ordinates of the third body with respect to these moving axes, and
A and y, to designate the projections of the absolute velocity on the
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" moving axes.

Let us then set

b —=F+wG,

where F and G designate the energy function and the area function

in the absolute motion, and where w designates the angular rotational
velocity of the two first bodies around their common center of gravity.
The equations take the canonical form

dr; _ db Ay b

e T odys de

n’z}'
The integral ¢ = const. is nothing else than "the Jacobi integral"
(see Volume I, No. 9, page 23).
Under this assumption, our expression [ will be a quadratic form in
ATy, STe, AVy 6)a

for which the coefficients will be algebraic in x%; and Vi If we assume
that the four variables x and y are related by the relationship

T -z const.,
which entails the following condition
¢b =o,

our four variables 6&xj, 8y; will no longer be independent. One of them

could be eliminated, and I will become a ternary quadratic form.

Let us consider one point of the periodic solution. For this point,
we shall have

All the expressions (1) will therefore vanish with the exception of /133

3FAF. 20 SDbi0 A2,
ULATIS and

If we set 8¢ = 0, they will all vanish with the exception of
8fidfy and 4O
Therefore, for a point of the periodic solution, let us set
= B3fidf + Coe1,

The entire group of terms for t2 will therefore be reduced, for

135



this same point, to
—B/fif 1282} + Cerial
(see, supra, Table 10') and, since f; = £} = 0, may be reduced to
Ce2oad.

The terms in t2 must vanish. The latter is the only one which does
not vanish for the point under consideration; all the others are zero,
even when the condition 66 = O is not imposed, because 3§80 and §¢2 do not

provide terms in t2.

However, 8oy is not also zero. For one point of the periodic solu-
tion, we have
d2g dxy dxq

T T A T

Qg
but we cannot be sure of having T = 0. This would assume that there

is a continuous infinity of periodic solutions having the same period,
which does not occur.
dag
Nevertheless, it may be noted that 15 includes the small quantity
which I may designate by u as a factor, i.e., the mass of the second
body. Consequently, it may be noted that Sap vanishes for u = 0,
i.e., in Keplerian motion.

The terms in t2 can only vanish if we have

C—o,

from which it follows
1= Béfi8fy.

However, this latter equation would indicate that T may be reduced
to a binary quadratic form and, consequently, that its discriminant is
zero. Thus, the discriminant A of 1 must vanish for every point of [134
every periodic solution. '

288, However, an algebraic relationship such as

A=o0

cannot be valid, unless it is reduced to an identity, for every point of
every periodic solution.

If the relationship A=o0
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is supplemented by two other relationships
[ =8, G:'l' (3)

(where B and y are two arbitrary constants, and F and G are the two
functions which were designated in the preceding section) and a fourth
arbitrary algebraic relationship

I —=o, (4)

the number of solutions of these four algebraic equations will be limited
whatever the constants B and y may be.

Let us now consider a periodic solution, and the variables x4 and
y{ will be developed in powers of p in the following form

1
T s TR

yirept e url e

(5)

In the same way, F will be developed in powers of u, and we shall
have

Fr—:Fo-f—p.Fl-‘v—....
and G and H will be independent of y.

The quantity A remains. It may be stated that this function, which
is algebraic in x; and y; under the terms of the hypothesis, also depends

algebraically on u.

If we state that
S

is an integral invariant, we will be led to certain relationships which
include the coefficinets of I , their derivatives, and the coefficients
of the differential equations of motion.

We assumed that I is an algebraic function of the x;'s and the yi's.

We may assume that this algebraic function is included as a special case /135
in a definite type, not containing u explicitly, but depending algebraically
on a certain number of arbitrary parameters. The quantity f YT will not

be an integral invariant no matter what these parameters may be, but only
when these parameters take on certain special values depending om j.

When stating that f VI is an integral invariant, one 1is led to
certain algebraic equations between uy and these parameters. These equa-
tions must be compatible, and it is apparent that the parameters will
be obtained as algebraic functions of y.
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The coefficients of the form I and A will also be algebraic in u.

The equation A = 0 is therefore algebraic in u, and we may assume
that it has undergone a transformation in such a way that the first term
is a whole polynomial in u.

We may therefore write

A=Ay + pA - A

In addition, Ag will not be identically zero, unless A is. 1If Ag
would vanish, A would contain a factor u which:could be made to vanish.
The function A must vanish when the xi's and yi's are replaced

by the expansions (5). It may then be developed in powers of u and, due
to the fact that the term which is independent of y must vanish we shall

have

_\O(I?)},?)'TO' (2')

We should now point out that we must have
\ FU(‘[‘?!.}’?) - BO)
v
G(x?, yi)= o (39

where By and yy are constants. In order that this may be the case, it is
sufficient to recall that, for u = 0, the motion may be reduced to
Keplerian motion.

Now, for example, let us take /136
H=2z}+z]—1
and let us write the equation

(N (23 =1. (4"

If we set y = 0, we may then observe that the third body will describe a
Keplerian ellipse. Let £ and n be the coordinates of this body, not with
respect to the moving axes, but with respect to the axes of symmetry of
this ellipse.

The equations of the Keplerian ellipse will then be written

} =5, +§ycosp -+ EgCO529 ..oy

n= 7,8inp + 738020 ...,

(6)

The coefficients Ek, Nk will depend on two constants which are the
major axis and the eccentricity of the ellipse and, consequently, on Bg
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and yg. We shall have

t.:z::n,t—'r—m,.

. where the mean motion n; depends on By and where w; is a new integration
constant.

The intersection of the ellipse (6) with the circle
E! - 7": 1
will occur at two points which will be given by the equations
¢ = cos, 7, = = sin0, v = = o (7)

We will then have
( 2f= tcos(uwt i (o9 )| sin(wi @),

I «§ = § sin(wt 4wy ) — 7, cos(wi - We ), (8)

where Wy is a new integration constant.

We shall obtain solutions of the equation (4') by combining equa-
tions (7) and (8), which yields

r9 = 0% Q-1 .2(004«2]“71""5;)'*—”1]3
e ng

W
z9:=cos| —0H -~ (—20+ 2hm —wi)+ ’32]
i ny ¢

(k is an arbitrary whole number).

In order that the solution be periodic, it is necessary and suffi- /137
cient that the ratio é% be commensurable. Let us write this ratio in the

form of a fraction reduced to its most simple expression, and let D be
its denominator. It may be seen that equation (4') has 2D different
solutions.

Equations (2'), (3'), and (4') must have only a limited number of
solutions, no matter what the constants 8 and yo may be. I may choose
B¢ in such a way that ﬁ% has the value which I desire, and consequently
that D may also be as large as I desire.

This can only occur if Ap, and consequently if A, are identically
Zero.

Consequently, the discriminant having the form II is identically zero,
and this form must be reduced to a binary form.
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It could be shown in the same way that, in the sense of No. 257,
it is impossible that every periodic solution be a singular solution.

This has only been proven in a very special case, but it is possi-~
ble that this proof may be extended to the general case,

289. The form 1T regarded as a binary form, must be reducible to
B 3,5/,

for one point of a periodic solution. The binary form will therefore be
definite (i.e., equal to the sum of two squares) if the periodic solution
is stable -~ i.e., if the characteristic exponents are imaginary. It
will be indefinite (i.e., equal to the difference of two squares) if the
periodic solution is unstable —- i.e., if the characteristic exponents
are real,

Let us assume that yu is very small, and let us reconsider equation

(4").

According to the principles outlined in Chapter III (No. 42), for a /138
given value of By, we shall have at least two periodic solutions, of which
one is stable and one is unstable. Let

Ty Wi B, Wy
be the corresponding values of the constants W] and wsp.

Let us set
0+ = (p0—w}) +wy =¥,
ny

B+ — (90— )+ wf =1V,
1

and equation (4') will give us, for the first periodic solution,

2kwn
29 = cos (l'f"*— ~n—)
1

and for the second

0 _ (“ zkum)
rY=cos(¢f+ ).
3

Without restricting the conditioms of generality, we mgy assume that

" > ¢’ and that y' and ¢" are contained between zero and 2". Then the
D

form M will be
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definite for _q;:cos(y_k%;),
indefinite for uf:: cos(y n %‘)
definite for I?=COS(V4 ﬂ;>,
indefinite for I?:COS(V4-%;)a

4 W 3 P S G EEET 6T I I NS ATSIREITIESSSEY

definite for o= cos{{y’ +27)
indefinite for .- cos(y +27);

which shows that the discriminant of N, considered as a binary form,
must vanish at least 2D times. Just as above, it may be concluded

from this that it is identically zero.

The form I may therefore be reduced to a square term. Therefore,
since it must equal

Bifiifl

for every point of a periodic solution, it must vanish for all of /139
these points.

The same line of reasoning would show that it is identically zero.

To sum up, there is no other quadratic invariant except the one which
is known, at least for the special case of the restricted problem.
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CHAPTER XXVI

POISSON STABILITY

Different Definitions of Stability

290. The word stability has been understood to have several dif- /140
ferent meanings, and the difference between these meanings is clearly
apparent if we recall the history of science.

Lagrange has shown that, if the squares of the masses are neglected,
the major axes of the orbits are invariant. This means that, with this
degree of approximation, the major axes may be developed in series whose
terms have the following form

Asin(z2t+ B),

where A, o and B are constants.

If these series are uniformly convergent, this results in the fact
that the major axes are contained between certain limits. The system of
stars cannot therefore pass through every situation which is compatible
with the integrals of energy and area, and furthermore it will repass
an infinite number of times as close as desired to the initial situation.

This is complete stability.

Carrying the approximation further, Poisson demonstrated that the
stability continues to exist when one takes into accout the squares of the
masses and when the cubes are neglected.

However, this does not have the same meaning.

He meant that the major axes may be developed in series, containing
not only terms having the form

Asin(at -+ 3),

but also terms having the form /141
Atsin(at -+ ).
The value of the major axis then undergoes continuous oscillations,
but nothing indicates that the amplitude of these oscillations does not
increase indefinitely with time.

We may state that the system will always repass an infinite number
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of times as close as desired to the initial situation. However, we may
not state that it does net recede from it very much.

The word stability does not therefore have the same meaning for
Lagrange as for Poisson.

It is advantageous to point out that the theorems of Lagrange and
Poisson include one important exception: They are no longer valid if
the ratio of the mean motion is commensurable.

The two scientists concluded from it that stability exists, because
the probability that they are commensurable is infinitely small.

It is therefore advantageous to provide an exact definition of sta-
bility.

In order that there be complete stability in the three-body problem,
the three folowing conditions are necessary:

1. None of the three bodies can recede indefinitely;

2. Two of the bodies cannot collide with each other, and the dis-
tance of these two bodies cannot desend below a certain limit;

3. The system repasses an infinite number of times as desired to
the initial situation.

If the third condition alone is fulfilled, without knowing whether
the first two conditions are fulfilled, I would say that there is only
Poisson stability.

A case has been known to exist for a long time for which the first
condition is fulfilled. We shall see that the third condition is ful-
filled also. I can say nothing with respect to the second condition.

This is the case given in the problem of Section No. 9, where I
assumed that the three-bodies move in the same plane, that the mass of
the third is zero, and that the first two describe concentric circumfer-
ences around the common center of gravity. For purposes of brevity, I
shall call this the restricted problem.

Motion of a Liquid [142

291, 1In order to provide a better explanation of the principle un-
derlying the proof, I am now going to present a simple example.
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Let us consider a liquid which is enclosed in a vessel having an in-
variable form and which is completely filled. Let x, y, z be the coor-
dinates of a liquid molecule, u, v, w the velocity components, in such a
way that the equations of motion may be written

=22 < (1)

The components u, v, w are functions, which I assume to be given
functions, of x, y, z and t.

I shall assume that the motion is steady, in such a way that u, v, w
depend only on x, y and z.
Since the liquid is incompressible, we shall have

dw G de v
dr Ty s

R U

In other words, the volume

f dz dy ds

is an integral invariant.

Let us study the trajectory of an arbitrary molecule. I may state
that this molecule will repass an infinite number of times as close as
desired to its initial position. More precisely, let U be an arbitrary vol-
ume inside of the vessel, which is as small as desired. It may be stated that

there will be molecules crossing this volume an infinite number of times.

Let U_ be an arbitrary volume inside of the vessel. The liquid

molecules which fill this volume at the time 0 will fill a certain volume
U1 at the time 1, a certain volume Uz, +vs, at the time 21, and a certain
volume Un at the time nrt.

The incompressibility of the liquid or, which is the same thing,
the existence of the integral invariant, indicates to us that all the

volumes .
/143
Uo, Ui, Uz, .y Un

are equal.

Let V be the total volume of the vessel, and if
V<(rn--1yu,,

we shall have
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VZUy+ Upi- Uy .o+ U,

It is therefore impossible that all the volumes Up, Uy, ...y Uy
are all exterior to each other. It is necessary that at least two
of them, Uj and Uy, for example, have a part in common.

It may be stated that if Uy and Uy have a part in common, the same
will hold true for Uy and Up_; (assuming, for example, k > i). Let M
be a point in common to Ui and Uk‘ The molecule which is at the

point M at the time it is, at the time 0, at a point Mg belonging to Up,
since the point M belongs to Uj.

In the same way, the molecule which is at the point M at the time
kt is, at the time (k-i)t, at the point M, since the motion is steady.

On the other hand, it is at the time O at a point M; belonging to Ug,
since M belongs to Uy, and we must conclude from this that Mg belongs to

Up_y-

Therefore, Up_; and Up have points in common.
q.e.d.

Therefore, it is possible to choose the number o in such a way that

Uy and Uy have a part in common.

Let U} be the part in common, and let us form Wy, U, ..., with Uj,
as we formed Uj, U, ..., with Ug. We may obtain a number B in such a

way that U}, and U have a part in common.
Let U6 be this part in common.

We may obtain a number y in such a way that U, and U; have a part

in common.

This procedure may then be continued.

thi]

As a result, U} is part of Up, U" of U}, and UY' of Up, ... Im
general, U§p+1) will be part of Uép). When the number p increases in-—
definitely, the volume Uép) must therefore become smaller and smaller.

According to a well-known theorem, there will be at least one point,

perhaps several, or perhaps an infinity, which belong at the same time /144
to U,, to Uj, to Uy , ++s, and to USP), however large p may be.
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This group of points, which I shall call E, will be in a measure
the limit toward which the volume UgP) tends, when p increases indefin-
itely.

It may be composed of isolated points; however, it may be somewhat
different. For example, it may happen that E is a region in space
having a finite volume.

A molecule which will be inside of U}, and, consequently, inside
of Uy, at the time zero, will be inside of Uy at the time -art.

A molecule which will be inside of UB and, consequently, inside
of U! at the time zero, will be inside of Uy at the time -Bt, and,

consequently inside of Uy at the time -(o + B)T.

A molecule which will be inside of U§'at the time zero will be in-
side of Uj at the time -yt, inside of UB at the time -(B + y)t, and in-
side of Uy at the time -(a + B8 + y)T.

Since Uy', UY, Uy are part of U, this molecule will be inside of
Uy at four different times (multiples of 7).

In the same way, and more generally, a molecule which is inside of
Uép) at the time zero will be inside of Uy at p different previous times
(which will equal the negative multiples of T).

Since E is part of USP), however large p may be, as a result a mole-

cule which, at the time zero, is part of E will cross Up an infinite
number of different times, which all equal a negative multiple of .

There are therefore molecules which cross the volume U an infinite

number of times, however small this volume may be.
q.e.d.

The equations

dzx _ dy oz

become de dy s

_Z[~—v——~tv

when t is changed into -t. They therefore retain the same form.

As a consequence, according to the same reasoning which we have just
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employed to show that there are molecules which cross U, an infinite
number of times before the time zero, we should be able tc show that
there are molecules which cross U, an infinite number of times after /145

the time zero.

The preceding line of reasoning provided us with the times at which
Ug is crossed by a molecule which, at the time zero, is part of E. Due
to the fact that it is inside of E and, consequently, inside of Uy and
of Uy, at the time zero, it will be inside of Uy at the time

— aT.

Due to the fact that it is inside of E and, consequently, inside
of U" and of U, at the time zero, it will be inside of U} and U, at the
0 8 0 o

time

— @1,

and inside of Uy at the time

—(a -+ 3)r-

It will therefore be inside of Uy at two times -BT and -(a + B)T.

Since it is part of E and of Uj'at the time zero, it will be part
of U"y at the time -yt, of Uy at the time -(8 + y)t, and part of Uy
at the time -(a + B + y)T, so that it will cross Uy at three times

T

i, (B —(a+ B

At the time -yt it is part of Uj and, consequently, part of Uy and
of Uy. At the time

—(a+7)T
it will therefore be part of Ugp.

To sum up, this molecule must cross Uy at different times

— at, — ?1, — T, Doy
— (2 + B, —(By)T —(2H-)T e
(@A BT, e L e s eeen

)

where the coefficient of -1 is an arbitrary combination of the numbers
Oy, By Yy os0e

Among all of these times, there are now times when the molecule {146
will not only be inside of U, but also inside of U} .

It may be readily seen that it is sufficient to select combinations
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which do not include the number «.

The times at which the molecule will be inside of Uj will corres-
pond in the same way to the combinations which do not include either
the number a or the number B.

292. Let us again consider the volumes
UO: Uh U:x Ty Un- (1)

For purposes of brevity, I would like to state that each of them
is the consequent of that preceding it in the series (1) and the
antecedent of that following it.

Thus, Uy, Uz will be the second and the third consequent of U,-

I may continue the series (1) beyond U,, compiling the successive
consequents of Url

Un+h Uu+2v

I may also extend it to the left, and may compile the successive
antecedents of Uy

U—-h U——!) L ]

in such a way that the molecules which are in Uy at the time zero will
be in U_; at the time -1, and in U_, at the time -27.

Under this assumption, I shall always use V to designate the total
volume of the vessel and k to designate an arbitrary whole number. If
we have

kY <(n+n1)Uu,,

there will be points which are part of k + 1 volumes of the series (1)
at the same time,

The sum of the volumes of the series (1) is equal to (n + 1)Uj.
If no point could be part of more than k of these volumes at the same
time, this sum must be smaller than kV.

We may therefore obtain k + 1 volumes in the series (1)

Ux, Usy Uiy oo, Ug

which will have a part in common.

I may conclude from this that the k + 1 volumes [147
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Usy Ux—ay Ug,—zpe -+ Ugy—a,
have a part in common.

For example, let us set k = 2
2V < (n +1)U,,
and we may obtain three volumes

Uy, Us, Uy

which will have a part in common. The indices o, B, Yy will satisfy the
conditions

<x<n: <3< - < .
oSalng 0<3%n; oivsn; a < B

It may be deduced from this that the three volumes

Uy, Uﬁ—a; Uy-a
have a part in common, and that the same holds true for the three volumes

Ufl—‘Br Uy, Uy~~3

or the three volumes
Uavn{, UQVY, Uo.

293. We saw above that there are molecules which cross U, an
infinite number of times before the time zero, and others which cross an
infinite number of times after the time zero. I propose to establish
the fact that there are as many which cross U0 before the time zero

as after the time zero an infinite number of times.

Let U0 be an arbitrary volume. According to the preceding section,

we may always obtain two numbers, a and a, the first negative and the
second positive, and such that the three volumes

IJa1 UO; U(l

have a part in common. Let Ué be this part in common.

Every molecule which will be in Ua at the time zero will be in U0
at the three times

—a%, 0, —ar.

148
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Of these three times, the first is negative and the last is positive.
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Our molecule will therefore cross Uy at least once before the
time zero, and at least once after this time.

Following the same procedure with U} as with Uy, we shall obtain
two numbers b and B8, the first negative and the second positive, so
that the three volumes

» U, U
have a part in common. Let UB be this part in common.

Every molecule which will be in Uj at the time zero will be in U} at
the three times

and, consequently, in Uy at the five times

—(z2-+8). —P, o, —b3, —Ya+b)s.
Of these times, the first two are negative, and the last two are posi-

tive.

Every molecule which will be in Uj at the time O will cross Uy at
least two times before the time zero, and at least two times after this
time.

This procedure will then be continued.

One could form Uy' with UY, U%V with Uj', and it could be seen that
every molecule which will be in Uép) at the time 0 will cross Ug at least

p times before the time zero, and at least p times after this time.

However, U} is part of Uy, Uj of U}, and so on. We shall therefore
have a group of points E(containing at least one point) which will be
part of all the volumes USP) at the same time, wherever p may be.

Every molecule which, at the time zero, will be inside of E will
also be inside of

Uy, Uy, U5, ..., UYY, adinf.

since E is part of all these volumes.

Therefore, it will cross Ug an infinite number of times before the
time 0, and an infinite number of times after this time.

There are therefore molecules which cross Uy an infinite number of

times both before and after the time zero.
q.e.d.
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294. The group E, which was defined in No. 291 (just like the
group E considered in the preceding section) may be composed of a
single point (be that as it may, there is always an infinity of mole-
cules crossing Uy an infinity of times).

It may be composed of a finite number of points, or of an infinite
number of discrete points.

It could be assumed that this group E has a finite volume. Let us
see what the consequences of this hypothesis would be. Let us discuss
the group E defined in No. 291.

I shall consider the series of whole numbers
2, B, .-
which were defined in this section, and it may be stated that we have
2.

The quantity Ua is the first of the consequents of Up which has a

common part with Ujp.

U' is the first of the consequents of U' which B has a part in
common with Ué. v

'] f .
g is part o UB

has a common part with U/, UB is one of the consequents of Uy which has

However, Ué is part of U, and U Therefore, if Ué

a part in common with Uy. This entails the inequality

aZd.
In the same way we would obtain

A

8%

By

The numbers o, B, Y, 8, ... are therefore always increasing or, at least,

never decrease.

On the other hand, according to No. 291, we have

A

. 9. Y v
1—r-a<6&; 4 p < s 1+y<gr-
0 0

We clearly have

U > Uy >Ug> ..o,

and, if E has a finite volume which I may also call E, no matter what p

may be, we have E< Uy
Y

since E is part of ng).

/149
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The numbers o, 8, y, ... are therefore all smaller than /150

v
- —1.

E

Therefore, they cannot increase beyond any limit, and we may con-
clude that, starting with a certain order, all the terms are equal in
the series of numbers a, B, ... .

Let us assume that all the terms are equal to X, starting with the
p€ order.

Then Usp)and U§P) will have a part in common which will be U§p+l),
and USP+1) and U§P+l) will have a part in common which will be ng+2),

and so on.

Let E, be the A® consequent of E,.

E is the group of points which are part of Uy, U, U§, ..., ad inf.
at the same time. E, will be the group of points which are part of
U,, Ui, Y» +++, at the same time. It may also be stated that E is the

group of points which are part of
'UOUPP‘), U(upn), .o (1)

at the same time, since each of the regions Up, Uy is only a portion of
the preceding region. In the same way, E) is the group of points which
are part of

U;‘Iﬂ, U;\pn)’ o (2)

at the same time.

However, U6p+1) is a part of U§p), and U§P+2) is a part of U§p+l).

Each term in series (2) is a part of the corresponding term in series (1).
Therefore E is a part of E,, or coincides with E,.

However, we assumed that E is a certain region in space having a
finite volume. Due to the fact that the fluid is incompressible, its
AEE.consequent E, must also be a certain region in space having the
same volume. E cannot therefore be a part of E,. Therefore, E and E,
coincide.

If we assume that E is a certain region in space having a finite
volume, it must be stated that E coincides with one of its consequents.
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295. Following are some theorems which are all but obvious, and
I shall confine myself to discussing these theorems. Let /151

UI,: Udg: vy Ud:u

be those consequents of Uy which have a part in common with Ug. The
numbers au are arranged in order of increasing magnitude. We shall have

A
fH4-apfu N

Then let
Uy, Uy ooos Uy,

be the 1 consequents of Uy, which have a part in common with each other
and with Ug. I have chosen these numbers y in such a way that yu is as

small as possible. We shall have

< < v
P oS-+ Ypt it U-

Let us employ the notation given in No. 291 once again, and let us
employ Ua to designate the first consequent which has a part in common
with Uy, U} to designate this common part, U] to designate the first con-
sequent of U} which has a part in common with Uj. If 8 is not equal to

o, we shall have
BZ2q,

and UB—a will have a part in common with Ug.

Probabilities

296. We saw in No. 291 that there are molecules which cross Up an
infinite number of times. On the other hand, there are others which cross
Uy only a finite number of times. I plan to demonstrate the fact that

these latter molecules must be regarded as unusual or, to state this more
precisely, the probability that one molecule crosses U0 only a finite number

of times is infinitely small, if it is assumed that this molecule is inside

of Uy at the initial instant of time. However, I must clarify the meaning
which I am here attributing to the word probability. Let ¢(x, y, z) be a
positive, arbitrary function of the three coordinates x, y, z. I may state
that the probability that a molecule may be located within a certain volume

at the time t = 0 is proportional to the integral {152

J ::fc;(.r, 7 s)dzdy ds
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extended over this volume. Consequently, it equals the integral J
divided by the same integral extended over the entire vessel V.

We may arbitrarily choose the function ¢, and the probability
is thus absolutely definite. Since the trajectory of a molecule de-
pends only on its initial position, the probability that a molecule be-
haves in a certain way is a completely definite quantity, as soon as
the function ¢ has been chosen.

Under this assumption, I shall simply set ¢ = 1, and I shall try
to find the probability p that a molecule does not cross the region Uy
more than k times between the time -nt and the time zero.

Therefore, let oy be a region which is part of Up and which is
defined by the following property. Every molecule which will be within
op at the initial instant of time will not cross Ug more than k times
between the times -n't and O.

If we assume that our molecule is within Uy at the time zero, the
desired probability will be

(1)
P == U;.
Let

be the n first consequents of og. It is not possible to have a
region common to more than k of the n + 1 regions

T9, O, Iz, seey Tay

since, without this stipulation, every molecule which was located in
this common region at the time zero would cross oy, and consequently Ug,
more than k times between the times -nt and O.

We therefore have
(n-t-1)ay <AV,
and, consequently,

AV

P Gya,”

No matter how small Uy, may be, or how large k may be, we may always
take n large enough, so that the second term of this inequality is as /153
small as desired. Therefore, when n tends toward infinity, p tends
toward zero.
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Therefore the probability is infinitely small that a molecule
which is located in the region Up at the initial instant of time does
not cross this region more than k times between the times — and O.

In the same way, the probability is infinitely small that this
molecule does not cross this region more than k times between the
times 0 and + .

Let us now set n = k3 + x. The probability that our molecules does
not cross Uy more than k times between the times —(k3 + x)1 and 0, will
be smaller than

s BV
(BF+z+1)Uy

It tends toward zero when k increases indefinitely.

The probability P that our molecule does not cross Uy an infinite
number of timee between the times —= and 0 is therefore infinitely small.

In reality, this probability P is the sum of the probabilities
that the molecule crosses Uy only once, that it crosses Uy twice and
only twice, that it crosses Uy three times and only three times, etc.

However, the probability that the molecule crosses Uy k times and
k times only, between the times —» and 0, is obviously smaller than the
probability that it will cross Uy k times or less than k times between
the times -(k3 + x)t and 0 -- it 1s consequently smaller than

___ AV
(B z+40)U,
The total probability P is therefore smaller than

\4 2V kY

P Gt Y @a 9t T e, T

The series of the second term 1s uniformly convergent. Each of the
terms tends to zero when x tends to infinity. Therefore the sum of the /154
series tends to zero, and P is infinitely small.

In the same way, the probability is infinitely small that our mole-
cule does not cross Ug an infinite number of times between the times 0

and + o«

The same results are obtained when any other choice is made for the
function ¢, instead of setting ¢ = 1.

Equation (1) must then be replaced by the following
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. 3(50)
PTGy
where J(og) and J(Uy) designate the integral J extended over the regions
og and Up, respectively.

I shall assume that the function ¢ is continuous; consequently, it
does not become infinite, and I may assign an upper limit u to it. We
then have

J(5) < 70,
and since

(n4-1)(a) <AV,

we may deduce the following

nkV

P< iUy

No matter how small J(Up) is, or how large k is, we may always take
n large enough that the second term of this inequality is also as small
as desired. We again obtain the same results which are therefore indepen-
dent of the choice of the function ¢.

To sum up, the molecules which cross Uy only a finite number of times
are unusual, in the same way as the commensurable numbers which are only
an exception in the series of numbers, while the incommensurable numbers
are the rule.

Therefore, if Poisson could provide an affirmative answer to the sta-
bility question which was posed, although he had excluded the cases in
which the ratio of the mean motion is commensurable, we have the right to
state that the stability which we have defined has been proven, although
we are forced to exclude the unusual molecules which we have just dis-
cussed.

I would like to add that the existence of asymptotic solutions pro- [155

vides sufficient proof for the fact that these unusual molecules exist
in reality.

Extension of the Preceding Results

297. Up to the present time, we have limited ourselves to a very
special case —- that in which an incompressible liquid is enclosed in a
vessel, i.e.; —- to employ analytical language -- the case of the
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following equations

- zQ_f _dsz

dz
e = = =

X 7Y Z

where X, Y, Z are three functions which are interrelated by the following
relationship

dAX dYax
dz 7[_}7 R P

and such that on every point of a closed surface (that of the vessel) we
have

{X4+mY 4+ nZ =o,

where 1, m, n are the direction cosines of the normal to this closed
surface.

However, all of the preceding results are still valid even in the
more extended cases without changing a thing, including the line of
reasoning leading to these results.

Let the n variables xj, X2s +++s Xp, satisfy the differential equa-
tions '

dry dry dr,

Pt o= —X—‘— = i‘{: =, ..= —‘\.-:, (l)

where X;, X,, ..., X, aren arbitrary, uniform functions satisfying
the condition

aMX, dMX, dMX, _
722—-k a7, A dzn =0,

in such a way that equations (1) include the integral invariant
/de‘dz,...dz,.. (2)

In addition, I shall assume that M is positive. We may then state that
equations (1) have a positive integral invariant. /156

I shall assume that equations (1) are such that, if the point
(X1, X2, vuu, x,) 1is located within a certain region V at the initial
instant of time (which plays the same role that the vessel played just
recently where the liquid is enclosed), it will remain indefinitely within
this region,

Finally, I shall assume that the integral
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extended over this region is finite.

Under these conditions, if we consider a region Uy contained in V,
we may select the initial position of the point (Xl’ Koy oevs Xn) in an
infinite number of ways, so that this point crosses this region Uy an
infinite number of times. If the choice of the initial position is made
at random within Up, the probability that the point (Xl’ Kyy oens xn) will

not cross the region Uy an infinite number of times will be infinitely small.

In other words, if the initial conditions are not unusual -- with
respect to the meaning I attributed to this word above -- the point
(X,, X,5 +0e+, X_) will return as close as desired to its initial position
an infinite number of times.

Nothing needs be changed in the preceding proof. For example, we
may obtain the following inequality again.

V < (n--1)Us,

where V and U, designate the integral (2) extended over the regions V
and Uy, respectively.

The same results may be deduced from this. Due to the fact that the
integral (2) is basically positive by hypothesis, it will have the same
properties as the volume, namely, when extended over the entire region
it will be larger than when extended over only a part of this region.

298. How may we now determine whether there is a region V such that
the point (Xl’ Kyy vees xn) always remains within this region if it occurs

at the initial instant of time?
Let us assume that equations (1) have an integral [157
F iy, Ty +v0y o) == cONSL
Let us consider the region V defined by the inequalities
h< T <,
where h and h' are two arbitrary constants which may be as close as de-

sired.

It is apparent that if these inequalities are satisfied at the
initial instant of time, they will be always satisfied. The region V
therefore closely satisfies the proposed conditioms.
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Application to the Restricted Problem

299. We shall apply these principles to the restricted problem
given in No. 9. —-- a zero mass, the circular motion of two other masses,
and zero inclination. If we refer the zero mass, whose motion we are
studying, to two moving axes turning around the common center of gravity
of the other two masses, with a constant angular velocity n equalling
that of the two other masses, if we employ £, n to designate the co-
ordinates of the zero mass with respect to the two moving axes, and if
we employ V to designate the force potential, we may write the equations
of motion as follows

Ph dr,
7[ = Elr Ft‘ = 7)'1
dz_ 2nn + ntl+ v
dt stz (L
dr,’

__.=—-gng'+n‘1~,‘+d_.v .
dt dy,

i

It may be immediately seen that they have a positive integral invariant

‘/‘(12 dr, df' dx/. 2)

On the other hand, they have the Jacobi integral

S GERD 3
where h is a constant.
Since £'? + n'? is necessarily positive, we must have /158
V- ’;(E“A!-“ﬁ’)>—/l- (4)

We are therefore led to compile the following curves

nt
Ve o= (8- n%) = const.

The first term in relationship (4) is necessarily positive, because

we have
ny T

V —=
T Ty

where m, and m, are the masses of the two principal bodies, and r, and 1,

are their distances to the zero mass, The first term of (4) becomes in-

finite for r, = 0, for r, = 0, as well as at infinity. It must therefore
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have at least a minimum, and two points where its two first derivatives
vanish without there being a maximum or a minimum.

More generally, if there are n relative minima or maxima, there
will be n + 1 points where the two derivatives vanish without there being
a maximum or a minimum.

However, it is apparent that these points, where the two derivatives
vanish, correspond to the special solutions of the three-body problem
which Laplace studied in Chapter VI of Book X of his Mecanique Celeste
(Celestial Mechanics).

Two of these points may be obtained by constructing an equilateral
triangle on mym;, either above or below the line mim, which we shall use
for the axis of the £'s. The third apex of this triangle represents one
of the solutions in question.

All the other points satisfying the condition are located on the axis
of the £'s. It may be readily seen that the first term of (4) has three
minima, and only three minima, when £ varies between —® and +«. The
first minimum is located between infinity and the mass mj, the second is
located between the two masses m; and mp, and the third is located between
infinity and the mass m5.

The derivative %%'+ n?f only vanishes (for n = 0) once in each of

these intervals, since it is the sum of three terms which all increase.

The equations /159

dV
oz

n!l——(_i‘_].;.n! =0
R n=

indicating that the first derivatives of the first term of (4) are zero,
have only five solutions, namely, the points B; and B, which are the
apexes of the equilateral triangles, and the points Aj, A, and A3 located
on the axis of the £'s. We shall assume that these points occur in the
following order

-2, Ay, nmy, Ay, g, A oo

We must now determine which of these points correspond to a minimum,
and we know in advance that there are two.

We should point out that if we vary the two masses m; and m; continu-
ously, any of the five points A and B will always correspond to a minimum,
or will never correspond to one. One may only proceed from one case to
another if the Hessian of the first term of (4) vanishes, i.e., if two of
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_the points A and B coincide, which will never occur.

It is sufficient to examine a special case -- for example, that

in which m; = my. In this case, the symmetry is sufficient for indi-
 cating to us that the two solutions Aj; and A3 must have the same nature,
just like the two solutions B} and B,. It is therefore A; and A3 alone,
or By and B, alone, which correspond to a minimum. Therefore, A, does
not correspond to a minimum,

It can be seen that A, does not correspond to a minimum.
The two minima correspond therefore to B; and Bj.

Let us now assume that m; is a great deal smaller than mp, which is
the case in nature,

For sufficiently large values of -h, the curve
2
Vo T (§reb )=

will be composed of three closed branches C; encircling m;, C; encircling
my, and C3 encircling C; and Cp. For smaller values, it will be composed
of two closed branches, C; encircling m; and mp, and C; encircling C;.

For values which are still smaller, we shall have only one closed
branch leaving m; and my on the outside, and encircling B; and Bj.

Finally, for even still smaller values, we shall have two closed /160
symmetrical curves, each of which encircles B; and By, respectively.

The statements below will only apply to the two first cases; we
shall therefore put the last two cases aside.

In the first case, the group of points satisfying the inequality (4)
may be divided into three partial groups: The group of points which are
inside of C;, the group of points which are inside of C;, and the group
of points which are outside of Cg3.

In the second case, the group of points satisfying (4) may be
divided into two partial groups: The group of points which are inside
of C;, and the group of points which are outside of Cj.

The statements below do not apply either in the first case to the
group of points which are outside of C3, nor in the second case to the
group of points which are outside of C;.

On the contrary, in the first case this applies to the group of
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points which are inside of C; or to the group of points which are in-
side of C, and, in the second case, to the group of points which are
inside of C;.

In order to formulate these ideas more clearly, let us consider
the first case and the group of points which are inside of Cj.

As the region V we shall take the region defined by the inequalities

E'?. -+ —,-"1

2
—!—h+a>———2 —V———%(E’-i—n’)>+h—e.

(5)

We shall assume that ¢ is small and that h has a value which we
have employed in the first case. Finally, in order to conclude the
definition of the region V, we shall impose the condition that the point
(£, n) is located within the curve C,.

It is then clear that, if the point (&, n, &', n') is located in the
region V at the initial instant of time, it will always remain there.

In order to illustrate the fact that the results presented in the

preceding paragraphs may be applied to the case which we are discussing,
we must now show that the integral

‘/dzdn &' dyf (2)

extended over the region V is finite.

How may this integral become infinite? Due to the fact that the /161
curve Cy 1is closed, £ and n are limited. The integral can therefore
only become infinite if & and n' are infinite. However, because of
the inequalities (5), & and n may only become infinite if

ni
H 2 3.
‘' o (524 n?)
becomes infinite, or —- since £ and n are limited -- if V becomes infinite.

However, V becomes infinite for r; = 0 and for r; = 0. Since the
point m; is outside of C,, we need only examine the case of

=0,

Let us therefore evaluate the portion of the integral which is in
the vicinity of the point my. If r, is very small, £2 + n? is equal to

m
(0 m2)2, and. the term ;% is also constant, so that if we set
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n? m
he B ™ g

H will be regarded as a constant.

If we then set

¥

(8 —0my)=rycosw, 71 =r,sinw; §'=pcosyp, n =psing,
inequalities (5) will become
and the integral (2) will become
fpr, dp dr, dw ds. (2%)

We shall add the inequality

re<l 2

to the inequalities (5'), where a is
of the integral which is close to mjp
the other part is definitely finite.

If we integrate with respect to
come

4w

Let us integrate first with respect to p.

integral

1
fp(lp:%;

which is chosen between the limits

which provides us with €.

pridydry.

and p:\/z(ﬂ—&—e—}-
2

very small, since 1t 1is the part
which must be evaluated, and since

w and ¢, the integral (2') will be-

(2")

/162

We must calculate the

m,
- H
7

The integral (2") may therefore be reduced to
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a
4 7:'-'sf rodry = 2w%eal,
[

It is therefore finite.

The theorems which were proven above may be applied to the case
which we are discussing. The zero mass will repass its initial position
as close as may be desired an infinite number of times, if one does not
impose certain unusual, initial conditions for which the probability
is infinitely small.

In the restricted problem, if we assume that the initial conditions
are such that the point £, n must remain within a closed curve C; or
C,, the first of the stability conditions, which were defined in No, 290,
is fulfilled.

However, the third condition is also fulfilled; therefore, Poisson
stability exists.

300. The result will clearly be the same whatever the law of
attraction may be.

If the motion of a material point £, n is governed by the equa-
tions

it _dV  din_aV

WEE dn T dy

or, in the case of relative motion, by the equationms

dt dy _dV
dn T M@ = G
dty at  dv
E"+2n—g§ = d_'q,
in such a way that the energy integral may be written /163

1 dt t fdn\?
;[(zn) “‘"(712) ]“V-‘:"

and if the function V and the constant h are such that the values of £
and of n remain limited, we shall have Poisson stability.

However, this is not all. The same holds true in the more extended
case.

Let x;, X2, ..., X, be the coordinates of %'material points.,
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Let V be the force potential depending on these n variables.
Let m;, mp, ..., m, be the corresponding masses, in such a way that
_ we may employ mj, mp or m3 at random to designate the mass of the material

point whose coordinates are xj;, X; and X3.

The equations may be written

L dV
g T dxy

and the energy integral may be written

m; dx, ’__
(%) v
In virtue of this equation, if the function V and the constant h

are such that the coordinates x; are limited, there will be Poisson
stability.

What must be demonstrated is the fact that the integral invariant

fa'x; de'y...dz, dz, dzy. .. dr, (x;: ."‘%‘)

is finite when the integration is extended over the region I have called
V, which is defined by the inequalities

dr:\?2
Varh— < (T <V b b, ¢H)

Let us call A the integral

fdz; dz,...dz,,

extended over the region defined by the inequality

my
2T

The same integral extended over the region /164
Py g
PN

will obviously be
ARn,
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When extended over the region defined by the inequalities (1), it will
be

-]

A[(V Gy (Ve — 5)5],
or, since ¢ is very small,
2
nAe(V 3 h)E .

Our integral invariant therefore equals

nz\af(V—i\— R 'dr,dry. .. de,, (2)

and the integration must be extended over every point, such that V + h
is positive.

According to my hypothesis, the region V + h > 0 is limited.

It may then be readily verified whether the integral (2) is finite
or infinite.

It will always be finite if n = 2, because the exponent of V + h is
then zero.

Let us now assume that n is > 2, and that V + h becomes infinitely
large of the order p when the distance between the two points X1, X, X3

and x,, X5, Xg becomes infinitely small of the first order.

Then the quantity under the sign f in the integral (2) is of the
order

The subset

1‘,:1‘5, z‘,:z;s, Ty = Tg

has n - 3 dimensions. The integral is of the order n; the condition under
which the integral is finite may therefore be written

n——(n.»—-3)>p<'—21 —r),

from which it follows that /165
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This is the condition under which there is Poisson stability.

Application to the Three-Body Problem

301. The preceding considerations apply to the case in which the
following equation

Ty (J_r,:)z YV oah (1)
Lo\ e

results in the fact that the x;'s can only vary between finite limits.

Unfortunately, this is not the case in the three-body problem. I
shall employ the notation presented in No. 11. I shall use xj, X3, X3

to designate the coordinates of the second body with respect to the first,

X4, X5, Xg to designate the coordinates of the third body with respect
the center of gravity of the first two, a, b, ¢ to designate the dis-

tances of the three bodies, and M;, My, M3 to designate their masses.

Finally, I shall employ

my = niy —= my— 3,

iy, = my s mg =z 3

P

to designate the quantities which I have called g and 8' in No. 1l.

We shall then have

_ MMy MiMy | MM,
a b c

\'4

Equation (1) entails the inequality

V.i-h>o. (2)

to

The function V is essentially positive. Therefore, if the constant

h is positive, the inequality will always be satisfied. However, the
question is whether we may assign small enough negative values to h so
that the inequality can only be satisfied for limited values of the
coordinates x,. This amounts to inquiring whether the inequality

M, M, M- M, MM,

My LM MMy s, (3)
a b c

with those which are imposed at the three sides of a triangle
a-+b>c, bic>a, a+c>b (4)

can only be satisfied for finite values of a, b, ¢. Let us set a = ¢,
and assume that it is very large; we shall assume that b is very small.

/166
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The inequalities (4) will be satisfied by them.

With respect to inequality (3) which becomes

Medy - AL My

[24

ALY
,]JI[ -i- N > o,

no matter what h may be, it may be satisfied by arbitrarily large values
of a.

No matter how small h may be, or how large a may be, we may always
assume that b is small enough that the first term may be positive.

The existence of area integrals does not modify this conclusion.
These integrals may be written

B(zxy — z32Y) + B 257, — 24 2) = ay,
Blrszy — x,2y) -+ B (7 2y, — 2, 2 ) == ay, (5)

Blryzy— 07 )+ BY 7 2y — 25 2))) = as.
In virtue of these equations, we have
BV

g(x',!+x',’+x',’)+ Py (rF+ 2+ 22)>

al--a}+ al (6)

Ty T

21

where I is the moment of inertia of a system which is formed of

two material points whose masses are B and B' and the coordinates

with respect to three fixed axes are x;, X, X3; Xy, X5, Xg.

I repeat, that I is the moment of inertia which this system would have
with respect to the line serving as the instantaneous axis of rotation
for a solid, which would coincide momentarily with this system and
would rotate in such a way that the area constants are the same as

for the system.

Inequality (2) must then be replaced by the following
/167

a}—+—;z§_+a}. (21)

Vah>

However, this equality, just like inequality (2) itself, may be satisfied
by arbitrarily large values of the xi's, because -- for very large values
of the x;'s -- the moment of inertia I is very large, and, due to the fact
that the second term is very close to zero, we return to inequality (2).

We must therefore conclude that the considerations given in the
preceding section are not applicable.

In order to provide a better determination of this, let us calcu-
late the integral invariant
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f de, dz ... dz, dzydxy . . . dz,

extending it over a region defined by the following inequalities

h—e <T—Vh +eg,
a—u< Ky<a,+¢y, (7)
ay—ey < Ky < ay + €,
a; —z3< Ky < ay+e;.

The e's are very small quantities. The Ki's are the first terms
of equalities (5), and T is the reduced energy -— i.e., the first term
of (6).

Let us first integrate over the x}'s, and we obtain

3

LI LI / (v +h— 1»’:;33;131)’ dridry...dze
(B8)t 2 VI

where I;, I, and I3 represent the three principal moments of inertia
for this system.

In passing, I would like to note that, if the axes of the coordinates
are chosen parallel to the principal axes of inertia, according to the
definition of I, we shall have

a! al a} a}+ajl-+a}

DL T S S e
[ P i

It may be seen that the integral, which is extended over every
system of values such that
__aj+ai-i-aj
2l

Y+ R

>0

is infinite, although the denominator V1,1,13 becomes infinite when one

of the points X3, X2, X3 Or Xy, X5, Xg recedes indefinitely. The inte- /168
gration field is then triply infinite, and the denominator only becomes
doubly infinite.

302. Even if the considerations presented in the preceding sections
are no longer applicable, we may nevertheless draw certain interesting
conclusions from the existence of the integral invariant.

Let us assume that the distance b of two of the bodies becomes small,
and that the third body recedes indefinitely. Due to its great distance,
the third body will no longer disturb the motion of the first two, which
will become essentially elliptic.
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This third body will essentially describe a hyperbola around the
center of gravity of the first two.

In order to elucidate this point, T shall present a simple example.
I shall assume that we have a body describing a hyperbola around a
fixed point. The hyperbola is composed of two branches. One of these
branches is the analytical extension of the other, although the tra-
jectory is only composed of one single branch for the engineer.

We may then inquire whether the trajectory has an analyti-
cal extension in the case of the three-body problem, and how it may be
defined.

The coordinates of the second body with respect to the first are
X1, X3, X3; the coordinates of the third body with respect to the center
of gravity of the first two are xy, X5, Xg, S0 that we must envisage the
motion of two imaginary points whose coordinates, with respect to three
fixed axes, are x1, X, x3 for the first and x,, x5, Xg for the second.

The first of these points will essentially describe an ellipse, the
second essentially a hyperbola, and it will continue receding indefin-
itely on one of the brances of this hyperbola. In order to obtain the
desired analytical extension, let us construct the second branch of this
hyperbola, and let us relate it to the ellipse described by the first
point.

Let us then consider two special trajectories of our system. For the
first, the initial conditions of motion will be such that, if t is positive
and very large, the point x,, X5, Xg will be very close to the first branch
of the hyperbola and the point x;, x5, x3 will be very close to the /169

ellipse, in such a way that the distances of these two points -- either
to the hyperbola or to the ellipse -~ tend to zero when p increases
indefinitely.

Let us take the asymptote of the hyperbola as the axis of the x,'s,
and let V be the velocity of the point which describes this hyperbola,
for a value of t which is positive and very large. Then

ry -Vt
will tend toward a finite and determinate limit X when t increases in-

definitely,

In the same way, let n be the mean motion on the ellipse and £ be
the mean anomaly, and the difference

I —nt
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will tend toward a finite and determinate limit Z2p.

If we specify the ellipse and the hyperbola and, consequently,V and
n, and in addition if we specify X and &g, the initial conditions of motion
corresponding to the first trajectory will be completely determined.

Let us now consider the second trajectory, and let us assume that
the initial conditions of motion are such that, for t which is negative
and very large, the point x,, X5, Xg is very close to the second branch
of the hyperbola, and the point xj, X3, X3 1s very close to the ellipse,
and that these two points come together indefinitely from these two
curves when t tends toward —=.

The differences

a, — \r,’ {—nt

tend toward the finite and determinate limits X' and 2{ when t tends
toward infinity.

The initial conditions corresponding to the second trajectory are
completely defined when we specify the ellipse, the hyperbola, and X'and
9,‘0.

If we have

X“"va [OA:lst

the two trajectories may be regarded as the analytical extension of each
other,

Let us now consider a system of differential equations [170

d’r":X (£=:1,2, Lo, n), (1)

“de

where the functions Xj, which depend solely on Xj, X2, .+«, ZXp, satisfy
the relationship

-~ dX;

Z dzs 0

These equations will have the integral invariant
fcl;v( dry...dr,. (2)

Let us assume that we know arbitrarily that the point x;, X2, ..., Xp
must remain within a certain region V, which is similar to the region V
which was considered in the preceding sectioms, but extending indefinitely
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so that the integral (2) extended over this region is infinite. The
conclusions of Nos. 297 and 298 will no longer be applicable.

However, let us replace equations (1) by the following

dri  Xi e 1")

where M is a given arbitrary function of X]1s X2, s+, X5. The point
X1, X2, «.., X,, whose motion is defined by equations (1'), will describe

the same trajectories as that whose motion is defined by equations (1).
The differential equations of these trajectories are in both cases

(’1‘] dl"

oLy | _dTn
X, X, —N-XT.

However, if I employ P to designate the point whose motion is de-
fined by equations (1) and P' to designate that whose motion is defined
by equations (1'), we may see that these two points describe the same
trajectory, but obey different laws.

If T employ t to designate the time when P passes by a point of its
trajectory, and t' to designate the time when P' passes by this same point,
these two times will be related in the following way

de '
de T M

We have /171
dMX))
ES'TZH_'“o’

which indicates that the equations

dr; . (")
—_—— I 4\ ;
dt ¢

have the integral invariant
faidz,dz,...dzn. 2"

Let us assume that the function M is always positive, and that it
tends toward zero when the point X1s X2, «e., Xp recedes indefinitely,

and recedes rapidly enough that the integral (2') extended over the region
V is finite.

The conclusions presented in Nos. 297 on may be applied to equationms
(1'). Taese equations (1') therefore have Poisson stability. Since they
define the same trajectories as equations (1), it may be stated in a
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certain sense that the trajectories of the point P also have Poisson
stability.

I shall clarify this point.

We have

‘it’d,l (3)

[:‘/0 ﬁ—-
Since M is essentially positive, t increases with t'. However, since M
may vanish, it may happen that the integral of the second term of (3)
is infinite.

For example, let us assume that M vanishes for t'= T; then t will
be infinite for

¢ -1 or for ¢>T.

Let us consider the trajectory of the point P', We may divide it
into two parts, the first which P' traverses from the time t'= 0 to the
time t'= T; the second C' which P' traverses from the time t'= T to
t' = =,

The point P will describe the same trajectory as P', but it will only
describe the part C, because it can only reach the part C' after an in-
finite time t.

For the engineer, the trajectory of P would only be composed of C.
For the analyst, it would be composed not only of C, but also of C', /172
which is the analytical continuation.

Let us imagine a point P; whose position is defined as follows: The
point P; will occupy at the time t] the same position that the point P'
occupies at the time t'. With respect to t;, it will be defined by the
equality

e
t = 2% (where ¢,>T).
- :
The motion of the point P; will conform to equations (1), and this
point P; will describe C', in such a way that the trajectories of the
points P and P; may be regarded as the analytical continuation of each

other.
Let us now assume that the point P is within a certain region Uy at

the initial instant of time. If the initial conditions of motion are not
unusual, in the sense attributed to this word in No. 296, the trajectory
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of the point P and its successive analytical continuations will cut
across the region U0 an infinite number of times, no matter how small
it may be. However, it may happen that the point P never re-enters
this region, because this region is not traversed by the trajectory,
strictly speaking, of the point P, but by its analytical continuations.

303. This may be applied to the three-body problem.
We saw above that we must consider the integral
f de, ... dredz) ... dzy,
which we have reduced to the sixfold integral

3
7

f(y+]l_ ”74‘(1;‘*”“;) dl‘xd-r-,...dz'"
2! VLI

However, we have seen that this integral, extended over the region V,
is infinite, and this has prevented us from arriving at Poisson stability.

Let us write the equations of motion in the form /173

dr; e

=YX; S,
dt o dt b

where the Xi's and the Yi's are functions of the xi's and the x'i’s.

Then let us set

T

M=
(zl+zit+al+.. .+ 2! 1)1

and let us write the new equations

g.l.‘!' . 3_, (/.I‘; Y,'
di T a’ de T M

The new equations will all have the following as the integral invariant

f Mdr, ... degde, ... de

or

.1
S (s ) dndn Ay
YT, T

However, this integral is finite.

Therefore, if the initial situation of the system is such that the
point P in space has 12 dimensions whose coordinates are

174
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Ty, Ty ee.y e, Xy, Ty, ..., T,

and if this point P is within a certain region Uy at the initial in-
stant of time, the trajectory of this point and its analytical continua-
tions —-- such as we have defined at the end of No., 302 —- will cut
across this region U, an infinite number of times unless tbe initial
situation of the system is not unusual, in the meaning attributed to
this word in No. 296.

304, It may first appear that this result is only of interest for
the analyst, and has no physical significance. However, this point of
view is not entirely justified.

It may be concluded that, if the system does not repass arbitrarily
close to its initial position an infinite number of times, the integral/174

(= de
o (Ti+zi-xia)?

will be finite.

This proposition is valid, if we overlook certain unusual trajec-
tories whose probability is zero, in the meaning attributed to this
word in No. 296.

If this integral is finite, it may be concluded that the time during

which the perimeter of the triangle formed by the three bodies remains
less than a given quantity is always finite.
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CHAPTER XXVII

THEORY OF CONSEQUENTS

305. We may obtain other conclusions from the theory of inte- /175
gral invariants which will be of use to us below, although they will
be presented in a somewhat different form.

Let us commence by investigating a simple example. Let us assume
a point whose coordinates in space are x, y and z and whose motion is
defined by the equations

de_ oy oy 45 g e

de 7 7 dt

where X, Y and Z are the given, uniform functions of x, y, z. Let us
assume that X and Y vanish all along the z axis, in such a way that

IZ',“:)/ -z Q
is a solution of equations (1).

Let us then set
z=pcosw, ¥y =psinw,
and equations (1) will become

ds do da _ 9
S=m F=0 =1L (2)

where R, 2 and Z are the functions of p, w and z which are periodic
having the period 27 with respect to w.

It is advantageous for us to assign only positive values to p, and
we may do this with no difficulty since x = y = 0 is a solution.

I shall now assume in addition that @ can never vanish and, for
example, always remains positive. Then w will always increase with t.

Let us assume that equations (2) have been integrated, and that we
have the solution in the following form /176

[ :M‘fl(m: a, b)) ~ :‘f_.(h), a, b)'

The letters a and b represent integration constants.

Let us  set
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po = filo, a,b), 397 frlo, a, b),
o1 = fi(2=, a, b), 3y =2 falow, a, b).

Let My be the point whose coordinates are
T == po, Y om0, &7 Tg,
and M; be the point whose coordinates are
o= py, ¥y o0, 3 =2 3y,

These two points both belong to the half-plane of the xz's located
on the side of the positive x's.

The point M; will be the consequent of M.

I1f we consider the bundle of curves which satisfy the differential
equations (1), if we pass a curve through the point Mj, and if we extend
it until it encounters the half-plane (y = 0, x > 0) again, the preceding
definition is justified by the fact that this new encounter will occur at
M;.

If an arbitrary figure Fy is drawn in this half-plane, the conse-
quents of the different points of Fg will form a figure F; which will be
called the consequent of Fyj.

It is evident that p; and z; are continuous functions of pp and
20«

Therefore, the comsequent of a continuous curve will be a continuous
curve, the consequent of a closed curve will be a closed curve, and the
consequent of an area which is connected n times will be an area which
is connected n times.

Let us now assume that the three functions X, Y and Z are related as
follows

dMX  dAMY  dMZ
dz dy Tz T

where M is a positive, uniform function of x, y, z.

Equations (1) then have the integral invariant

/M_d.r dy dz
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and equations (2) have the following invariant

177
f.",Ip dap dw ds,
Let us now consider the equations
.{,]‘3. . R ds __ L dw _ (3)
do — Q' dw Q7 do b
where w is regarded as the independent variable.
They obviously have the integral invariant
(4)

f.\l Do dpdods
(see No. 253).

Since it was assumed above that M, Q2 and p are essentially positive,
it is a positive integral invariant.

Let Fy be an arbitrary area located in the half-plane

(y =0, x>0),

and let F} be its consequent.

Let Jp be the integral

b/)[ﬂpdpd:, (5)

extended over the planar area Fy, and let J; be the same integral ex-
tended over the planar area Fj.

Then let ¢ be the volume produced by the area Fy when it is ro-
tated around the z axis by an infinitely small angle €, and the in-
tegral (4) extended over @0 will be Joe.

In the same way, let ®¢; be the volume produced by the area F; when
it is turned around the z axis by an angle ¢, and the integral (4) ex-
tended over ®l will be Jle.

The integral invariant (4) must have the same value for ¢$;as for
¢, and we must have

Jo:: J‘_

Thus, the integral (5) has the same value for an arbitrary area and
its consequent.
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This is a new form of the basic property of integral invariants.

306. Let us then assume a closed curve Cq located in the [178
half-plane (y = 0, x > 0) and encompassing an area Fg. Let C; be
the consequent of Cy. This will also be a closed curve which will en-
compass an area F;, and this area F; will be the consequent of Fy.

If the integral (5), extended over Fy and over F;, has the value
Jp and J3, we shall have
Jof: Jh

from which it follows that Fp cannot be a part of F,;, and F1 cannot
be a part of FO'

Four hypotheses may be formulated regarding the relative position
of the two closed curves Cy and C;.

1. €y is within Cp;

2. Cq is within Cj;

3. The two curves are outside of each other;

4, The two curves intersect.

The equation Jy = J; excludes the two first hypotheses.

If the third is also excluded, for whatever reason, the two curves
will definitely intersect.

For example, let us assume that X, Y, Z depend on an arbitrary
parameter u and that for u = 0, Cy is its own consequent. For very small
values of u, Cg will differ very little from C;. Therefore, it could
not happen that the two curves Cp and C; are outside of each other, and
they must intersect.

Invariant Curves

307. Any curve which will be its own consequent will be called an
invariant curve.

Invariant curves may be readily formed. Let Mg be an arbitrary
point of the half-plane, and let M; be its consequent. Let us connect
Mg to M; by an arc of an arbitrary curve Cy. Let C; be the consequent
of Cg, C; be the consequent of C;, and so on. The entire group of arcs
of the curve Cy, C;, Cp, ... will obviously constitute an invariant
curve.
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But we may also consider invariant curves whose formation will be
more natural.

Let us assume that equations (1) have a periodic solution. Let /179

.’17"-—""3;([), .72(?2({)) 3:93([) (6)

be the equations of this periodic solution, in such a way that the func-
tions ¢{ are periodic in t, having the pericd T.

I shall assume that when t increases by T, w increases by 2m.

Equations (6) represent a curve. Let My be the point where this
curve intersects the half-plane; this point My will obviously be its own
consequent.

Let us now assume that there are asymptotic solutions which are very
close to the periodic solution (6). Let

z=%(¢), y=o,0¢), F=9,(¢) (7)
be the equations of these solutions.

The functions ¢; may be developed in powers of Ae®%t, and the co-
efficilents are themselves periodic functions of t. In this expression,
o is a characteristic exponent, and A is an integration constant.

In equations (7), the three coordinates x, y, z are therefore ex-
pressed as a function of two parameters, A and t. These equations there-
fore represent a surface which may be called the asymptotic surface.

This asymptotic surface will pass through the curve (6), since equations
(7) may be reduced to equations (6) when we set A = O,

The asymptotic surface will intersect the half-plane along a
certain curve which passes through the point My and which is obviously
an invariant curve.

308. Llet us consider an invariant curve K. I shall assume that X,
Y, Z depend on the parameter u, as well as the curve K.

I shall assume that for p = 0, the curve K is closed, but that it
ceases to be closed for small values of u.

Let Ag be a point of K. The position of this point will depend on
U. For u = 0, the curve K is closed, so that, after having traversed
this curve starting with Ay, one returns to the point Ag. If u is very
small, this will no longer be the case, but one will pass very close to
Ap. Therefore, on the curve K there will be a curve arc which is
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. different from that where A, is located, but which will pass very close
to Ag. Let By be the point of this curve arc which is closest to Ag. 180

I shall join AgBg.

Let A} and B be the consequents of Ay and Byp. These two points
will be located on K. Let A;B; be the consequent curve of the small
line AgByp.

We must consider the closed curve Cy which is composed of the arc
AgMBy of curve K, included between Ay and By, and of the small line
AgBg. What will its consequent be?

In order to define our ideas more precisely, let us assume that
the four points A;, Ag, By, By follow each other on K in the order
Aj1ApBBg.

The consequent C; of Cy will be composed of the arc A|MB; of the
curve K and of the small arc A;B;, the consequent of the small line AgBg.

Several hypotheses may then be formulated:

1. The small curvilinear quadrilateral AgBpA;B is convex, that is,

none of these curvilinear sides have a double point, and the only points
which the two sides have in common are the apexes. In this hypothesis,
the form of the curve would be that indicated in one of the following
figures

Figure 1 Figure 2

This hypothesis must be rejected, because it is apparent that the
integral J is 1larger in the case of Figure 1 for C; than for Cg, and
smaller in the case of Figure 2.
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2., The arc ApA; or BgB; has a double point. If this were the

case for the invariant curve K, there would have to be a double point on

the arc joining an arbitrary point on the curve to its first comnsequent; [18
we shall assume that this is not the case. Actually, this condition

would not occur in any of the applications which I have in mind. It does
not apply, in particular, in the case of the invariant curve produced by

an asymptotic surface, as I explained at the end of the preceding section.
It may be readily stated that the asymptotic surface does not have a

double line if we limit ourselves to the portion of this surface corres-
ponding to small values of the quantities which I have designated as

Ae®t above.

On the other hand, the line AoBo does not have a double point,
and the same must be true for its consequent A;B;. To sum up, we shall
assume that the four sides of our quadrilateral do not have a double
point.

3. The arc ApA; intersects the arc ByB;. (As a special case, this

case includes that in which the curve K would be closed.) Our curves
will then have the form shown in Figure 3.

Figure 3

4. The arc AgBy intersects its consequent A;B;. Our curves will
then have the form shown in Figure 4.

There are cases in which this hypothesis must be rejected. For
example, let us assume that X, Y, Z depend on one parameter u, and that
for u = 0 the curve K is closed and that each of its points is its own
consequent, so that for y = 0 the four apexes of the quadrilateral
coincide.

Then the four distances ApBp, A;B;, AjAp, B1Bg will be infinitely
small quantities if | is the main infinitely small quantity. Let us /182
assume that AjAp is an infinitely small quantity of the order p,

ApBp an infinitely small quantity of the order q, and that q is
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Figure 4

larger than p.

Since A)B; is the consequent of AyBj, the length of the arc A;B;
must be of the order q. Then let C be one of the intersection points
of AgBp. In the mixtilinear triangle whose two sides are the lines
AjAgp and ApC, and whose third side is the arc of the curve A;C which is
part of A)B;, the side A;C is larger than the difference between the two
others. It should therefore be of the order p, and we have seen that it

must be of the order q.

The hypothesis must therefore be rejected.

5. Two adjacent sides of the quadrilateral intersect, for example,
A1Ag and A)B;. It is then necessary that AyB,, which is the antecedent
149 121 Yy 020

of A1B;, intersect K itself. If A} is the intersection of AgBy with K,
and A] is the intersection of A;B with the arc AgA;, A] will be the con-
sequent of A}, and we shall obtain the following figure.

\a
)

Ay
B, B,
— i

Figure 5

It is apparent that A} and A} may play the same role as Ay and A,
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and that we therefore return to the first case.
This new hypothesis must therefore be rejected. /183

To sum up, the two arcs AgA; and BgB; will intersect every time that
hypotheses 2 and 4 must be rejected, for one reason or another.

We must now examine the case in which the points Aj, Agp, B, Bg
follow one another in a different order on K. The orders B;BpAjAg,
BoB1ApA1, AgA;BgB; do not differ essentially from that which we have
just studied.

Orders such as AjB1BgAg, A;BgB1Ap, AjBpAgBy, ... will not appear
in the applications which follow. We shall always assume that, if u is
very small, the distances AgA; and BgB; are very small with respect to
the length of the arcs AgMBy or AMB;.

The order Aj;A;ByB;, or the equivalent orders, remain, and we shall
no longer discuss them. It is apparent that if they appear, on the arc
AgMBy there will be a point which will be its own consequent.

309. TFor example, let us assume that equations (1) have a periodic
solution

x = 9(¢), Y = wa(t), z =cy(1) (6)

and asymptotic solutions
T=0,(L), x=0(8), 3=d,(t). (7

Let us assume that equations (1) depend on a very small parameter
u, and that X, Y, Z may be developed in powers of this parameter.

For p = 0, let us assume that the asymptotic solutions (7) may
be reduced to periodic solutions. This may be done as follows. We
have stated that the @;'s may be developed in powers of Ae®t | with the
coefficients themselves being periodic functions of p. However, the
exponent o depends on u; let us assume that it vanishes for u = 0.
Then for y = 0 the functions ¢; will become periodic functions of t,
and the solutions (7) may be reduced to periodic solutions.

The asymptotic surface intersects the half-plane along a certain
curve Cp which passes through the point Mg, which is the intersection of
the half-plane with the left curve (6). /184

The curve Cy is obviously invariant, as I stated at the end of
No. 307. TFor u = 0, each of the points of Cp is its own consequent.
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In addition, I shall assume that the curve Cp is closed for
u = 0,

. Let us refer back to Chapter VII, Volume I. We saw from Nos. 107
on that, in the case of dynamics, the characteristic exponents may be
developed in powers of YU, and are equal pairwise and have the opposite

sign. We shall assume that this is the case.

In reality, we then have two asymptotic surfaces corresponding to
the two equal exponents having opposite sign a and -o. We therefore
have two curves Cy which will intersect at the point Mj.

We may distinguish between four branches of the curve

c’

o Go Gy, G
all four of which end at the point Mp; C) and Cj will correspond to

the exponent a, Ci and CT to the exponent -a.

These different branches of the curve are shown in Figure 6. The
branch Cj is the branch MgPyP;ApA;, the branch CB is the branch MgEgE,,
the branch C} is the branch MyQ;Q¢ and the branch CT is the branch

These four branches of the curve are obviously invariant.

Now, for u = 0, Ch is identical to C}, C§ is identical to C}, and
(if we assume that the curve Cg is closed for u = Q, which we shall /185

call Cg,) these four branches of the curve will coincide on the closed
0
curve Cjp.

It may be deduced from this that, for very small u, these branches
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of the curve will differ very little from each other, that C'y will
deviate very little from C), Cj will deviate very little from C}, and
that,if C} is sufficiently extended, it will pass very close to C",
if it is sufficiently extended. 1

I have indicated on the figure different points of these branches
of the curve and their consequents. Thus, A;, B;, E;, P;, Q;, R} are,

respectively, the consequents of Ay, Bg, Eg, Pp, Qg Rg.

We would first like to note that the points A;, Ay, B, Bg do
follow each other (as we assumed at the beginning of No. 308) in the
order AjA;B1B; when the invariant curve formed of the two branches Cb
and C] is traversed from A, to Bg.

This invariant curve is not closed, but it differs very little from
the closed curve Cg.

In this connection, let us examine the five hypotheses of No. 308.
As we bhave seen, the first must be rejected. The second will no longer
occur.

It could only occur if the asymptotic surface (7) had a double
line,

We have stated that the ¢;'s may be developed in powers of Ae@t,
Therefore let us set

B bl - Aextd] 4o Ater D}

If our surface had a double line, this double line would have to
satisfy equations (1). Actually, the asymptotic surface is produced by

an infinite number of lines satisfying these equations in such a way
that, if two layers of this surface happen to intersect, the intersection

could only be one of these lines.

Since ¢; depends on the time t and the parameter A at the same time,
we may show this by writing

Dy~ b(f, A

If there were a double line, we would have to have the three
identities

Di(t, A)=P; (¢, B) (i=1,2,3),

where A and B are two constants and where t' is a function of t. These /186
three identities would have to exist no matter what t may be.
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Performing differentiation, we shall have

db; _ dw; dr

dt — dr dr’
However, in view of equations (1), we shall have

dby , ,
dt -:“\[‘bl([’ A), Pa(t, A), (¢, A)}

and in the same way

1P .
Cot = X[#.(, B), 2:(¢, B), (¢, B)],

from which it follows that

e, db,

de — de”’ &=
from which we have
U'=1t+ h,

where h is a constant.

We would thus obtain the following

PI(E) + AeMd! (1) + Aterud(2) = P (t+ h)+ Cextdf (£ + R)+....

where
C: Bei"'.

The identity must be valid for t = —», from which it follows

Aext = Cex=o,

and we have S
d? ()= P (t+ h),

from which we have h = 0 and

D)+ Aext D) (2)+...= P (1) + Cext P} (1) +..
or .
APH(E)+ Atext Dl () 4. .. = CP} () + Crext d}(2)+. ..
or, setting t = —=, we have
A=C=B.

that
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Due to the fact that the two values A and B are equal, there is mno
double line. [187

The third hypothesis may be adopted.

Let us pass on to the fourth hypothesis. In order to determine
whether it must be rejected, we must try to determine the order of
magnitude of the distances AjAg and AgBg. This is what we shall do in
the different applications which follow.

Finally, the fifth hypothesis is always reduced to the first one,

as we have seen.

Extension of the Preceding Results

310. We formulated very special hypotheses above concerning equa-
tions (1), but all of them are not equally necessary.

Let us consider a region D which is simply connected and which is
part of the half-plane (y = 0, x > 0). Let us assume that we know arbi-
trarily that, if the point (x, y, z) is located at a point My in this
region at the initial instant of time, w will constantly increase from O
to 2m when t increases from O to tg, in such a way that the curve satis-
fying equations (1) and passing through the point My -- assuming that it
is extended from this point My up to its new intersection with the half-
plane -- is never tangent to a plane passing through the z axis.

Just as in No. 305, we may then define the consequent of the point
Mg, and it is apparent that all the preceding statements will still be
applicable to the figures which are located within the region D.

It will not be necessary that the curves satisfying equatioms (1)
and intersecting the half-plane outside of D be subjected to the condi-
tion of never being tangent to a plane passing through the z axis. It
will no longer be necessary that x =y = 0 be a solution of equations

(1.

Then, if Cy is a closed curve inside of D and if C; is its conse-
quent, the two curves will be outside of each other or will intersect,

The results given in No. 308 will be equally applicable to the
invariant curves which do not leave the region D. If even one invariant
curve leaves the region D when it is sufficiently extended, the results
will still be applicable to the portion of this curve which is within /188
this region.

311. Let us now consider a curved surface S which is simply

188
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connected, instead of a plane region D. Let us pass a curve y satis-
fying equations (1) through a point My of this curved surface, and let
us extend this curve until it again intersects S. The new point of
intersection M; may still be called the consequent of M.

If we consider two points My and M which are very close to each
other their consequents will be, in general, very close to each other.
There would be an exception if the point M; were located at the boundary
of S, or if the curve y touched the surface at the point M; or at the
point My. Except for these exceptions, the coordinates of M; are analy-
tic functions of the coordinates of Mg,

In order to avoid these exceptions, I shall consider a region D
which is part of S and such that the curve y, proceeding from a point
Mp inside of D, intersects S at a point M; which is never located at
the boundary of S -- so that the curve y does not touch S either at My
or at M;. Finally, I shall assume that this region D is simply connected.

Let us adopt a special system of coordinates which I shall call
€, n and 7, for example, and for which I shall only assume the following:

1. When |&| and In| are smaller than 1, the rectangular coordinates
X, ¥y and z will be analytic and uniform functions of £, n and z, which
are periodic with the period 27 with respect to Z.

2. No more than one system of values of £, n,  can correspond to
a point (x, y, z) in space, such that

fl<1, fal<i, o<f<an, (2)

3. When we set 7 = 0, or £ = 21 and when we vary £ and n between
-1 and +1, the point x, y, z describes the surface S, or a portion of
this surface containing the region D.

4, Tt results from conditions (1) and (2) that the functional
determinant A of &, n, £ with respect to x, y, z is never infinite nor
zero when the Inequalities (A) are satisfied.

5. Equations (1) may be transformed by writing them in the /189
following form
‘_1_8—'.-.- d")_ ar .
dl_‘-‘y d_t‘—-li, E:Z' (l')

I shall assume that Z* remains positive for

Bl<1,  Inl<y, f=o.
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The equations (1") will have the integral invariant

% dt dn d7,

</

and the equations

dn _Hode_ G

will have the integral invariant
f \—IAZ didn, -

Let Fy be an arbitrary figure which is part of D and let F; be its
consequent. Let us assume that the different points of Fp and of F)
move in such a way that £ and n remain constant and that ¢ increases
from 0 to €, with £ being very small. The figure Fy will produce a
volume ¢y, and the figure F; will produce a volume ¢;. The integral

MZ* MZ*

will have the same value for ¢y and for ¢;. Therefore, the double inte-
gral

MZ*
A d; d.’h

which is similar to the integral (5) of No. 305, will have the same value
for Fyp and F;. It is therefore essentially positive.

It follows from this that the results given in No. 306 may be
applied to closed curves Gy located within D, and that the results given
in No. 308 may be applied to invariant curves K, or at least to the por-
tion of these curves which is inside of D.

Even if an invariant curve leaves the region D when it is suffi-

ciently extended, the results will still be applicable to the portion of
this curve which is within this region.

Application to Equations of Dynamics 190

312, Let F be a function of the four variables x), X2, Y1, ¥2-
Let us formulate the canonical equations

deg _dF - dyy - dF
dt " dy  dt T T dm
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I shall assume, as I usually do:
1. That F is a periodic function of y; and ys;

2. That F depends on a parameter p and may develop in powers of
this parameter in the following form

F == Fo‘i—}LF|+l’12Fg+...;

3. That Fy is a function of only x; and of x,.
Under this assumption, we shall have the integral

P, )
where C is a constant.

Under this assumption, let us attribute a value which is determined
once and for all to C, and let M be a moving point whose rectangular co-
ordinates are

{1 +e(xy)cosys]cosys, [1-+ p(zi)cosy ]sinys, of(z)siny,.

The function ¢(x;) is a function of x1, of which I shall make a more
comprehensive determination below.

Let us first assume that F, which will depend arbitrarily on x,,
may be developed in increasing powers of x; cos y1 and x; sin y;. For
x; = 0, it will result that the function F will no longer depend on y;
and, in addition, that the function F will not change when X1 is changed
into -x; and y; is changed into y; + 7. We shall then assume that ¢ (x1)
is an odd function of x; which increases from O to 1 when x; increases
from 0 to +=. We may set, for example

HENE S a-ia

Y1+ zf

If this hypothesis is adopted, the point M will always be within a torus
of radius 1, which is tangent to the z axis.

An infinite number of systems of values of X5 ¥y and Y, will /191
correspond to each point M within this torus. However, these systems
will not differ essentially from each other, since one passes from one to
the other by increasing yy ory, by a multiple of 27, or by changing Xy

into -X, and Y, into y; + .

If x1, y; and y, are given, x, may be deduced by means of equation
(2). Let us assume that the variables x and y vary in accordance with
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equations (1), and the corresponding point M will describe a certain
curve which I shall call the trajectory.

One and only one trajectory passes through each point inside the
torus.

The form of these trajectories for u = 0 may be readily determined.
For u = 0, the differential equations may be reduced to

dzry dy: dF,

de T dzy

=0,

The xi's are therefore constants, which indicates that our trajec-
tories are located on the tori, and the yi's are linear functions of time,
because

dFy
dr; ~ /

depends only on the xi's and is a constant.

1f the ratio nj:n, is commensurable, the trajectories are closed
curves. Conversely, they are not closed if this ratio is incommensurable.

Let m;, mp, pP1, P2 be four whole numbers, such that

mypy— Mapr =13
Let us set

Yi= mys—+ My

Yi= Py +P1Yn

)= p1Z —Pi1%T

Ty= — MaT -+ M4 Ts.

The identity
2y YTy = T Y1+ T2 )

indicates that when one passes from the variables x;, y; to the variables
xj, v}, the canonical form of the equations is not changed.
We shall assume that np does not vanish when 'x) remains less than a
2
certain limit a. Then E%— will always retain the same sign, and we /192
shall have, for example dvs

a7
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This inequality, which 1s valid for u = 0, will still be valid for small
values of u.

The relationships

X170, lel<a—‘£

will then define a certain plane region D which will have the form of
a circle. ;

The trajectories starting from a point in this region will never be

tangent to a plane passing through the z axis, at least before having
cut across the half-plane y, = 0 again. Our region may therefore play

the role of region D in No. 310.
The equations (1) have the integral invariant

fdx.dr,dy,dy,,

from which we may deduce the following by means of the integral F =

const.
)= [dmdyidys
dF
dr,

However, %%; equals - %ZE , and is consequently negative. The invariant
t

J is then a positive invariant.

The results given in Nos. 306 and 308 may therefore be applied to
the curves drawn in the region D.

Under this assumption, let b be a value of x; which is smaller than
a - €, and such that the corresponding values of nj) and of n; satisfy
the following relationship
myn -+ mynyg =0,

where m; and m, are two prime numbers with respect to each other.

The curve
Ty=b.

which is a circumference will be an invariant curve for u = O,

If we always assume that p = 0, the trajectories emanating from /193
different points on this circumference will have the general equation

193



JiT= ngtei-const,,  yp== nal - const.,

from which we have

y
Yi= — )2 -+ const.
ny

In order to have successive consequents of a given point, it will
be sufficient to set the following successively

Ya==0, Y1 = 2%, Y= 47, R yr=2km,

In order to pass from a point to its comsequent, it is sufficient
to increase y; by

27 2 Ny
= — ——

ng Ty

from which it follows that all points on the invariant circumference x; =
b will coincide with their ml-t-h consequent.

This point and its m; - 1 first consequents are distributed on this cir-
cumference in a circular order, which may be readily determined when the
two whole numbers m; and mp are known. I shall call the order Q.

Let us no longer assume that w = 0. The equations (1), according to
Chapter III, will still have periodic solutions which differ very little
from the solutions

ry="5b, yi = nt--const., y;=nyt - const.

They will have at least two, of which one is unstable and the other is
stable. A closed trajectory will correspond to each of these periodic
solutions. 1 shall consider one of these trajectories which I shall call
T and which will correspond to an unstable solution, so that two asymp-
totic surfaces pass through T.

Let My be the point where this trajectory penetrates the half-plane
y2 = 0, and let M;, My, ... be its successive consequents (Figure 7).
The point My will coincide with its m;tR consequent Mp.

I shall join the point My to the center of the circumference x; = b.

The radius which is thus drawn will intersect the circumference at a
point M& which is very close to M,. The different points Mk will follow

each other on the circumference in the circular order Q.
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In order to formulate these ideas more precisely, I have drawn
the figure on the assumption that my = 5, mp = 2. The closed trajec-
“tory T intersects the half-plane at five points Mg, M;, Mz, M3, My.
Two asymptotic surfaces which intersect pass through this trajectory.

The intersection of these asymptotic surfaces with the half-plane
will be composed of different curves. We shall have two curves inter-
secting at Mg, two at M, two at My, two at M3, and two at My. All
these curves are shown in the figure.

Figure 7

In particular, let us consider the two curves which pass at Mp.
We may distinguish between four branches of the curve, i.e., MpAy,
MoBo, MgPg, MgQp. The first two are shown by a solid line, and the

/194

last two are shown by a dashed line. The first and the third, just like

the second and the fourth, are each located in the extension of the
other.

In the same way, four branches of the curve will end at each
of the points M. Two of these branches are shown by solid lines and

two are shown by a dashed line, and each pair 1s located in the extension

of the other.

Let Ay be a point of the branch MyBy. Let us draw a radius through

Ag going to the center of the circumference X; = b, and let us extend
this radius up to By where it intersects the curve shown by the solid
line M3By. Since u is very small and since all of our curves differ
very little from the circumference x; = b, the segment AgBg will be
very small.

/195
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We may then see that MjA;, MyA;, M3Aj3, MyA,, MgAg are the succes-
sive consequents of Mp4y, that MyB;, MyB,, M;Bsz, MyBy, MyBgs are the
successive consequents of M3B;, and finally that A;B;, ApBp, ..., AgBjg
are the successive consequents of ApBj.

The arcs A;B;, AyBp, ..., AgBg are no longer rectilinear in
general, but are very small arcs of a curve.

Figures 1 or 2 shown in No. 308 reproduce the part of the figure
shown by the solid line. The entire group of our curves shown by the
solid lines represents an invariant curve K.

I have drawn the figure based on the first hypothesis, which -- as
we have seen -- must be rejected along with the fifth hypothesis. Accord-
ing to the statements I made in No, 309, this also holds true for the
second hypothesis.

We must examine the fourth hypothesis in greater detail. 1In order
to do this, let us try to determine the equaticn of our asymptotic sur-
faces. Based on the statements presented in No. 207, this equation may
be obtained in the following way.

A function S is formulated which may be developed in powers of i,
in such a way that

- »
S =844 \/:LS;+...-+— BiS, +....

Regarding S,, it is a periodic funtion of the period 27 with
respect to yb, and 47 with respect to y'.

We shall have

o= 95 L ds
L YO T dy,
ds (4)

Ty= my a};f‘*{‘”’l, d*)/—,—-
H 2

Equation (4) is the equation of the asympototic surface.

If the series S were convergent, the periodicity of the S_ 's would
entail the condition that our curves must be closed and that tge two
points Ay and By must coincide. However, this is not the case (see No.
225, and the following).

What significance does equation (4) have? It may only be valid from

the formal point of view, i.e., if Zp is the sum of the p + 1 first /196
terms of the series S, so that

196



— 4
2p=Se+ VrSy+...+p1 S,

the e tion
qua ds,

== ——E - 5
= dyy s dy’y 'AD)
an

2
will be valid up to quantities of the order u

However, equation (4') represents a closed surface, and p is ar-
bitrarily large.

We must therefore conclude that the distance ApBy is an infinitely
small quantity on the order of infinity (see Nos. 225 on). In addition,
the distance AjAg (or BpBg) is on the order of /u, and is consequently
infinitely small of the order of %.

The distance AgBy is therefore infinitely small with respect to
ApA;, which Indicates that the fourth hypothesis must be rejected.

The only possible hypothesis is therefore the third.

Therefore the two arcs AgAs and ByBg intersect,

Application to the Restricted Problem

313. I am going to apply the preceding principles to the problem
presented in No. 9, and I shall employ the notation given in that section.
Consequently, we shall have the canonical equations

dzr;  dF’ dy; dF'

e T dyy At T T dzy)
based on which we may set
©))
and, in addition,

F'-:R—{—G:FQ—FHF‘—F.--,

1
Fo= — + 2,.
2zi? 2

Let us now set
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r=L-G, =L+ G,
2=l —g4t, 2py=l+g—t

and the equations will retain the canonical form and will become /197
de, _ dF dy__ dF
de T dy’ dt T dxic
We will have o . n—zy
07 [z + za)? 2
from which it follows that
ny= At ny=——4 1
YT (ka2 P (my 7 2

If we assume that the eccentricity is very small, L and G will
differ very little in absolute value. Therefore, one of the two quanti-
ties x; and x; is very small.

I would like to note in addition that the equations
L=ya, G=Vali—e")

indicate that G is always smaller than L in absolute value. Therefore,
%1 and x, are essentially positive.

Let us assume that x; is very small. The function F' will be a
function of a and of £ + g - t which may be developed in powers of
e cos g and of e sin g. Therefore, this will also be a function of x;
and of y, which may be developed in powers of
/7 cosy; and Vaousings.

It will be periodic with the period 27 both in y; and in yj.

If, on the other hand, it is x, which is very small, the function F'
will be a function of x; and of y;, which may be developed in powers of

\/;’;COSJG and V":Si“}’z-

Let us now assume that our four variables x and y are related by

the equation of energy Foc
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" This equation may be approximately reduced to

Fe=C.

Let us construct the curve Fy = C, taking x; and x, as the coordi-
nates of a point in a plane.

The equation may be written
{1+ 2)2(2C - 7y — 24) = 4.
This curve has two asymptotes /198

Ty Ty == 0, Ty— z1=120

and it is symmetrical with respect to the first of these two asymptotes.

However, it should be noted that the only portion of the curve
which is of use to us is that which is located in the first quadrant

Il>°1 ‘T!>°'

Based on the values of C, the curve may have one of the forms shown
in the two following figures

Figure 8

The axes of the coordinates are represented by the dot-dash line,
the asymptotes and the utilizable portions of the curve are shown by the
solid line, and the portions of the curve which are of no use are shown
by the dotted line.
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Figure 9

We shall assume that a value is assigned to C, so that the curve has
the form shown in Figure 9 and so that it contains two utilizable arcs
AB and CD. We shall no longer consider the arc AB.

We should point out that when one traverses this arc AB, X, de-

creases constantly from OA to zero, X, increases constantly from zero to
X2
OB and ;—-increases constantly from zero to +«.

If we now construct the curve F = C, assuming that y; and y, are
constants and x; and xp are the coordinates of a point in a plane, the /199
curve will differ very little from Fy = C and can still be represented
by Figure 9. It will have a utilizable arc AB, and when one traverses

X2
this arc the ratio ;T will increase constantly from zero to + =,

We thus arrive at the following method of geometric representation.
The location of the system will be represented by the point whose rec-
tangular coordinates are

\/x_,cos_y, , ‘/;:—, sinyy
;/z-,+4z~,—z\/a?,cosy, Vz‘,-e—zixl——zy/:acosy,,
2/z, sinyy

VT + o — 2z cosy,

These three functions may be developed in powers of Vx; cos y; and
VX1 sin yi, if x; is very small, and may be developed in powers of
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. Vx2 cos yp and V'xp sin y;, if x; is very small. They only depend on
X1

the ratio — .
X2

Thus, one and only one point in space corresponds to each system
of values of y; and of y, and to each point on the utilizable arc AB.

The functional determinant of the three coordinates with respect
. X .
to yv1, V2, and with respect to ‘/:1 , always retains the same sign.
X
2

We may therefore apply the results obtained in the preceding sec- /(200
tion within all of the region D where n; does not vanish.

However, n, vanishes for x; + xp = 2.

But, if we have x; + xp = 2, x; > 0, x, > 0, we shall obviously
have

2 Ty—Ty 2 r,+x,_§

(z1a-79)2 2 Tz F2,)? 2 4

However, the first term of this equation is Fy and, when compiling the
curve Fy = C, we assumed that we were dealing with the case presented
in Figure 9. However, the case shown in Figure 9 assumes that

3
C>>Z-
Since Fy differs very little from F, and consequently from C, we

cannot have at the same time

3 3
C>=, F =
>4 o<‘5

(unless C is very close to its limit %3 which we have not assumed).

Under the conditions with which we are now dealing, we shall not
have np; = 0.

Thus, the results presented in the preceding section are applicable,
and if we construct the asymptotic surfaces and if we consider the inter-
section of these surfaces with the half-plane y, = 0, the two arcs which
are similar to those which we designated as AgAs and ByBg above will
intersect.
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I would like to add one word to this.

The coordinates of the third body, with respect to the major axis
and the minor axis of the ellipse which it describes, are —- according
to the well-known formula

L2(cosl +...),
LG(sinl +...).

It may thus be seen that, when G changes sign, the second of these
coordinates changes sign.

As a result, the perturbed planet turns in the same direction as the

perturbing planet if G is positive, and it turns in the opposite direc-
tion if G is negative.
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CHAPTER XXVIII

PERIODIC SOLUTIONS OF THE SECOND TYPE

314, 1Let us consider a system of equations /201
R A\ ¢ (£=1,2, ..., n), (L

where the Xi's are functions of xX;, X2, ..., X,, and of t, which are
periodic having the period T with respect to t.

Let
Ti=z (1)
(2)

be a periodic solution of period T of equations (1).

We shall try to determine whether equations (1) have other periodic
solutions which are very close to (2) and whose period is a multiple of
T,

These solutions, if they exist, will be called periodic solutions
of the second type.

Let us consider a solution of equations (1) which is very close
to (2). Let

pi(0)+ B
be the value of x; for t = 0, and let
9e(0) = Bi+bi = @i (AT) + B+ ¢
be the value of Xy for t = kT (k is a whole number).

The Bi's and the yi's, whose definition is the same as that given in
Chapter III, will be very small, Just as in Chapter III, it will be
found that the y's are functions of the R's which may be developed in
increasing powers of the B8's.

In order that the solution may be periodic having the period kT, it /202
is necessary and sufficient that

H'JI::'!J::..-: n = 0. (3)
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Due to the fact that the ¢;(t)'s are periodic functions, the y's
vanish with the B8's.

We shall assume that the functions Xj which appear in equations
(1) depend on a certain parameter u. Then the functions ¢i(t) will
depend not only on t, but also on u. As regards t, they will be
periodic of period T, with T being a constant which is independent of
H.

Under these conditions, the functions ¥, whose definition remains
the same, will depend not only on the B's, but also on u. If we assume
that

Bi, By ooy By ®

are coordinates of a point in space having n + 1 dimensions, equations
(3) will represent a curve in this space. A periodic solution, of period
kT, will correspond to each point on this curve.

Since the y's all vanish when the B8's all vanish at the same time,
this curve will consist of the straight line

ptzﬁx-”:--w:ﬁn-_—‘)- (4)

The solution (2) will correspond to different points on this
straight line, Due to the fact that this solution is a periodic solu-
tion of period T, it is for that reason a periodic solution of period
kT.

But we must try to determine whether there are other periodic solu-
tions which are very similar to the first or -- in other words -- if
curve (3) includes, in addition to the straight line (4), other branches
of the curve which are very close to the straight line(4).

In other words, are there points on the straight line (4) through
which branches of the curve (3) pass, other than this line?

Let
Bi=fr=...=Ba=0, = o
be a point P of the line (4).
In order that several branches of the curve may pass through the

point P, it is necessary that at this point P the functional determinant,
or the Jacobian, of the y's, with respect to the B's, vanishes.
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This condition is not sufficient, as we shall see at a later /203
point, for several real branches of the curve to pass through the point
P.

Let us formulate the determinant of the y's with respect to the
B's, let us add -S to all the diagonal terms, and let us set the de-
terminant thus obtained equal to zero. We shall thus obtain the equa-
tion which is known as the equation for §.

The roots of this equation (see No. 80) are

ekaT 1,

where o is one of the characteristic exponents of equation (1).

In order that the functional determinant may be zero, it is necessary
and sufficient that one of the roots be zero. We must therefore have

ehaT — 1,
which means that kaT is a multiple of 2irm.

Therefore, in order that several branches of the curve pass through

the point P, it is necessary that one of the characteristic exponents be
. 2i7
a multiple of KT *

315. This condition 1is not sufficient, and a more extensive dis-
cussion is necessary.

Let us set

o= Mg -,

and let us try to develop the 8's in whole or fractional powers of X.

We shall assume that the Jacobian of the y's, with respect to the
8's, is zero. This Jacobian vanishes for A = 0, but will not be identi-
cally zero, in general. In order that this may be the case, it is
necessary that one of the characteristic exponents be constant, indepen-
2iw

dent of u, and equal to a multiple of T "

We shall therefore assume that the Jacobian vanishes for ) = 0,
but that its derivative, with respect to A, does not vanish.

In the same way, we shall assume that the minors of the first order
of this Jacobian do not all vanish at the game time.

In this case, based on the theorem in No. 30, from n - 1 of equa-
tions (3) we may derive n - 1 of the quantities 8 in the form of series
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developed in whole powers of A and of the nth quantity 8, for example
Of Bn- /20[§

Let us substitute the values of
ﬁh fﬁh vy pfl-'h

thus derived in the nth equation (3). The first term of this nth
equation will be developed in powers of A and of By. Let us write it
in the following form.

(%, 3») = 0.

I may first point out that © must be divisible by B,, because the
line (4) must be part of the curve (3).

On the other hand, the derivative of © with respect to B, must
vanish for A = 0, since the Jacobian vanishes. For A = 0, O does not
contain a term of the first degree. Let us assume that it no longer
contains terms of the second degree, ..., P ~ 1th degree, but that it
does contain a term of degree p.

Finally, since the derivative of the Jacobian with respect to A
does not vanish, we shall have a term containing ABn,.

I may therefore write

8-- A¥3, - BpL+ C,

where C is the total group of terms containing Bg+l, AB%, or Azsn as a
factor. A and B are constant coefficients which are not zero.

It may be seen that we may derive B, from this in terms of a series

which progresses according to the powers of 1Fif, and the problem is
to determine whether this series is real.

If p is even or if, p being odd, A and B have opposite signs, the
series is real, and periodic solutions of the second type exist.

If p is odd, and if A and B have opposite signs, the series 1is
imaginary, and there is no periodic solution of the second type.

I shall now assume that not only the Jacobian vanishes for A = 0,
but that the same holds true for all of its minors of the first, the
second, etc., and p - 1th order. I shall nevertheless assume that the {205
minors of the p£— order are not all zero at the time.
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According to the statements presented in No. 57, under these con-
ditions, there will be not one, but p, characteristic exponents which

will be multiples of %

From n - p of equations (3), we may then derive n - p of the
quantities B in the form of series developed in powers of X and of the
p last quantities B.

For purposes of brevity, I shall employ the B''s to designate the
n - p first quantities B, and the B"'s to designate the p last quanti-
ties B. We shall therefore have the B''s developed in powers of A and
of the B" s,

Let us substitute these expansions in the place of the B''s in
the p last equations (3), and we shall obtain p equations

9,:62-':...:0‘,:0, (5)
whose first terms will be developed in powers of A and of the B" 1g ,

Due to the fact that the Jacobian and its minors of the first p - 1
orders are zero, these first terms will not include terms of the first
degree in B" which are independent of A. We must now determine whether
the first terms of equations (5) will contain terms of the first degree
with respect to the 8" 's, and at the same time of the first degree with
respect to A.

Let 0; be the total group of terms of 0; which are of the first
degree with respect to the B" 's. It is apparent that 6; may be developed
in powers of A. Let

O = 02— A6} &+ A26) 4,

be this expansion. The 6§k)'s will be homogeneous polynomials of the
first degree with respect the the B" 's.

According to the preceding statements, 62 will be identically zero,

but we must now determine whether the same holds true for 6;.

The Jacobian of the y's with respect to the 8's equals

I(1-- haT),

The product indicated by the sign Il extends over n factors corresponding
to the n characteristic exponents a.
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Let aj, 0y, ..., Oy be these n exponents, and let /206
p(a)=(1—¢kaT)
The Jacobian will equal the product

e{x)p{a2) ... v(an).

In order that A = 0, the Jacobian vanishes as well as its minors
of p - 1 first orders. As a result, p of the exponents are multiples
of Zim
kT °
consequently, divisible by A. The product, i.e., the Jacobian, will
therefore be divisible by AP,

Therefore, p of the factors ¢(o) vanish for A = 0 and are,

We shall assume that for A = 0 none of the %% vanishes, which is

what we already assumed previously. Under these conditions, none of
the ¢£%)'s are divisible by A2. Therefore, the product is not divisible
by APTL,

Thus, the Jacobian is divisible by AP, but not by AR

As a result, the determinant of the Bi's is different from zero,

and consequently none of the ei's vanishes identically.

The simplest case is that in which, for A = 0, the terms of the
second degree do not vanish in the expressions for 0;, and in which

these terms of the second degree cannot vanish at the same time, unless
all the 8" 's vanish at the same time.

Let us assume that nj is the total group of terms of the second
degree of 04 for A = 0.

It will be sufficient to consider the algebraic equations

1
T+ )\e,- =T 0y

whose first terms are homogeneous polynomials of the second degree with
respect to A and the B'" 's.

If these equations have real solutions, we shall have periodic
solutions of the second type.

I shall not extend the discussion to the other cases, but shall com-
plete this discussion when treating the equations of dynamics.
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Case in Which Time Does Not Enter Explicitly /207

316. Let us assume that the functions Xj which appear in equationms
(1) do not depend on time t.

As we have seen in No. 61, in this case one of the characteristic
exponents 1s always zero.

In addition, if
T = ()
is a periodic solution of period T, the same also holds for
zy = (L - k)
whatever the constant h may be.

In the preceding section, we assumed that —- no matter what u
might be -- there was a periodic solution

Zi = 9i(t)

and the period could only be T, since the Xi's were periodic functions
of t, of period T.

The period was therefore independent of u.

The same is not true in this case. We shall always assume that,
no matter what u might be, equations (1) have a periodic solution

i == ?;( ).
However, the period will depend on u, in general. I shall call
T the period, and Ty the value of T for u = ug, i.e., for A = 0. Ve

shall then modify the definition of the quantities £ and y to a certain
extent.

We shall always designate the value of xj by ¢;(0) + 84 for t = 0.
However, we shall designate the value of x; by $5(0) + By + Y3 for
t =k (T + 1) (and not for t = kT).

Then, the yi's will be functions of the n + 2 variables

31, B oo Bay 5, Al
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If we continue to assume that the B's and A's are the coordinates
of a point in space having n + 1 dimensions, the equations /208

T o (3)

will no longer represent a curve, but will represent a surface, since we
may vary the two parameters T and A independently and continuously.

However, we should point out that curves are drawn on this surface
whose different points correspond to periodic solutions which may not be
regarded as being essentially different.

If
= filt)

is a periodic solution, the same will hold true for

Iy -,—_f,(t e /l)

no matter what the constant h may be, and this new solution will not differ
from the first in reality.

The following point corresponds to the first
Biw:filo) -9i(0),
and the following point corresponds to the second

Bi—= S h) = 5i(0).

When h is varied continuously, the second point describes a curve whose
different points do not correspond to solutions which are actually different.

In particular, let us consider the solution
zi== 9i(!)
The following point will correspond to this solution
Bi=o
which belongs to the line (4).
The following point
Br=2i(h) — gi(0), 4"

which belongs to a certain surface (4) making up the surface (3), will cor-
respond to the solution

zi== (4 + h),

which is not actually different from the first.
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We must now determine whether the surface (3) includes layers other
‘than (4') approaching very close to (4'), i.e., whether there are points /209
on the surface (4') through which other layers of the surface (3) pass
in addition to the surface (4') itself.

Without limiting the conditions of generality, we may assume that
B; = 0 (or we may impose another arbitrary relationship between the B's).

In actuality, the solutions
== fi(t),  xio: fi(t-- k)

are not different, and it is sufficient to take one of them into consid-
eration.

We may choose the constant h » bitrarily, and we may take it in such
a way that, for example,

fl(h): ?1(0)1

from which we have

Pi==o. q.e.d.

If we impose this condition B; = 0, the two surfaces (3) and (4') may
be reduced to curves, and the surface (4') may be reduced to the line (4),
in particular.

We would like to again determine whether another branch of the curve
(3) passes through a point of the line (4).

For this purpose, let us combine equation B8; = 0 with equations (3).
These equations will represent the curve (3), or a curve of which (3) is
only a part. In the region under consideration, in order that this
curve may not be reduced to the line (4), it is necessary that the Jaco-
bian 1, ¥2, «.+s ¥p, B3 with respect to By, B2, ..y By, T, and that of
V1, Y2, +-+5 ¥, with respect to B3, B3s «++5 Bps T, be zero for X = 0.

Since nothing distinguishes B8; from other B's, the Jacobians of the
y's with respect to T and with respect to n - 1 arbitrary B8's must all
vanish. That is, all the determinants included in the matrix of Nos. 38
and 63 must vanish at the same time. By pursuing a line of reasoning
similar to that presented in No. 63, we may see that the equation for §
must have two zero roots.

As a result, two of the characteristic exponents must be multiples of

24
iﬁ?. This is already true for the one of them which is zero. A second
exponent must be a multiple of %ﬁ;u
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If this condition is fulfilled, we shall formulate a system of /210
n + 1 equations including equations (3) and B; = 0. We shall derive
T and the B's in the form of a series developed in whole and fractional
powers of A.

If the series are real, we shall have periodic solutions of the
second type; if the series are imaginary, this will not be the case.

I shall not continue this discussion any further.

317. Let us now assume that the equations

dr; )
_(17 - xl’ (l)

where time enters explicitly have a uniform integral
F == C,

in such a way that we have

y f“l X; == o.
ey {[.z‘,'

We saw in No. 64 that in this case the Jacobian of the y's with re-
spect to the B's vanishes, and that one of the characteristic exponents
is zero.

The equations

\'{l_—:(;l"“,‘,_‘_IV'{n:_:O

(3)
are not then different since we have identically
Floi(0) + Bi-- 4] —Flg:(0) +Bi] = o
They do not represent a curve, but rather a surface.

However, according to the principles presented in Chapter III, in
this case we have a double infinity of periodic solutioms of period T

Ty = (?l'(t)y

since there is one which corresponds to each value of the parameter
u = g + A and to each value of the constant C.

We shall assign a fixed value Cy to the comstant C, and we shall
no longer have a simple infinity of periodic solutions of period T

zi =_‘fi(t)r

with each of them corresponding to a value of A.
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Due to the fact that equations (3) are not different, they may be /211
" replaced by n - 1 of them -- for example, by

ﬂpl—'—i kh:...:t}/,,-,_—:o.
Let us then consider the system
W= =...=d, =0, Floi(0)+ Bi] = C,. (3')

Equations (3') no longer represent a surface, but rather a curve,
part of which is formed by the line

Bi—o. (4)

In order that another branch of the curve may pass through a point on
the line (4), it is necessary that the Jacobian of

dr‘h “,l":y e ‘;’n-ly F!

with respect to the B's vanish.
This condition may be written in still another form.

Let us assume that we have solved equation

F(z;) = Cp
with respect to x,, and that this solution yields

Tp = O(Ih Tay v-=y .’1,‘,,_.1).

Let us substitute € in place of x, in Xj, and let X be the result of

this substitution.

Equations (1) are thus replaced by the following

(11'1

71—{-:)(} (T=1,2, ..., a-—1). ")

These equations (1') will have the following periodic solution
z; = 9i(1).

The number of characteristic exponents of this periodic solutionm,
which is assumed to belong to equations (1'), will be n - 1. Let
@], 02, «.sy O] be these n - 1 exponents. These will be the same as
those for this periodic solution xy = ¢;(t), which are assumed to belong
to equations (1), suppressing the n exponents which equal zero.

In order that equations (1) have periodic solutions of the second [212
type in the vicinity of a point on the line (4), it is necessary and
sufficient that equations (1') have them, i.e., that one of the n - 1

2im
characteristic exponents a;, 0y, ..., a,_, 1s a multiple of iar-at a
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point on the line (4).

Thus, the condition, which was presented above, that the Jacobian
of Y1, V25 +++s V-1, F is zero may be expressed in a completely differ-

ent manner. In order that it may be fulfilled, it is necessary that
two of the exponents be multiples of %ﬁ;. This is always true for the
one of them which is zero; this must be true for a second exponent.

Let us assume that this condition is fulfilled. From equations (3")
we shall derive the B8's in series which are ordered in whole and frac-

tional powers of A. I shall not extend this discussion, to determine
whether these series are real.

318. Let us now assume that the Xi's do not depend explicitly on
time and that equations (1) have an integral

F=C.

In this case, according to No. 66, two of the characteristic expo-
nents are zero. If the equations have a periodic solution for a system
of values of y and of C, they will still have it for the adjacent values,
so that we shall have a double infinity of periodic solutions

x; == 4i(t)

which depend on the two parameters u and C. The period T will not be
constant; it will be a function of u and of C.

Let us then assign a fixed value Cy to C, and let
9r(0) -+ Biy gi(0)-+ P+

be the values of x; for t = 0 and for t = k (T + 1).

We shall add equation F = Cp, and then an arbitrary relationship be-
tween the B's -- for example, B; = 0 —— to the equations

(3)

\h_—,: 4’2'_‘"'=d."n":°
Without limiting the conditions of generality, and for the same {213
reason as was given in No. 316, we may assume that 8; = 0.
We shall thus obtain the system
ql‘-: 0, F o= (‘0, @‘ == 0. (3“)
These equations represent a curve. The number of equations equals
n + 2, but the n equations (3) are not different, and may be replaced by

n - 1 of them. This is justified by the same line of reasoning that was
presented in the preceding section. System (3") may thus be reduced to
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"n + 1 equations. The number of variables is n + 2 —— i.e.,

.Blv {32; tee pny Ty -
This curve (3") includes the line
ﬁ,-:o. (4)

Let Bi = 0, y = yp be a point on this line. In order that another
branch of the curve may pass through this point, it is necessary that
the Jacobian of the first terms of equations (3") be zero or —-— which
amounts to the same thing -- that the Jacobian of n - 1 of the y's and
of F with respect to 85, B3, ..., B, and T be zero. Finally, since
nothing distinguishes 8] from the other B's, it is necessary that the Jaco-
bians of F and of n - 1 arbitrary ¥'s with respect to t and to n - 1 ar-
bitrary B8's all be zero.

This condition may be expressed in another way.

Just as in the preceding section, we shall derive the following
from the equation F = C

Ly == O(Il; Tay o=y -tll—l))
and we shall obtain the equatiomns

7]xf:XQ (E==1,2, ..., n—1) a")
dt

According to No. 316, of the n - 1 characteristic exponents, it is
necessary that one of them be zero and that the other be a multiple of
%%g-[if it is assumed that the periodic solution belongs to equations
(1")]. 1In other words -- which amounts to the same thing -- it is neces-
sary that of the n characteristic exponents [if it is assumed that the
periodic solution belongs to equations (1)], two be zero, and a third /214

. 2im

be a multiple of *T "

Let us assume that this condition is fulfilled. We shall derive the
B8's and the © from (3") in series which are ordered according to whole
or fractional powers of A. I shall still forego a discussion of this
point.

Application to the Equations of Dynamics

319. I would like to discuss the equations of dynamics in greater
detail., However, in order to do this I must first present an important
property of these equatioms.

215



Let £; and nj be the values of xj and yj for t = 0. Let Xj and Yy
be the values of x4 and yi for t = T. We know that

ff‘: deidy;

is an integral invariant. We shall therefore have
f S (X dYi — didn) = o,
with the double integral extending over an arbitrary area A.
This may be written as follows
SRR Y= il i) o,

where the simple integral is extended along the contour of the area A,
i.e., an arbitrary closed contour.

In other words, the expression
E(\-‘ dY,‘» - Y" J{X"— E, tlT“' -t T 1151')

is an exact differential.

As a result, we find that
dS = L[(Xi— &) d(Yi--m0) - (Yi = na) d(Xin-£0)]

is also an exact differential.

320. If we vary T, it is apparent that S will be a function of T.
Let us calculate the derivative of S with respect to T by means of the /215
equations

dx; dF dY; dF

ar T ayy dT T T dX;
We have

s dx dy
e fz [;“; d(Y Fm) == S d(X 4 E)

dY dX
A 4 . . -z |,
(X = d S (Y G

or

dS o [ dF _ dF .
ot :fZ[ZN AY o) g dX )

dit , dF
(X p)d e (Y md Gy

or, integrating by parts, we have
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s 0 o] (e )

dY *

We shall set the arbitrary function of T equal to a constant -2C,
and we shall have

¢ dF
o = ar =0 s [(x b G (Y= |

For T = 0, we have dS = 0 and consequently
S - const.

We shall take this constant to be zero so that S will vanish identi-
cally for T = 0. The function S is thus completely determined.

321. Let us determine the maxima and the minima of the function S.
Let us first consider T as a constant. In order that the function S has
a maximum or a minimum, assuming that this function S may be regarded as
a uniform function of the variables Xj + £j and Yy + ni in the region under

consideration, it is necessary that its derivatives with respect to these
variables are zero -- i.e., that we have [216

Xi=&, Yi=m.

The corresponding solution is therefore a periodic solution of
period T, and this period T is one of the known quantities of the problem
at hand.

We shall no longer regard T as a known quantity. In order that S
has a maximum or a minimum, it would be necessary that we first have

Xe=¥&, Yi=rmy

and in addition 45

(-ITI; == 0.

However, if X = £, ¥ = n, we still have

5
G2 =a2(F—0),
from which it follows that

F=C.
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The corresponding solution will still be a periodic solution of
period T.

However, the period T will no longer be a given quantity. The
energy constant C, which did not enter the preceding case, will be a
given quantity.

The two methods for determining the maxima of S are related to the
two methods of interpreting the principle of least action, that of Hamil-
ton and that of Maupertuis. This will be clear to the reader after the
following chapter has been read.

322. The definition of the function S may also be modified in the
following way.

In a large number of applications, F is a periodic function of
period 27 with respect to the yi's. In this case, a solution may be
assumed to be periodic when Xy = £;, and when Y; - nj is a multiple of

27,
It is then apparent that if we set
dS == 2[(Xy—ENd(Yi-t-50) — (Yi = my— 2amim) d(Xi + &),

where m;, m,, ..., M, are arbitrary whole numbers, the expression dS
will still be an exact differential.

We shall thus obtain [217

ds . dF {F
ﬁzzF—E[(X—E);ii (Y — 7 —a2m=) fﬁ]-i- arbitrary function of T.

We shall set

ds i dF dF
7T = 2(F—-C)— L[(X —‘E)'('[‘\: 4 (Y -7, —2m=) df] .

For T = 0, we have
dS == T {m;w d¥;.
We shall set

S = 41‘:2 m,-E,-,

which concludes the determination of the function S.

Assuming that T is a given quantity, the maxima and minima of S will
be obtained by setting its derivatives equal to zero, which yields
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Xi=4§, Yi=7;+2m;m.

The corresponding solution is still a periodic solution, since
Y; - ny is a multiple of 2n. The period T is given.

If T is not given, it is first necessary that

= R
and, in additionm, X;=t, Yi=uni+o2mmn
ds _
dT = %
from which we have
F=C

323. Tt 1is now necessary that we learn to distinguish between the
real maxima and the real minima of S. Up to this point, we have only de-
termined the condition for which the first derivatives of S are zero, but
it is known that this condition is not sufficient for providing a maximum.
It is still necessary that the second derivatives satisfy certain inequali-
ties.

Let us first assume that the conditions presented in No. 319 hold,
and let us regard T as given.

Let
ri=o0i(), yi=i(t)
be a periodic solution of period T, so that [218
vi(0) = 9u(T),  gi(0)=¢i(T).

A maximum or a minimum of the function S may correspond to this solu-
tion.

Let

&y == (?,‘(l)%-;l‘}, Y= (?’l(t)““}’;-
zi= ()42l yr=oi(t) -+ yy

be two solutions which differ very little from this periodic solution.

I shall assume that x'y, y';, x"j, y"; are small enough that we may

neglect the squares and may assume that these quantities satisfy the
variational equations (see Chapter IV).
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Let &} and n} be the values of xj and y} for t = 0; X; and YE -
the values of x} and y] for t = T.

In order to determine whether S has a maximum or a minimum, it is
sufficient to study the total group of second degree terms in the ex-
pansion of S in powers of the &;'s and the nj's.

It may be readily seen that this group of terms may be reduced to
2 (Xini— Yiki).

Let us study the expression

S (el ). (1)

According to No. 56, this expression must be reduced to a constant.
What is the form of the general solution of the variational equations?
If there are n degrees of freedom, we shall have n - 1 particular

solutions having the form

xi=eMtBe (), yi= e 0 ().
The a)'s are the characteristic exponents, and the 8's are periodic func-
tions of period T.

We shall have n - 1 other solutions having the form

zp= e MO (1), = emutbf (2)
corresponding to the exponents -0y which are equal and have the opposite

sign of the n - 1 exponents ay.

We shall have the obvious solution /219

and finally the 2nth particular solution will be

Therefore, the general solution may be written

Tp= L Agenf0; () + EBre—at0 () + C %Ti+ D( (j:t—l—l—y,),

o= R A el . - "o ‘_J do': . ,
Yi=EA,enty (1) 4 SBre- by ;(¢)+ C < T (z 7.‘ +d,,>,

where the A, B, C, D's are integration constants,
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In the same way, we shall have

W e g . . . de . d
2= DA et 0y i (£) 4- ZBpe-ufly ;(¢)+ C 'ditl ~+D (’ 'gc';'[ + ‘h)

with a formula which is similar for y;.
The A', B', C', D's are new constants.

Let us substitute these values in expression (1). This expression
will become a bilinear form with respect to the two series of constants

A, B, C, D,
A, B, G, D.

Since this form must vanish identically for
Ap=A% Byg=DB C=C, D=D

this form will be a linear form with respect to the determinants contained
in the matrix

The coefficients of this linear form must be constants, since expression
(1) must be reduced to a constant.

At By Ay By ... Ay Buy C D
AL BYOAY By L A B, ¢ DY

In general, none of the characteristic exponents will be zero, and
two of these exponents will not be equal to each other.

It follows from this that we cannot have a term containing one of
the determinants £220

1\[;;\}‘—— l\j[\'k, z\[.—B}—— Bji\;” B‘B}— BJB",
AxC'—CAY, A(D'—DAj, BiC'—CB}, BiD'— DB,

because the coefficient of this term must contain one of the exponentials
e(zi"l["', cul‘al)” e—(x;-»'a,»?t, etayt

as a factor, and cannot be reduced to a constant.

The only determinants which may enter in our form are therefore

AxBy—B4AL, CD'—DC,

so that T may write

(21— yiz}) = S Me(Ax By — BrA%) 4- N(CD'— DCY), 2)
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where the M, and N's are constants,

I may state that M, cannot be zero, otherwise expression (1) would
not depend on the constants Ay, A}, By, ka If we then assume that all

of the constants A' and B', C' and D' are zero, with the exception of
the two constants A} and Bi to which we may assign given values which
are different from zero, we would have a relationship

I(atyi— i) —o
which would be linear with respect to the unknowns xj and y&, and where

the coefficients xj and yj would be given functions of time which are

different from zero. Such a relationship cannot exist, since the 2n

variables xi and yj are independent. Therefore, M, cannot be zero.

If we change t into t + T, we shall obtain new solutions of the
variational equations, and these new solutions will be obtained by
changing the constants

A ky B/I! Cv D
into

Age®T, Bye=nuT, C4-DT, D.
In order to have

BN —YiED),
it will be sufficient to set the following in expression (1)

Ap=AgenT,  Bi=BienT, C'=C+DT, D'=D

’

from which we have [221

S(X0nh - Yib) = SMy(e=niT — exT) A, By~ NTD1, (3)

324. 1In order to discuss equation (3), we must distinguish between
several cases:

1. The exponents tap are real. The functions

O.n Ok 0%s 954
are also real.
. 2
2, The exponents to, are purely imaginary, and the square oy 1is real
and negative.
"y

Then the functions 8y ; and eﬂ‘i, Oﬁ ; and 8, 4 are imaginary and
conjugate.
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3. The exponents t+op are complex.

Among the characteristic ex-

ponents, we shall then have the exponents iﬂj which will be imaginary

and conjugate of the exponents oy, and
Gj-l.l G}_g, 0;[1 67."

will be imaginary and conjugate of

. . m
Moy s %o 04

Let us now assume that the x', 's and the y% 's are real. In order to
i ¥i

calculate the constants A, B, C, D, we shall have 2n equations which we
shall obtain, for example, by setting the following in the equation for

X1

t=o0, t:T, t:'lT,

cey t=(2n—1)T.

These 2n equations are linear with respect to the 2n unknowns A, B, C,
D. The second terms are real, and the coefficients are real or imaginary

and conjugate pairwise.

When we change Y- 1 into -}/- 1:

1. Ay and By do not change when a), is real;

2. A and Bk interchange when o) 1is purely imaginary;

3. Ay and By change into Aj and Bj when o is complex and imaginary

and conjugate of oy

Therefore:

1. Ay and By are real when ay is real;

2. Ay and By are imaginary and conjugate when aqp is purely imaginary;

3. Ap and A;, By and Bj are imaginary and conjugate when o) is
complex, and imaginary and conjugate of @y

Finally, C and D are real.

These conditions are sufficient for xj and y; to be real.

Let us assign values satisfying these conditions to the constants
Ag, Bg, C, D, as well as to the constants A}, Bk, C', D'. Then the

second term of (2) must be real, and in order that it may be real the

following is necessary:

1. That My is real if oy is real;

[222
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2, That M is purely imaginary if oy is purely imaginary;

3. That M, and M, are imaginary and conjugate if o and o, are
A
complex, and imaginary and conjugate.

Form (3) contains a term
Mi(e=nT - enTYAL By

and does not contain another term depending on Ay or By.

If the exponent oy 1is real, the presence of a term containing AkBk
is sufficient for providing that the quadratic form (3) can be defined,

Therefore, if only one of the exponents o, 1is real, the function §
cannot have either a maximum or a minimum.

Let us now assume that two expoments o; and ay are complex, and
imaginary and conjugate.

Let us cancel all the constants except for
As, B, A By,
and the form (3) may be reduced to
My (=T - enTy A By - M, (e — e T) A, By
These two terms are imaginary and conjugate, so that form (3) is real.

Let us assume that A, does not change, and that By, changes sign.
A., which is imaginary and conjugate of A, will change no longer, and

Bj, which is imaginary and conjugate of B, will change into —Bj.

Therefore, form (3) will change sign; therefore, it cannot be defined.

Therefore, if only one of the expoments oy is complex, the function
S cannot have either a maximum or a minimum.

Let us now assume that oy is purely imaginary. Then A, and B, are /223
imaginary and conjugate, and the product ABy is the sum of two squares.

In order that S have a maximum, it is necessary and sufficient
that all of the quantities
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be negative. 1In order that S have a minimum, it is necessary and suffi-
cient that all these quantities be positive.

It should be pointed out that all these quantities are real, because
" M and %k are real.
\/:1_ -1

325, How may these results be modified if it is assumed that the

energy constant is one of the given quantities of this problem? We then
have identically

S (L )
dz ‘I};f =0,

where we assume that in %5 and gg, x4 and y; have been replaced by the

periodic functions ¢;(t) and ¢i(t).

The constant value of the function F must be the same for the periodic
solution
zi=qi(t),  yi=gi(e)

and for the infinitely close sclution
e () +xh  yi= o)+
This relationship is a linear equation between the constants
Aw, B, G, D
and the coefficients must be independent of t.

It follows from this that Ap and must not be included in the re-
lationship, since these constants are always multiplied by e*®kt and
since this exponential cannot vanish,

In addition, C is no longer included, since the solution

",’[ LN

z'l—_-‘?i(t)ﬂ—c -d'tn ],’-:?2(!)4'- G ‘—;z':f)
where C is a very small constant, may be deduced from the periodic solu- /224
tion by increasing the time by a small amount C. Consequently, this

solution corresponds to the same value of the energy constant as does the
periodic solution.

Our relatiomship, which cannot be reduced to an identity, may there-

fore be reduced to
D =o.
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However, if D is zero, the term -NTD? vanishes in the form (3).

In order that S may have a maximum or a minimm, it is sufficient
that the quantities
My . a T
— 7 osin- Sz
V—1 -1

all have the same sign.

If there are only two degrees of freedom, there is only one of
these quantities.

Therefore, if there are only two degrees of freedom and if op is
purely imaginary, the function S always has a maximum or a minimum.

326. Let us now assume that the conditions given in No. 322 hold,
so that

dS = E[(Xi— 8 d(Yi+ 7)) — (Yi—mi— 2mim) d(Xi + £)]

and let us assume that T is a constant. In order that S may have a
maximum or a minimum, it is necessary that we have a periodic solution

=9ty  yi=9i(t)
where ¥

ei(t-+T)=g:(); @i+ T):=9i() -+ 2.

Let us then consider a close solution
R LG e AR

and this discussion will proceed in the same way as above. The results
are the same.

In order that there be a maximum or a minimum, it is necessary
that all the exponents o are purely imaginary. It is then necessary /225
that all the quantities

have the same sign.

If it is assumed that the energy constant is a given quantity of
the problem at hand, D is zero, the term -NTD? vanishes, and it is

sufficlent that the quantities
My . flk'I:_

‘/:.-—' SlHV—:f
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all have the same sign.

327. VWhat will now take place if the equations have other uniform
integrals in addition to the energy integral and if, consequently, some
of the characteristic exponents are zero?

A discussion similar to that presented above could still be employed.

For example, let us assume that our equations have p other uniform
integrals, in addition to the energy integral:

Fl) Fh ety FP|

in such a way that the brackets [Fj, Fy] of these integrals taken two

at a time are zero. Based on the statements presented in No. 69, we
then know that 2p + 2 characteristic exponents are zero. We shall
assume that all the other exponents are different from zero.

We shall then have n - p - 1 pairs of constants which are similar
to the constants Ay and By, and p + 1 pairs of constants C; and D which

are similar to the constants C and D.

Form (3) will then become

My (e uF. e Ty A By — ENA»TDZ.,
where ZNkTDﬁ is a sum of terms similar to the term NTD?.

If we now assume that the values of our p + 1 integrals are given
quantities of the question under consideration, the constants D, will

all be zero, the terms NkTDi will vanish, and the condition under which

S may have a maximum or a minimum will still stipulate that all the /226
quantities

My (=0T — guT)
have the same sign.

I shall not insist upon this point, because —-- in the case of the
three-body problem -- either we shall be dealing with the restricted prob-
lem presented in No. 9, or we shall be able to decrease the number of
degrees of freedom by applying the procedures given in Nos. 15 and 16.

In the case of the reduced problems of Nos. 9, 15 and 16, there

is no more than one single uniform integral, that of energy, and there
are only two zero exponents, as we saw in No. 78.
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Solutions of the Second Type for Equations of Dynamics

328. Let us change T successively into 2T, 3T, ..., mT, ..., .
The function S defined above depends on T, and let

S,,, = S(IILT).

Let us try to determine the maxima and minima of S, assuming that
T is a constant.

If we consider a periodic solution of period T, this will also be
a periodic solution of period mT., Therefore, the first derivatives of
Sm are zero.

In order that there may be a maximum or a minimum, it is necessary
that all the exponents o, are purely imaginary.

If all the quantities

‘/: Sln‘/: ( )

are negative, there will be a maximum; if they are all positive, there
will be a minimum.

This is the first point to which I wish to draw attention.

If we assign all the possible whole values to the whole number m,
the n - 1 quantities (1) will have in general all the possible combina-
tions of signs.

Let us set, for purposes of brevity,

—=—= = wp,

V=1
and let [227

Zp oo MY - 2T

Let us assign all the possible whole values to m and to m . If we
assume that Zys Zys seey Zp. are the coordinates of a point in space

having n - 1 dimensions, we shall obtain an infinity of points. It may
stated that there will be an infinity of these points in every section
of space having n - 1 dimensions, no matter how small it may be.

In order to demonstrate this, I need only refer to the line of
reasoning employed to establish the fact that a uniform function of n
real variables cannot have n + 1 different periods.

The quantities given in the following table:
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wy, Wa, aeey Way,
27, 0, . o,
o, 27, , o,
..................... y
o, 0, , 2T

will play the role of periods in this line of reasoning.

There would be an exception, if these periods were not different --
i.e., if one of the quantities w were commensurable with 2w, or, more
generally, if there were a linear combination of the z's which had only
one single period -- i.e., if there were a relationship having the form

i+ by 4 by 21, =0, (2)

where the b's are whole numbers.

Let us disregard the case of this exception. The quantities (1)
will equal

sin 3.

— 1

We may choose the whole number m in such a way that these quantities repre-
sent a combination having a given sign -- i.e., that there are numbers
zp which satisfy inequalities having the form

a,<zl<a,+«m, ay < Zg<ﬂ2+1(, ey a,l_,<z,,.-l<a,._,+ ™, (3)

where the ay's equal 0 or m.

This results directly from the statements which we have just /228
made above.

Let us move on to the case in which we have a relationship of the
form (2). We may always assume that the whole numbers b are primes among

themselves. In this case, the expression

1)[51+ b,z,+...+bn_.z,,,, (4)

has only the period 2m.

In order that there may be no numbers z, satisfying the inequalities
(3), it is necessary and sufficient that the difference between the larg-
est value and the smallest value which expression (4) takes —- when all
values which are compatible with the inequalities (3) are assigned to be
zk's -- 1is smaller than 2n, i.e., smaller than a period of this expression

4).

This difference is obviously as follows
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T[(Ibll +lb1| -F-.-"l'!bn-l!))

and we must therefore have
lb“-+—;b1‘+--"*‘lbn—llgz' (5)

The inequality can only hold if all of the b's are zero, except for
one of them which must equal #1.

In this case wy must equal a multiple of 2n., This means that oy

must be zero, since oy is only determined up to a multiple of Zf%éil

We have excluded the case in which one of the ak's is zero.

The equation can only be valid if all the b's are zero, except for
two of them which must equal #1.

Then the sum of the difference between two of the wy's will be a
multiple of 2m. If we note that the ak's are only determined up to a

multiple of EET:J, we may express this result in another way.

Two of the characteristic exponents will be equal.

This is the only exception which still exists, and it may be readily
excluded.

329. Let us now assume that the equations of dynamics under consid-
eration depend on an arbitrary parameter §, just as is the case for the /229
three-body problem,as we know.

When we vary u continuously, the periodic solution
o= gi(t),  yi=gi(t)

will also vary continuously, as we may determine from the discussion
in Chapter III.

The quantities M, will also vary continuously, but -- as was ex-
plained in No. 323 -- they can never vanish. Therefore, they will
always retain the same sign, and it is their sign alone in which we are
interested.

The energy constant will be regarded as one of the given quantities
of the problem at hand, but this given quantity may depend on W, and we
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shall choose it in such a way that the period T of the periodic solu-
tion remains constant,

The exponents oy will also vary continuously when we vary u con-
tinuously. Let us clarify to a certain extent the manner in which this
variation should be handled in the case of the three-body problem. For
U = 0, all the exponents are zero. However, as soon as | ceases to be
zero, the exponents cease to be zero also. One of these exponents can

only vanish, or become equal to a multiple of Ef%f"', or become equal
to another characteristic exponent for certain special values of u.

330. Let us consider a periodic solution of period T, such that
all the exponents o arve purely imaginary. This is what we designated
above by a stable solution. In Chapters III and IV, we proved the
existence of these solutions.

Let us consider one of the exponents, a1, for example. When p varies
-4
continuously, ;E%?’ == which is real -- will become commensurable with

%% an infinity of times. Let us assign a value ug to u, such that

o 2kw
Jy—1 »,T’
where k and p are the prime whole numbers among themselves. In add- /230

ay
ition, this value does not correspond to a maximum or a minimum of chf

At a later point, in No. 334, we shall see why I have placed 2krn
in the numerator, and not km,

In any interval, no matter how small it may be, there is an infinite
number of similar values.

If m is an arbitrary whole number, for this value g the expression

M
s sinP"m’T

Vi /o1
is zero. 1In addition, since uy does not correspond to a maximum or a
minimum of ;?;n this expression will change sign when u passes from
-1

Hg — € to ug + €.

For example, let us assume that it changes from being negative to
being positive.
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Pursuing the line of reasoning presented in No. 328, we will find
that we may choose the whole number m in such a way that the expressions

M . T
LU P Rl (k==2,3, ..., n—1)

vVt v
have all possible combinations of sigms, and that they are all negative.

Under this assumption, for u = up — €, our function Sm'p will have

a maximum, since all our expressions will be negative. However, for
u =g + €, our periodic solution will no longer correspond to a maximum
of Sm_p, since one of these expressions will have become positive.

Theorems Considering the Maxima

331. In order to pursue this subject further, it is necessary to
illustrate one property of the maxima. Let V be a function of the three
variables xj, X, and z, which may be developed in increasing powers of
these three variables. I shall assume the following:

1. For x] = xp = 0, V vanishes as well as its derivatives %2—, QX_,
x1’ dxo

no matter what z may be;

2. For x; = xp = 0, V has a maximum for z > 0 and a minimum for /231
z < 0.

It may be stated that the equations
av av

dry T dey 0
have other real solutions in addition to the solution
ZTy== Ly 0.
Let us develop V in powers of z, and let

V= Vo3V 52V ...

The functions Vg, Vi, Vo, ... may themselves be developed in powers of x;
and of x;. However, these expansions will contain neither terms of
degree 0 nor terms of degree 1, because —- no matter what z may be -- we
must have

po VAV
V= dry, 7 dry 0

for x; = x» = Q.

In addition, Vy does not contain terms of the second degree either.
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Without the second degree terms, it is impossible to pass from the case
of the maximum to the case of the minimum, when going from z > Q0 to
z <0.

Conversely, V; will contain first degree terms, at least we shall
assume this is the case. Let us then consider the equations

A dV, AP
0= —— - 3 —— - 5% —= ..
dry dzy dry 4 1)
_dVe Vi Vs ¢

= dr "z, T dny
which must be solved.

Let Uy and U; be the lowest degree terms of Vg and of V;. According
to the statements which we have discussed, U; 1s of the second degree,
and Uy is of the degree p —- with p being larger than 2. Let us set

(p—2)r=1; =yt Ty = yal, V= W¢er; 3= kP2
W may be developed in powers of t. Let us set
W= Wo-r- e W 2 Wo-un
We obviously have 1232

Wo= Uit 4+ Upt-p= U+ U,

U} = U t7P and U}, = Uyt™P are two homogeneous polynomials in y, and y, —-

one of degree 2 and the other of degree p. I shall employ the sign + or
-, depending on how I have set z ==1¢P'2,77The expression

will also be developed in powers of t when x; and x; are replaced by

yit and yot. It will include a certain power of t as a factor. Let us
divide by this factor, and let H be the quotient. This quotient developed
in powers of t may be written

N=H+¢H+2H;+.. .5
Ho will be the first of the expressions

dW; dU;  dW; dU;

dyy dyy  dys dn

which will not vanish.

The equations v dV

dey = dzy °
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may be replaced by the following equations

AW

H=o ;—Iz—o.

I shall prove that we may derive the y's from these equations in the
form of series which are ordered in fractional and whole powers of t,
which vanish with t and which have real coefficients.

In order to do this, according to statements presented in Nos. 32

and 33, it is sufficient to establish the fact that for t

equations have a real solution of odd order.

For t = 0, these equations may be reduced to

dW,
IIQ =0, ([J" = 7
or
AV AUy AW dUG
dyy dys dys dyy
and
S+ duy dUyg
e = 0.
dy, dy,

Equation (2) indicates that W, has a maximum or a minimum, if we

0, these

assume that y; and y; are related by the relationship U} = conmst.

/233
(2)

(3)

For the present, if we assume that y; and y; are the coordinates of
a point in a plane, the relationship Ui = const will represent an ellipse,
because the quadratic form U; (and, consequently, the form Uj) must be

defined in order that V may have a maximum or a minimum.
fact that an ellipse is a closed curve, the function W; must have at

Due to the

least a maximum and a minimum when the point y;, y, describes this

closed curve.

Therefore, whatever the constant value may be which is assigned to

1> equation (2) will have at least two roots, and two roots of odd order,

because we have seen in No. 34 that a maximum or a minimum always corres-
ponds to a root of odd order. At this point, where we have no more than
one independent variable, the theorem presented in No. 34 is almost self-
evident., Under this assumption, we may distinguish between two cases:

First case. Ub is not a power of U';. 1In this case, we do not have

identically dW, dU} _ dWo dUy _

dyy 71_;’: dys dyy )
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We shall therefore have Wi = W;, and

dU, dU,  dU, dU, _

10: —— —_— s —y—

dy, (IJ_/: dys dyy =0

Equation Hg = 0 is then homogeneous in y; and y;. No matter what the
constant value is which is assigned to UR, it will provide us with the

1
same values for the ratio %—.
2

Y1
We may derive ;; from equation (2) and, according to the preceding

statements, we shall obtain at least two solutions of odd order. [234
yi - %1 : = =
Let = = o be one of these sclutions. Let us set y; = oju, yp =
Ys 2

= azu and let us substitute in equation (3). We shall have
U'u = A ur, L’l ~: Bu?

and equation (3) may be reduced to

Aur-14+B =o.

If p - 2 is odd, this equation will give us a real value for u.

If p - 2 is even, we may distinguish between two cases.

If A and B have the same sign, we shall take the lower sign
Aur-1— B =o.

If A and B have opposite signs, we shall take the upper sign
Aup~14-Bu: o,

and we shall have two real values for u.
In every case, these real solutions are simple.

Thus, equations (2) and (3) will always have solutions of odd order.

Second case. We have
I
Uy = A (U}

We shall begin by solving equation (3), which may be written as
follows
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This equation provides us with the value of Uj. This value is
real and simple, but this is not sufficient because U, is a negative

definite form. In order that the solution may be suitable, it is
necessary that the value found for U; be negative; as a consequence,

we shall choose the sign +.

The value of U] having thus been determined, we may assign this
constant value to U}, and in order to solve equation (3) we need only /235
determine the maxima and minima of Wi . As we have seen, we shall derive
at least two solutions of odd order.

We have therefore established the fact that equations (2) and (3)
always have real solutions of odd order. The theorem presented at the
beginning of this section has thus been proven.

332. Now let V be a function of n + 1 variables

Ty, Ty -y Tn and s

I shall assume the following:
1. V may be developed in powers of x and of z;

2. For

Y= Xy =...= Tn==0,

we have the following, no matter what z may be

W _ v
Tdry  dry T dra

‘7

3. Let us consider the group of terms of V which are second degree
terms with respect to the x's. They represent a quadratic form which may
be equated to the sum of n squares having positive or negative coefficients.

When z changes from positive to negative, I shall assume that two
of these n coefficients change from positive to negative, and that the
n - 2 other coefficients do not wvanish.

Under these conditions, it may be stated that the equations

v _dv _ dv (1)

doy, dmy T dzn

have real solutions which differ from

Ty =Xy =..,=Tp =0,
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Let us develop V in powers of z and let us set

Vs Vo t-Vis 4 Vystoge

Let Uy and U; be the group of second degree terms of V; and V;.

The group U; is a quadratic form which may be decomposed into a sum
0, two of the coefficients

of n - 2 squares, because we know that, for z =
which were in question above vanish.

Therefore, if we consider the discriminant
tional determinant of

(l”n ([Uo (lpa

TN Y Ty T3 L H
dzy  dury dr,

with respect to
T T2y ey Tpy

this determinant vanishes, as well as all of its

order. However, all of the second-order minors do not vanish, unless a

third coefficient 1is zero, which we have not as

We may also assume that a linear change in
performed, so that Uj; is restored to the form

Up=Agxd+ Azl 4o A, 28
Consequently, the functional determinant of
U U, Uy

y 0 o,
dzry’  dey, de,

with respect to

is not zero.

Let us then consider the equations

v dv

dz,  de,
which are n - 2 of equations (1). We may derive

Ty, Ty veey Tp

of Uy, i.e., the func-

minors of the first
sumed.

the variables has been

(2)

in the form of series which are ordered according to powers of

Z, Ty, 4.

For this purpose, in view of the statements presented in No. 30, it is

/236
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sufficient that the functional determinant of equations (2) with re-
spect to

L3y Tyy vy Ty
does not vanish when we set

E=T XY=Ly Ty ... = T, 00

When we set z = 0 and when we limit ourselves to first-degree terms /237
with respect to the x's, equations (2) may be reduced to

dy _ dUg dU,

dry ~ dr, T dz,

and we have just seen that the corresponding functional determinant is
not zero.

Let us replace x3, X,, ..., X, in V by their values derived from
equations (2). We shall then be dealing with the conditions stipulated
in the preceding section:

1. We have no more than three independent variables z, x; and xj;.
2. The function V may be developed in powers of these variables;

3. Equations (1) may be replaced by
Y oV
P T 3
where the 3's represent the derivatives taken with respect to the xj,

Kiy oo xnfs as functions of X, and of X, defined by equations (2).

In effect, we have

JV dV dV dry dV dr, dV dr,

e —! .+
dory dx, diry dy dr, dry drp dx,,

and, in view of equations (2), it follows from this that

v _av
dry  dz,’
oV _ av
dre duy
4, TFor z > 0, V -- regarded as a function of x; and of xp, ~--

has a maximum when these two variables are zero.

In order to illustrate this, we must try to find the second-degree
terms with respect to xj; and x, in V. Let
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Wi 4- s Wy 22W, 3.,

be these terms. In order to obtain

Wy - 3V,
which are the only ones which interest me, I shall take the two /238
terms

Up-+- 32Uy,

and I shall neglect the other terms of V which cannot influence Wy + zW;.

I may derive the following from equations (2)
Ty Zyy .-y Tg

in the form of series ordered in powers of x; and x,. In these series,
I shall only retain the terms which are of degree 1 with respect to x3

and x;, and of degree O with respect to z. The other terms may be neg-
lected, because they do not influence

\VQ + 3 ‘V| .

Equations (2) may then be reduced to

duy,

2\; 2+ 25— =0

3 dzry !
dU

2A, 1y + 2+ =0,
dz,
dU

2A, ZLn+ 3 ——t =o.
dr,

If we substitute the values thus obtained in glace of X3, Xy, «svy
X,, in Up, we shall find that Uy is divisible by z<. With respect to

U,, it may be reduced to
U4- 53U} +- 2203,

where Ug is none other than the quantity which U; becomes when we cancel
X3, Xy, +ss, X, and where Ui and U% are two other quadratic forms with

respect to the x's. We shall therefore have

Up = 51U}, Uy = U+ 2U} + 22U
and
Up+ 33U, = 2 U+ 32(U2 + Ul)+ 5201,
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In order to calculate Wy + zW;, I may neglect the last two terms
which may be divided by z2 and z3, and I shall simply have

Wo+ 2 W, = s U,

I shall demonstrate the fact that V has a maximm for x; = x; =0 /239

and for z which is positive and which is very small. It is sufficient
to illustrate this for Wy + zW;, i.e., for ng.

Finally, we must prove that U? is a negative definite form.

For this purpose, we shall write the quadratic form U; as follows

U, = U] +- Uf;
Ui is a sum of two squares having coefficients whose sign I shall not
predict. UY depends only on the n - 2 variables

Lyy Thy vy Tn.

This is always possible, according to the general properties of quadratic
forms.

Let us consider the form

U+ sUy= zU) +(Up+ 2U7),

where z is assumed to be positive and very small. The form U, + zUY ,

which depends only on the n - 2 variables X3, Xy, ..., X, may be equated
to a sum of n - 2 squares having coefficients whose signs must be the
same as those for A3, Ay, ..., Ay, since —— due to the fact that z is
very small -- this form differs very little from Uy. Therefore, they do
not change sign when z makes a tramsition from positive to negative.

According to our hypotheses, when z makes the transition from posi-
tive to negative, n - 2 of our coefficients do not vanish, and, on the con-
trary, two coefficients make the transition from negative to positive.

These last two coefficients can only be the coefficients of Uj.

Therefore, Ui is the sum of two squares having negative coefficients.

In order to have Ug, it is necessary to set the following in Uj
L3=Ty=...=Ty -0,

Then U' vanishes, and U, may be reduced to U} .
1 1 1

Therefore, Ug is a negative definite form.
q.e.d.
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Therefore, V, regarded as a function of x; and x;p, is maximum for
z which is positive and is very small, and for x; = x; = 0. [240

One will find in the same way -- or rather one will find at the
same time —— that V is minimum for z which is negative and very small,
and for x; = xp = 0.

As T have stated, we have thus returned to the conditiomns stipu-
lated in the preceding section, and it may be assumed that the theorem
presented at the beginning of this section has been substantiated.

Existence of Solutions of the Second Type

333. Let us return to the hypotheses given in No. 330. We have
defined the function Smp’ which depends on u, of the 2n variables

Xl'*"zly ey xu‘*‘Eny (a)
Yl+T“l Y1+'1*‘2, LS} Yn+7“1.

The &;'s and the ni's are the values of xj and y; for t = 0. The

Xi's and the Yi's are the values of x; and y; for t = mpT.
We sould like to study the solutions of the equations

(lSmp _ ([Smp .
(I(pr—;,i)_d(\’ri—'r,,-) =0 (l)

According to Nos, 321 and 322, these solutions correspond to periodic
solutions of period mpT. We already know one of them, since a periodic
solution of period T is at the same time periodic having the period mpT.
I propose to show that there are others in additionm.

First, however, I would like to illustrate the method which may be
employed to regard Smp as being dependent only on u and on the 2n - 1

variables

Xl_*’gh Xr*‘iz, sy Xn*l“"‘sn—-h (B)
Y, + 74, Y!'i""]h ey Yn—l+73n—h Yn‘*“,'}n‘

For this purpose, we shall assume that
Xp+tp=o0.
Let us now consider the equations

___?)Smp . dsmp . l '
O PR A RTE FEu R anh

We shall employ the d's to represent the derivatives of S which is
assumed to be a function of the variables (o), and shall employ the 3's
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to represent the derivatives of this same function S which is assumed /241
to be a function of the variables (B).

I plan to show that equations (1) and (1') are equal.

Section No. 322 has provided us with the following

d3 =S{(X; =) d(Y;+ 7)) — (Yi—r; —2m=)d(X; + 7).

Equations (1) may therefore be written
—(Yi—n;—o2miw)=X; —8i=o0
(Eo21y92, .0, 1),
and equations (1') may be written as follows
-—(Yi—'r‘i—-’znl,‘ﬁ)*.xi—f"fo
(E=1,2, ..., 1 —1),
Xy--%s=o.

In view of the energy equation, we have also
F(Xe, Vo) = F(&, i+ 2mym).
According to equations (1'), all of the Xi's equal the Ei's, and all

of the Yi's (except one) equal n; + 2mym. The preceding identity may

therefore be written as follows. TFor purposes of abbreviation, I shall
write

F(E“ Ez’ R E"; T2 T, N+ 20T, L, Ny 2P T, Yn\)ZF(Y/J'
My identity may therefore be written in the following form
Floe =oamyr 4+ (Y, —n, — 2mu 7)) — F(np4-2mum) <o,

or, in view of the theorem of finite increases
(Yu——'l‘.i.—lnl,,ﬁ')F'[r‘" +aompn+0(Y,—n,—2m,x)] =o0, (2)

where 6 is included between 0 and 1, and where F' is the derivative of
F with respect to Y.

Let gg and ng be the values of &4 and ny which correspond to the

periodic solution of period T. The region under comnsideration only in-
cludes the immediate vicinity of the point u = ug, & = 52, n; = ng.

Therefore, €4 and Xi will never deviate greatly from Eg, and ny or
Yi - 2mym will never deviate greatly from ng. Therefore, the second

factor F' of relationship (2) will never deviate greatly from its value
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0 0 . . .
for Ei = Ei’ Ny = Ny and in general this value will not be zero.

Therefore, the first factor of relationship (2) must vanish, and /242
we have

Y, —74a—2m,n =o0.

In other words, equations (1') entail equations (1). We may
therefore regard Smp as a function of the variables (8). When it is

a maximum, considered as a function of the variables (B8), it will also
be a maximum as a function of the variables (a).

I have employed £g and ng to designate the values of £; and of ur

which correspond to the periodic solution of period T. The corresponding
values of X; + €4 and Y4 + nj will be 252 and 2ng + 2m;mpm (if the periodic

solution of period T changes y; into y; + 2min, in conformance with the

hypotheses formulated in No. 322). Let S; be the corresponding value of

Smp' Let us set

W= tesit 'y Vs Spp— 8oy Nyo-Em a8
Yid-ni= a2 amimpT - 1)

and let us consider V as a function of u', of the &''s, and of the n''s.
The function V will be governed by the same conditions as the function V
of the preceding section.

No matter what p' may be, V and its first derivatives with respect
to the £''s and to the n''s will vanish when

b= ri=o.

If we consider the group of second degree terms of V with respect
to the £''s and the n''s, and if we regard it as one quadratic form
which is decomposed into a sum of square terms, it may be seen that two
of these coefficients of these square terms both make a transition from
negative to positive, or both make a transition from positive to negative,
when p changes sign. The other coefficients do not vanish,

The expression
M, sin T

VA Vo
changes sign, and the other expressions

M‘L. sin pma;T

V=1 V=1
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do mot vanish. The coefficient which I have designated as D in No. 323
no longer vanishes, and there is not another one because we have only /243
2n - 1 variables, the variables (8).

The conditions presented in the preceding section therefore hold,
and we may state that the equations

dv _ dv _

—57 == 5 0
a5, = da

have other real solutions in addition to g; = n3-= 0 or, which means

the same thing, equations

dS,.p AdS,up (1)
B Cammennr el e [s)
d(Ng+ &) d(Yivw)

have other real solutions other than those corresponding to the periodic
solution of period T.

The maxima of the function Sp,, or more generally the solutions of
equations (1), correspond to periodic solutions of period mpT.

We must therefore conclude that our differential equations have
periodic solutions of period mpT, which differ from the solution of
period T, which is identical to that for u = ug, and which differ only
slightly for u close to lg.

If attention is drawn to the preceding line of reasoning, we shall
find that the periodic solution of period T need not correspond to a
maximum of S ..

P
We shall therefore set m = 1.
It is not necessary that the solution of period T be stable. It is
sufficient that one of the characteristic exponents o) equals

2hkey-—1

IJ yr—
for u = ug.
We therefore obtain the following result.

If the equations of dynamics have a periodic solution of period T,
such that one of the characteristic exponents is close to

2kny/ 1
_j—)".'r T2
they will also have periodic solutions of period pT which differ very /244
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little from the solution of period T, and which are identical to the
latter when the characteristic exponent equals

ka /Y
P

These are solutions of the second type.

Remarks

334. This entire line of reasoning assumes that Smp is a uniform
function of X; + &y, Y; + nij. Under this condition alone may it be

stated that all the maxima of S correspond to a periodic solution

(see No. 321). This fact cannot be stressed enough. It is an obstacle
which will be encountered frequently when we wish to derive the results
of the theorem presented in No. 321.

Let us determine whether Smp is a uniform function of these variables.

We may assume that m = 1, which we have just illustrated. In addition,
Sp is clearly a uniform function of the £;'s and the ni's. It will also

be a uniform function of the X; + £;'s and the Y; + ny's, provided that
the functional determinant of the Xi + &i's and the Y; + ni's with
respect to the £;'s and the niy's does not vanish in the region under con-
sideration. Due to the fact that this region may be reduced to the imme-
diate vicinity of the wvalues

[+ == [Xo, El':E?s v = 7w,

it will be sufficient that the functional determinant is not zero
at this point. This functional determinant may be written as follows
(assuming that n = 2, to formulate our ideas more clearly)

dx, dx, Xy X,
&N %, iy

dY, dY, dY, dY,

& A T dm dn

dX, dX, dX, dX,

& dn dm T

A} () L

3 dny di dny

It must therefore be verified that the equation in § [245
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g AN A% N
N g [N drs
dY, dY. g 4V QA
%, dny dty g
—=o
G A, dS g %
diy dn, dZs dry
Y4 dY, dY,  dYs
i dny d’y dry

does not have a root which is equal to -1.

According to the statements presented in No. 60, the roots of this
equation equal
ei/)T’

where the o's are characteristic exponents. We must therefore verify
the fact that we do not have

= Q%_'A I): y !

T

pT

where k is an integer number. By hypothesis, the exponent a; equals

where k is an integer number, and the other exponents are not commensur-

able with =} in general.

=
=t

The difficulty with which we are concerned will not therefore
occur,

In order to avoid this, in No. 330, T assumed that

_admy=% (k integer number)
1— —‘*7)71“'——
and not
ny- KTV
pT (k integer number)

Special Cases

335, Let us say a few words about the simplest cases, and let us
assume only two degrees of freedom.

Let us assume that the form which is similar to that which I have
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designated as Uj, in the analysis of No. 331, 1is homogeneous of the [246
third degree only in x; and x5.

The equation
dzy dry,  dry dey 0 ° (1)
always has real rcots, as we have seen.

The theorem is self-evident here, since this equation is of the

X
third degree in = It may have one or three real roots. Let us first
2

assume that it has only one in order to clarify our ideas.

If we then set

Ty=a1pcose b sino

Te= @3 C0S¢ < bypsino,

choosing the coefficients a and b in such a way that U; is reduced to
—p2, the ratio

U,

b; considered in No. 331

will only have a maximum and a minimum when ¢ varies from 0 to 2w,
This maximum and this minimum, which are equal and which have opposite
sign, will correspond to values of ¢ which are far removed from w.

We will then have
Up-t- 35U, = 2 f(9)— zpt.

The function f(¢) has a maximum and a minimum which are equal and
which have opposite sign. The function Ug + 2zU; then has:

For z > 0, a maximum for p = 0 and two minima.

For z <0, a minimum for p = 0 and two maxima.

Employing the English term, I shall use the word minima to desig-
nate a point for which the first derivatives vanish, and where there

is neither a maximum or a minimum.

The same will hold true for the function V, since -- 1if z is
very small ~-- the terms Uy + zU; alone will have an influence.

Therefore, no matter what z may be, the differential equations will

have : [247
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A solution of period T, of the first type, which is stable;

A solution of period pT, of the second type, which is stable for
z < 0 and unstable for z > O.

Let us now assume that equation (1) has three real roots.

The function f(¢) will have three maxima and three minima which are
equal pairwise and have opposite signs.

In this case Uy + zU;, and consequently, V hava:

For z > 0, a maximum for p 0, and six minima;

For z <0, a minimum for o 0, six maxima.

No matter what z may be, the differential equations will therefore
have:

A solution of period T, of the first type, which is stable;
Three solutions of period pT, of the second type. We shall see
below that, from a certain point of view, none of these solutions are

different.

Let us proceed to a case which is a little more complicated, and
let us assume that Uy is of the fourth degree.

In this case, equation (1) is of the fourth degree, and, since it

always has at least two real roots according to No. 331, it will have
two or four. We then no longer have

but rather Sgy==Jleg+m)
S(9) = flg+m).

Let us first assume that there are only two real roots.

The function f(¢) will then have a maximum and a minimum when ¢
varies from O to m, as well as when ¢ varies from m to 2m.

A distinction may be drawn between two cases, depending on the signs
of this maximum and this minimum.

First case. The maximum and the minimum are positive.

The functions Ug + zU; and V have:
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For z > 0, a maximum for p = 0, two minima and two maxima.

For z <0, a minimum for p = 0.

In addition to the solution of the first type which always exists,
the differential equations have two solutions of the second type for [248
z > 0, and do not have any for z <0. Of these two solutions, one is
stable and one is unstable.

Second case. The maximum is positive, and the minimum is negative.

The constants Uy + zU; and V have:

For z > 0, a maximum for p = 0, two minima;

For z <0, a minimuma for p = 0, two minima.

The differential equations always have an unstable solution of the
second type, in addition to the solution of the first type which is
stable.

Third case. The maximum itself is negative.

The differential equations then have:

For z > 0, a solution of the first type which is stable;

For z <0, a solution of the first type which is stable, and two
solutions of the second type of which one is stable and one is unstable.

We must now examine the case in which equation (1) has four real
roots.

The equations then have:

For z > 0, a solution of the first type which is stable, h solutions
of the second type which are unstable, and k solutions of the second type
which are stable;

For z <0, a solution of the first type which is stable, 2 - h solu-
tions of the second type which are stable, and 2 - k solutions of the
second type which are unstable.

The integer numbers h and k may take the following values, depending
upon the signs of the maxima and the minima of f(¢):

h=ks=o; h=2, k=1, h=2 k=o; h=1, k=o;

h=k=o; h=k=1.
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CHAPTER XXIX

DIFFERENT FORMS OF THE PRINCIPLE OF LEAST ACTION

336. Let
Ty, Tay v T
Y1y Y2 oo Ya

be a double series of variables, and let F be an arbitrary function of /249
these variables. Let us consider the integral

J—J"I(_' oy L) ae
= “}'7ﬁ)‘

The variation of this integral may be written as follows.

L 4([31,‘,-
J ,-»:‘/(A— 3K - £ oy i Iy —(—1;—~>(1L

In order that this variation may vanish, it is necessary that we
have

>

dz; dF d_y_,_ o f[[“ (1)

e T dy de T dey

which provides us with the canonical equations, but this condition is
not sufficient. If it is fulfilled, we have

Vo= S yiba il

[w¥ )

and it is still necessary that the second term of this equation be zero.
This is what occurs if we assume that the 8x;'s are zero at the two
limits —- i.e., that the initial and final values of the x;'s are given.

Under these conditions, the integral J which I have designated as the
action is minimum.

Let us perform the change in variables. Let x&, y& be the new vari-
ables, and let us assume that they have been chosen in such a way that

Syidz;—Ly;dr;=dS (z)v

is an exact differential. In this case, we have seen that the change /250
in variables does not change the canonical form of the equations, and this
result is an immediate consequence of different propositions which will

be presented below. Let .
1 dx!
V= —_ Apaneil |
j“ ( F 4+ Xy dt)dt'
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We have
, as
J—J=fmdt=5|_so,
where Sy and S, are the values of the function S for t = tg and t = t;.

We therefore have
8= 8 + [dS )izt (3)
If the canonical equations (1) are satisfied, we have
W =+ [Zyidz)izh;, (4)
and, consequently, in view of (2) and (3),
3= + [Eyi i)l (4"

In the same way that relationship (4) is equivalent to equations (1),
the relationship (4') is equivalent to the equations

dri; _ dF dv; _ _ dF '
de T d&yY de T T df) @
However, we have just seen that (4) is equivalent to (4'). Equa-
tions (1) are equivalent to equations (1'), which means -- as we already
knew -- that the change in variables does not change the canonical form

of the equations.

The action J' will be minimum when we assume that the initial and
final values of the variables xi are given. Therefore, a new form of
the principle of least action corresponds to each system of canonical
variables.

The equations (1) entail the energy integral
F=h (5)

where h is a constant.

Up to the present, we have assumed that the two limits tg and t;
are given. What would take place if these limits are regarded as /251
variables? Since F does not depend explicitly on time, we do not limit
the conditions of generality by assuming that ty is constant, and by
only increasing t; by &t;. For example, let us assume that tg = 0 and

that, after the variation, the wvariables, x, and Yi» have the same

i
values at the time %T (t; + 8t;) that they had at the time t before the

variation.
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Before the variation, we shall have

dzr;
J:-hh-h20fypg;dt

f)’,' (TI;; dt :‘/‘_y;d'\v,'

does not depend on time; its variation is therefore zero. We therefore
simply have

However,

8) = — Rt

The derivative of the action J with respect to the upper integration
limit t; therefore equals the energy constant h whose sign is changed.

If this constant is zero, the action J is still minimum, if we
assume that the initial and final values of the variables x; are given,

and even when we do not assume that the initial and final values of the
time ty and t; are given.

If we change F into F - h, J changes into

1 h(fi— t)- (6)

Since equations (1) do not change, this expression (6) is still minimum.

However, if we change F into F - h, the energy constant which was
equal to h becomes zero. Consequently, expression (6) is minimum, even
if we do not assume that t; and t; are given.

No matter what the variables x; and y; may be, the action J is
minimum., It will therefore be minimum a fortiori if we impose a new
condition upon it which is compatible with equations (1).

For example, let us impose the condition that the first series of
equations (1) must be satisfied, i.e., the following must be satisfied /252

dzy _ dF
T dyd’
from which it follows that

t (l . 1
J:f (F—+-27,~~}’«f)z{t:f 1 de,
[
te y

by setting
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= _—-F Ey.-(ill;-
¢

The action J, which is thus defined, is minimum.

This is the principle of least action written in its Hamiltonian
form.

Let us now assume that

h=o.

Therefore, we no longer regard the variables x; and y; as independents,
but we impose the following condition upon them

F =o.

This restriction, which is compatible with equations (1), will not im-
pede the action J from being minimum.

We then have
B ) dz;
J .fE_y, i dt

and, since h is zero, this integral is minimum even when we do not
assume that t; and t; are given.

Let us then impose the following conditioms

dzi _ dF
de d)',-’
. dx;
from which we may derive the yi's as a function of the 757’3
dry dz, dz,
Yi— ‘?i(l'h Ty «xey Ty A T T
or
dey dry dry dr il_z:,_ . ,[..I:f‘.L‘ fl_l‘-_'\ )
Yi ’;[(1‘1, Ty .-y Ty, @ :iz—, “ac’ 2’[;: 7 dr, “dt (7)
In the place of the y;'s, let us substitute their values (7) in J
and in the equation /253

F =o.

dx dxy
We shall derive TE} as a function of the xk's and the E;T'S from this
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dx
equation. We shall then substitute this value of 75} in expressions

(7) and in J. This last integral will take the following form

. dr;
f)‘yi de ([Z‘|T:f‘p dzy,

dx
where ¢ is a function of the xk's and of the derivatives E;E' This
1

integral, which is thus written in a form independent of time, is still
minimum. This is the principle of least action in its Maupertuis form.

1f h were not zero, we would only have to change F into F - h.
337. Let us first examine the most important particular case.

Let us assume that we have
F=T-—U,

where T is homogeneous of the second degree with respect to the variables
Yi» while U is independent of these variables.

We then have

dF T ..
Zy: (—[;;; =T, H=T-U.

According to the principle of Hamilton, the integral
ll
[T+ vya
<ty
must be minimum.
Let us determine what the principle of Maupertuis becomes. The
energy equation may be written

T—U=h.

The Maupertuis action then has the following expression

f('r 4 U+ h)dt.

dx; dF dT

dt T dyr T dya

The equations

have their second terms which are linear and homogeneous with respect to

254



the yi's. Therefore, T is homogeneous of the second degree with [254
dx4

respect to the Tﬁ}'s' Let dt? represent that which T becomes when

dxj

g 1s replaced by dx;; we shall have

dx?

= i

and dt? will be a form which is linear and homogeneous with respect to
the n differentials dx;. We may deduce the following from this

The Maupertuis action will then have the following expression
zf(lt VU

338. For purposes of brevity, in order to be able to study other
particular cases, let us set

’ (1'1’-!'

ST
and let us derive the y;'s of the equatioms

_dF
=

'
@y

so as to take the x;'s and the xi's for new variables. Let us employ

1

the ordinary d's to designate the derivatives taken with respect to the
xj's and to the y;'s, and let us employ round 3's to designate the deriva-

tives taken with respect to the x;'s and the x| 's.

We may readily obtain the well-known relationships

_dl 0H __ JF
A YA e

, oH
F:E.’L‘JE —H
and we will see that equations (1) are equivalent to the Lagrange equa-
tions
d ol _ oIl
dt ozt T O
/255

Under this assumption, let us examine the case in which H has the
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following form

H= Ho+ }{|+ lIh

where Hy, Hy, H, are homogeneous, of degree 0, 1, 2, respectively,
with respect to the variables x&.

We then have

, oH
Tz, ba:_', =2Hy+ ]Ih

F=MH,—H,
and the _ %—;-'m'
T dx) | dx}

Yt

are linear functions, but they are not homogeneous with respect to the
\

x5} 's.
i

The Hamiltonian action retains the same form

fn de.

Let us determine what the Maupertuis action becomes.

Let h be the energy constant. The Maupertuis action will have the
following expression
f([l+h)dt

but it must be written in the form which is independent of time.

For this purpose, let us set

dx1

Hi=T5

and

H= 5

H, is nothing other than energy, and dt? is that which this energy be-
comes when xj is replaced by dx;. In the same way, do is that which

H; becomes when xi is replaced by dx;. It is therefore a form which is

linear and homogeneous with respect to the differentials dx;.

If we take the energy equation into account

Hg = H°+ h,

256

C



from which we have

dt= 5
VHe+h

the Maupertuis action will become [256
[Tads VT -+ ds].

The Maupertuis principle may therefore be applied to the case in
which we are interested, as well as to that of absolute motion. However,
there is one essential difference from the point of view of the following
statements.

In all the problems which will be encountered, the energy T or H,
is essentially positive; it is a quadratic, positive definite form. 1In
the case of absolute motion (No. 337), the action

. / 2 ds JUSTR

is essentially positive. It does not change when the limits are inter-
changed. On the contrary, in actuality, the action is composed of two
terms. The first

f'». di vHe+ R
is always positive, and does not change when the limits are interchanged.

The second f do changes sign when the limits are interchanged, and
it may therefore be positive or negative.

If we also note that in certain cases, the first term vanishes with-
out the second term vanishing, we will find that the action is not always
positive. This fact will cause a great deal of difficulty later on.

339. 1In order to show how the preceding considerations may be
applied to relative motion, let us first consider the absolute motion
of a system. Therefore, let

H=T+U

and let us assume that the position of this system is defined by n + 1
variables

Ty, i, ey Tpy W,

where x;, X5, ..., X, are sufficient to find the relative position of
different points of the system, and w is the orientation of the system
in space.
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If the system is isolated, U will depend only on xj, X3, ..., Xp.
T will be a form which is quadratic and homogeneous with respect to /257
XE’ XE, ceey xh, w' whose coefficients depend only on X;, Xy, ++., Xp-

We will then have the equation

dT - _
dw' P

where p is a constant. This is the area integral,

Under this assumption, let J be the Hamiltonian action

'i
= [ 1 di;

A

We shall have the following, if the equations of motion are satisfied

~ o dT n d “ =1
01:[};;1?01';4——Tcw] .
i

;
dw ety

The action will be minimum (or rather its first variation will be
zero) if the initial and final values of the xi's and of w are assumed
to be given —- i.e., if &xy = dw =0 for t = tg and for t = tj.

Let us now assume that the initial and final values of these xi's
are given, but not those of w. We shall have

=1,

3 =[plwlIl=plielis
Then let
H' = H —Pw'

and
J’:fll’de,

and we shall obviously have

3V =o.

We may derive w', which is a linear, nonhomogeneous function of
the x}'s, from the equation %%,= p. It may also be seen that H' is a
!

quadratic function which is not homogeneous with respect to the xj

S.

H' therefore has the form Hy + H; + H, which was studied in No. 338.
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The integral J' will thus be minimum, even though the initial and
final values of w are not assumed to be given.

We have /258

V=] — plwy—wy),
where wg and w; are the values of w for t = tp and t = t;.

340. Let us now assume that we have a system referred to moving
axes and subjected to forces which depend only on the relative situa-
tion of the system with respect to the moving axes. In addition, let
us assume that the axes rotate uniformly with a constant angular velocity

w'.

This problem may be directly related to the preceding one. We need
only assign a very large moment of inertia to the moving axes, in such
a way that its angular velocity remains constant.

For the absolute motion, we then have

=T +U=T;-+Ty+ U.

The function of the forces U depends only on the variables x; which
define the position of the system with respect to the moving axes. Tj,

which is the energy of the system, depends on the x;'s, and is a quad-
ratic form with respect to the x}'s and to w'. Ty, which is the energy

of the moving axes, equals
I

2wt
2

and the moment of inertia I is very large.

We then have

AN + lw'
P=dw @
and
r ' 3 dT - re”
H=H—puw=(Ty+ Ty+-U)-— 3;,’ w' —Juw'?
or e
W= Ty U— Tot g T0
dw
However, Lo T,
- dw'’
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dT
Since I and p are very large with respect to E—%, this equation
W

gives us approximately the following /259

W = —

and more exactly

,_£_IdT1
W --l I-%—T-
In addition, we have
ary
Tor _pr_Paw g gamyy
2 21 1 7.7(??(»’)

We thus obtain

WeT,+U—20 4+ .L(‘ZE)’.
2

In the second member, the term before the last is a constant. The
last term is negligible, because I 1s very large.

Since we may add an arbitrary comstant to H' without changing the
Hamiltonian principle, we may set

H'=T+U

and we know that the integral

J"_—.fH'dt

must be minimum (even though the initial and final values of w are not
given).

In the expression of H", w' must be regarded as a given constant.
H" is then a quadratic function, which is not homogeneous with respect to
the x}'s, having the form Hq + H; + Hj.

For example, let a material point having the mass 1 move in a
plane, whose coordinates with respect to the moving axes are & and n.
We shall have
(¢ —w'n)t+(n' + Wi

T,=
! 2

We therefore have

ry ry g}
H,—_-iﬁ%ﬂ-, Hy=w(in—§n)  Ho= = (B+7)+ U
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The integral

L
J:f (Hy -+ 11, + Ho)de
ty

is then minimum, when we assume that the limits t and t; are given, /260
as well as the initial and the final values of £ and n.

The energy integral may then be written

Hg ::.”o + A

and we have seen that the integral
J'_-/(u,+ Hi Uy hyde = 3 4 h(ty — t,)
is minimum even though we do not assume that t;y and t; are given.
We then obtain
J'::./‘(zll,»r- H,) dt :'/[(lsm+m’(§dn_nd§)]
by setting
dst= dity dn,
This is the generalized principle of Maupertuis.

In the problems which we shall discuss, U will always be positive,
and consequently J will always be essentially positive.

This will not always hold true for J'. If h is negative, we must
assume that the point &, n is divided into sections in the region de-
fined by the inequality

Ho+ll>0.

The first term of the quantity under the sign f which is dsyH,+ 4
is essentially positive. This will not be true for the second term, i
which changes sign when we reverse the direction in which the trajectory
is assumed to be traversed.

If the point £, n is very close to the border of the region in
which it is confined, and if, consequently, Hy + h is very small, the
first term will be very small, and the second term is the one which
will give the term its sign.

J' is therefore not essentially positive. This can also be seen
by means of the following equation
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V=34 h(ti—to).

If h is negative, the first term J is positive and the second is
negative.

Kinetic Focus /261

341, Up to the present, when I have stated that a certain integral
is minimum, I was employing abridged terminology which was incorrect and
could not deceive anyone. I should say the first variation of this inte-
pral is zero; this condition is necessary in order that there be a minimum,
but it is not sufficient.

We shall now try to determine the condition for which the integrals
J and J', which we studied in the preceding sections and whose first
variations are zero, are effectively minimum. This investigation is
related to the difficult question of second variations and the excellent
theory of kinetic focus.

Let us recall the principles of these theories.

Let X}, Xp, ..., X, be the functions of t; let x}, ¥, ..., x be
their derivatives. Let us consider the integral

&
V= [ zhr,
L

whose first variation 8J is zero, assuming that the initial and final
values of the xi's are given.

In order that this integral may be minimum, a condition which I
shall call condition (A) is necessary, but not sufficient.

The condition is that

, d
S(xe, i+ e} — Zgg d—f,. ,
T

regarded as a function of the €;'s, is minimum.

Condition (A) is not sufficient, unless the integration limits are
not very close. Except for this case, it is necessary to add another
condition which I shall call condition (B). In order to explain this,
I must first recall the definition of kinetic focus.

In order that
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2) = o,

it is necessary and sufficient that the Xi's satisfy n differential /262
equations of the second order, which I shall call equations (C).

Let
Tp= ?1‘(‘)
be a solution of these equatioms.

Let us set the following for an infinitely close solution

Zi=qi(t) + &
and let us formulate the variational equations, the linear equations of
which satisfy the £;'s and which I shall call (D).

The general solution of these equations (D) will have the following
form
k=2n

b= E A (i=12,..., n).
k=1

The A, 's are 2n integration constants, and the Eik's are 2n? func-
tions of t, which are determined perfectly and which correspond to 2n
particular solutions of the linear equations (D).

Under this assumption, let us state that the £i's all vanish for
two given times t = t', and t = t". We shall have 2n linear equations
between which we may eliminate the 2n unknowns Ay .

We shall thus obtain the equation
A(E, ) =o,
where A is the determinant
e B oo Blaa

LT PR 1
A= 1 .3 n
fa fla oo Bl

L4 4l L
n.y ng o n.tn

The quantities g&k and Egk represent that which the function £} becomes
when t is replaced by t' and by t".
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If the times t' and t'" satisfy the equation A = 0, we may say
that these are two conjugate times and that the two points M and M"
in space having n dimensions, which have

2?1(")1 ?2(")1 LI ?n(t’)r
?I(t')a ?!(i")) ey ?n(t’):

respectively as coordinates, are two conjugate points.

In addition, if t" is the time conjugate to t' after t', which
is the closest to t', we may state that M" is the focus of M,

We may now state the following condition (B): There is no conju-
gate time of tp between tg and tj.

In order that J be a minimum, it is necessary and sufficient that
the conditions (A) and (B) be fulfilled.

A direct consequence may be inferred from this.
Let tg, ty, tp, t3 be four times.

Let Mgy, My, My, M3 be the corresponding points of the curve
zy= (), Ty = 2(1), vy T = 9a(1).

Let us assume that M; is the focus of My and M3 that of M;.

If condition (A) is fulfilled, we may have
Lo <<t << 1< Iy

or
Ll

or

ty < ty <t 1.

But we cannot have

Lty <]ty ty -

Otherwise, the integral v[“_l
?,

must be minimum since condition (B) is fulfilled, and the integral
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I

will not be minimum since the condition (B) will not be fulfilled for
this term.

This is impossible, since we may vary the functions x; between t;
and t; - € without varying them between tg and tj.

The geometric significance of the preceding statements may be [264
readily seen.

A curve in space having n dimensions
Ty = '.J,‘(l)

representing a solution of the equations (c) can be called a trajectory,
which I shall call (T).

The curve

Ti= i+ &t
will represent an infinitely close trajectory.

If we draw one of these trajectories (T') which are infinitely close
to (T) through the point M', and if this trajectory again intersects the
trajectory (T) at M" (more precisely, the distance from M" to this tra-
jectory will be an infinitely small quantity of higher order), the points
M' and M" will be conjugate if, in addition, the point which follows
(T') passes through M' and infinitely close to M" at the times t' and t".

342, In the case of the Hamiltonian principle, condition (A) is
always fulfilled. In effect, we have

H = Hy+ H, -+ H,,

and Hy, is a quadratic form which is homogeneous with respect to the xi's.

In all of these problems of dynamics, this quadratic form is definite
and positive.

!

If we change xj

into x}j + €;, H) will change into
. dH,

Py Sg. — 2
H (z;) -+ Z¢; az,

and H; will change into
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and in addition we have

Therefore , we have

]l(l", -i= Ei) = "0 -+ ”l —1- llg*{— Tey

di,
H,(z)) + Ha(gr) + g 53
1(zi) + Ha(er) )

dli,y

P
b dr;

A1+ Hy v 1)

a7 -+ Hqe(z),

from which we finally have

dH

H(zi+¢)— Be -~ = H - Hy(es),

“dzi

The first term corresponds to the function

, d
PR

since the quadratic form H,(e4) is positive definite, and we may see
that the expression is minimum for €4 = 0 -—— i.e., that condition (A)

is fulfilled.

343, Let us proceed to the case of the Maupertuis principle in
absolute motion. The integral to be examined may then be written

fd

where dt? is a positive definite, quadratic form with respect to the

differentials dxy.

For the time being,
The integral becomes

2

let us select x; as the independent variable.

where dr_ is a polynomial of the second order P which is not homo-

dx1

/265

dxy
geneous (but essentially positive) with respect to the —='s., Therefore,

let us set
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We must determine whether

/ N (/.T,' v, d YA
", 1 (Ei,r—, + s,-) — Xy a7 VP(z)

is minimum for €; = 0. In other words, we must determine whether the
second derivative, with respect to t, of the radical

S fdey
‘/ I (({.l‘: -1- E,[)
is positive.

dxi v '
No matter what the axg S and the e4's may be, we shall have /266

p<£]fi' o+ g‘-t>: at 420t + ¢,
dl‘|

where a, b, c are independent of t. The second derivative of the radical
then equals

ac — bt

-
(att+2bt 4+ ¢)t

Since the polynomial P is essentially positive, this expression is also
always positive, and condition (A) is always fulfilled,.

344, TLet us proceed to the Maupertuis principle in relative motion.
We must then consider the integral

or, choosing & as the independent variable, we have
SRV 37) + o' — ).

We must therefore determine whether the second derivative with respect
to n' of

VL T Tt 777 = w' (8 — m)

is positive. This derivative is

VHo+ A

2
(1 + 1)t

Condition (A) is therefore always fulfilled.

Thus, condition (A) is itself fulfilled in every case which we shall
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examine.

Maupertuis Focus

345. The kinetic focuses are not always the same, depending on
whether Hamiltonian action or Maupertuis action is being considered.
In order to clarify this point, let us assume only two degrees of free-
dom, and let x and y be the two variables which define the position of /267
the system, and which we may regard as the coordinates of a point in
a plane.

Let
z=fi(8), y=, {0

be the equations of a trajectory (T) which will be a plane curve. Let
us set

= fi(t)+§,  y=Lfolt) T,

and, neglecting the squares of £ and of n, let us formulate the varia-
tional equations. Since they are linear and of the fourth order, we
shall have

Eaza by -+ arky + ands + aky,

=y AT ATy - AT,

where the a;'s are integration constants, and the €;'s and ni's are
functions of t.

The equation given in No. 341
A, t")=o,

may then be written

Easd

-~
_— e

8 &K
LIER AR
gmobon " 1)
"1: "ag 71:

‘e

-~

It is this equation which defines the Hamiltonian focus.

It indicates that the point x, y, which describes the trajectory
(T), and the point x + &, y + n, which describes the infinitely close
trajectory (T'), occur at two different times, i.e., at the times t' and
t", separated by an infinitely small distance of higher order.
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However, these are not the conditions which the Maupertuis focuses
must fulfill. Two points of the trajectory (T) —-— i.e., the two points
M' and M" which correspond to the times t' and t" -—- must be separated
by an infinitely small distance of higher order from the trajectory
(T'). However, it is not necessary that the moving point which tra-
verses (T') passes precisely at the time t" —— for example, infinitely
close to M". On the other hand, the energy constant must have the same
value for (T) and for (T'). This last condition is not imposed on
Hamiltonian focuses.

One of the solutions of the variational equations is /268
E=/0000  n=/fi(0).

We may therefore assume that
=000 W=/, g=rie, T =/ (0),
The two functions £1 and n; are thus defined.

In addition, the difference between the energy constant relative to
(T) and the energy constant relative to (T') is infinitely small, This
is obviously a linear function of the four infinitely small constants

a1, dp, az, ay.

Without limiting the conditions of generality, we may assume that
this difference is precisely equal to ag.

The condition stipulating that the value of the energy constant be
the same for T and (T') is then a, = 0, or

p— 14
E=aibi+arty+ayty,
L=+ @y + ag .

For t = t', £ and n must be zero, from which we have equations

a by + a, 8y +ay 5;3:0;

4 ' ’
017“—}—(!,7"—}- Q374 = 0.

In addition, the value of x + £, y + n for t = t" + ¢ must be the
same (up to quantities which are infinitely small of a higher degree)
as that of x and y for t = t", which may be written

(:+a,)$’.’+a,$§+a,§§=o,
(£+ al)71‘1'+a!7l;+al.'};=0:

from which we have, by elimination,
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ny Ty T, o 2
£y B o ] @

Ty oy oo 71}
By developing the determinant, we obtain
Eory—E8my iy —En)
Elny—tinl Bni—E

and, setting /269

E_s_”.z— 11 Es

Eims — B3

equation (2) becomes

LYy =)

(3)

Application to Periodic Solutions

346. 1If we are dealing with a periodic solution of period 2w, the
functions fj(t) and f,(t) of the preceding section will be periodic of
the period 2n. The same holds true for

L=/ (1), T=J% (L)
In addition, according to Chapter 1V, the variational equations will

have other particular solutions which will have the following form

£ = extna(0) n = exths(0):
£ == e #o;3(1), T, = e X4 (t);

Fe= o () + B (1), m= )+ B (1)

In these equations, B is a constant, a and -o are the characteristic
exponents, and the ¢'s and the y's are the periodic functions.

Let
dr dy\ _
F(.’l’, I ?{7, ?f?) = conslt.

be the enmergy equation. We must have

dF, dF  dF &  dF dn_
A A A P dv dt~
d = d =—
dt dt
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where A is a constant. If we replace £ and n by e*t¢,, e®*ty, in this

equation, the first term becomes a periodic function of t multiplied

by e®" and -- since it must be constant —- it is necessary that it be
zero,

We shall therefore have

A=o.

This indicates that the two infinitely close trajectories which /270
have the following equations

z=/01(1), y=/, (1)
and

= fi(t)+etoy(t), ¥ =Lfi(t)+ 2ty (t)

correspond to the same value of the energy constant.

In the same way, we find that the same holds true for the trajectory
which has the equation

T=fi(t) - emdtoy (), y = fo(l)+ematdy(t).
Nothing prevents us from setting

ro_ . K
g1 = e"l‘?h N == eihfh

Ey==e~%gy,  ny=e—y.

Then z(t) has the following form

Lty = et G(e),

where G(t) is a periodic functionm.

Case of Stable Solutions

347. We must now distinguish between two cases:

1. The solution is stable and o? is negative. In this case &, and
€3, and ny and n3 are imaginary and conjugate. The modulus of Z and G
is one. We shall formulate three hypotheses which we shall justify at
a later point.

l. Let us first assume that G(t) never becomes either zero or
infinite;

2. The function

1
L logG(t)y=1
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which is essentially real also constantly increases;

3. 1In addition, let us assume that log G(t) is a periodic
function. )

Equation (3) may then be written as follows, employing t' and 1"
to designate two values of T which correspond to t' and to t":
, o kim

=T (k is an integer number)
a

One single value of T corresponds to each value of t, and one /271
single value of t corresponds to each value of 1. We therefore cannot
have k = 0 without t' = t". If we desire t" > t', it is necessary that
k be positive.

By setting k = 1, we shall give the smallest value to t" - t'. We
have

and the point M" is then the focus of M'.
One factor must be pointed out.
In order that the preceding line of reasoning may be applicable, it

is necessary that log G(t) be a periodic function. However, in general,
all that we know is that G(t) is a periodic function, and as a result

logG(t)

is increased by a multiple of 2im, for example, of 2kim, when t increases
by 2n. Then

logG(¢t) — tht
is a periodic function.
Let us then set G ()= G(r)e—iH,
, ik
ad=a+ —;
2

we have 2(1) = 2 G (1) = et G'(2).

We shall then no longer set

A

1
= { A4 T2 logG(t),
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but rather

T
T = ¢4 . logG'(¢) .

Since log G(t) will be periodic, the preceding conclusions remain valid,
and equation (3) will be written

,  miw
f—-r::—;— (mn is an integer number)

and, in addition, M" will be the focus of M' if [272

348. One of our three hypotheses stating that log G(t) must be
periodic has thus been proven. I may now state that the function T
must be constantly increasing, as we assumed.

Let us assume that this function has a maximum Tty for t = tg. We
may then f1nd two times t' and tY such that the corresponding values

1 and Tl of the function T are equal, and two other times t), and t)
such that Tz = ; and such that the five times which are very close
to one another satisfy the following inequalities

['z Z I'[< Ly -Z l','< l;.
Then tY will be the focus of tl, t; that of t',. We saw above that

such inequalities are impossible when condition A is fulfilled.

I may now state that G(t) cannot vanish. We have

The numerator and the denominator of z(t) are imaginary and conju-
gate. If one of them vanishes, the other also vanishes, so that the
function ¢(t) cannot become either zero or infinite.

Thus, all of our hypotheses have been proven.

Unstable Solutions

349. Let us now assume that the unstable solution and a? are
positive; in this case &3, ny, &3, n3, Z, a, G are real.

For the same reason as given above, the function T will be con-
stantly increasing. However, two hypotheses are possible:
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1. The quantity z(t) cannot vanish nor become infinite, and
increases constantly from 0 to +~ when t increases from - to +=.

It then happens that no point of our periodic solution has a
Maupertuis focus.

2. The quantity z(t) may vanish for t = tg. It will also vanish /273
for t = tg + 27, and since it cannot have either a maximum or a minimum
it must become infinite in the interval. 1In the same way, if {(t) can
become infinite, it must also be able to vanish.

In order to clarify our thoughts, let us assume that z(t) becomes
infinite for

=1y &, H+ 2w

and for values which differ from these by a multiple of 2w, and vanishes
for

t=1t,, t,, t,+2m.

I shall assume that
Ly < < < ty+ 27,

When t increases from tg to ti, or from t; to tp, or from t; to
tg + 27, z(t) increases constantly from -« to +x.

The closed trajectory (T) which represents our periodic solution
will therefore be divided into two arcs, whose extremities will corres-
pond to the following values of t

Lo, &4, lo+2m.

Each of the points of one of the arcs will have its first focus on
the following arc.

I may add that the points corresponding to the values of t
to, o, b, I

coincide with their two focuses.

Let t" be a value of t corresponding to an arbitrary point of (T),
and let tg be the value of t which corresponds to its n= focus. We

shall have

lim G L 2%
n 2
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However, this is not all; we shall have
G (1)) = e G (L")

If n is very large and if G(t") is not infinite, since tj -
large and since we assume that a is positive, G(t;) will be very
small, so that if t" is, for example, included between ty and t;, the
difference

tia—onm

will strive toward té when n increases indefinitely.

If n strives toward -«, this difference will strive toward t, or

toward t;, depending on whether t" will be included between ty and tf
or between tjand t;. I should add that the difference t", - 2am is

either constantly increasing or constantly decreasing with n.

The values t' ti

0° correspond to the points where

»
E1%2 — 2Ty 0

However, a
periodic function must vanish an even number of times in one period.

but &3ny; — Eyn; is a periodic function multiplied by e0t,

Consequently, the closed trajectory (T) will be divided by the

points tp, t;, tg + 27 into a certain number of arcs, and this number

will always be even.

350,
stable, periodic solutions may be divided into two categroies.

From the point of view in which we are interested, the un-

is therefore advantageous to cite some examples.

Let p and w be the polar coordinates of a moving point in a plane.

The equations of motion may be written

Ao [dw\? dU d*w d> dw  dU
= () e G P T W T e 0
For p = 1, let us assume that we have
du dU ay
U= —= = 7 = P =
o da =% dy — T ot T plw) .

Equations (1) will have the solutions

w={

p=1,

and this solution will correspond to a closed trajectory which will be

a circumference.

t" is very

[274

However,
it could be asked whether these two categories exist in actuality. It
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Let us set /275

p=1+8, W=14 ¢

and let us formulate the variational equations. They may be written

., dv dty dg

am =g el g g =o

The second may be integrated immediately

dy _ .

2?—1— 2% = const.;
but this constant must be zero if we want the energy constant to have
the same value for the trajectory (T) and for the infinitely close tra-
jectory.

Therefore, if we replace %% by -2z, the first variational equation
will become
g
(TI;=§(?(‘)—3]- (2)

Equation (2) which remains to be integrated is a linear equation
having a periodic coefficient.

These equations were discussed in Sections 29 and 189 (see, in
addition, Chapter IV, in various places).

It is known that they have two solutions of the following form:
{=exG(t), [=e2Gi(1)
where G and G are periodic functioms.
We are going to present examples for every case mentioned above.
Let us first assume that ¢ may be reduced to a constant A (case of
central forces).

If A <3, we shall have a stable, periodic solution.

If A > 3, there will not be a Maupertuis focus on (T), and we
shall have an unstable, periodic solution of the first category.

I must now show that we may also have periodic, unstable solutions
of the second category.

The solution will be unstable and of the second category if G
vanishes in such a way that the ratio
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which corresponds to the function ¢(t) of the preceding sections can [276
vanish, and consequently can become infinite.

We may obviously formulate a periodic function G which satisfies
the following conditions:

1. It has two simple zeros and only two;
2. These zeros will also vanish

i/zG - dG
dtt 22 dt

As a result, every time that

{—=exG

vanishes, its second derivative will also vanish in such a way that the
ratio

U IR

remains finite.

One could obviously formulate a function G which satisfies these
conditions. The periodic function ¢ formulated by means of this func-
tion G will correspond to an unstable, periodic solution of the second
category.

As an example of function G satisfying this condition, we may set
G = sint — % (cost— cos3t).

This function vanishes for t = 0 and t = m, and it does not have
another zero if

t
5

For t = 0 and for t = w, we have

"/3(" dG
did TP gr T

In order that the ratio g;-may vanish, it is not sufficient that

G vanish; it is still necessary that G; does not vanish.
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However, this is what occurs, because if G and G; vanished at
the same time, the two solutions {277

C=exG(t), L= e G ()

could only differ by a constant factor (since they satisfy the same
differential equation of the second order), and this is absurd.

351. One point to which I would like to draw attention is the
fact that the unstable solutions of the first category and of the
second category form two separate groups, so that we cannot pass from
one to another continuously without passing through the intermediary
of the stable solutions.

Let us first confine ourselves to the particular case given in
the preceding section, and let us reconsider the equation

R )] (2)

Let us vary the function ¢ continuously, and let us determine whether
we can pass directly from an unstable solution of the first category to an
unstable solution of the second category. For this purpose, it is neces-
sary that the function G, which is real, be first incapable of vanishing,
and then be capable of vanishing. We would thus pass from the case in
which the equation G = 0 has all its imaginary roots to the case in which
it has real roots. At the time of passage, it would have a double root
or,more generally, a multiple root on the order of 2m.

This zero, which would be on the order of 2m for G, would be on the

order of 2m - 1 for %%, on the order of 2m - 2 for %E%’ so that the ex-
pression

G dG .

G2t 122G

- G

would be come infinite, which is impossible since it equals ¢ - 3.

On the other hand, we may pass from a stable solution to an unstable
solution of one or the other categories.

For a stable solution, G is imaginary. At the time when the solution
becomes unstable, the imaginary part of G becomes identically zero. If /278
at this time the real part of G has zeros, we shall pass to an unstable
solution of the second type; if this real part never vanishes, we shall
pass to an unstable solution of the first type.

No difficulty is encountered in passing from the case in which the
equation
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real part of G =0

has all imaginary roots to that in which this equation has real
roots, provided that at the time of passage the imaginary part of G is
not zero.

352, 1In order to clarify the preceding statements, I shall return
to an example which is already familiar to us.

Let us return to the equation of Glyden, i.e., to equation (1)
given in Number 178 (Volume II). We shall assign the number (3) to this
equation, and we shall write it as follows

d*r
T1{_2___1.(__gz.{._(1,coszl). (3)

It can be seen that it has the same form as equation (2).

Just like equation (2), we have seen that this equation has two
integrals having the following form

eulG, e—thh
which we have written in the notation given in No. 178 as follows

eitay(t), e-thtoy(e).

The case of h real then corresponds to the case of stable solutions,
and the case of h imaginary corresponds to that of unstable solutions.

We also considered two unusual integrals. The first is even

[F(O):: I, F'(O)::o] F(t)
and the second is uneven
[f{o)=0, [f'(0)=1]
and we have obtained the following conditions [279

F(=)/"(m) = f(=)F' (=) =1,
F(r)=f'(x)=coshm.
I shall now return to the figure presented on page 243 (Volume II)

where, assuming that q and q; were the rectangular coordinates of omne

point,we separated the regions corresponding to stable solutions and
those corresponding to unstable solutions. These latter regions are

shaded.

These different regions are separated from each other by four
analytic curves, whose equations I have presented on page 241 (Volume II).
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Following are these equations:

F(r)= 1, F'(x) = o, (o)
F(n)= 1, f(m) =o, (B)
F(Tt):——!, F'(ﬂ):o, ('Y)
F(n)y=—1, f(m) =o.

(s)

To what category do the unstable solutions belong which correspond
to our shaded regions? It is apparent that the unstable solutions corres-
ponding to one of these regions are all of the same category. This is
a direct result of the preceding statements.

At a point of one of the curves (R) and (8), the function G may be
reduced to f(t), and this function may vanish, since it is odd. There-
fore, if a region is bounded by an arc of one of the curves, (B) and
(8), the corresponding solutions will belong to the second category.

However, this is not the case in all of our regions. Therefore, all
of our unstable solutions belong to the second category.

Our example may be readily transformed in such a way that we have
solutions of two categories. It is sufficient to replace q? by q, in
such a way that this coefficient may become negative.

Our equation (3) may then be written

dx

Th—l:x(—q—&—f], cosal). (3")

Let us always take q and q; as rectangular coordinates, and let us /280
compile a figure similar to that shown on page 241. The portion of the
figure located to the right of the q; axis on the side of the positive
q's will be similar to the figure shown on page 241. But to the left
of the q; axis, at the side of the negative q's, we shall have a shaded
region which is bounded by a kind of parabola tangent to the axis of the

q's.

The shaded regions on the right will correspond to solutions of the

second category, as we have just seen. However, this will not hold true
for the shaded region on the left.

To demonstrate this, it is sufficient to set q; = 0, from which we
have
z == etV 0 x=y—q;¢ G=1.
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353. I have still only presented a discussion for a particular
case. In order to extend it to the general case, I shall show that we
always arrive at an equation having the same form as equation (2) in
the preceding section.

Let us first consider the case of absolute motion. If U is the
force potential and if x and y are the Cartesian coordinates of a
point in a plane, the equations of motion may be written

, dU . dU 1
=l =g (1)

and the variational equations may be written

Sus b T
[ e £, U
T dr r/)' M (/__)7’-

sE' _dU U
(2)

7.

For purposes of greater brevity, I shall employ accents to designate

ddg

the derivations with respect to t. Thus, £" represents =—3 here, and no
p H] p dt

longer represents the value of £ for t = t", as was the case in No. 341.

The energy integral may be written

r'r ,,':

-, = U4,

and the corresponding integral of (2) /281
du

» dU -~
z%“+]”f=-g;c4-a;n-+°h (6h is a constant).

To apply the Maupertuis principle, we must assume that

8h =o,

so that we shall have

o "—dUE au
T+ = - T
or
xlsl_’_ylr‘lzzl&_*_yirr (3)

Our equations (2) and (3) will then have three independent linear
solutions which we have called in No. 345

El ——-.’L", Lt =)"-
b T (4)

t Tis
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Let us set
8=ty —nz. (5)
If we then call 6y, 6,, 63 the three values of 6 corresponding to the

three solutions (4), we shall have 6; = 0, and the function which we
called z(t) in No. 345 will be nothing else than

8y
Y - .2,
‘:(t) - 6;

We may derive the following from equation (5)

(6)

OI: E!yl_' 7"1"—{" E-y'—_nz'
and

L 2 r.,

=ty 2"+ 8y — 5+ 28y — ).

However, x' and y' satisfy the equations (2), so that we have

. &u,  au
r= (l.rz'z ;L—E(Tj'y'
- 20, &0,

VR T T

In the expression of 6", let us replace the derivatives x" and y"' by
the values which have thus been found, and the derivatives £" and n" /282
by their values (2). We shall have
8" — 0AU =208y —/'2"). (7
. d’u | d%u
I shall designate the sum of the two second derivatlves-g—— +

2

b
X dy Y

AU (or more briefly by A).
The following identity may be easily verified
2(z+ y)E Y —n'2")
—2(&'2"+ Yy )y =+ VY =) 2@ ) (G - D)
=20y — Y2 Y+ 0y — LT 1)),
or, taking into account (5), (6), (7) and (3), we have
(2t 4 )8 — 03) — 2(2' 2"+ 'y ) 2 (2" y")0 = 0. (8)
This is the differential equation which defines the unknown function 6.
We shall set
8 =roy/rt+)7

and our equation becomes
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O’ .Z'.T'"+ r Iﬂ+3‘ l’+ "’
- Ly 3z vy, (9)
? z't 4yt

an equation having the same form as equation (2) of the preceding section.
The conclusions of the preceding section therefore remain in force. One
periodic unstable solution is of the second category, or of the first
category, depending on whether the function ¢ can vanish or not. We can-
not pass directly from an unstable solution of the first category to an
unstable solution of the second category, but can only pass through
stable solutions.

354, Do the same results still remain valid in the case of relative
motion?

The equations of motion then become

1
yH+owr = El—[—), "

dy

" — 2wy’ =

dz’

where w designates the speed of rotation of moving axes.

The variational equations will be /283
R L '—ﬂE +ﬂ.
¢ —aon’= dzt d:vdyn' 2"

R L
2wy = dx dy dy? 7

Due to the fact that the energy equation is still valid, the same will
hold true for
o it wp e an 3)
Ty =2 4y .
Let us set
0=ty —no,

and equations (5) and (6) will continue to hold.

In addition, since x' and y' must satisfy equations (2'), we shall

have
U L4 diU + d:U r
T —2wy :El—x +"Trd—y}’,
U0, drU

Ry il

Taking these equations into account, as well as equations (2'), and also
taking into account equation (3), we may simplify the expression of 6",
and we again obtain the equation
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0" 08U = 2(8y —7'2"). ()

Since the identity given in the preceding section is always valid,
we shall obtain equations (8) and (9) again. Therefore, nothing needs
to be changed in the conclusions given in the preceding section.

355. However, one new question arises.

The trajectory (T) is a closed curve. Up to the present, we have
tried to determine whether an arc AB of this curve would correspond to
an action which is smaller than any infinitely adjacent arc with the
same end points.

However, we may also question whether this entire closed curve
corresponds to an action which is smaller than every infinitely small
closed curve.

Let us first assume that a point A of the curve (T) has its first
focus B on the curve (T), so that the arc AB is smaller than the entire /284
closed curve.

This is what occurs for unstable solutions of the first category.
We have seen that the curve (T) may be divided into a certain even number
of arcs for these solutions, and that every point on one of these arcs
has its first focus on the following arc, so that —— starting from an
arbitrary point —- its first focus will be encountered before the entire
curve (T) has been traversed.

This also occurs for certain stable solutions. In the case of
stable solutions, we have set (No. 347)

1
t+- ;logG(t).-; T
and we have seen that the t of a point, and that of its first focus,

differ by %?. Therefore, if %'is larger than %; the focus of a point

will be encountered before (T) is completely traversed.

If this is the case, the action cannot be less for the curve (T)
than it is for any infinitely adjacent curve.

Let ABCDEA be the curve (T), and let us assume that D is the focus
of C. Since E is outside the focus of C, we may attach C to E by an arc
CME which is very close to CDE, and which corresponds to a smaller action.

If I represent the action corresponding to the arc CME by (CME),
we shall have
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(CME) < (CDE)

and, consequently,
(ABCMEA)<- (ABCDEA).

Let us now consider a stable solution, such that

>

~ R
N -

It may be stated that the action will no longer be less for (T) than
it is for any infinitely adjacent closed curve.

In order to clarify these ideas, I have compiled a figure, assuming
that %-ranges between %'and %3 in such a way that the focus of a point
is encountered before traversing (T) three times, and after traversing /285
(T) twice.

Let ABCDA be the curve (T). The focus F will be located between
AB, and it will be encountered after traversing (T) twice.

Since B is located beyond this focus, we may attach A to B by an
arc AEHNKHMEB, such that

(AEHONKIOMEB) << (ABCABCAB).

Since the focus of A is not encountered by describing the arc AB without

Figure 10

traversing (T), we shall have in addition

(AE -+ EB) > (AB),
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from which we have the following by subtraction

(EUNKHME) < (ABCABCA)

or
(EHME) + (HNKI) < 2( ABCA).

We must therefore have either

(EIME) < (ABCA)

or
(TINKIT) << (ABCA).

In every case, there is a closed curve which differs little from
(T) and corresponds to a smaller action.

Therefore, in order that a closed curve may correspond to an action

which is less than any infinitly adjacent closed curve, it is necessary /286

that this closed curve correspond to an unstable, periodic solution of
the first category.

356. Is this condition sufficient? In order to determine this,
let us study the asymptotic solutions corresponding to a similar un-
stable, periodic solution.

Let
T=0oi(t, y=%()
be the equations of the periodic solutionm, and let
T =0o(t) 4+ Aeo (£)4- Ae? g, (L) ...,
7 =Yo(e)+ Aty (£) + A2y (2) 4. ..

be the equations of the asymptotic solutioms. The functions ¢;(t) and
p4 (t) will be periodic functions of t. We may also write the following

setting Ae®t = u,

T =9 () + ug (L)--... = B¢, u),
r= o (8) -+ wh () - = WL, u).

1f u is sufficiently small, x and y will be uniform functions of t
and u, which are periodic with respect to t of period 2w,

In addition, the functional determinant

Nryy dbd¥V  d¥ dd

a(t,u)  dt du dt du

will not vanish. TFor u = 0, this determinant may be reduced to
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2ol ) 2slE) — Yo ()21 (1),
However, this expression is none other than the expression
Eira—

given in No. 345 divided by e, Therefore, it will not vanish if the
unstable solution is of the first category.

Due to the fact that the functional determinant does not vanish
for u = 0, it will not vanish for sufficiently small u either.

If u is sufficiently small, u, cos t and sin t will be uniform
functions of x and y.

The equations of the asymptotic solutions may be written

( z -z D(t, Aert) (1)

¥ = WL, Aeat)

and it can be seen that the functional determinant

N, y) _ 0@,
a(t, Ay (e, a)

cannot vanish. This means that the curves (1) do not have a double

/287

point, do not intersect each other, and do not intersect the trajectory

(T) [this is the case if it is assumed that u is sufficiently small.

Figure 11

This would not be the case if the curves (1) were extended indefinitely
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in such a way that u becomes very large].

The curves (1) corresponding to the asymptotic solutions will
therefore have the appearance of spirals passing around (T). This form
is shown in the figure (2). The closed trajectory {T) is represented
by a solid line,but I must point out that there are two curves shown by
a solid line in the figure. Of these two curves, that which is located
inside of the other represents (T).

The spiral curves (1) are represented by a dashed line -——-.

I may note that there are two systems of asymptotic solutions corres—
ponding to two characteristic expoments which are equal and have the
opposite sign.

These asymptotic solutions of the second system will be spiral /288
curves which are similar to curves (1), except that they turn in a
different direction. They are not shown on the figure.

In the case of an unstable solution of the second category, curves
(1) would have an entirely different form. They would intersect the
closed trajectory (T) an infinite number of times, and the intersection
points would form an infinite group having a finite number (even number)
of boundary points. These boundary points would correspond to the
values tg, t; considered in No. 349.

357. Let us return to unstable solutions of the first category
and to asymptotic solutions of the first system which are shown in
figure (2). I shall establish the fact that the action is less for (T)
than it is for an infinitely adjacent closed curve.

I shall consider an arbitrary closed curve which differs from (T)
by an infinitely small amount. This curve, which I shall call (T'"), is
shown in figure (2) by a closed curve drawn with a solid line, outside
of (T) and passing through the points C and Bj.

Let us confine ourselves to the case of absolute motion. In this
case, we have the following well-known theorem.

Let A;B,, AByy een,y A B, be a continuous series of trajectory arcs.

The end points of these arcs are located on two curves
Al.‘\g..-t\", BIBI"'BII'

If these ' two curves intersect the trajectories AlBl’ A2B2, sy ARBL
orthogonally, we shall have
(AlBi):(Ath)‘—'---=(Aan):
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where the action corresponding to the arc A;B; is always designated by
(AlBl) .

Let us therefore compile the orthogonal trajectories of the curyes
(1). These trajectories, which I shall call curves (2), will have the
following differential equation

arr  dwvry
<Hﬁ' det

( dd db d¥ dv db? e (3)
(""l’t’ 21?‘ -+ 7“ ;{d)((lu+ au ({t)+(d—ll.’ -+ —(71:;>alt du = o.
One curve (2), and only one, passes through each point of the /289

plane, provided that u is small enough. This could only not be true if
the coefficients dt and du were zero at the same time, which could only
occur if the functional determinant of ¢ and ¥ with respect to t and u
vanished. We have seen that this was not the case.

The curves (2) are shown on the figure (2) by a dot-dash line

Let AjAp, ..., As, BBy, ..., Bg be two of the infinitely adjacent

curves. They intersect the arc A;B; on (T), the arcs A;B;, A3B3, AyB,
AgBgs, on the curves (1) and the arc CB3 on (T').

For my purpose, it is sufficient for me to establish the fact that
the action of (CB3) is larger than for the corresponding arc A,Bs of (T).

In effect, we have
(AI Bz) = (AJBS)

and, in the infinitely small, curvilinear, rectangular triangle A3CBj,
we have

(CB3)> (A:B;).

We therefore have
(CB;) > (A;:By),

and, consequently,
action of (T') > action of (T).
q.e.d.

358. We must now determine whether the same result is still obtained
for relative =motion.

The irreversibility of the equations constitutes a great difference
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from the preceding case. The action for an arbitrary arc AB iIs no
longer the same as for the same arc traversed in a different direction.
If an arbitrary curve satisfies differential equations, this will not
hold true for the same curve traversed in a different direction.

Finally, the orthogonal trajectories of the curves (1) will no
longer have the basic property which I discussed in the preceding
section. However, there are other curves which I shall define, and
which have this property. This is sufficient for the result of the
preceding section to remain valid.

In No. 340, we obtained the following for the expression of the 1230
action

J':f[ds VI 5 A+ o' (Sdn— 5 d3)].

For purposes of simplification, I shall set VHp + h = F. I shall no
longer designate the coordinates by £ and n, but rather by x and y, in
order to approximate the notation employed in the preceding sectioms.
And I shall no longer designate the angular velocity by w', but rather
by w, removing the accent which has become useless. I shall then have

J'=f[F Yzt + dyt + w(zdy —ydz)],

from which we have sy 2
&= f [GF(IS o g ot o &y 2y

+w(drdy — Sy dr)ruw(zidy -y Bd,c)]

or, integrating by parts,

. R . . . F dr . Fdy
o :f[oFds+2w('>fd)"°)"1’)—Md(7{§‘>»_c'yd( ds )]

[F dzr Sx ;;_d~y_8_}: 4 m(:z:s_y -y 81-)]

(4)

1
;

The definitive expression of 8J' therefore includes two parts: a
definite integral which must be taken between the same limits as the
integral J', and a known part which I have placed between two brackets
(according to common usage) with the indices 0 and 1. This notation
indicates that we must calculate the expression between the brackets
for the two integration limits, and must then take the difference.

Let us now assume that the expression included under the sign [ in
the second term of (4) is set equal to zero. We shall obtain differen-—
tial equations which will be precisely the equations of motion, and
which will be satisfied by all of our trajectories, particularly the
curves (1).

These equations may be obtained in an infinite number of ways,
because 8x and 8y are two entirely arbitrary functionms.
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We may first assume that 8x = 0, from which we have &F = Qv dy.

Dividing by 8y ds, we may then write our equation as follows

dF dr _ dF dy L drv

Al iy il i (6)
If, on the contrary, we had assumed that 8y = 0, we would obtain /291
dF dy dF dz . dz

P A Al L

These two equations are equivalent, as could readily be determined
beforehand, If they are added after having multiplied them by

gﬁ and %ﬁ, respectively, and if the following relationships are taken

into account
fde\? dy\t dr d*r dy diy
((E) "(;y;) CU s @ T ds e T

we arrive at an identity.

If we therefore consider the curves (1), they will satisfy equation
(6). If we take this equation into account, relationship (4) becomes

. L dr i - dy By !
. ¢

Let A;B;, A2B, ..., A B, be a continuous series of arcs pertaining to
the curves (1), whose end points AjA;...A,, B1By...B; form two continuous

curves C and C'.

Let AiBj,Aj+1Bj+) be two of these arcs which differ from each other

by an infinitely small amount. Let x, y be the coordinates of the point
A;j, x + 6x, and let y + 8y be the coordinates of the infinitely adjacent

point Ai+l .

Let J' be the action relative to the arc A;B; and J' + &J' be the
action relative to the arc A 41Bi+1-

If o is the angle which the tangent to the curve A;By [which is a
curve (1)] makes with the axis of the x's, and if the two curves C and C'
satisfy the differential equation

F(cosafr +sinady)-+uwu(xdy —yozr)=o, (7)
we shall have
=0

|
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and, consequently,
(A1B)) = (A By =... = (AsBa).

The curves defined by equation (7) may therefore play the role which
the orthogonal trajectories of the curves (1) played in the preceding
section.

We may therefore consider figure (2) again, and we may assume /292
that the curves shown by the dot-dash line no longer represent these
orthogonal trajectories, but rather the curves defined by equation (7).
There will be nothing to change in the proof.

However, one point is no longer clear. In the infinitely small,
rectangular triangle A3CBj3, I have

(CB3) > (A3 By).

The triangle is no longer rectangular, and in addition I have changed
the definition of the action. Does the inequality still exist?

It may be readily seen that this equality equals conditions (a) of
No. 341, and we have seen in No. 344 that they are fulfilled. The in-
equality therefore holds, and our proof remains valid.

To sum up, in order that a closed curve corresponds to an action
which is less than any infinitely adjacent closed curve, it is necessary
and sufficient that this closed curve corresponds to an unstable, periodic
solution of the first category.

359. We must make a few remarks regarding the classification of
unstable solutions into two categories.

From another point of view, the unstable, periodic solutions may
be divided into two classes. Those of the first class are those for
which the characteristic exponents o is real, so that e®t is real and
positive, where T is the period.

The solutions of the second class are those for which this exponent

a has %% as an imaginary part, so that e%T i5 real and negative.

In the preceding statements, we only considered unstable solutiomns
of the first class. Let us see whether those of the second class may
also be divided into two categories.

We may set R £
[ 3Ea S R

r
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where a' is real. We may then set, just as in No. 346"

2= eX'to,, Ty == €%y,

= e~y Ta = ey,

where ¢, Y2, ¢3 and Y3 are functions of t which change sign when t /293
changes into t + T. These functions will be real.

We then have

e
L(6) = er g'—;%:%jz — ertG(r).

The numerator and the denominator of G are functions of t which
change sign when t changes into t + T.

It is therefore certain that these two functions vanish, and conse-
quently that the same holds true for

v
Ey7a— 32, E:m— T1s.

These last two functions satisfy the same linear differential equa-
tion of the second order, whose coefficients are periodic functions of
t which have not become infinite. The coefficient of the second deriva-
tive may be reduced to a constant. These two functions cannot become
zero at the same time, because if two integrals of the same linear equa-
tion become zero at the same time, they could only differ by a constant
factor. However, z(t) is not a constant.

The numerator and the denominator of gz(t) therefore both become
zero, and do not become zero at the same time. Therefore z(t) [and con-
sequently G(t)] may vanish and become infinite,

All of the unstable solutions in question therefore belong to the

second category. Apart from this, there is nothing to be changed in the
preceding statements.
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CHAPTER XXX

FORMULATION OF SOLUTIONS OF THE SECOND TYPE

360. We shall now demonstrate the manner in which periodic solu- /(294
tions of the second type may be effectively formulated.

Let
dry _ dF odvi A
T dyi! de — drg (1)

be a system of canonical equations. Let us assume that they have a
periodic solution of the first type
;= o; (1), yi=Yi(2) (2)

We plan to study periodic solutions of the second type which pro-
ceed from the solution of the first type (2).

The analysis may be simplified, at least for purposes of discussion,
if equations (1) are reduced to a suitable form by a series of changes
in the variables.

We shall assume that there are only two degrees of freedom. When t

increases by one period, y; and y, will increase, respectively, by
2kym, 2k,

where k; and k, are integer numbers.

I may first assume that k; = 0, because, if this were not the case,
I could cause k; to vanish by the change in variables given in No. 202.

I may then assume that the periodic solution (2) may be reduced to

Xy =0, Ty =0y Yi=0,

because, if this were not true, I could perform the change in variables
presented in No. 208.

Under this assumption, we shall see how the determination of periodic
solutions of the second type is related either to the analysis given /295
in No. 274, or to the analysis presented in No. 44,

361. Let us recall the results obtained in Nos. 273 to 277. Let
the canonical equations

de, _ dF  dy dF

W=y w s Tdm YT 1
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include a parameter A, and let us assume that they have one periodic
solution

iz wi(t),  yi=g(e), 2

of period Ty, corresponding to the value Cj of the energy constant and
corresponding to A = 0. Equations (1) will be formally satisfied by
series having the following form; these series will develop in powers
of the quantities

X, Agenmt, Ale-ut (k=1,2,...,n—1).

The coefficients will be periodic functions of t + h, depending
on the energy constant C. The period T will also depend on C and the
products AyAl. It may be reduced to Ty for

C =G, Ak‘v\;\.:o, A =o.

The exponents oy are constants which may be developed in powers
of A and the products Ay AL, and in addition they depend on C. They may
be reduced to the characteristic exponents of the solution (2) for

C:Co, A;..Aﬁ‘:o, X =o.
The Ay's, the A} 's and h's are integration constants.

When studying asymptotic solutions, we assumed that the oy 's were
real, and we made one of the two constants A vanish.

In order to apply the same results to a study of periodic solutions
of the second type, we shall assume, on the contrary, that the exponents
o are purely imaginary.

I shall assume only two degrees of freedom, which allows me to /296
remove the index k which has become useless.

In order that we may obtain periodic solutions, it is necessary
that the exponent a be commensurable with %gu If our series were con-
vergent, this condition would be sufficient. However, they are diver-
gent, and only satisfy equations (2) from the formal point of view. A
more detailed discussion is therefore necessary. A method similar to
that employed in Nos. 211 and 218 could be applied. We would thus obtain
series which would have the same relationship with those given in Nos. 273
and 277 as the series of M. Bohlin have with those given in Nos. 125 and
127. By an indirect method, we would thus fall back on the periodic
solutions of the second type. However, I prefer to proceed in a
different manner.
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Effective Formulation of the Solutions

362. By performing the changes in variables presented in Nos. 209,
210, 273, 274, which are always applicable when we have a system of
canonical equations haying a periodic solution, we may change our equa-
tions to the form of the equations presented in No. 274. 1In this section,
we have formulated the following equations (page 95)
dry _dF'  dyi  dF’

de — &y’ de T dzy’ 3)

F=F,+eF{+eFy+...,

where F', is a whole polynomial in x!, y', x, which will be homogeneous
P 1* Y10 *2 g
of degree p + 2 if it is assumed that x] and y) are of the first order,

and x% is of the second order. The coefficients of this polynomial are

periodic functions of y} whose period is 2m.

Just as in Section No. 274, we shall remove the accents which have
become useless and shall write F, Fy, Xj, ¥; instead of F', F;, Xy, ¥i-
We then assume the following (see pages 97, 98, 99)

Fo=lz;+ 2Bz ¥y,

where H and B are constants. I could also set H =1, but I shall not do
this.

Just as on page 99, let us then set [297
Ti:e“‘/ay )’|=e""y/;;
The equations will retain the canonical form, and we shall have

Fo=Hz,+ 2Bu;

The other terms Fj, F2, ..., will be periodic of period 27, both with
respect to iv and with respect to y3.

Our equations will then have the form which is similar to that
which we have studied several times, and in particular, in Wos. 13, 42,
125, etc., where the parameter € plays the role of the parameter u.
Therefore, we may employ the procedure given in No. 44 for these equa-
tions.

However, there is one obstacle. The Hessian of Fy with respect to
X, and u is zero, which is precisely one of the exceptionms given in
No. 44.

This fact compels me to assume that F depends on a certain parameter
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A, and we shall carry out the development at the same time in powers

of X and of €. We saw in Chapter XXVIII that when studying periodic
solutions of the second type it is always convenient to introduce a
similar parameter, because the property of being reduced to a solution
of the first type for A = 0, and of differing from it for A Z 0, charac-
terizes solutions of the second type.

To facilitate the discussion, instead of an arbitrary parameter, I
shall introduce two parameters, which I shall call A and u.

We shall therefore assume that the different coefficients of F may

be developed in powers of two parameters A and u, and that for u = X = 0,
H and 2B may be reduced to -1 and to -in, where n is a commensurable,

real number.
I shall assume that A and p may be developed in increasing powers
of €, in the following form
A= hge - At L M=t e+ aet-, L,
where Aj, Az, ..., are constants which I shall provisionally leave unde-

termined, but I reserve the right to determine them in the computations
which follow.

Under this assumption, let us follow the computation presented in /298
No. 44 step by step. We shall set

Ty =g -+ by + ey 4-...,

Y=ot tny el 4., A
U = Up-4-Uy+ e2ug4-...,
v =g -+ evy ey +, ...

These formulas are similar to the formulas (2) of No. &44.

The & 's, m's, uy's, and the vy 's are therefore periodic functions
of t; &y and ugy are constants, and we have

To:==1, ¢p = nt <t 3,

where w is an integration constant which I shall determine more completely
below.

Instead of A, u, x5, y2, u and V, let us substitute their expansions
in powers of € in F. Then, F may be equally developed in powers of ¢, and
we shall have

F=®)+edy+-e2Py+..,.

I would like to point out that ¢, 1s homogeneous of degree k + 2,

if we assume that Ep and u, are of degree p + 2, np and Vp are of the
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degree p, Ap and Vp is of degree p.

It is therefore a whole polynomial with respect to

bpy Up Ta o Apy Bp (p>0),

and with respect to

Vigers,  Yuge .

These last two quantities may be assumed to be on the order of 1.
Finally, the coefficients of this polynomial are periodic functions of
ng whose period is 2m.

In addition, we shall obtain

D= O — E/‘—— g -t- )~k[]050+ 2 By g g,

where Hy and By are the values of ag and a8 for x = u = 0. (We may

di du
dH dB o
assume that we have E; = =0 for A =y =0.) In addition, Ok depends
only on
Epy Mpr Upy Vg Aoy My (pSh—a).
Our differential equations may then be written /299
dby Py dnx _ dbi duwe _ diby dog APy (5)

qe T dn,’ ac T LE‘,_’ a7 Tdey! dt ditg

For k = 0, they may be reduced to
d% du, . dr, . dvg

P A LI i
They demonstrate the fact that &p and ug are constants, and that

g = ¢, vg=1Iint + w,

where & is a constant which must be determined.

We may advantageously add other equations having a similar form to
equations (4) and (5), which are only transformations of them.

Let us develop x; and yj in powers of e, and let

o=y ek Herfy o ")
PR R Y Sk YR

The expansions (4') may be directly concluded from the two last ex-
pansions (4).

We then find that ¢, is a whole polynomial with respect to the
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quantities
8 me & Tp A Bp  (writing ng separately), (6)

and that this polynomial is homogeneous of degree k + 2, if we assume
that

(p is of degree p +»,
0, mp is of degree p -+,
T hps o 18 of degree p.

We then have the following equations
B _ AP diy _ db (5"
de Tyt de T T
which are equivalent to the last two equatioms (5).

(l"f’k d‘bk d’bk (I‘I‘k
We may note that ’(Tr;o‘l ('[:’:;': (75';’ Jrz

are polynomials having the same
form as ¢, with respect to the quantities (6). Using the same convention

employed above regarding the degrees, we find that they are homogeneous,
the first of the order k + 2, the second of order k, and the last two of /300
the order k + 1.

We have

‘Elo — q/uue"“ﬂ’, 7;8 = */uoe—(nit+cr)'

Let us replace &), do by these values, and at the same time let us

replace ng by t, in equations (5) and (5'), in which it must be assumed
that we have set k = 1, and let us employ them to determine Els N1, U],
vl’ e]_ Tl'lc

We thus have the six following equations

i? :_%‘% =—g§ol—x,ﬂo, gd—t’ = j—:;,
— (idat_" = :11_:2: —in ffill—,o' + 2By g%,: = gf—:: —indi+2Bou s, 7
Dt G - aBup = G i = 2B,

Let us first consider the second of these equations. The second term
is a homogeneous, whole polynomial of the third degree with respect to
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‘/E—OY EIO’ T]’Ov
whose coefficients are periodic functions of ng = t of period 2w,

Since n is commensurable, our second term will also be a periodic

function of t on which it depends in two ways: by means of ng which
equals t, and by means of &'y and nYy which are functions of nt + w.

The period will be a multiple of 2w, i.e., it will equal as many
multiples of 2m as there are units in the denominator of n.

Our second term can therefore be developed in Fourier series in
the following form

T Aeilptratntsml (8)

where p and q are integer numbers. However, q does not exceed 3 in abso-
lute value, since our second term is a polynomial of the third degree.

As a result, in general the mean value of the second term is zero.
This mean value will be obtained by retaining the terms which are inde- /301
pendent of t in the series (8), i.e.,

p+gqn=o.

I have stated that |q| can not exceed 3. T would like to add that,
due to the fact that our second term is a whole and homogeneous polynomial
of degree 3 in &g, & and np, it is assumed that &, is of degree 2 or a
second term cannot contain &g and 1y except in an uneven power —- i.e.,

q must be odd and can only take one of the values +1 or #3.

Therefore, we can only have
p +gqn=o

if the denominator of n equals 1 or 3.

We shall exclude the first hypothesis which would make n a whole
number, but two cases remain for our consideration:

1. The denominator of n does not equal 3. In this case, due to
the fact that the mean value of the second term is zero, the equation
will immediately provide us with &; by simple quadrature. Then &; 1is
determined up to a constant which I shall call vy;, and this constant
remains undetermined up to a new order. It should be pointed out that
the same holds true for .

2. The denominator of n equals 3. In order that the equation may
be integrated, it is necessary that the value of the second term be zero.
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For this purpose, we shall employ the constant @.

Let [ 01 ] be the mean value of ©;. We should point out that we
have

—n [f{(ﬂ] _ 48],

wl T de

and we shall therefore determine W by the equation

d[0:]
Cdwm

o 9)
and a quadrature will then provide us with &£;, up to a constant Y1

Let us now take the first equation (7). The same line of reasoning
de
may be pursued for this equation. However, since =L is no longer a

d&g
polynomial of the third degree, but rather of the first degree, and since
n is not an integer number, we shall be certain that the mean value of /302

EEL is zero.
dgg

It is therefore sufficient for us to take A; = 0 in order that the
second term may have a mean value of zero, and in order that n; may be
determined to a constant §;.

Let us now pass on to the last two equations (7). They may be
written as follows

13
ek 3 ]

., d8 s
+ink, = - + 2B,

dt dn,
dr, ., ae,
— -E‘t-'— —inn|=— d—e,a —2Bop, 7,

The second terms are the known periodic functioms of t. In order
that integration may be possible, it is therefore sufficient that the
second term of the firstequation does not include a term containing elnt,
and that the second term of the second equation does not include a term

containing e~int,

This double condition could be discussed more readily by considering
these third and fourth equations (7) which are equivalent to the last two,
and which may be written

duy _ de, dey _ i‘ﬁ — a2 B

dt T dee”  dt T dug
It is necessary that the mean values of the second terms be zero.

With respect to the first of these equations, the condition is
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fulfilled by itself, and we have
[de’ll _d[8].

dve | dw

This latter expression is zero because of equation (9), if the
denominator of n equals 3, and in the opposite case because [0] is
identically zero.

The second condition may be written

d[e.]
duy

= —2p;B,.

1f the denominator of n equals 3, it will provide us with p;.

On the other hand, if the denominator does not equal 3, it will pro-
vide us with u; = 0, because [0;] is identically zero.

Thus, we may see that &1, ni, gy, n; are periodic functions of t /303
and of ©. They may therefore be developed in Fourier series in the
following form

T A eilptvgnt+qm,

However, we may add a few words more. We must deal with equations
having the following form

i3 , d
Z =X= EACI(PI'&-an—qB), _d_? + L',_p,] =Y = 2Bei([,:t+qrnl+qz::)Y

and we shall derive the following
E —_ 2 — A____ elx'(pl+qnu-qm -+
Hp+4qnr) T
B
— — . ellpt+gn } te—in
=By e
where y and y' are integration constants.

Therefore, if X and Y are whole and homogeneous polynomials with
respect to

Vi, Vugeitnt+ol, V uge—itnt+ar

the same will hold true for & and n, unless it is assumed that the con-
stants y and y' are zero. If it is not assumed that these constants are
zero, § and n will still be whole polynomials, but not homogeneous.

Let us apply these principles to the quantities which we have just
computed., Due to the fact that
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de, de, d_e_‘ a8
&' dng’ % dn

are polynomials which, according to the convention which we have em-
ployed regarding degrees, are of the following degrees, respectively

1, 3, 2, 2,
the same will hold true for

T, Elr 71;! E,l

When we substitute the values of these quantities which are, re-
spectively,of degrees 1, 3, 2, 2, instead of these quantities in 05,
it may be seen that O, becomes a polynomial of the fourth degree, and
that

8, 8y d8y  do,
&, dn’ &, dn,

will be polynomials of the following degrees, respectively
2, 4, 3, 3.

We may therefore formulate a generalization of this result.

Equations (5) and (5') enable us to compute the unknowns Ek, M
s nk from place to place., This would only be prevented if the mean

[304

value of the second term of one of the equations (5) were different from

Zero.

Let us assume that this does not occur. It may be stated that

Eh Tiky E;n 7;,k

will be polynomials of the following degrees

k+a, & k41, k+1

with respect to

vk, Vieitnt+m), Vige-ilatro), (10)

where the coefficients of these polynomials are themselves periodic func-

tions of t of period 2.

Let us assume that this is valid for every value of the index which

is less than k.

We know that Ok is a whole polynomial of degree k + 2 with respect to

Eq.- Tigs E/q’ 73'q (q<k)

(11)
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assuming that these quantities are of degree q + 2, q, ¢ +1, ¢+ 1,
respectively. If we substitute polynomials whose degree, with respect
to the quantities (10), is precisely q + 2, q, q+1, g+ 1, in place
of these quantities (11), it is apparent that the result of the substi-
tution will be a polynomial of degree k + 2 with respect the the quan-
tities (10).

Therefore, G is a polynomial of degree k + 2 with respect to the
quantities (10), and for the same reason

doy d8, dé, dbi
e i e A
dt,’ dne’  dE, dmp

will be polynomials of the following degrees /305
k, k+2, k+1, k+1

with respect to the same quantities.

The same holds true for the second terms of the first, second,
fifth, and sixth equations (7). Consequently, by repeating the previous
line of reasoning, we should readily see that the same holds true for

T Bk Mk Eke
' ' q.e.d.

The integration of equations (7) has introduced four new integration
constants. They provide us with information concerning £;, n1, £1, Nl»
up to the following terms

Ti» 3y, Y’le+””‘+c’” 8 e—fnt+m),

containing the four arbitrary constants
1o 80 T 8
We shall retain only one of these constants and we shall set
Yl=81=0! & =—1
Under this assumption, let us try to determine

£ T E'h N

by means of equatioms (5) and (5') and by setting k = 2.

It is necessary that the second term of the first equation (5) has
a mean value of zero. This mean value equals

5]
d"]o ¥
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and we always employ the brackets to represent the mean value of a
function. We must therefore have

deg _ ]
I:d—'l;o] = 0. (9 )
Let us assume that 0, is developed in Fourier series in the following

form
ZAeflptrgntvga,

Since 6; is a polynomial of the fourth degree, q could not exceed 4 in
absolute value. Consequently, if the denominator of n is larger than /306
4, [62] will be identically zero, and the condition (9') will be ful-

filled by itself. The constant W will remain undetermined.

If the denominator of n equals 2 or 4, the condition (9') will de-
termine w.

If the denominator of n equals 3, the constant & has already been
determined by condition (9), and condition (9') will enable us to deter-
mine the constant Y.

Let us calculate the terms depending on this constant Y} in 6;.

We obviously will obtain

, [d8; . de 3
Y4 (25_'“1 eilnt+o) _. _T:: e—t(num)),
i.e.,
Yi_ 48
Vi 3
The mean value of this will be

Y1 da[e,]
iVu, @

The condition (9') may therefore be written { if it 1is noted that
[:”“9*_:,_ d:[8,]

drode |7 Tdat |

i 28]
iyu, dao*

where H depends on @, but not on Y.

If the denominator of n does not equal 3, [0;] is zero and condition
(9') is independent of Y|. Therefore, if this denominator equals 2 or 4,
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equation (9') will depend on ® and not on ¥; and will determine w.

If the denominator equals 3, condition (9') depends on y& and will

determine y& (it will provide us with y& = 0).

In any case, having thus determined &3, let us try to calculate np
by means of the second equation (5). We shall employ A; in such a way
that the second term has a mean value of zero.

We should point out that X, will not be zero in general, and £307
d[8,]
)

will not be zero in general, because, due to the fact that 0y is a poly-
nomial of degree 4, it will include a term containing €§ which is inde-
pendent of the EL'S and nk's. The coefficient of this term will be a

periodic function of t of period 2m, and the mean value will not be zero
in general.

Let us proceed to equations (5') or, which is the same thing, to the
last two equations (5). The second terms of these last two equations must
have a mean value of zero.

We must have

()
[;7:] = — 2By,

which determines U, However,
u@_,’!dgt rdei
P qu, T gE T dy,

is a polynomial of the fourth order. F» therefore includes terms containing
2 2 d 1 do, ., 1ud .
X1y], and consequently up EGE includes a term containing

ul = (;/Ee"ﬂ'*ﬁ)’(\/u_oe-"‘»"“"?”)’.
The coefficient of this term is a periodic function of t, whose mean value

is not zero in general. Therefore, in general [dGZ
d

Yo

and, consequently,

up are not zero. This is the same line of reasoning as is employed for
Ao,

We must then have [d&

m]—_-o.

(12)
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However, it may be stated that this condition is fulfilled by itself.

We have the energy integral F = const., from which we may deduce the
series of equations

Py = const., P, = const., &, = const.,
Let us consider the third of these equations

Dy = 8, — £y — inuy+ Ay Hokg + 2By paue = const.

This equation may replace the fourth equations (5) and, when XA,, u,, £r, /308
ny and v, have been determined by means of the first three equations (5),

it will %etermine u; without any integration. We may therefore be assured
that the determination of u, is possible, and, consequently, that the con-
dition (12) is fulfilled.

We will have thus determined &;, np, &, 1, up to the following terms
Y2, S, -Y;ei(nh»m), 3;6-1(,;“5:1,

depending on the four arbitrary constants. We shall retain only one of
these constants, and we shall set

Yr= 08 =o, 8 = —1i.

363. The calculation will be continued in the same way. The ability
of equations (5) to be integrated requires the following conditions

dae, de, a6, d8,
[‘_1:";]:0’ [:i;(;]:o; [95]+)\k110:(), [m]—v—zkao:o,

The last two conditions will determine Ak and Hi. The second will be a

consequence of the first, according to what we have learned with respect
to condition (12). We must then study the first.

do
Expression Eﬁ% is a polynomial of order k + 2. If it is developed

in Fourier series

ZAeitptrgntaga
?

the integer number q cannot exceed k + 2 in absolute value. If k + 2
is smaller than the denominator of n, we could not have

PH+gn=o

and the mean value of our expression will be zero. The condition

[&]-> (s
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will therefore be fulfilled by itself.
We have introduced the following arbitrary constants:
L (TR (T (14)
and 0 may depend on /309
T Y Yoo oo Yeers

Let us determine the form of this dependence. Let us assume that we are
considering the expansion

F=®)+:eb,+erdy4-... (15)

and that in this expansion we replace the &'s, the n's, the & 's, and the
n' 's by their values. The different terms of the expansion will then de-
pend on the constants (14). In this expansion (15), let us cancel all the
constants y', retaining only @. We will thus obtain a new expansion

b+ P+ 2Py ... (16)

In the expansion (16), let us now replace the constant @ by the expan-
sion

LI ~ ST LR - P

where ®), wp are new constants. Each term in the expansion (16) may be
developed in its turn in powers of e. When this expansion is ordered
anew in powers of €, we obtain a new expansion

by 4P +erbi 4. (17)

This expansion must be i{dentical to the expansion (15), under the condition
that the constants © are replaced by the suitably chosen functions of the
constants yk.

It may be readily seen that ¢ﬁ depends only on

B, B, - Wh—1
and that ¢, depends only on
B Y e Trete
We may conclude from this that Ei depends only on
Yo Yoo o-eor Tk

and YL on
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It may be readily seen that /310

w=SAD®, ool o,

where A is a numerical coefficient and where D@; is a derivative of @;

with respect to Ww. The order of this derivative equals

¢1+dg+...+zk
and we then have

k=’n+¢x+2&z+---+k1‘..

Since m is at least equal to 1, and since &; does not depend on w, it may
be seen that o, 1s zero, which we already knew.

Let us consider an arbitrary term where O»> Ok-1s +++s & 4q are zero,
but where o, is not zero. We must have

mik—h.

If the denominator of n is larger than k - h + 2, the mean value of Do,
will be zero. This means that those terms of @E which depend on @, have

a mean value of zero.

An important result may be concluded from this concerning the mean

value of ¢, and consequently the mean value of 0.

If the denominator of n equals k + 2, [0 ] will depend only on B.
If the denominator of n equals k+1, ﬂJk] will depend on @ and wj.
If the denominator of n equals k, [@k] will depend on W, W] and Wy.

If the denominator of n equals k - 1, [Gk] will depend on W, W, W,
and wj.

The statements which T have just made concerning [ek] also apply to
[d@k]
dngp
Therefore, if the denominator of n equals k + 2, relationship (13),
which will only include W, will determine .

If the denominator equals k + 1, relationship (13) will contain @
and W;. However, @ will have been previously determined by the relation-

hi
Ship A0 T _
[ drg ]—o.

309



Relationship (13) will therefore determine W and, consequently, ¥j.

1f the denominator equals k, relationship (13) will contain W, )
and ©;. However, ® and w; will have been previously determined by rela- [311
tionships having the same form as (13). Therefore, (13) will determine
Wy and consequently Y. This process will then be continued.

Discussion

364, The solution which we have obtained still includes the following
arbitrary constants

€ §or  Un.
With respect to the parameters A and u, we have obtained them from
their expansions in increasing powers of €, and we have successively cal-
culated the coefficients of these expansions. These coefficients X, and Wy

depend on the two constants £y and up; these coefficients were calculated
by means of the following equations

0 _ d8; ) _
[Ego‘] -+ }\kllo = {B’E;] -+ ll—lkBo = 0.

k dOk ) .
where Ok, iz, and ug dug are whole polynomials in

50, ‘/u—oeziml+m)_

Let us set P
8= EPEO'T:O’E{"’,: zQ,

where P is a whole polynomial with respect to
Eh E!y vy EI“ E’p ey 75'“ 1]'3, (18)
whose coefficients are periodic functioms of ngp.

We then have

‘di‘:— del‘__ h|+hg
£ dio—ﬂzth' u°d—uo_2< P )Q

Let us then replace the quantities (18) by their expansions, and let us
set

P = EBE MDY,

where B is a periodic function of t of the period 2m. We obtain the
following from this

310



0= SBEb Ao ghh = SR,

dek 2 }l|+ h]

i R.
“o dug 2

8z e
=0 deo - “th!

We shall obtain /312
de, de,
oz =[]

while retaining the terms which are independent of t in the expansions.
The different terms of R contain the following exponentials as factors

e’Pt X eitnt+ )b +h,—by—h,)

In order that this term may be independent of t, it is necessary that

P rn(bi+ hy— &y — ky) =0,
which illustrates the fact that b; + h; - b, -~ hy must be divisible by
the denominator of n. Therefore we have

by hy+ by - hy > b+ hy— by — Iy > denominator of n2a,

which indicates that R is divisible by ug, since up is included with the

exponent %-(bl + h; + by + hy).

There would only be an exception to this if we had

b‘+’l‘=b,+,’lx_;

but we would then have either

b:+h|31,
b+ hy+ by+ hy2 2,

in such a way that R would be divisible by ug, or

b,:h,:b,:h,:o,

from which we have
h]+hg

2

=0.

de
However, the corresponding terms would not then appear in ug [ﬁ;%].

In the same way R will always be divisible by &g, unless hy = 0, in

do
which case the term would not be included in & Eﬁ%ﬂ‘
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Therefore, to sum up we have

de, "dOg
[HTo]’ [dio]
and, consequently, Ay and u are whole polynomials of gq and Y uq. There~-

fore )\ and p are series which may be developed in powers of /313
£y ED: \/u—Oy

but these three constants do not enter arbitrarily.

Let us recall the method which we employed to introduce the auxil-
ijary constant €, which only served to simplify the discussion. For this
purpose, let us again consider the notation given in No. 274, and on page
95. We have set

— Y _ ’ . r o
Ty = ey, Yi=EY1, 1'1—5,.2", yz-—y”.

Therefore, our equations do not cease to be satisfied when we change

14 ’ ’
g Ty Y Ty

into
ek, zik, yik, xyk?

and when the parameters A and y retain their initial values.

We then remove the accents which have become useless, and we develop
x! y{, xé, yé, which we shall hereafter designate by the letters

1’

Xis Vys X5 Yoo in powers of €. We thus obtained the expansions
Bo + 28y ey +...,
T+ ey 2T ...
i . ' ’ 19

(Eo+551+515'2+---| ( )
Mo+ ey ey ...
We shall not cease to satisfy the equations if we change ¢ into-%,
and if we multiply the four expansions (19), respectively by

k” x! k) k!
or, which is the same thing, if we change

Ep; Tp» E;n "I;J

into
Epkr-p, mpk—p, Epki-P, mpki-P.
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By means of this change, we must again obtain expansions which are
identical to the expansions (19), but with different values of the con- [314
stants £ and uB. However, it may be seen that £; and up are changed
into k2£0 and k“uy by means of this change.

Therefore
EP: Nps E;u 71;

change into
Epki-r, n,k-», Epki-p, nik1-p
when £ and ug change into k2g; and kzug.

In other words, if the four expansions (19) are multiplied respec-
tively by €2, 1, ¢, €, the four products thus obtained may be developed
in powers of

‘,Eor € l/u—o'

The same must be true of A and u, which did not have to change when ¢,

€0, ug were changed into §3 k2g, k2ug.

Therefore, let us assume that A and u are expressed as functions of

EZEO and e\/uo. It is apparent that we shall thus have relationships from
which we may derive e2£; and ey up inversely as functions of A and u.

365. Let k + 2 be the denominator of n. The constant © will then
be determined by the equation
d6; _
[%e]=o

There is only an exception to this in the case of k + 2 = 2, where & is
determined by

d8,
(2] ==
dog
The expression E;E is a whole polynomial of degree k + 2 with respect
to
exllnt+o),

Therefore, each of these terms contains factors having the form

exlgint+al,

Only terms which are independent of t will remain in the mean value [EEEJ,
dng
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and we have seen that q must be divisible by the denominator of n, i.e., /315
by k + 2.

Therefore, our expression has the following form

aeciTlk+2) 4. b 4 ce—iTlh+2),

I shall now show that the coefficient b is zero.

For this purpose, I shall employ the following method. Let us cal-
culate

Eo: En RN} Ek—h
Moy M1: rerv Nkt
B By oo B
Ty T seer Tk-ts

by the procedure presented above. However, when computing £, I shall

retain an arbitrary value for @&, instead of assigning a value which can-

cels[jek] to g. Then the following equation
"o
dEk _ d0y

Ft-—d'qa

will allow me to compute £y . However, instead of being a periodic func-
tion of t, &, will be a periodic function of t in addition to a non-periodic

term
dek]
¢ .
[ dne
We have another method of calculating

to, I R Eln
Moy Ty o--0 Tik—ny

sy reey ey ey

do
and, consequently, this term t[aﬁk]. This method consists of again per-

forming the calculation presented in No. 274,

We shall determine Sy, S;, ..., Dy means of equations (2) on page 100.

No difficulty will be entailed in calculating Sg, Si, +-+5 Sk_71» but
we shall encounter some difficulty when calculating Sy by the equation
dSe dSi¢
E';;—*_QBW—(P-'—C‘.

In effect, the second term represents a group of terms having the
following form 1316
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A elm,y,+m,u,

where m) and m, are integer numbers. Nothing impedes us from performing
integration, provided that we do not have

imy+ 2myB =o.

Since 2B equals in, where n is a commensurable number whose denominator
equals k + 2, the second term of our equation will include terms satisfying
this condition. As a result, Sk will not be a periodic function of y, and
v, but may equal
Ty 2 Uy,
where T and Uy are periodic.
Having thus determined the function S and having obtained the approxi-

mation to terms of the order ekt » we may employ the procedure given in
No. 275 and may thus determine X1 Y15 X5 Yoo

These two computational methods must lead to the same result, There-
fore, let us set

= :So+€Sl+-.-+Eksk.

Let us compile the equations (see page 102)

_T:-__E U—=—-3 nlt—i—m’;:dzy Ngl -+ Wy = —=—»
2T dy’ do day e
. dC ne— — dG
MET L MT TR,

and let us derive x; from them as a function of t. The value of x, which
is thus obtained must equal

Bo+eby+... .4kl

up to terms of the order €k+1.

We are interested in calculating €ks Pparticularly that of the sec~
ular term
2]
dno
This secular term can only come from the secular term of Sy» which equals
Yo Uk
We thus have the following, up to terms of the order eKtl (equating /317

dz

the secular terms in the equation x, =
2 dy:
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d8y dUy
kel Ok kg, LK,
¢ t[d'ﬂo] =ea d}’z (.20)
In the first approximation -- i.e., up to terms of the order & -- we
have (see page 102)
= ao = ko, u=ﬁo=uo, npt+m=yi=19=1
ny=1; n, = in; Ryt - By =9 = vg=Ii(nl + B).

We shall therefore commit an error of the order gktl if, in the second
term of (20), we replace

o, BO; Y ¢

by %0, U, ¢, i(nt+w@).

do
We shall therefore obtain [——E] by making the same substitution in

dn o}
dUy i
ol However, Uy only includes terms containing
Y2
Im;ys + Mav,
where

im;+2myB = o.

We therefore have

dUe __ 54U
dys dv
dUy
However, Uy is a periodic function of y, and iv. Therefore, v

do
cannot contain a term which is independent of v. Therefore [E;E] does not
0

contain a term which is independent of w.
) q.e.d.

In order to clarify the preceding calculation, I would like to make
one more remark. The mean motioms n; and n, are given by

d€ dC

MET&E M

In general, they depend on €, and they are only reduced to 1 and in
for € = 0,

However, we are here employing two parameters A and y which may be
replaced by the arbitrary functions of €, .or, if it is preferred, we may /318
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employ an infinite number of constants A;, Az, ..., H], U2, ... . We may
then employ these constants in such a way that n; and n, remain equal to
1 and to Zn, no matter what € may be.

366. In order to determine w, we therefore have an equation of the
following form

aelk+2)io 4+ ce—(‘“h!)llw =o0,

where a and c are conjugate and imaginary. 1In general, a and c are not
zero, otherwise w could only be determined to the following approximation.

The equation will provide us with the following series of real values
for w

k9 b 34
W, Wo-+ k_+‘;’ o ﬁ;y Wy + 5
It is apparent that we do not have two values which are actually
different when we change W into @ + 27, but we have more than this. It
may be stated that the two values

27

k—+a

Wy, Wo+

do not correspond to two periodic solutions which are actually different.

Since t is not explicitly included in our equations, by changing t
into t + h we may transform an arbitrary periodic solution into another
solution which is not essentially different.

Therefore, let us change t into t + 2hm, where h is an integer number.
Then ngy changes into ng + 2hm and vg = i(nt + ) into

i(nt+2nhn + w).

Since all of our functions are periodic, of the period 2w, in ng and

iv, we shall not change our solution in any way by subtracting two multiples
vQ
of 27 from ny and > respectively, for example 2hm and 2h'm. Then ng will

again become ng and vg will change into
i(nt+ankn+w—2kz),
In other words, we will have changed & into [319
w-+a2x(nh—R').

However, we may always choose the integer numbers h and h' in such a
way that
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I

nh—h= g3

We therefore do not obtain a solution which is actually new by

R 1, 2
changing w into w + X+ 2 °

q.e.d.

We therefore have only two solutions which are actually different,
corresponding to the two following values of W

™
Wy, o+ 7;——&——2'

We must now determine the constants e2gy and e?uy. For this purpose,
we shall employ equations which relate these two constants to A and u. In
the questions which are customarily discussed, there is only one arbitrary
parameter, and we have introduced two in order to facilitate the discussionm.
It is therefore convenient to assume that A and u are related by one rela-
tionship —- for example, A = u.

The expansion of A and that of u in gowers of széo and €}/up begins in
general with terms containing 8250 and €“ug (if we disregard the case in
which the denominator of n equals 3).

1f we therefore assume that u = A, we shall derive eZEO and s\/uo
from this which may be developed in powers of V2 Either the coefficients
of the expansion in powers of }/ A will be real, or, on the contrary, the

coefficients of the expansion in powers of }/-A will be the ones which are
real.

In the first case, the problem will have two real solutions for A > O
and will not have any for A < 0. In the second case, the opposite will
hold true.

In order to determine which of these two cases is valid, let us examine
the equation which relates § to up, restricting ourselves to terms con- /320
taining €2, We shall have

g2 dG, . 7\_—_3[4_93]' .
A it A ks (21)
do, d@z
I may first observe that E;E andndgo are not only independent of t

but also of w. There is only one exception for

k+2=2, 3o0r 4,
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This is due to the fact that, for k + 2 > 4, terms having the
following form

eliptequt « ya)

which may be included in the second term in one of the equations (21)
can only be independent of t if

q.--:oy

since Iql cannot exceed 4 and since qn must be an integer number.

Thus, the second terms of equations (21) are linear and homogeneous
functions of £; and uy. The coefficients of these linear functioms are
absolute constants which are independent of .

However, ug must be positive; otherwise Vup would be imaginary. The
equations (21) added to inequality up > 0 will determine the sign of X,

I need only point out that this sign does not depend on W, since equa-
tions (21) do not depend on it. We have seen that the equation which de-
termines & has two solutions which are actually different

T
W = g, T = Ty - k-‘w_'—ﬁ'

In conformance with the preceding statements, a periodic solution
which will be real if the sign of A is suitably chosen corresponds to each
of them. The choice of this sign does not depend on W, and these two
solutions will both be real for A > 0 and will both be imaginary for A < 0,
or the opposite will hold true.

It first appears that two periodic solutions correspond to each solu-
tion of the equation for @, since two systems of values for the unknowns /321

EZEO and € Yug are obtained from the relationships between 2, W, 6250 and

€Yug- This is not the case, however. Without restricting the conditions
of generality, we may assume that ug is positive, because we do not change
our formulas in any way by changing \/uo into -y/ug, and @ into T + .

Out of our two systems of values, there is only one for which Vu 1is
positive.

Therefore, we have:

Two real, periodic solutions of the second type for A > 0 (or for
A< 0).

No solution of the second type for A < 0 (or for A > 0).
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Let us
particular,

U; may
x;y1 which

UU may

again employ the notation given in Chapter XXVIIT and, in

that given in No. 331.

be reduced to p2, and corresponds to the
appears in Oq-.

term containing

be reduced to a constant factor multiplied by o, corresponding

. do»z do,
to terms coming from| 3= and {57 }-

The fi
following £

and comes £

The function wh

play the ro

dUO dgo

rst term of W which may not be reduced to
orm

pk-1[A cos(k—2)9 + B]

rom Ok+2.

1e of the function

Up-aUi=p3f(e 3¢

studied on page 247, will have the following form

where P is

We hav
n equals 2,

Ap"*’cos(k—%—z)?—%}’p‘-—zp',

a whole polynomial in p2 with constant coe

e disregarded the particular cases in whic
3 or 4.

Discussion of Particular Cases

367. Let us assume that this denominator equals

9,

a power U; has the

ose maxima and minima we must study, and which must

fficients.

h the denominator of

/322

4.

do
Then [671, [ {] s E——J will no longer be independent of W, and

they will include terms containing e~

d€g dug

+4iw

The'equation for @ will always yield two differ

ki
w = W, m:mo—%—z

which will provide us with two periodic solutions. D
only the sign of A may depend on @, the following cas

Two re
A < 03

One re

320

al solutions of the second type for A > 03

al solution of the second type for A > 03

ent solutions

ue to the fact that
es may occur:

zero solution for

one solution for



A < 0

Zero real solution of the second type for A > Q; two solutions for
A < 0.

The function Ug + zU; given on page 247 becomes

p*(Acosfp -+ B)—azpt

Let us now assume that the denominator of n equals 3.

The expansion of u in powers of e then begins with a term containing
€y up, so that if we set u = X, we shall obtain 6250 and e€1/up 1in series

which may be developed in powers of A, and no longer of 2.

The sign of y/ug will depend on &, and if it is positive for @ = w, it
will be negative for W = Wy + %:

Therefore, if it is always convenient for us to assume that Yup is
mainly positive, we shall readily find that we have:

A real solution of the second type for A > 0 and a real solution of
the second type for ) < 0.

The function Uy + 2U; given on page 247 becomes

Aplcosdgp — zpt,
do, do,

Finally, if the denominator of n equals 2, [82]’[EEE] s EGE]’ include
terms containing ei”im, e 21w, /323

The equation for w takes the form

Acos(fo+B)+ A'cos(2m +B') =0

and it has eight solutions
Wo, 1"70—'3‘1‘» Wy -+ T, mo+3_ﬂ,
2 2

3n

By, ‘CD',-‘.—;’ Wy + T, B|+—2—-'

Of the two terms wy and Ty, at least one is real.

The following hypotheses are possible: (4, 0), (3, 1), (2, 2), (1, 3),
O, 4), (2, 0), (1, 1), (0, 2).

The first number between the parenthesis represents the number of
periodic solutions for A > 0, and the second is the same number for A < 0.
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The function given on page 247 becomes

Agtcos o - Bphcosap 4 Cptsin2g -+ Dgt— zpt

Application to Equations of No. 13

368. Let us return to the canonical equations of dynamics:

de;, dF  dyi __ dF

dt d}’i, det dx; (L)

Just as in No. 13, No. 42, No. 125, etc., I shall assume that F is a
periodic function of the y's, which may be developed in powers of a para-
meter u in the following form

F:Fo—i—FFl—i—-..
and that F; depends only on the x's.
We saw in No. 42 that these equations have an infinite number of solu-

tions of the first type
Ti=9i(t),  yi=¢i(t) (2)

where the functions ¢; and y; may be developed in increasing powers of u. /324
Let us consider one of these solutions (2).

Let T be the period, and let o be one of the characteristic exponents.
There will be two of them, which are different from zero, which are equal
and have opposite signs, where we may assume two degrees of freedom.

We saw in Chapter IV that o depends on u, and may be developed in
powers of ]/u. When u varies continuously, the same will hold true for
o. For u = ug, let us assume that aT is commensurable with 2in and equal
to 2nim.

We may conclude from this that, for u which is close to ug, there are
solutions of the second type, which are derived from (2) and whose period
is (k + 2)T, where k + 2 designates the denominator of n.

If we put aside the cases in which k + 2 equals 2, 3, or 4, we have
seen that two of these solutions exist when X (here u - ) has a certain
sign, and that they do not exist when A (here u - ug) has the opposite
sign.

I have stated that the cases in which k + 2 = 2, 3, 4 have been dis-
regarded, and I may do this without causing any inconvenience. The
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following
aT
2%

may be developed in powers of ‘/u, and vanishes with Yu. For small
values of u, n is therefore very small, and its denominator is definitely

larger than 4.
We therefore have two hypotheses:

Either the solutions of the second type occur only for u > ug, or
they occur for u < up.

Which of these two hypotheses is valid?

Everything depends on the sign of a certain term Q, which depends
itself on the coefficients of ug and £y in

[19_! 0,
di )’ Ldu]

In order to determine this sign, we shall not need to formulate this
term, and the following considerations will suffice.

369. Let us first take a simple case, which will be that presented /325
in No. 199. Let us set

F =2z, +2}+ ptcosy,

with the canonical equations

dry _dF  dy__ dF
dt — dyi’ dt —  dz;’
which yields
dzy dra_ .,  9m_ g dri_
=0 @ =Th @ TR g T (1)

The function S of Jacobi may be written
S:z“{y,—&—fVC——pcosy,dy;

with two constants xg and C. We may derive the following from this

$2=x2' .}’!:""*'J’g:
z, =y C — pcosyy, A——(:f»*—({-?’l_ﬁ., (2)
2y/C— pcosy,

where A and yg are two new integration constants.
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It may be seen that the elliptical integral is introduced

dys

jﬁzJE:ﬁf&Eﬂ'
This integral has a real period, which 1is the integral taken between 0
and 2w, if lCl > \ul, and two times the integral taken between

H

(3)

- arec cos

if |c| < |ul.
Let us call w this real period.

A periodic solution corresponds to each value of w which is commensur-
able with 2w. However, we must distinguish between two cases.

If lCI > ‘u], y; and y; increase by a multiple of 27 during one
period. The corresponding periodic solutions are solutions of the first

type.

If lCl < ‘u‘, yo increases by a multiple of 27 during one period, /326
and y; returns to its original value. The corresponding solutions are
solutions of the second type.

This discussion must be supplemented by two unusual periodic solu-
tions which must be regarded as solutions of the first type. Let us set
u > 0, and these solutions will then be

(-’L‘x:zg, J’!':—‘-“J'g» C= My =0, Yi1—0, (4)
| ze=2y, yr=—t+yh C=—p ZH=0 J1=™

I have stated that it must be assumed that these latter solutions are
of the first type, and that the solutions corresponding to |c] < ‘ul must
be regarded as solutions of the second type.

Let us assign to C a value which is a little higher than -u, and let
us set

C= (""‘1)1"'7

where ¢ is very small. 1y will not be able to deviate very greatly from 7.
We shall approximately have

C—p.cosy,.—_-p[s——

(= —}'1)’]
2 ?

and the period w will be equal to

T
pppe— |
Van
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from which we may draw the following conclusions. Let a be an arbitrary
number which is commensurable with 2w. There is a series of periodic
solutions such that |C| < |u| and that w If u is very close to

C will be very close to -u, and for

= Q.

T

e

V= —)
2%

these periodic solutions will coincide with the second solution (4) which
We may now recognize the characteristic property

is of the first type.

of solutions of the second type.
It may be seen that the second solution (4) —- i.e., that of the
two solutions (4) which is stable -- gives rise to solutions of the second

type, as was explained in Chapter XXVIII.

If the other solutions of the first type -- those which are such that

fc| > [u| -- do not produce solutions of the second type, this is due to /327
the very particular form of the equations (1). (For these solutions, the
characteristic exponents are always zero.)

Let us first consider solutions of the first type, such that [c| > |u].
The period w, i.e., the integral (3) taken

Let us set C = Cy + €.
between 0 and 2w, may be developed in powers of ¢ and of u, and the known

terms may be reduced to
ki

VG
Let us assign an arbitrary commensurable value to VCo. We shall have

a periodic solution every time that we have
T
W= ——-"
VCo
0, and we may derive ¢ and,

The equation is satisfied for ¢ = u =
consequently, C from this equation, in series which develop in powers of

u. The equations (2) will then give us x; and y; developed in powers of

U. These are the expansions of Chapter III.

Let us set

Let us pass to the second type, such that |C] < Iul.
C = gu. We shall have
1 d)”

W= — .
\/}J- 2VE—-COS}’|

It can be seen that w‘/u is only a function of €.

On the other hand,
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2 . Je—cosyy, (A—t)\/g:f _dlL‘-___,
Vi 2 e — cosyy

X
which indicates to us that sin y;, cos yj and-—L are functions of (A - t)Y/u
u

and of ¢, which are doubl periodic with respect to (A - t)Yu. They are
also functions of (A - t)/u and of wy/u, since ¢ is a function of w)/u.

Therefore, if we assign a constant value which is commensurable with 27
to w, we shall obtain a series of periodic solutions. For these solutions /328

Ty
cosyy, sinyy and /g
may be developed in Fourier series according to the sines and cosines of the
. 2
multiples of —%Ey where T is the smallest common multiple of w and 2m. The
function of u is an arbitrary coefficient of the expansiom, and it is this

function which I would like to study.

For this purpose, we must first study the relationship between ¢ and
m‘/u.

We may vary e from -1 to +1. For e = -1, we have
il T
w»/ﬂ—;/—;-

For € = +1, we have w\/u = w, Therefore, when ¢ varies from -1 to
kil
+1 w\/u increases from = to+ «.
’ V2
Therefore, there is only a periodic solution corresponding to a given
value of w, which is commensurable with 2mw, if

kid

®ya

The coefficients of the Fourier expansion are therefore functions of u,
which are real for

Vie>

and imaginary for -

It is apparent that the same line of reasoning would lead to the same
result if, instead of
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F=zit+alsp cosyy,
we had set
F =- Fo+ “[Fill

where F( depends only on x; and x;, and [F1] depends only on x;, x3 and /329
v1. The solutions of the second type would still have been real for

B> g

370. In the general case, the quantity Q, which was in question at
the end of No. 368 and whose sign we shall try to determine, obviously de-
pends on p. If u is sufficiently small, the first term of the expansion
will provide its sign.

Let us determine the function S by the Bohlin method, and let us set
S = Sg+ uS;+ pSy+....
If y is small enough, it will obviously be the first two terms
So+ /S,
which will be the most important. If we set
F=Fo+:1F1+g.L’F',+...,

we have seen in Chapter XIX that Sy and S; depend neither on Fy or F; -
[F1], but only on Fy and [F;], where the mean value of F; is designated
by [Fl]‘

Let us again take the quantity Q from No. 368. The first term of
its expansion will only depend on Sp and S;, and consequently on Fy and
[F1]. The same would hold true if we had set

F= F°+P‘[Fl]1

which is, consequently, the same as in the preceding section.

In the preceding section we found that solutions of the second type
exist only for

B> Mo

This conclusion still holds in the general case, provided that Ug is suffi-
clently small.

What is the value of uy for which this conclusion would no longer hold?

Let us again consider the notation given in No. 361, which is that of
No. 275. The exponent a which appears there may be developed in powers of
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the product AA'.

It may be reduced to the characteristic expomnent for AN = 0.

Since we asuume that the solution of the first type is stable and /330 .

« is imaginary, A and A' are imaginary and conjugate, and the product AA'
is positive.

For small values of u, o decreases when AA' increases. If the re-
verse were true, solutions of the second type would exist only for
B < UQ-.

The desired value of pg is therefore that for which a ceases to de-
crease when AA' increases. It is therefore that which cancels the deriva-
tive of a with respect to AA'.
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CHAPTER XXXI

PROPERTIES OF SOLUTIONS OF THE SECOND TYPE

Solutions of the Second Type and the Principle of Least Action /331

371. I cannot pass over the relationships between the theory of solu-
tions of the second type and the principle of least action in silence. I
wrote Chapter XXIX just for these relationships. However, in order to
understand them some preliminary remarks are still necessary.

Let us assume two degrees of freedom. Let x; and X, be the two
variables of the first series, which may be regarded as the coordinates
of a point in a plane. The plane curves which satisfy our differential
equations will comprise what I have designated as trajectories.

Let M be an arbitrary point in the plane. Let us consider the group
of trajectories emanating from the point M, and let E be their envelope.
Let F be the ntll kinetic focus of M on the trajectory (T). This trajec-
tory will touch the envelope E at the point F, according to the definition
of kinetic focuses. I would like to recall that the ntl focus of M, or its
focus of the order n, is the nEh.point of intersection of T with the in-
finitely adjacent trajectory passing through M. However, the conditions
of this contact may vary. It may happen that F is not a singular point of
the curve E, and that the contact is of the first order. This is the most
general case.

Let

Ty = o(x,)

Tr=0(x9) -+ $(7y)

be the equations of the trajectory (T) and of a trajectory (T') which is
very close, emanating from the point M.

Let z; and z, be the coordinates of the point M, and let u; and up /332
be the coordinates of F. Since (T) passes through M and F, and since (T')
passes through M, we shall have

zl=?(“"2)x U‘=?_(llg), \IJ(Z:)=0.

Due to the fact that the trajectory (T') is very close to (T), the
function ¢ will be very small. I may call o the angle at which two tra-
jectories intersect the point M. It is this angle which will define the
trajectory (T'), and the function y will depend on the angle o. Tt will
be very small if, as we have assumed, this angle o is itself very small,
and it will vanish with «.

The value of y'(zy) (designating the derivative of ¥ by ¢') will have
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the same sign as a. With respect to ¢ (up
small and if the system of coordinates has
that the function ¢(x2) is uniform, which
the same sign as o, if F is a focus of eve
sign if F is a focus of odd order.

One characteristic of the case in whi

) [if we assume that a 1s very
been defined in such a way

is always possiblel, it has

n order, and it has the opposite

ch we are interested is the fact

that y(up) 1s of the same order as o2, and always of the same sign.

For example, let us assume that ¢(uj)

1f the sign of a is such that ¢ (ug)

is positive.

is positive, the trajectory

(T') will intersect (T) at a point F' which is close to the point F, and

not as far away from M as the point F (ass
case, (T') touches E before F', while (T)
to a well-known line of reasoning, the act
lute motion) when we pass from M to F' pro

uming that up > z3). 1In this
touches E after F'. According
jon is larger (at least in abso-
ceeding along (T') than it is

when we pass from M to F' proceeding along (T).

1f the sign of a is such that P! (ug)

is negative, (T) intersects (T)

at a point F' which is farther away from M than F. 1In this case, (")
touches E after F', and (T) touches E before F'. When we pass from M to

F', the action is greater along (T) than 1

The results would be just the opposit
ever, in any case, among the trajectories
some which intersect (T) close to F and be
sect (T) close to F and just short of F.

t is along (T').

e if V(up) were negative. How-
(T') adjacent to (T) there are
yond F, and others which inter-

In this case, we may say that F is an ordinary focus.

It cannot happen that F is an ordinary point of E, and that the con-

tact is of a higher order than the first.

Let us develop W(Xz) in powers of o,

Y (xy) = xbi(x2) + a?

and let us set /333

‘,{2(2'!) eenn

The condition under which there would be a contact of higher order

would be
i (up) =o-

But we already have
Yi(u2) =0

and the function yj(x;) satisfies a linear

s differential equation of the

second order, whose coefficients are finite and given functions of X3.
The coefficient of the second derivative is reduced to unity.
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If the integral Y;(x;) vanishes, as well as its first derivative,
for xp = up, it would be identically zero, which is absurd.

Therefore, there is never a contact of higher order.

However, it may happen that F is a cusp of the curve E. Either the
cusp point is on the side of M, so that a moving point proceeding from M
to F will encounter M with the cusp point directed at M, or the cusp point
is turned the opposite way so that the moving point encounters M with the
cusp point turned away from M. In the first case, I shall state that F
is a pointed focus, and in the second case I shall state that F is a taloned
focus.

In one and the other case, ¥(uy) is on the order of a3, In this case,
the pointed focus has the sign of o, if P is a focus of odd order, and it
has the opposite sign of o if F is a focus of even order. The opposite is
true in the case of a taloned focus.

In the case of a pointed focus, all the trajectories (T') intersect
(T) at a point F' which is close to F and beyond F. Proceeding from M
to F', the action is greater along (T) than it is along (T').

In the case of a taloned focus, all the trajectories (T') intersect
(T) at a point F' which is close to F and just short of F. Proceeding
from M to F', the action is greater along (T') than it is along (T).

Let F' be a point of (T) which is sufficiently close to F. 1In the
case of a pointed focus, I may join M with F' by a trajectory (T'), if F’
is beyond F. 1In the case of a taloned focus, I may join M with F' if F'
is just short of F.

It could finally be the case that F is a singular point of E which is /334
more complicated than an ordinary cusp. I would then state that it is a
singular focus.

I would only like to note that we cannot pass from a pointed focus
to a taloned focus except through a singular focus, because at the time of
passage y(u,) must be of the order o".

372. Let us now consider an arbitrary periodic solution. It will
correspond to a closed trajectory (T). Let o be the characteristic ex-
ponent and T be the period. 1In Chapter XXIX we saw how to determine
successive kinetic focuses (No. 347).

2inm
Let us assume that o equals » where n is a commensurable number

T
whose numerator is p. In this case, the application of the rule given
in No. 347 shows that each point of (I) coincides with its 2p§h focus.
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If, just as in No. 347, we take a unit of time such that the period
T equals 27, we have a = in. If we designate the value of the function
1 at the point M by tg, and if 11, T2, .., Tpp are the values of this
function T at the first, second, ..., up to the 2p1:--h focus of M, according
to the rule given in No. 347, we shall have the following

i= 207 2pit _2pT
n

If p is the numerator of n, it can be seen that Top ~ T is a multi-
ple of 2n, i.e., that M and its ZpLL focus coincide.

The trajectory emanating from the point M which is infinitely close
to (T) will therefore pass through the point M again after having gone
around the closed trajectory (T) k + 2 times, if k + 2 is the denominator
of n.

The point M is therefore its ZpLh-focus. However, we may wish to
know what category of focuses it belongs to, from the point of view of the
classification presented in the preceding section.

Let us adopt a system of coordinates which are similar to the polar
coordinates, so that the equation for the closed trajectory (T) is

=t

and so that w varies from O to 27 when one passes around this closed tra-
jectory. The curves p = const. are then closed curves which form an en- /335
velope around each other in the same way as concentric circles. The

curves w = const. form a bundle of divergent curves which intersect all

the curves p = const., in such a way that the curve w = a + 27 coincides
with the curve w = a.

Then let wq be the value of w which corresponds to the point of de-
parture M. The value of w which will correspond to this same point M,
regarded as the 2[}-’-:-h focus of the point of departure, will be

wy+ 2(hk+2)7.
Let

p =1 d(w)

be the equation of a trajectory (T') which is close to (T) and passes
through M. The function y(w) will correspond to the function yY(x3) given
in the preceding section. We shall have Y(wg) = 0, and we must now discuss
the sign of

Y[we—+2(k +2)x].
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We must therefore formulate the function ¥(w), and for this purpose
we need only apply the principles of Chapter VII, or the principles given
in No. 274. For example, if we apply the latter principles, we shall ob-
tain the following. The function ¥(w) may be developed in powers of the
two quantities

Aeww Ale-aw,

The coefficients of the expansion are periodic functions of the
period 27; A and A' are two integration constants. With respect to o,
it is a constant which may be developed in powers of the product AA'

= g~ 2 (AN - (AAT 5L,

The term oy equals the characteristic exponent of (T), i.e., it
equals 7n,

If (T') differs very little from (T), the two constants A and A’ are
very small. They are on the order of the angle which I called o in the /336
preceding section, and which must not be confused with the exponent which
I have designated by the same symbol in the present section.

If we take the approximation up to the third order inclusively with
respect to A and A', Y(w) will be reduced to a polynomial of the third
order with respect to these two constants, and I may then write

q_,(,,_,) = Aezw¢+A’e—amq'+f(Aeam’ A'e—am)

where f is a whole polynomial with respect to Ae®®, and A'e~O®@ only in-
cludes terms of the second and third degree. The coefficients of the
polynomial f, just the same as ¢ and o', are periodic functions of the
period 2w,

Under this assumption, since o equals ag, up to terms of the second
order, and since it equals og + a3 (AA') up to terms of the fourth order,
we may write the following, neglecting all terms of the fourth order with
respect to A and A':

P(0) = ATeW Rt tAI 1 A7g -0 1A 4 f(A ets, A g-a0)
or

qJ((L)) 2 AeTg - Ale—mwg’
+ R wAA (At — Ale-xwg) f(Aenw, Ale-zw),
When w increases by (2k + 4)m, the coefficients of f, as well as
o] agQ
o and ¢', do not change. The same holds true for e Ow, since-;— = n has
k + 2 for the denominator. Therefore, the same still holds true for

Aenwg Ale—%wg’, S(Aenw, Ale—aw),
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We finally have

Ylw+2hn + 4y — $(w) = (2h +2)77 AN (A exwa — Ale-xw3'),

However, y(wg) is zero. The term whose sign we must determine is
therefore

(’l,( -+ 2)7!11 1\:\’([* eXalogy — A'e—dqmoca )
I shall employ gg and dp to designate the values of o and ¢' for w = wp.

I should first point out that this term is of the third order which, /337
according to the preceding section, indicates to us that our focuses will
in general be pointed focuses or taloned focuses. It may now be stated
that this term always has the same sign, and that its coefficient cannot
vanish.

The two constants A and A' are related by the following relationship
${wo) =0

which may be written as follows, since A and A' are infinitely small quanti-
ties

Aettog, + A'e~ T3y, = 0. (l)

In addition, oy is purely imaginary, and oy and o'p are imaginary and
conjugate. The same holds true for A and A'.

The product AA' is therefore positive, and cannot vanish, since A and
A' cannot be zero at the same time.

In addition, we cannot have
Ae!n“’vd’u———-x\'e_’o“hd’;"—:0, (2)
because the equations (1) and (2) would entail the following

G‘uzc:,zo,

However, these equations are impossible. They would mean that all
trajectories close to (T) would pass through the point M, which is clearly
false.

Therefore, our term y(wg + 2km + 47m) always has the same sign. Our
focuses are therefore all pointed focuses, or are all taloned focuses.

Everything depends on the sign of oy -

373. We have disregarded the case in which o) would be zero, an un-
usual case in which all the focuses would be singular, and that in which
k + 2 would equal 2, 3, or 4. Following is the reason for this.
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We saw in the computations performed in Chapter VII that the follow-
ing small divisors are introduced

7\/—-—1+ Taf —xy
(see No. 104, Volume I, page 338).

The calculation is finished, and secular terms occur if one of these
divisors vanishes.

It may be readily stated that if k + 2 equals 2, 3, or 4, we are /338
thus finished with the calculation of terms of the first three orders,
which are those which we had to take into account. If, on the other hand,
k + 2 > 4, we will only be finished with the calculation of the terms of
higher order, which are not included in the preceding analysis.

374. TFor example, let us assume that all the focuses are pointed.
Let M be an arbitrary point of (T); this point will be the Zprg—1 focus
with respect to itself. Let M' be a point located a little beyond the
point M in the direction in which the trajectory (T) and the trajectories
close to (T') are traversed. I may draw a trajectory (T') emanating from
point (M), which will deviate very little from (T), which will pass around
(T) k + 2 times, which will finally end at the point M', and which will
have 2p + 1 points of intersection with (T), counting the intersection
points M and M'.

Due to the fact that the focus is a pointed focus, the trajectories
(T') which are close to (T) will all intersect (T) agaln beyond the focus.
We may therefore draw the trajectory (T') which satisfies the conditions
I have just discussed, provided that the distance MM' is smaller than §.
It is apparent that the upper limit, which must not exceed the distance MM',
depends upon the position of M on (T). However, it never vanishes, since
there is not a singular focus. It is therefore sufficient for me to set
8 equal to the smallest value which this upper limit can take on, and I
shall assume that § is a constant.

Therefore, if the distance MM' is smaller than §, we may draw a tra-
jectory (T') satisfying our conditions. We may even draw two of them, one
intersecting (T) at M at a positive angle, and the other intersecting it
at a negative angle.

Under this assumption, let us assume that our differential canonical
equations depend on the parameter A. For X = 0, the closed trajectory (T)
has og = in as the characteristic exponent. Let us assume that, for A > 0,
the characteristic exponent divided by i is larger than n, and that for
A < 0, on the other hand, it is smaller than n.

For X Z 0, the point M will no longer be its own 2pt focus. Its
2p—h focus will be located a little short of M for A > O, and beyond M
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for A < 0. Let F be this focus. The distance MF will naturally depend /339
on the position of M on (T). I shall designate € as the largest value of
this distance. It is apparent that € will be a continuous function of

A, and that it will vanish with A. We should point out, that for » 2 0,

the focus F is always beyond M, or always a little short of it, according

to the principles given in No. 347, depending on the value of the charac-
teristic exponent. The distance MF can never vanish.

Let F' be a point located a little beyond F. We may connect M with
F' by a trajectory (T'), provided that the distance FF' is less than a
certain quantity &'. It is apparent that &' is a continuous function of
A, and that it may be reduced to & for x = 0.

Let us set A > 0, in such a way that M is beyond F. We may have M
play the role of F', and we may connect M to itself by a trajectory (",
provided that the distance MF is smaller than §', or provided that

e <9,

For » = 0, € is zero, and 8' = 8§ > 0. Therefore, we may take A small
enough so that the inequality is satisfied.

We may then connect the point M to itself through a trajectory (")
deviating a little from (+), passing around (T) k + 2 times, and inter-
secting (T) 2p + 1 times.

Figure 12

In the figure, BA represents an arc of (T) on which M is located.
MC is an arc of (T') starting from M and DM is another arc of this same
trajectory bordering upon M. The arrows indicate the direction in which
the trajectories are traversed.

The point M may also be connected to itself not through one trajec-—

tory, but through two (T'). For one, as the figure indicates, the angle /340
CMA is positive, so that CM is above MA. For the other, the angle CMA
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. would be negative.

The trajectory (T') must not be regarded as a closed trajectory. It
. leaves the point M to return to the point M, but the direction of the
tangent is not the same at the point of departure as it is at the point
of arrival, so that the arcs MC and DM do not join each other.

The trajectory (T'), thus proceeding from M to M with a hooked angle
at M, will form what may be called a loop. If the same construction is
followed for the points M of (T), we shall obtain a series of loops. We
shall obtain two of them, the first corresponding to the case in which the
angle CMA is positive, and the second corresponding to the case in which
this angle is negative. These two series are separated from each other,
and the passage from one to another may only be made if the angle CMA is
infinitely small.

The trajectory (T'), which is infinitely close to (T), would pass
through the focus F, according to the definition of focuses. However,
since it must end at the point M, the points M and F would coincide, and
this cannot happen according to the principles presented in No. 347.

Therefore, if all of the focuses are pointed, we have two series of
loops for X > 0, and we have no more for A < 0.

If all the focuses were taloned, the same line of reasoning could be
repeated. We would find that there are two series of loops for A < 0, and
that there are no more for A > O.

375. Llet us consider one of the series of loops defined in the pre-
ceding section. The action calculated along one of these loops will vary
with the position of the point M; it will have at least one maximum or
one minimum.

If the action is maximum or minimum, it may be stated that the two
arcs MC and CD coincide, so that the trajectory (T') is closed and corres-
ponds to a periodic solution of the second type.

For example, let us assume that the trajectory (T') corresponds to
the minimum of the action, and that the angle CMA is larger than the angle
BMD, just as in the figure. Let us then take a point M; to the left of
M and infinitely close to M, and let us comstruct a loop (Ti) which [341
differs by an infinitely small amount from the loop (T'), having its
hooked point at Mj. Let M;C; and M;D; be two arcs of this loop.

From M and from M; I may draw two normals MP and M1Q on M;C; and MD.

According to a well-known theorem, the action along (T') from the
point M up to the point Q will equal the action along (Ti) from the point
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P to M;. We shall therefore have
action (T} )= action (T") -+ action (M, P)—action (MQ)
or
action (T ') = action (T") + action (MM;)(cos CMA — cosBMQ),
or finally

action (T} ) <l action (T'),

which 1s absurd, since (T') was assumed to correspond to the minimum of
the action.

If we set

CMA < BMD,
we would arrive at the same absurd result placing M; to the right of M.

We must therefore assume that
CMA = BMD,

i.e., that the two arcs coincide.
The same line of reasoning may be applied to the case of the maximum.

Each series of loops therefore contains at least two closed trajec-
tories.

Each of these closed trajectories passes around (T) k + 2 times,
and intersects (T) at 2p points. For p of these points, the angle similar
to CMA is positive, and for the other p points, it is negative. Due to the
fact that the curve (T') is closed, it must intersect (T) as many times in
one direction as in the other direction.

Therefore, it may be assumed that this closed trajectory comsists of
2p types of loops, because we may regard any arbitrary one of our 2p points
of intersection as the hooked point. For p of these types, the loop thus
defined would belong to the first series, and for the other p types, it
would belong to the second series.

Among the loops of each series, there are therefore mnot two, but at
least 2p of them, which may be reduced to closed trajectories. However, /342
one thus obtains not 4p, but only two different closed trajectories.

The fact that there are not more of them is, in general, not the

result of the preceding line of reasoning, but may be concluded from the
principles presented in the preceding chapter.
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The trajectory (T') thus defined will have %{k + 1)p double points,

if k is odd, and %(k + 2)p double points if k is even. This is valid for

small values of A, and it remains valid no matter how large A may be as
long as (T') exists. The number of double points could only vary if two
branches of the curve (T') were tangent to each other. However, two tra-
jectories cannot be tangent to each other without coinciding.

For the same reason, no matter how large X may be, as long as the two
trajectories (T) and (T') exist, they will intersect at 2p points.

376. The entire line of reasoning presented in the preceding section
assumes that we are dealing with absolute motion.

If this line of reasoning is extended to the case of relative motion,
difficulties will be encountered which are not insurmountable, but which I
shall not try to surmount at this point.

To begin with, we must modify the construction employed in the preceding
section. Instead of drawing MP and M;Q normal to M;C; and MD, we must pro-
ceed as follows. In order to construct MP, for example, we should construct
a circle which is infinitely small and which satisfies the following condi-
tions. It intersects M;C; at P and touches the line MP at this point. The
line connecting M to the center must have a given direction, and the ratio
of the line length to the radius must be given. The line MP thus constructed
has the same properties as the normal in absolute motion. Unfortunately, in
certain cases this construction entails certain difficulties,

In addition, the action (MM;) is not always positive. If it became zero,
this line of reasoning would still have a defect. The maximum or the minimum
could be reached at the point M, so that the action (MM;) is zero, and this
could occur without the necessity of the arcs MC and DM coinciding. [343

Our line of reasoning therefore only applies to the case of relative
motion, if the action is positive along (T).

In any case, one of the conclusions is still valid. The closed trajec—
tory (T') always exists, since -- if the line of reasoning given in the pre-
ceding section is lacking -- the same does not hold true for the line of
reasoning given in Chapters XXVIII and XXX. 1In addition, (T') intersects

(T) at 2p points, and has g{k.+ 1) or %{k + 2) double points.

This is valid for small values of A, but it cannot be concluded any
longer that this 1s valid no matter what X may be, because two trajectories
may be tangent without coinciding, provided that they are traversed in the
opposite direction.
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Stability and Instability

377. Let us assume that there are only two degrees of freedom, two
of the characteristic exponents are zero, and the two others are equal and
have opposite signs.

The equation which has the following as roots
el

is an equation of the second order whose coefficients are real (T represents
the period and a represents one of the characteristic exponents).

Its roots are therefore real or imaginary and conjugate.

If they are real and positive, the a's are real, and the periodic solu-
tion is unstable.

If they are imaginary, the a's are imaginary and conjugate. Since the
product equals +1, the o's are purely imaginary, and the periodic solution
is stable.

If they are real and negative, the a's are imaginary but complex, with

the imaginary part equalling %;. The periodic solution is still unstable.

They cannot be real and have opposite signs, since the product equals
+1.

There are therefore two kinds of unstable solutions, corresponding to
the following two hypotheses /344

exT>o0, eT<Co.

The passage from stable solutions to unstable solutions of the first
type occurs for the value

a = 0.

The passage from stable solutions to unstable solutions of the second
type occurs for the value

378. Let us first study the passage to unstable solutions of the first
type. At the moment of passage, we have

exT = .
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) Let us again consider the terms Bx and Y defined in Chapter III, and
let us consider the equation

N _ g du by gl
df, d, d, a8,
Ay diy i dly
dg,  dBy dis i, | €Y
By A Ay dyy [T
d, d3, d@; d3,
Iodw 4% dn df
| dps d3, dis  dfe

This equation has the following roots

0, 0, e*T—y, e-aT__q,

At the time of passage, the four roots become zero.

Before studying the simple case in which we are dealing with equations
of dynamics with two degrees of freedom, and in which we assume that the
function F does not depend explicitly on time and that, consequently, the
equations have the energy integral F = const., it is advantageous to consider
for a moment a case which is even simpler.

Let F be an arbitrary function of x, y and t, which is periodic of

period T with respect to t. Let us consider the canonical equations /345
dr _ dF dy dF 2

These are the equations of dynamics with only one degree of freedom. How-
ever, due to the fact that F depends on t, they do not have the energy equa-
tion F = const.

Let us assume that these equations (2) have a periodic solution of
period T. The characteristic exponents will be provided by the following
equation which is similar to (1)

. Y
dﬁl « g; - (3)
Ay dy T
7 a5
which has the following roots
exT —y, e—aT _ .

These roots all become zero at the moment of passage.
Let us assume that F depends on a certain parameter p and that, for

A = 0, the two roots of the equation (3) are zero. The functions Y1 and Yo
will depend not only on B; and B>, but also on u. We shall assume that F
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may be developed in powers of u, and that consequently y; and yp may be
developed in powers of 81, B, and u.

The periodic solutions will be provided by the following equations

by =0, 2 = 0. (4)

For u = 0, 8] = By = 0, the functional determinant of the y's with

respect to the g's is zero. However, in general the four derivatives EEL
k

will not vanish at the same time. For example, let us assume

Y,
2 <y,
d3,

and we shall derive B; in series developed in powers of B2 and y from the

first equation (4), and we shall substitute it in the second equation (1). /346

Let

W(B:, p)=o0 (5)

be the result of the substitution. Our functional determinant being zero,
we shall have

av _
d?; =o0.

However, we may distinguish between two cases:

1. The derivative %%-is not zero, or, in other words, the functional

determinant of ¢, and ¥, with respect to B, and u 1s not zero.

In this case, if we assume that B3 and u are the coordinates of a point
in a plane, the curve represented by equation (5) will have an ordinary
point at the origin, where the tangent will be the line u = 0.

In general, the second derivative

will not be zero, i.e., the origin will not be a point of inflection of the
curve (5).

If we intersect the line u = ug, where ug is a rather small constant,
we may have two points of intersection for this line and the curve (5) in
the vicinity of the origin, or we may not have any, depending on the sign
of ug.
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For example, if this curve is above its tangent, we shall have two
intersections for ug > 0, and consequently two periodic solutions, and
for yg < 0 we shall not have any.

We have thus seen two periodic solutions approach each other, coincide,
and then disappear.

Let us consider the two points of intersection of the line u = o
with the curve (5). They will correspond to two consecutive roots of the
equation (5) and, consequently, to two values having opposite signs of the

derivative g%—, and therefore to two values of opposite signs of the func-
2

tional determinant of the wi's with respect to the B's, that is, of the (347
product
(exT— {e—xT - 1)=12—eal __ e—t('l"

i.e., of a2,

Therefore, one of the two periodic solutions which coincides then to
disappear is always stable, and the other is unstable.

2. The derivative %% = 0, or in other words the functional determinant

of ¥; and y, with respect to 8; and u, is zero. .

The curve (5) then has a singular point at the origin which, in general,
will be an ordinary, double point.

Two branches of the curve intersect at the origin, and the line U= yug
will always meet the curve at two points. We shall therefore have two
periodic solutions, no matter what the sign of Ho may be.

The two branches of the curve determine four regions in the vicinty
of the origin. 1In two of these regions which are opposite the peak ¥ will
be positive; in the other two regions, it will be negative.

Let OP;, OP,, OP3, OP, be the four half-branches which converge at the
origin. OP; will be the extension of OP3 and OP, will be the extension of
OPy,. OP) and OP, will correspond to Hg > 0; OP3 and OP, will correspond to
Mg < 0. The function ¥ will be positive for the angles P;0P,, P30Py, and
negative for the angles P,0P3, P;0P,.

We have just seen that the stability depends on the sign of the deriva-

tive %%—. For example, when we pass over OP;, ¥ will change from negative
2

to positive. The derivative will be positive, and the solution will be

stable, for example, It will also be stable when we pass over OP,, and

unstable when we pass over OP, or OPg.
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The periodic solutions corresponding to OP, are stable, and they form
an analytical sequence with respect to those which correspond to OP3 and
which are unstable.

Conversely, those which correspond to OP, and which are unstable are
the analytical sequence with respect to those which correspond to OP,, and
which are stable.

We thus have two analytical series of periodic solutions which coincide
for 1 = 0, and at this instant of time the two series exchange their stabil-

ity.

We have just studied the two simplest cases, but there may be a multi-
tude of other cases corresponding to different singularities which the /348
curve (5) may have at the origin.

However, no matter what these singularities may be, we shall observe
an even p + q number of half-branches emanating from the origin, i.e., p

for u > 0 and q for y < 0. Let us assume that a small circle about the
origin encounters them in the following order

oP,, OPy, ..., OP,.q
Let
op,, OPy, ..., OP, (6)
be those which correspond to u > O and let
OP,viy OPppry ooy OPuig (7
be those which correspond to u < O.
Then the half-branches (6) will correspond alternately to periodic
stable solutions and to unstable solutions. For purposes of brevity, I
may state that these half-branches are alternately stable or unstable.

The same holds true for the half-branches (7).

In addition, OPp and OPp+1 are both stable or both unstable.
Consequently, the same holds true for OPp+q and OP;.

Therefore, let p' and p" be the number of stable half-branches and the
number of unstable half-branches for u > 0, so that we have

p' -+ p"=p-

Let q' and q" be the corresponding numbers for y < 0, so that q' + q" = q.
There are therefore only three possible hypotheses
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pl:p,. 7':9',
P =p 0, 7'=q" -1,
P=p—t g=qg-—1

In any case, we have

P-p=q—q"

Let us assume that p does not equal q, and, for example, that P > q, /349
in such a way that a certain number of periodic solutions disappears when
we pass from p > 0 to p < 0. It may be seen that this number is always
even, and in addition as many stable solutions as unstable solutions would
always disappear, according to the preceding equation.

Let us now assume that we have an analytical series of periodic solu-
tions and that, for u = 0, we pass from stability to instability, or vice-
versa (in such a way that the exponent o vanishes). Then q' and p" (for
example) are at least equal to 1. Therefore, p' + q" is at least equal to
2. It follows from this that we shall have at least another analytical
series of real, periodic solutions which intersect the first for u =20,

Therefore, if, for a cercain value of U, a periodic solution loses sta-
bility or acquires it (in such a way that the exponent o is zero) it will
coincide with another periodic solution, with which it will have exchanged
its stability.

379. 1let us now return to the case which I was first going to discuss
-= that in which the time does not enter explicitly in the equations, where,
consequently, we have the energy integral F = C, where finally there are
two degrees of freedom.

I shall pursue the same line of reasoning as was the case in No. 317,
and T shall assume that the period of the periodic solution, which is T for
the solution which corresponds to u = 0, Bi = 0, equals T + 1, and differs
very little from T for adjacent periodic solutions. I shall write the
following equations

Y1 =o, $2=o, d3=o, F =G, Bi=o, (l)

which include the following variables

Bh ph p!: fj'ol b, <.

According to our hypotheses, the functional determinant of the y's
with respect to the B's must vanish, as well as all its minors of the first
order. However, the minors of the second order will not all be zero at the
same time, in general.

Therefore let us set B} = 0 in equationms (1), and let us consider the
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functional determinant A of 350°

'«P:, 4’:7 “f‘:y F
with respect to Bsy Bs B <

This determinant vanishes when the 8's, u's and t's vanish, but in
general the minors of the first order will not vanish.

Let us consider the functional determinants of F and of two of the
four functions ¥ with respect to t, and with respect to two of the four
variables B. Can they all be zero at the same time?

According to the theory of determinants this could only happen if
the following were true:

1. All the minors of the two first orders of the determinants of the
y's with respect to the T's were zero at the same time, which does not
occur, in general, and which we shall not assume.

2. The derivatives of F were all zero at the same time. We saw in
No. 64 that they must be zero all along the periodic solution. We shall
no longer assume this.

3. The derivatives of the y's and of F with respect to 1 were all zero
at the same time. The following values

91:(32;: 133:3;:0

would not correspond to a periodic solution strictly speaking, but to a
position of equilibrium (see No. 68).

We shall no longer assume this.

We may therefore always assume that all the minors of the first order
of A are not zero.

Let us then eliminate four of our unknowns B and T among the equations

(1.

For example, let us eliminate 83, 83, By, T; we shall still have an
equation of the following form

(B u)=o.

Due to the fact that this equation has exactly the same form as equation (5)
of the preceding section, it will be handled in the same way, and we shall
arrive at the same results:
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1. When periodic solutions disappear after haying coincided, an even
number, and as many stable as unstable solutions, always disappear.

2. When a periodic solution loses or acquires stability when we vary
v continuously (in such a way that o vanishes), we may always be certain /351
that at the moment of passage another real, periodic solution of the same
period coincides with it.

380. Let us proceed to the second case, that in which

a =

1309
T
Due to the fact that none of the characteristic exponents vanishes for

}1:0,

except the two which are always zero, there is no periodic solution of period
T which coincides with the first for

K’ =o.

On the other hand, according to principles presented in Chapter XXVIII,
there are periodic solutions of the second type, of period 2T, which coin-
cide with the given solution whose period is T for u = 0.

What may we say regarding their stability? For u > 0, for example, we
shall have a stable solution of period T which will become unstable for p < 0.

For u > 0, let p' and p" be the number of stable solutions and the num-
ber of unstable solutions which have the period 2T, without having the period
T. Let q' and q" be the corresponding numbers for u < 0.

Let us then consider all the solutions of period 2T, whether they have
have the period T or not. Applying the principles presented in No. 378 to
them, I find that I may postulate the following three hypotheses regarding
these four numbers:

Pr_-__l:pv’ q’:q"+']1
P=p  g=q <3,
24p'=p  g=q"

However, if we refer to the principles given in Chapter XXVIII, we
shall find that these four numbers cannot take all values which are compatible
with the three hypotheses. The simplest and most frequent cases are investi-
gated in No. 335.
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Application to the Orbits of Darwin /352

381. 1In Volume XXI of Acta Mathematica, M. G. H. Darwin studied cer-
tain periodic solutions in detail. He discusses the hypotheses given in
No. 9, and considers a perturbing planet which he calls Jupiter, and to
which he attributes a mass which is ten times smaller than that of the Sun.
This fictitious planet describes a circular orbit around the Sun, and a

small perturbed planet having zero mass moves in the plane of this orbit.

He has thus acknowledged the existence of certain periodic solutions
which are again included in those which I have called solutions of the
first type, and which he has studied in detail. These orbits are referred
to moving axes, turning around the Sun with the same angular velocity as
Jupiter. These orbits are closed curves, in relative motion with respect
to these moving axes.

M. Darwin has called the first class of periodic orbits the class of
planets A. The orbit is a closed curve encircling the Sun, but not encircling
Jupiter. The orbit is stable when the Jacobi constant is larger than 39, and
unstable in the opposite case., The instability corresponds to a characteris-

in .
tic expofient having T as the imaginary part.

For values of the Jacobi constant which are close to 39, there are
therefore periodic solutions of the second type whose period is double.

The corresponding orbit will be a closed curve with a double point
passing around the Sun twice. The two loops of this curve differ very little
from each other, and both differ very little from a circle.

We shall study these solutions of the second type in greater detail at
a later point.

M. Darwin also obtained oscillating satellites which he called a and b,
and are those which we discussed in No. 52. They are always unstable.

Finally, he obtained satellites which, strictly speaking, with respect
to the system of moving axes under consideration, describe closed curves en-
circling Jupiter, but not encircling the Sun. /353

For C = 40 (C is the Jacobi constant), we have only one satellite A
which is stable. For C = 39.5,the satellite A becomes unstable with a real

exponent o. However, we have two new satellites B and C, the second of
which is stable, and the first of which is unstable with a real exponent o.
For C = 39, we obtain the same result. For C = 38.5, the satellite C becomes

unstable with a complex exponent o (whose imaginary part is %g). Finally,

for C = 38, we obtain the same result.
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We must therefore consider three passages:

1. The passage of satellite A from stability to instability;
2. The appearance of the satellites B and C;

3. The passage of satellite C from stability to instability;
The last two passages do not entail any difficulties.

Two periodic solutions B and C will appear simultaneously which differ
very little from each other. One is stable and the other is unstable; the
exponent a is real for the unstable solution. This conforms with the con-
clusions reached in No. 378.

The passage of the satellite C from stability to instability no longer
presents any difficulties, because the exponent a is complex in the case of
instability. The conditions presented in No. 380 therefore hold. We there-
fore have periodic solutions of the second type corresponding to closed
curves which pass around Jupiter twice.

382. On the other hand, the passage of satellite A from stability to
instability entails great difficulty, because the exponent a is real in the
case of instability. According to No. 378, we should therefore have exchange
of stability, with other periodic solutions corresponding to closed curves
passing around Jupiter only once. This would not seem to result from the
calculations of Darwin.

We are naturally led to think that the unstable satellites A discovered
by Darwin do not represent the analytical extension of the stable satellites
A,

Other considerations lead to the same result.

The stable satellites A have ordinary closed curves for orbits; the [354
unstable satellites A have orbits in the form of a figure eight.

How may we pass from one case to another? This may only be done by a
curve having a cusp, but the velocity must be zero at the cusp and, for
reasons of symmetry, this cusp could only be located on the axis of the x's.
It could not be between the Sun and Jupiter. 1In Figure 1, Darwin gives the
curves of zero velocity. For C > 40, 18, these curves intersect the axis
of the x's between the Sun and Jupiter, but this no longer holds for C < 40,
18, and the passage occurs between C = 40 and C = 39.5.

We are left with the hypothesis that the cusp is located beyond Jupiter,

but this is no longer satisfactory. Let us compare the two orbits corres-
ponding to C = 40 and to C = 39.5. The first intersects the axis of the x's
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twice at a right angle, once beyond Jupiter and once just short of it.

Let P and Q be the two intersection points. In the same way, the second
orbit (if we disregard the double point) intersects the axis of the x's
twice at a right angle, once beyond Jupiter, and once just short of Jupiter.
Let P' and Q' be the two intersection points. Let us consider the inter-
section point P or P' which is beyond Jupiter, and let us determine the

sign of %%. We shall see that this sign is positive for one orbit or the
other. However, %% would have to change sign when passing through the

cusp.

The point P, the hypothetical cusp, and the point P' cannot therefore
be regarded as the analytical extension of each other. We must then
assume that at a given moment an exchange has occurred between the two inter-
section points of the orbit of the satellite A' and of the x-axis, that which
is located on the right passing to the left, and vice versa. Nothing
in the behavior of the curves constructed by M. Darwin justifies such an
assumption.

Therefore, 1 may conclude that the unstable satellites A are not the
analytical extension of the stable satellites A. But when do the satel-
lites A become stable?

I can only formulate hypotheses on this point and, in order to do /355
otherwise, it would be necessary to reconsider the mechanical quadratures
of M. Darwin. However, if we examine the behavior of the curves, it appears
that at a certain time the orbit of the satellite A must pass through Jupiter,

and that it then becomes what M. Darwin has called an oscillating satellite.

383, Let us study the planets A in greater detail, and the passage of
these planets from stability to instability.

The orbits of these planets correspond to what we have designated as
periodic solutions of the first type (No. 40). The orbit with a double point,
which passes around the Sun twice and which differs very little from that of
the planet A at the moment when the orbit of this planet has just become
unstable, corresponds to which we have designated as periodic solutions of
the second type (47).

1f we apply the procedure by which we deduced periodic solutions of the
second type from those of the first type to solutions of the first type, we
shall obtain solutions of the second type exactly.

In solutions of the second type, the mean anomalistic motions, which
differ very little from the mean motions strictly speaking, are in a commensur=
able ratio. We must therefore consider the case in which, for our solution
of the second type (and, consequently, for the planet A at the time of
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passing from stability to unstability), the ratio of the mean motions is
close to a simple commensurable number. Since the orbit must pass around

the Sun twice, this ratio will be close to a multiple of %u

In other words, at the moment of passage, the term which M. Darwin
has called nT must be close to a multiple of =.

In effect, this is what occurs. The tables of M. Darwin provide us
with the following

C=jo A stable, nT = 134°

(o]

= 39,5 A stable, nT =165,
C=1 Aunstable.,nT = 177",
C =385 Aunstable,nT = g1°.

It can be seen that the passage must be made around nT = 170°, and /356

this number is close to 180°.

The mean motion of the planet A is therefore almost three times that
of Jupiter.

We could consider applying the principles presented in Chapter XXX
to a study of these solutions of the second type, but several difficulties
would be encountered because we would be dealing with an exception. It
would be better to resume this study directly.

384. Let us again consider the notation given in No. 313, and let us
set the following, just as in this section

.T‘:L—G, T::L—FG,
wri=l—g+t, yi=l+rg—y,
Fre=R+G=Fot pFy+...,

= — 2 _ T
T (F oy )t '
The term L must have the same sign as G (see page 201, in fine), and the
eccentricity must be very small. Since x; is on the order of the square
of the eccentricity, this variable will also be very small.

Since we only wish to determine the number of periodic solutions and
their stability, we shall be content with an approximation.

We shall therefore neglect u2F, and the following terms. In the term
uF;, we only take into account secular terms and terms with a very long
period, and we shall neglect the powers which are higher than x;. We
shall have
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Fy=a-+ bxy+ cT1CosW,

where a, b, c are functions only of x», and where cxjcosw is the very long
period term which has been retained.

The very long period terms are terms with & + 3g - 3t, i.e., terms
with 2y, - y1- We therefore have

w={y1—2)1
We then have

. 2 Ty— Ty
' +._-_"_,<+p(a 4- b, 4- cxyco5W)

and we may apply the method of Delaunay.
The canonical equations have the integral 1357
ry+a2z =k,
from which we have

F'=G—"‘1‘|)’

k 3=z
2 ;—-%+p.(a+b:rl+ cxycosw).

With the approximation which has been adopted, we may replace a, b, ¢ by
ay - 221ay, b, ¢,
designating that which a, %ﬁ;, b, c, become by ap, ay, bg, cg when we re-
place x; by k. Thus,
a4 = dg, B =by—2ay, Y =co
designate the constants which depend on k, and we have

_ 2 kK 3r
iy St (2 -+ By yx; cosw).

FI
Let us assume that k is a constant, JETcosZ,\ﬂ;:dnz are rectangular
coordinates of a point in a plane, and let us compile the curve
F' =C,
where C designates a second constant.

This curve also depends on the two constants k and C. If it has a
double point, this double point will correspond to a periodic solution,
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which will be stable if the two tangents to the double point are imaginary,
and unstable if the two tangents are real.

We should note that the curve is symmetrical with respect to the two
axes of the coordinates and that the two double points, which are symmetri-
cal to each other with respect to the origin, do not correspond to two
periodic solutions which are actually different.

The double points may only be located on one of the axes of the coordin-
ates, so that they will be obtained by setting

w =0, W=7
If we set
C=2 ok
——F+;+}11,
the curve F' = C passes through the origin and has a double point. The tan-
gents to the double point are given by the equation /358
';5*2'*‘ PP+ py cosw = o.

Therefore, if
— w3y ¢H)
the tangents are imaginary. If

wy > % =g e —ey, (2
the tangents are real. Finally, if

—HY>,%“§+H?" &

2

the tangents are again imaginary.

The coefficient B is positive. I wrote the preceding inequalities
also assuming that y is positive. If y were negative, we would only have to
change w into w + .

The double point at the origin corresponds to the solution of the first
type, i.e., to planet A of M. Darwin. It may be seen that this solution is
stable when the inequalities (1) or (3) hold, and is5 unstable when the in-
equalities (2) hold.

Let us now study the double points which may be located on the line
w = 0,
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If we set w = 0, the function F' becomes

F = —- i _,_{‘:_.'1::"- +ur+pz(B+1)=0C 4)

Keeping k constant, if we vary xj from O to k, we find that the maxima and
minima of F' are given by the equation

4 3 (5)

(,.‘m;rl)u—:‘—;”«u(ﬁ—*"{):on

which has a solution if the inequality (3) holds, and does not have a solu-
tion in the opposite case.

Therefore, if the inequality (3) does not hold, the functiom F' is con-
stantly decreasing if it holds. The function F' first increases, reaching
a maximum, and then decreases.

This maximum corresponds to a double point located on the line w = 0,/359
or rather to two double points which are symmetrical with respect to the
origin.

However, we must determine how we may obtain these double points for a
given value of the constant C. Equation (5) provides us with x; as a func-
tion of k. We must deduce x; from it as a function of C.

However, equations (4) and (5) may be written

, dF’
F' = C, —a'_z'_l =0
from which we have
dc A d¥ dk dF' dk
dr, = dz, Gk dz, | dk dr,’
@ af dk

dzxt + dk dx, dry o

Neglecting terms containing u, we have

LA
dF Tdzn T !
from which we have dF _
r7 2
A F' —sz'-—o' ﬂ___‘w;___l (é)
dkdz, ~ dxj ' dzi ~ (F—z1)* 8

and

354



k. dC

dz, = dr,

It results from this that x; is a constantly decreasing function of C.

For a value of C, we have only a maximum at the most, i.e., we have
at the most two double points which are symmetrical to each other with
respect to the origin on the line w = Q.

Let Cp be the value of C which satisfies the double equality

2 k
Co:F—i—;—f—(i!,

k|

3140,
7 By =o,

We shall see that, for C > Cj, there will not be a double point on the line
w = 0 and that, for C < Cy, there will be two of them. /360

The same discussion may be applied to the case of double points located
on the line w = m. The values of x; will be given by the equation

i 3 (")

TF—mp 3 tr@E—1)=0
which has a solution if the inequalities (2) or (3) hold.

If C; is the value of C which satisfies the double equality

i3
g r(B—1)=o,

the condition for which there are two double points on the line
w:-;r,
is C < C;.

We would like to point out that C; > Cy, that Cy is the value of C
for which one passes from inequality (2) to inequality (3), and that C; is
the one for which we may pass from inequality (1) to inequality (2).

When compiling the curves, we would readily find that the tangents are

real for the double points located on w = 0, and that they are imaginary
for the double points located on w = 7.
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We may therefore sum up our results as follows:

First case
Cc> G

The inequality (1) holds.
The solution of the first type (planet A) is stable.
There is no solution of the second type (orbit with double point).

Second case
C,> C > Ce

The inequalities (2) hold.
The solution of the first type becomes unstable.
There is a solution of the second type which 1is stable.

Third case

[~~~
(98]
o
[ur}

C < Cy-
Inequality (3) holds.

The solution of the first type is stable.

There are two solutions of the second type, one of which is stable and
one of which is unstable. The first corresponds to the two double points
located on the line w = m, and the second corresponds to the two double points
located on the line w = 0.

These conclusions are valid, provided that u is sufficiently small. Is
the value adopted by M. Darwin, u = fa, sufficiently small?

1 have not verified this, but it seems Very likely.

It is therefore likely that M. Darwin would have obtained stable orbits

if he had continued his study of the planets A for values of C smaller than
38.
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CHAPTER XXXII

PERIODIC SOLUTIONS OF THE SECOND TYPE

385. Let us again consider the equations of No. 13 1362
dr;  dF dy; _ dF -
T = @ =T Fe=Fg+ pF+... (1)

with p degrees of freedom. According to the statements given in No. 42,
these equations will have periodic solutions such that, when t increases
by the period T, the variables Yis Yo veves yp increase respectively by

2lyw, 2kaw, < 2k,m.

The integer numbers k,, k,, ..., k, may be arbitrary.

However, this 1s only valid if the hessian of Fy with respect to the
x's is not zero. The proof presented in No. 42 is invalid when this
hessian is zero, particularly when Fy does not depend on all the variables
X.

This is precisely what occurs in the three-body problem. I would like
to recall that y;, y2; y3, Y43 ¥s5, yg represent, respectively, the mean
longitudes of the planets, of the perihelions and of the nodes, and that Fy
depends only on the two first variables ¥} and xo which are proportional to
the square roots of the major axes.

Let us consider a periodic solution. According to the stipulated con-
ventions, one solution will be assumed to be periodic, provided that the
differences of the y's increase by multiples of 2m, when t increases by
one period. In actuality, F only depends on these differences.

Let

rhiw, 2ksw, 2kyw, akym, aksw

be the quantities by which the following increase /363

Y126 Y2—Ye: YV3s—D}er }i—Ver Vs—JXe,
when t increases by a period.
In Chapter III we could only establish the fact that there are periodic

solutions corresponding to arbitrary values of k; and ky, assuming that
k3, ky and ks are zero. '
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It may be inquired whether in this case, just as in the general case,
there are periodic solutions corresponding to arbitrary values of the five
integer numbers k, solutions which I would like to designate as solutions
of the second type.

386. Do these solutions of the second type exist? It is a temptation
to answer in the affirmative, based upon reasons of continuity and considering
the fact that the form of the function F needs to be modified very little in
order to obtain canonical equations to which the line of reasoning pursued
in No. 42 applies.

However, one difficulty is entailed. What happens to these solutions
when we cancel the term we have designated as u and which is proportional
to the disturbing masses?

1f the disturbing masses are zero, the two planets obey the laws of
Kepler. The perihelions and the nodes are fixed, and it would appear that
the numbers k3, ky and ks can have no other value than zero.

This difficulty may be resolved as follows. If the masses are infinitely
small, the two planets will obey the laws of Kepler, unless their distance
itself becomes infinitely small at certain times.

Let us assume that the two planets, which are very far away from each
other, both describe a Keplerian ellipse. It could happen that these two
ellipses will meet, OT will pass very close to each other, in such a way
that the distance between the two planets becomes very small at a certain
time. At this time, their mutual perturbing action could become significant,
and the two orbits could undergo large perturbations. The planets, moving /364
away from each other again, would then describe Keplerian ellipses again.
However, these new ellipses will differ greatly from the old ellipses. The
perihelions and the nodes will undergo considerable variatioms.

I would like to employ the word collision to designate this phenomenon,
although it is not a collision in the true sense of the word, since the two
planets do not come in contact and since the difference between them need
only be rather small in order to have considerable attraction, in spite of
the smallness of the masses.

However that may be, if we take these orbits with collisions into
account, it is no longer valid to state that the perihelions and the nodes
are fixed for u = 0, and that consequently the numbers ks, ky and ksmust be
Zero.

We must thus conclude that solutions of the second type exist and that,
if wg make u strive to zero, they will tend to be reduced to orbits with a
series of collisions. However, this rough sketch is not sufficient, and a
more detailed examination is necessary.
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387. Let us first consider the effect of the collision. Let E and E'
be the ellipses described by the first planet before and after the colli-
sion; let E1 and E; be the ellipses described by the second planet. It
is apparent that these four ellipses must intersect at the same point, in
such a way that the two planets describing these four orbits will pass
through the encounter point at the time of the collision.

As long as the distance between them is considerable, the two planets
describe curves which differ very little from an ellipse. During the very
short period of time when the distance between them is very small, they
describe orbits which are very different from an ellipse. These orbits may
be reduced to small arcs of curves C having a radius of curvature which is
very small; these arcs differ very little from arcs of a hyperbola. At the
limit, the very short time of the collision may be reduced to an instant.
The small arcs C may be reduced to a point, and the orbit, being reduced to
two arcs of an ellipse, has a hooked point.

In order to define the orbits E, E', El’ E', it is necessary to know
the magnitude and direction of the velocities o% the two planets P and P
before and after the collision. What are the relationships between these
velocities? I would first like to note that the velocity of the center of
gravity of the two bodies P and P, must be the same before and after the /365
collision. The magnitude and direction must also be the same before and
after the collision.

We must now consider the relative velocity of P with respect to P, ;
the magnitude of this velocity must be the same before and after the colli-
sion, but it may differ in direction.

Following is the rule for determining the direction of this velocity
after the collision.

Let us consider moving axes whose origin is at P,, and let us consider
a line AB which represents, in magnitude and direction, the relative velo-
city of P with respect to P1 before the collision. This line AB must pass
through the point Pl’ since the body which moves at the velocity which it

represents must collide with the point P,, which is fixed with respect to

our moving axes. However, this is only valid at the limit. This is only
valid because we regard the masses, on the one hand, and the distance at
which the mutual attraction of P and Pl begins to be manifested, on the

other hand —- i.e., that which could be designated as the radius of action —-
as infinitely small quantities. It would therefore be more exact to say that
the distance § from P to the line AB is an infinitely small quantity of the
same order as the radius of action.

Let A'B' be the line which represents the relative velocity of P with
respect to P, after the collision. In terms of magnitude, A'B' equals AB,
and the distance from P, to A'B' equals ¢,
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We finally have the rule for determining the direction of A'B'. The
point P) and the two lines AB and A'B' are in the same plane (up to quanti-
ties which are infinitely small of higher order). The angle of AB and of
A'B' may be determined as follows. The tangent of half of this angle is
proportional to § and to the square of the length of AB.

It may thus be seen that the direction of A'B' may be arbitrary.

The only two conditions which must be imposed upon our four velocities
are the following: permanence of the velocity of the center of gravity in
magnitude and direction; permanence of the relative velocity in magnitude
alone. These conditions may be given as follows:

The energy and the area constants must not be changed by the collision.

388. Let us try to compile the orbits with collisions which are the /366
1imits toward which the solutions of the second type tend when u strives to
zero.

I would first like to point out that at least two collisions must be
assumed in order that such an orbit may be periodic, Let us assume that two
consecutive collisions never occur at the same point. Let E and E; be the
ellipses described by the planets P and P; in the interval of two consecu-
tive collisions. These two ellipses must intersect at two points and, since
they have a common focus, they are in the same plane, unless the two inter-
section points and the focus are on a straight line.

Let us assume that we are dealing with an exception. Let Q and Q' be
the two intersection points of the ellipses E and E} which I shall assume
are not in the same plane. These two points are on a straight line with
the focus F; let E and E'; be the ellipses described by the two planets after
the collision. They will pass through the point Q, where the collision has
just been produced, and they will not be in the same plane in general. Their
planes will intersect along the line FQ, so that their second intersection
point (which must exist if two consecutive collisions never occur at the
same point) will be located on this line FQ. I would like to add that the
two ellipses E and E; will have the same parameter. Due to the fact that
the points F, Q, and Q' are on a straight line, the inverse of the para-

. 1 1
meter of the ellipse E or of the ellipse E1 will be Efa' Eﬁa"

Under this assumption, we shall employ the following procedure. For
purposes of clarity, let us assume four collisions; let Qi, Q2, Q3, Qy be
the points where the four collisions occur.

We may specify these four points arbitrarily, provided that they are
Jocated on the same line passing through F.

We must construct two ellipses E and E; which intersect at Qi and Q,,two
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ellipses E' and E| which intersect at Q, and Q3, two others E" and EY
which intersect at Q3 and Qu, and finally two others E" and E|' which

intersect at Q,and Q;.

The orbit of P is composed of arcs pertaining to the four ellipses
E, E', E", E" , and the orbit of P; is composed of arcs pertaining to the

four ellipses E;, E}, EY, EJ' .

We shall specify the energy and area constants arbitrarily. These /367
constants must be the same for the interval between the first two colli-
sions (orbits E and E;) for the following interval, and for all the other
intervals. According to the statements presented in the preceding section,
this is the only condition which must be fulfilled.

In order to compile E and E;, we shall proceed as follows. L&t us
consider the motion of three bodies. Since we assume y = 0, this motion is
Keplerian, and the central body may be regarded as being fixed at F. We
know the total energy of the system. The two planets P and P; must leave
the point Q; simultaneously in order to arrive at the point Q; simultane-
ously. When P and P; go from Q; to Qy, the true longitude of P increases
by (2m + 1)m, and that of P; increases by (2m; + 1)m. We may still specify
the two integer numbers m and m; arbitrarily. The problem has then been
completely determined. It should be pointed out that the inclination of
the orbits does not intervene. 1In order to resolve this, we may assume
planar motion. The problem can always be resolved. We need only apply the
principle of Maupertuis, and Maupertuis action, which is essentially positive,
always has a minimum.

We must now determine the planes of the two ellipses. We know the
area constants. We therefore know the invariable plane which passes through
the line FQ;Q,. The areal velocity of the system is represented by a
vector perpendicular to the invariable plane, whose magnitude and direction
we know. It is the geometric sum of the areal velocities of the two
planets, represented by two vectors whose magnitude we know, since they
equal, respectively, mp and m;p, where m and m; are the masses of the two
planets and p is the common parameter of the two ellipses E and E;. We may
therefore compile the directions of these two base vectors which are perpen-
dicular to the plane of E and to the plane of E;, respectively.

The terms E' and Ej, E" and EY, ..., may be determined in the same
way.

389, Let us now assume that all of the successive collisions occur
at the same point Q. The period will be divided into as many intervals as
there will be collisions. Let us consider one of these intervals during
which the two planets describe the two ellipses E and E;. As in the pre-~ /368
ceding section, we will specify the energy constant and the area constant
which must be the same for all the intervals. We must construct E and E;.
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Let us assume that during the interval under consideration the planet
P has performed m complete revolutions, and that the planet F; has completed
m; complete revolutions. We can arbitrarily specify the two whole numbers
m and m;. Since we know these two whole numbers, we know the ratio of the
major axes. Since we know, on the other hand, the energy constant, we also
know the major axes themselves.

On the other hand, we know the area constant. Consequently, we know
the vector which represents the areal velocity of the system. This vector
can be decomposed an infinite number of ways into two base vectors which
represent the areal velocities of P and P;. We shall arbitrarily specify
this decomposition. If we know the two base vectors, we know the
planes of the two ellipses and their parameters. The orientation of each
of these ellipses in its plane remains to be determined. We will determine
it by passing the ellipse through the point Q.

Summafizing, we can arbitrarily specify:
1. The point Q and the number of intervals;
2. Tor all the intervals, the area constant and the energy constant;

3. Tor each interval, the whole numbers m and m and the decomposition
of the areolar vector.

In order to make the problem tractable, these arbitrary numbers must
satisfy certain inequalities which I will not describe.

390, Let us disregard the exceptional case where all the collisions
take place along the same line or at the same point, and let us consider the
case of motion in a plane. Let Q;, Qp, ..., be the points where the succes-
sive collisions take place. We will arbitrarily specify the energy constant
and the area constant which must be the same for all the intervals.

Let us consider one of the intervals, for example, the one where the
two planets pass from Q; to Q. We will arbitrarily specify the magnitude
of the radius vectors FQ; and FQp, but not the angle between these two radius
vectors, nor the duration of the interval.

77Wé'know that in this interval the difference in longitude of the two /369
planets has increased by 2mn. Let us arbitrarily specify the whole number
m.

Since we know this whole number, the two lengths FQy and FQ», as well
~as the two energy constants and the area constants, we have everything
needed to determine the orbits E and E;. This means that the principle of
Maupertuis must be applied. However, the Hamiltonian action must be defined
as was done in No. 339 and the Maupertuis action must be derived according
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to the procedure of Nos. 336 and 337. Unfortunately, this Maupertuis
action is not always positive and therefore one is not certain that it
always has a minimum.

Summarizing, we can arbitrarily specify:

1. The number of intervals and the lengths FQ,, FQ,, ...;
2. The area constants and the energy constants;

3. For each interval, the whole number m.

The collision orbits obtained in this way are all planar . Among
the periodic orbits of the second kind which reduce to these collision
orbits for u = 0, there are certainly some which are planar. It is also
possible that there are some which are not planar for p > 0, and only
become so at the limit.

391. Let us now see how one may demonstrate the existence of periodic
solutions of the second kind which, in the limit, reduce to the collision
orbits which we constructed above.

Let us now consider one of the collision orbits and let ty be a time
before the first collision and t; a time between the first and the second
collisions. In the same way, let t, be a time between the second and the
third collisions. For the discussion I will assume that there are three
collisions. T will call T the period in such a way that at the time tg + T
the three bodies appear in the same configuration as was the case at the
time tg.

As the variables, I will take the major axes, the inclinations and the
eccentricities, and the differences of the mean longitudes, the longitudes
of the perihelia and the nodes. 1In all,there are eleven variables, The
orbit is regarded as periodic if the three bodies have the same relative
configuration at the end of the period.

Let x?, xg, ceey xﬁ'be the values of these variagbles at the instant
tq for the collision orbit under discussion and consequently for u = Q. /370
Let x; be the values of these variables at the time t; for this same colli-
sion orbit, xi their values at the time t,, and x3 their values at the time

i
tg + T. One will have
r}=x)+ am;+

where m; is a whole number which must be zero for the major axes, the eccen-
tricities and the inclinations.
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Let us now consider an orbit which is slightly different from the col-
lision orbit. Let us assign a very small value to p, but different 0
from zero. In this new orbit, our variables will have the values x; + B

1 2
at the3time tg, x; + B; at the time tj, x; + B; at the time t, and finally
xg + Bi at the time tg + T + 1.

The condition for which the solution is periodic with period T + T is

Bl =730

Assuming u = 0, in order that a collision occurs between the time typ
and the time t;, the variables By must satisfy two conditions.

Let
LI = LB =0

be these two conditions.
Let us set

FuUE) =yt fa(B=13ks Bl=vd (K34 10

it can be seen that the Bg's are holomorphic functions of the Yg's and of

u. By applying_the principles of Chapter IT, it can be shown that the same
holds for the B1's.

In order that there be a collision between the times t; and t, (assuming
that p = 0), two conditions are necessary, which I may write as follows

SiBH=LE) =0 @)

Replacing the Bi's in relationships (1) by their values as a function
of the Yg's and of uy, and then setting u = 0, I obtain

0, ()= 0a(y)==0.
Let us then set
n(M=vim  LGD=1in =Tk (=3, .. 10)e
I find that the Bi's and the Bi's are holomorphic functions of the yi's /371

and of u. The same holds true for the Yg'S, and consequently for the Bg's.

Finally, in order that there be a collision between the times tp and
to + Tt, two conditions are necessary which I may write as follows
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SiBH = 1B} =o.
If the Bi's are replaced by their values as a function of the yi's
and of U, and if we then set py = 0, they become

i} =r(y})=o.
I may set
‘m(')l‘.l):"'f‘u,, *r‘,(\'ri‘):-{glu, BZ:Y,’{ (/\’_—_3, ey Il)

and I then find that the Bg's, the Bi's, and the Bi's are holomorphic func-
tions of the y%'s and of u. In the same way, the Bi's are holomorphic func-

tions of the Y%'s, of u, and of .

The relationships 82 = Bg are therefore equations whose two terms are
holomorphic with respect to the Yi's, U, and 1. These equations could be
discussed in the same manner as in Chapter ITI. The existence of solutions
of the second type could then be demonstrated.

I do not believe that this is necessary, because these solutions
deviate too much from the orbits traversed in actuality by celestial bodies.
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CHAPTER XXXIII

DOUBLY ASYMPTOTIC SOLUTIONS

Different Methods of Geometric Representation

392. 1In order to study doubly asymptotic solutions, we shall confine /372
ourselves to a very special case, that of Section No. 9: Zero mass of the
perturbed planet; circular orbit of the perturbing planet; zero inclinations.
The three-body problem then has the well-known integral called the Jacobi

integral.

Returning to No. 299 devoted to this problem from ¥o. 9, we must dis-
tinguish between several cases. We saw on page 159 that we must have the
following inequality

oy Ny

nt nt
S A + — V. ety > —h 1
r‘-{ P - (Fr-72)=V 2(;’+—Q)> h @))

We then distinguished between the case in which m, is much smaller than mz,and
in which -h is sufficiently large (page 160). We saw that the following
curve

V+£’Hwﬂ——h
2(; )= (2)

may be broken down into three closed branches which we have called C;, Cp

and C3. Therefore, in view of the inequality (1), the point &, n must always
remain inside of C;, or always imside of C3, or always outside of C3 (&, n
are the rectangular coordinates of the perturbed planet with respect to the
moving axes).

We shall assume below that the value of the constant -h is large enough
for curve (2) to be broken down into three closed branches, and that the
point &, n always remains inside of Cp. In this way, the distance r; from
the perturbed planet to the central body may vanish, but this is not true /373
for the distance r; between the two planets.

This hypothesis corresponds to the following hypothesis, which we formu-
lated on pages 199 and 200 -- i.e., the curve F = C has the form shown in
Figure 9, and the point xj, X2 remains on the utilizable arc AB.

We shall employ the notation given in No. 313, and we shall introduce
the Keplerian variables L, G, 1, g. However, these Keplerian variables
may be defined in two ways. Just as in No. 9, we could relate the perturbed
body to the center of gravity of the perturbing body and of the central body,
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and we could consider the oscillating ellipse described around this center
of gravity. However, it is preferable to refer the perturbed body to the
central body itself, and to consider the oscillating ellipse described
around this central body.

These two procedures are equally legitimate. We saw in No. 11 that
the body B may be related to the body A, and the body C may be related to
the center of gravity of A and of B. It is apparent that we could also
refer C to A and B to the center of gravity of A and C. If A represents
the central body, B the perturbing body, and C the perturbed body, it can
be seen that the first solution is that which was adopted in No. 9. Tt
may also be seen that in the second solution, which we shall adopt from
this point on, the two bodies B and C are both related to the central body,
since -~ due to the fact that the mass of C is zero —— the center of gravity
of A and C is at A,

We then have

Vies g wVizi B (g,
2L2 ry 2y i—p

['=R + G =

where u and 1 - u designate the masses of the perturbing body and of the
central body, r; designates the distance between the two planets, 1 desig-~
nates the constant distance from the perturbing body to the central body,
and rp designates the distance of the perturbed body to the central body.

Just as in No. 313, we shall set

Ty == L—-G, 1'1—'_~L+G,
wrm=l—g ity oyy=l+g—1;
o ; ' _ 2 T Ty,
F'=Fy+nuFy, Fo= STt +G = T+t > pay
R TRVAR
A N
2[.2 ry . 1;/[——;1

I would like to stress the following important point. It can be seen that [374
the function F; always remains finite in the region from which the point g,

n cannot leave.

We shall employ the method of representation given on page 200, and we
shall represent the configuration of the system by the point in space whose
rectangular coordinates are

X Vi, COS s , Y — ¥z sianz_‘__wa ’
\/,T,+41',—9.;/x, COs )y M.w-r- 4 —2\/.5‘ CUS Yy
e 2V s

[V e
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X
It can be seen that, when the ratio ;% is constant, the point X, Y, Z

describes a torus. This torus may be reduced to the Z axis when this
ratio is infinite, and may be reduced to the circle

L —=o, X2- Y=,
when this ratio is zero.

dF dF .
The derivatives E;L and E;l-remain finite in the region under consi-
1 2

deration, just as does the function Fj itself, except when X; Or Xp is
dF; dF
very small. This would not be true for the derivatives E;%;‘g;% which

could become infinite for rp; = 0. As a result,
dF’ dF

-y = -, =" —n
! dry z

T dz,

dF dF
differ very little from E;% and E;%’ We saw on page 201 that, in terms of

dr
the hypothesis with which we are dealing, E;Q and consequently np cannot
2

vanish because the energy constant C (the constant C given in No. 313 may
be readily reduced to the constant h given in No. 299) is larger than

-% (on page 201, we must set-% instead of %-everywhere).

If x, is not very small, we shall therefore have

g >0,

dF
because E;i can only become infinite for x; = 0, from which it follows that {375

y, is always increasing, except for very small Xj;.

Let M be a point X, Y, Z, such that y2 = 0. On the half-plane we
shall have

Y=o, X>o.

When x;, X3, Y1, y2 vary in conformance with differential equations,
the point X, ¥, Z will describe a certain trajectory. When y3, which in-
creases constantly, reaches the value 2w, the point X, Y, Z -- which has
moved to M; -- will again be located on the half-plane Y = 0, X > 0.

The point M; is then the consequent of M, according to the definition

given in No. 305. Since y; 1s always increasing, every point on the half-
plane has a consequent and an antecedent. There is only an exception for
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very small x; -- i.e., for points on the half-plane which are very far
from the origin, or very close to the Z axis.

We shall have an integral invariant, in terms of the meaning attribu-
ted to this word in No. 305. Let us try to formulate this invariant.

Due to the fact that the equations are canonical equations, they have
the following integral invariant

f(l,n drydy, dy,.

X
Let us set z = ;3, and let us select F', z, y;, yo as new variables.
1

The invariant will become
r}3dF dsdy,dy, [z} (lFf_dzdy} dys
—f‘ dFJd™ "j T +xiny

We may deduce the following triple invariant from this quadruple in-
variant (due to the existence of the integral F' = C)

[

Ty -3 R

In this triple integral, we assume that x.,xg,n.::——gg;,n,::__fgz
i Ty

replaced as functions of z, y;, y, by means of the equations

are

Ty= 1z, F'=C.

Let us now take the variables X, Y, Z, and let us employ A to desig- /376
nate the Jacobian of X, Y, Z, with respect to z, yj, y2. The invariant will
become

f #1dX dY dZ

(z(n;+ r,_n:ya_ )

Let us set

R = *J%___ 7 2 sin 1,y

’ = - ———y
5+ 4 —2¢08y, Va4 —2cosy,

from which it follows that
X =: R cosyt, Y == R siny,.

Let us again set D = [(R— )+ Z:][(R + 1)t + 2]
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A simple calculation provides the following

Our invariant may therefore be written

f 8r1y/s(z+ §)dXdY dZ

(xiny +2,0,)RD

The principles presented in No. 305 enable us to deduce the following
invariant, in the sense of No. 305

8.1 5(5+4)
f rivilied) nx dN dZ.

b Ty -+ Ty Ny

n, and R play the role which @ and p played in the analysis of No. 305.

The tern under the sigh f is essentially positive, except for very
small x, —— i.e., for points of the half-plane which are very far from the
origin, or very close to the Z axis.

393. This fact (that a point will no longer have a consequent if it
is too far, or if it is too close, to the Z axis) could cause some difficulty,
and it would be advantageous to avoid this difficulty by whatever method.

We could employ the statements presented in No. 311, and we could re-
place our half-plane by a simply connected curve on a surface. We shall
choose this curve on a surface in the following way.

If x, is very small, the eccentricity is very small, and the two planets
turn in the opposite direction. The principles presented in No. 40 are
applicable, and we may affirm the existence of a periodic solution of the /377
first type which will clearly satisfy the following conditions: The quanti-
ties

\/:c',cos_y,, /z,siny,, Iy, Cosyy, siny,

are periodic functions of the time t. These functions depend on y and on
the energy constant C. They may be developed in powers of p; the period
T also depends on p and on C. The angle y; increases by 27 when t increases

by a period. Finall§1 V%, cos y, and Y%, sin y, are divisible by u, so
that we have x5 = 0 for u = 0.

With our method of representation, this periodic solution, which I

have called o, is represented by a closed curve K. Since X; is very small
when p is very small, this curve is displaced very little from the Z axis.
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. It may be stated that it is displaced from it very little, in the same way
that a circle having a very large radius is displaced very little from a
straight line. Every point on the K curve is either very far from the origin
. or very close to the Z axis.

Under this assumption, our curve on a surface S would have the curve
K for the perimeter, and it would be displaced very little from the half-
plane Y = 0, X > 0, except in the immediate vicinity of the curve K. It
would be very easy to conclude this determination in such a way that every
point on this surface would have a consequent on this surface itself. TFor
this purpose, if I designate an arbitrary trajectory by (T) —— i.e., one
of the curves defined in our method of representation by differential equa-
tions -- it would be sufficient that the surface S was not tangent at any
point to any of the trajectories (T).

However, there is still another method, which does not basically differ
from the first method. If we reflect on this a little, we will find that
this difficulty is similar to that in Chapter XII. We must therefore perform
the change in variables similar to that performed in No. 145.

Let us first set

By = Vazycosy,, T = y2z, siny,,

and we then have )
S =finek 2y + uS,

where §; is a function of £&'j, ny, x, y1. Let us then set /378
, _dS ds,. ., dS dS, (1)
; S1 = ([T':—- 2 +.U~-(-[_,";y Ty = (75 =T+ 757!,
[omf ey s,
,_d_)’l =7 F‘,{,," }n‘ﬁ‘-}l+:1-:&iv
and finally

2, = Vax cosyl, 7%= y2x; siny}.

I should first point out that the canonical form of the equations will

not be changed when I pass from the variables xj, y1, X2, Y2, t0o X1, V1, &2,

nz, then to x}, vy, &%, n',, and finally to X)s Vs x%, y%.

I must now choose the function S;.

I know that F' is a holomorphic function of ¢57:005y|,¢5579n}ﬁ,
Vg;:UB}%‘v2rzﬁnyzin the region under consideration. I would like it to
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remain a holomorphic function of the new variables

yaricosy;, yaxysinyi

For this purpose, I would like the old variables \,/2xi :gi yi to be holomor-
phic functions of the new variables 2x& ::ﬁ y; and of u.

To do this, we need only assume that S); is a holomorphic function of

— — .
\/lecosy,, \/zz,sm_y,, 8y Ta, 1

¢

and is divisible by x';.

For our periodic solution o, I would like to have

zy == z? = consL.
Therefore, let
E;’f: .'\, Ty = B', .I":C

be the equations of the periodic solution. A, B, C are functions of y;
which are periodic of the period 27 and may be developed in powers of u.

Then C - %%IB will also be a periodic function of y;. Let xg be its

mean value. We may obtain another periodic function o such that

We shall no longer assume that, for x| = xé, the function uS; may be re- /379
duced to

2 - BEy+ A, (2)

This will be sufficient for the equations of the periodic solution
to be reduced with the new variables to

ty=mp=0, z,=2zi
It is clearly possible to obtain a function uS); which may be developed

in powers of V2%, ;ii y1, which may be divisible by x';, and which at the

same time may be reduced to expression (2) for x& = x?.

Let us adopt the new variables x'i, y'1, X2, ¥'2-
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cos

The function F', which was holomorphic with respect to V2x; cin

Y1

pﬁ;;g:i y2, will also be holomorphic with respect to "zxﬁ.gii '

beggi y2. In addition, since one of the solutions of the differential

equations is
fp=mp=o0, a\=a,

we must have the following relationships for &',=1,= 0, x| = x?

A" dF' _ dF'
&, T dn T Ay T (3

For small values of £'; and n',, F' may be developed in powers of &',
and . In view of relationships (3), for x'1 = x?, the terms of the first

degree in this expansion will vanish, and the terms of zero degree will be
reduced to a constant which is independent of uj.

This constant can be nothing else than the energy constant C, so that
the conditions &', = n', =0, x'; = x? may be replaced by the following con-
ditions

fi=m=0, F=C0C

Thus, for F' = C, the terms of the first degree in £', and M, will vanish
in the expansion of F'.

The difficulty arises from the fact that F' and F; include terms of
the first degree in /380

r .
G=V2zicosys,  my= 2z sing,

dF
and that, consequently, the derivative E;i includes terms L which be-
X2

come infinite for x5 = 0.

This difficulty no longer exists now. We no longer have terms of the

dF
first degree in &';, n",. Therefore the derivative E;% remains finite,
2
! dF
even for x% = 0,and o’ which differs very little from E;%’ always retains
X2

the same sign. Therefore, with our new variables which only differ from
the old variables by very small quantities on the order of u, we shall con-
stantly have
dz},
FORe
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With our new variables, let us formulate a convention which is similar
to that given in the preceding section, and let us represent the configura-
tion of the system by the point in space whose coordinates are

X Vehensys v Vg siny)
f e e NN hti - | = e e, e — y
Ve 2 V.x, sy \/1"24‘31"‘——2‘/:"005]"
ST i 4
7. 2/ 7 siny

Vry -+ §o)— 2 V' cosy,

dx',

Everything which we have stated still holds . However, since

can never vanish, every point on the half-plane, without exception, will
have a consequent.

It may now be stated that the integral invariant is always positive.
There can only be some question of doubt for the denominator which, with the
same variables, was xjnj + Xpnp and which now would be

. dEdF
- (’ﬂ dz, "7 ;l.%',') ’
which -- assuming that F' is a function of the following four variables
b= VaTleosh,  wi=Vazisingd,
may be written /381

1 dF’ dF' dF’ dF’
LAY N LA P A o . ar
2(51 dE, ] + £ z, + 7, (l"?;)

In this form, it may be readily seen that the denominator is holomorphic
with respect to the &''s, the n''s, and u. However, for y = 0, F' may be
reduced to
2 _Lz';—z’,
(z)+23)t 2

and it may readily be shown that the denominator is always positive. It
will still be positive for small values of u.

394. In the following statements, we shall adopt the variables defined
in the preceding section. We shall remove the accents which have become
useless, and we shall write F, x; and y; in place of F', x'; and y'i. We
then have the integral invariant (in the sense of No. 305)
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7 dF
871y 3(3+4) dry ,
I ‘f”'“l) I @ dz
1 TI[ t Tr,

from which we have
Do (X =)t Z2 X —H-1)t 4 Z2),

I would first like to note that this integral invariant, which is
always positive, remains finite when it is extended over the entire half-
plane.

If l/kX - 1)2 + 22 is an infinitely small quantity of the first order,
the numerator x% Vz(z + 4) is an infinitely small quantity of the second
order, and the same holds true for D. If ]/YX - 1)2 + 22 is an infinitely
large quantity of the first order, the numerator remains finite, while D is
very large of the fourth order. All of the other quantities remain finite.

I shall call J; the value of the invariant J extended over the entire
half-plane.

The periodic solutions and the trajectory curves which represent them
are characterized by the fact that these curves intersect the half-plane at
points whose successive consequents are finite in number. For example, let
us refer to No. 312 and, in particular, to Figure 7 shown in page 195.

In this figure, the closed trajectory which represents a periodic /382
solution intersects the half-plane at five points My, My, My, M3, My, each
of which is the consequent of the others. For purposes of brevity, I
shall call such a system a system of periodic points or a periodic system.

Two systems of asymptotic solutions correspond to each unstable, periodic
solution. These solutions are represented by trajectories (in the sense of
No. 312), and the total group of these trajectories forms what I have desig-
nated as asymptotic surfaces. The intersection of an asymptotic surface
with the half-plane will be called an asymptotic curve. Just as we saw in
Figure 7, page 195, four branches of asymptotic curves (MA, MB, MP, MQ) --
each two of which are located in the extension of the other -- lead to each
of the points M; of an unstable periodic system,

There is an infinite number of asymptotic curves, because there is an
infinite number of unstable, periodic solutions and, consequently, an
infinite number of systems of unstable periodic points, even if we confine
ourselves to solutions of the first type which we defined in Nos. 42 and 44.

A distinction may be drawn between asymptotic curves of the first
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family and of the second family, depending on whether the corresponding
characteristic exponent is positive or negative. Curves of the first
family are characterized by the following property: The nth antecedent
of an arbitrary point is very close to a periodic point if n is very
large. For curves of the second family, it would be the ntll consequent,
and not the atl antecedent, which would be very close to a periodic point.

On the figure shown on page 195, the curves MA and MP belong to the
first family, and the curves MB and MQ belong to the second family.

These asymptotic curves may be regarded as invariant curves in the

sense of Chapter XXVII, under the condition that one of the two following
conventions is employed. Let us again consider the figure shown on page

195, and we shall find the curve Mghg which has MjA;, MoA,, M3Az, MyAy, MoAs
for successive consequents. If we consider the five curves MpAg, MiAy, MoA,,
M3A3, MyAy,, this total group will clearly constitute an invariant curve. Igh
we only consider the consequents in groups of 5, and if we designate the 5p~—
consequent, which it has been called up to the present, as the th-consequent,
it is apparent that only the curve MgApAg under consideration will be an in-
variant curve. /383

Two curves of the same family cannot intersect. These two curves will
end at the same periodic point --— for example, the point Mg. These two
curves will coincide (since MgAp with its extension MgPgy is the only curve
of the first family which passes through M;), and we must determine whether an
asymptotic curve can have a double point. The question has been answered
in the negative (No. 309, page 186).

Or, these two curves will lead to two periodic points of the same
periodic system -- for example, to the two points My and M;. I1f two curves,
which would then be MgAg and MjAjp, had a point in common Q, the 5ptl ante-
cedent of Q would have to be very close to My for very large p, because Q
would belong to MgAg, and it would have to be very close to M; at the same
time because Q would belong to MjA;. This is absurd.

Or, finally the two curves would lead to two points belonging to two
different periodic systems. For example, let us assume that the two curves
belong to the first family, and that Q is their point of intersection.

For very large n, the nLh antecendent of Q would have to be very close
to one of the points of the first periodic system and one of the points of
the second system at the same time. This is also impossible.

Conversely, there is no reason that two asymptotic curves of different
families cannot intersect.

Let S and S' be two unstable periodic solutions, let T and T' be the
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corresponding closed trajectories, and let P and P' be the corresponding
periodic systems.

Let & and L' be two asymptotic surfaces which pass through T and T',
respectively, and which intersect the half-plane along two asymptotic
curves C and C' -- one belonging to the first family, and the other belonging
to the second family.

What will happen if C and C' have a point in common Q? The two sur-
faces L and L' will intersect along a trajectory 1, which will correspond
to a special solution o. The trajectory 1 will belong to two asympototic
surfaces, so that for t = -« it will closely approach T, and for t = +» it
will closely approach T'. For very large n, the nth antecedent of Q will be
very close to one of the points of system P and its nth consequent will be /384
very close to one of the points of system P'.

The solution ¢ is therefore doubly asymptotic.

There is nothing absurd in any of these results.

We must distinguish between two cases, however. The two solutions §
and S' coincide, so that T first closely approaches T = T', then
recedes farther away from it, and again closely approaches this same tra-
jectory T = T'. 1T could then state that the solution ¢ is homoclinous. Or,
S differs from S', and T differs from T'; I may then state that ¢ is hetero—
clinous.

The existence of homoclinous solutions will be demonstrated very
shortly. The existence of heteroclinous solutions remains doubtful, at
least in the case of the three-body problem.

Homoclincus Solutions

395. At the end of No. 312, we found that "the arcs AgAs and BgBs
intersect". However, the arc AgAs belongs to the curve MgAgAs which is an
asymptotic curve of the first family, and the arc BgBs is part of the curve
M3By which belongs to the second family.

The line of reasoning is general, and we must conclude that the two
asymptotic surfaces which pass through the same closed trajectory must
always intersect beyond this trajectory. The asymptotic curves of the first
family which lead to the points of a periodic system always intersect the
curves of the second family, which lead to these same points,

In other words, on each asymptotic surface there is at least one doubly

asymptotic, homoclinous solution. We shall see very shortly that there is
an infinite number of them, but we shall now show that there are at least two
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of them.

For this purpose, let us turn to the figure shown on page 195. Follow-
ing the line of reasoning in Nos. 308 and 312, we find that the integral
jnvariant J extended over the quadrilateral AgBgAsBs must be zero. It is
for this reason that this curvilinear quadrilateral cannot be convex, and
that the opposite sides AgAs and BgBs must intersect. Let Q be one of the /385
intersection points of these two arcs. We should note that the point By
was chosen arbitrarily on the asymptotic curve MAg. If we place the point
Ap at the point Q itself, this point Ag will also be located omn the curve
M3Bg and will coincide with the point Bg. If the two points Ag and Bg coin-
cide, the same will hold true for their five consequents Ay and Bs.

The quadrilateral AgBpAsBs will therefore be reduced to the firgure
formed by two arcs of a curve having the same end points. This figure can-
not be convex, since the integral invariant extended over the quadrilateral
must be zero. Therefore the two arcs ApAs and BgBs must have points in com-
mon, other than their end points.

There will therefore be at least two different intersection points
(a point and an arbitrary consequent of it are not regarded as being differ-
ent).

There will therefore always be at least two doubly asymptotic solutions.

Let us assume that the points Ay and Bg coincide, and let us extend
the arcs AgAs and BgBg up to the first point at which they touch Cgp. We
will have thus determined an area which will be convex this time (from the
point of view of Analysis situs) and which will be bounded by two arcs
which are a part of the two arcs AgAs and BgBs, respectively, having the

same end points -- i.e., Ag = Bg and Cgp.
Let ap be this area, and let o, be its nth consequent. The area op —=
like og -- will obviously be convex and bounded by two arcs of a curve --

one belonging to the first family, and the other belonging to the second
family.

The integral Jwill have the same value for og and o,. Let j be this

value. Since the value Jy of the integral invariant for the entire half-
plane is finite, following the line of reasoning presented in No. 291, we
will find that, if

the area ag will have a part in common, at least with p of the areas

Yyy Zoy ey Xng,
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Since n cannot be taken arbitrarily large, I may stipulate the following
result:

Among the areas an, there is an infinite number of them which have a
part in common with cg.

How may it happen that ap has a part in common with on? /386

The area a( cannot be entirely within on, since the integral invariant
has the same value for the two areas. For the same reason, the area ap
cannot be entirely within ap. Neither can the two areas coincide. If one
part of an asymptotic curve (for example, belonging to the first familK)
coincided with its ntl consequent, the same would hold true for its ptl
antecedent, no matter how large p may be. However, if p is large, this pth
antecedent is very close to the periodic points, and the principles formu-
lated in Chapter VII will demonstrate that this coincidence does not occur.

We must therefore assume that the perimeter of ag intersects that of
on. However, the perimeter of ap is composed of an arc AgHgCy belonging to
the curve MpAgAs of the first family, and of an arc

ByRyCo o Ny K, 0,
belonging to the curve M3BsB; of the second family.

In the same way, the perimeter of onp will be composed of the arc ApMpCp,
the nth consequent of AgHyCp, which will belong to the same asymptotic curve
as ApHgCp -- i.e., to a curve of the same family —- and it will also be com-
posed of the arc A K,C,, the nth consequent of AgKyCp, which will belong to
the same asymptotic curve as ApKyCq -- i.e., to a curve of the second family.

Due to the fact that two curves of the same family cannot intersect, it
is necessary that AgHpCpintersect AnKnCh, or that ApKgCjp intersects ApHLCh.
However, if the two arcs AgKgCq and ApHpC, intersect, their nth antecendents
A_pK-nC_p and AgH(Cg will equally intersect. It is therefore necessary that
AgHoCp intersect the nth consequent, or the nth antecedent, of AgKqCp.

However, the arc ApKpCgy, all of its antecedents, and all of its conse-
quents will belong to the same invariant curve of the second family, which
was shown in the figure on page 195 by the total group of curves M3By, M;Bj3,
MyBy, MpBy, MpBs.

The arc AgHoCp is therefore intersected an infinite number of times by
this group of curves. )

The two surfaces &L and L' which passed through the closed trajectory T
therefore have an infinite number of other intersection curves.
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Therefore, on the surface L there is an infinite number of double [387
asymptotic, homoclinous solutions.

q.e.d.

396. Let AgHpCy be an arbitrary arc of our asymptotic curve of the
first family, and let us assume that this arc intersects an asymptotic
curve of the second family at two end points Ag and Cg. It may be stated
that there will always be other points of intersection with the curve of
the second family between these two points Ag and Cp.

Let AgKpCo be the arc of the curve of the second family which unites
these two points Ay and Cp-

Either the two arcs AgHgCo and AgKoCq have points in common other than
their end points, in which case the theorem has been proven.

Or, these two arcs do not have a point in common other than their end
points Ay and Cp. ‘he two arcs then bound an area ag which is similar to
that which we considered at the end of the preceding section. The same line
of reasoning may then be applied, and we may conclude that the arc AgHgCq
intersects the curve of the second family an infinite number of times.

Therefore, there is an infinite number of other points on an asymptotic
curve of the first family, between two arbitrary points of intersection with
the curve of the second family.

On an arbitrary asymptotic surface, between two doubly asymptotic ar-
bitrary solutions, there is an infinity of other solutionms.

We may not yet conclude that the doubly asymptotic solutions are every-
where dense on the asymptotic surface, but this seems very likely.

The points of intersection of two asymptotic curves may be divided into -
two categories. The asymptotic curve may be traversed in two opposite direc-—
tions. We assume that this direction 1is positive, if we proceed from a point
to its consequent., Let A be a point of intersection of the two curves, and
let BAB', CAC' be two asymptotic curve arcs intersecting at A. Let us assume
that BAB' belongs to the first family, and CAC' belongs to the second family,
and that -- when following the curves in the positive direction —-- one pro-
ceeds from A to B', and from A to C'. Depending upon whether the direc- /388
tion AB' is to the right or the left of AC', the intersection point A will
belong to the first or to the second category.

Under this assumption, let AgHoCq be an arc of the first family, inter-
sected at Ay and Cy by an arc ApKgCo of the second family. No matter what
category Ag and Cp belong to, the group of two arcs AgHoCoKgAg will form a
closed curve. If the two arcs have no other point in common except their
end points, this closed curve does not have a double point and defines an
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area ag. If the two arcs had points in common other than their end
points, and if, for example, the two arcs AOHODOHéCO’ AOKODOK6C0 inter-
sect at Dg, we may replace the points Ay and Cy by the points Ay and Dq
“located between Ay and Cp, and the arcs AgHgCp, ApKgCp by the two arcs
AgHoDg and AgKgDg. This may be continued until we arrive at two arcs
which have no point in common other than their end points.

Let us assume that the two arcs define an area ag. According to the
statements we have just presented, the arc ApHpCy must intersect the asymp-
totic curve of the second family an infinite number of times. Therefore,
the curve of the second family must penetrate within ag an infinite number
of times, and it must leave it an infinite number of times. It may pene-
trate it or leave it only by intersecting AgH(yCy, because it cannot inter-
sect AgKgCy which also forms a part of the curve of the second family. It
is apparent that points through which it will penetrate into the area, and
the points through which it will leave the area, will not belong to the same
category.

Therefore, between two arbitrary intersection points of two curves,
there is an infinity of other points belonging to the first category, and
an infinity of other points belonging to the second category.

Let us employ (1), (2), (3), ..., to designate the successive points at
which the curve of the second family and the arc AgH(C; meet, taken in the
order in which they are encountered proceeding along the curve of the second
family in the positive direction. They will belong to two categories in
succession. Let us study the order in which they are encountered proceeding
along the arc AgH(Cq.

This order cannot be completely arbitrary, and certain successions are
excluded -- for example, the following: /389

(2m), (2p), (2m 4-1), (2p--1)
(2m-4-1) {(2p), (2m), (2p - 1)
(2m), (2p+1), (2m 1), (2p)
(2m), (2p), (2m —1), (2p—1)

as well as the same inverse successions, and the similar successions where
2m + 1 and 2p + 1 are replaced by 2m - 1 and 2 p - 1.

397. When we try to represent the figure formed by these two curves
and their intersections in a finite number, each of which corresponds to a
doubly asymptotic solution, these intersections form a type of trellis, tissue,
or grid with infinitely serrated mesh, Neither of the two curves must ever cut
across itself again, but it must bend back upon itself in a very complex
manner in order to cut across all of the meshes in the grid an infinite
number of times,

381



The complexity of this figure will be striking, and I shall not even
try to draw it. Nothing is more suitahle for providing us with an idea of
the complex nature of the three-body problem, and of all the problems of
dynamics in general, where there is no uniform integral and where the Bohlin
series are divergent.

Different hypotheses are possible.

1. We may assume that the group of points of two asymptotic curves Eg,
or the group of points in the vicinity of which there is an infinite number
of points belonging to E; —— 1.e., the group E'), the "derivative of Eo" -—-
occupies the entire half-plane. We would then have to conclude that insta-
bility of the solar system exists.

2. We may assume that the group E'y has a finite area and occupies a
finite region of the half-planme, but does not occupy it completely. Either
one part of this half-plane remains outside of the meshes of our grid, or
a "gap" remains within one of these meshes. TFor example, let Uy be one of
these meshes bounded by two or more asymptotic curve arcs of the two families.
Let us compile its successive consequents, and let us apply the procedure /390
presented in No. 291. Just as on page 145, let us formulate the following

Uy, Uy Uz Ug U oo B

If it is finite, the area E will represent one of the gaps which we
just mentioned. It would appear that we may apply the line of reasoning
employed in No. 294, and may conclude that this area must coincide with one
of its consequents. However, this group E could be composed of a region of
finite area and of a group located outside of this region, whose total area
would be zero. According to page 151, we may only conclude that E, (the ALh
consequent of E) includes E, and that the group E) - E has area zero. In the
same way, the groups E - E_j, E_j - E_pps +++s Eopd — E—(nt+1)) will have area
zero (by area of a group, we mean the value of the integral J extended over
this group). On the other hand E_(n+1) is a part of E_, ;. When n increases

indefinitely, E_p; tends toward a group € including every point which is part
of all the groups E_,; at the same time. The area of this group € is finite

and equals that of E. Finally, € coincides with its AR consequent.

3. Finally, we may assume that the group E'y has area zero.

It would then be similar to those "perfect groups which are not con-
densed in any interval".

398. We may represent the different intersection points of the two
curves in the following way. Let x be a variable which varies from -« to +=,
when the asymptotic curve of the first family MgAgy is followed, from the
point Mg up to infinity, and which increases by unity when we pass from one
point to its fifth consequent -- from Ag to As, for example (to clarify this
point, we shall assume that we are dealing with the conditions of the figure
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shown on page 195). Let y be another variable which varies from +e to -
when the curve of the second family M3Bs is followed from the point M3 up
to infinity, and which increases by unity when we pass from a point to its
fifth consequent.

The different intersection points of the two curves are characterized
by two values of x and y, and each of them may be represented by the point
on a plane whose rectangular coordinates are x and V.

We shall thus have an infinite number of representative points of the /391
doubly asymptotic solutions in the plane. An infinite number of other points
may be deduced from each of these points. If the point x, y corresponds to
an intersection of the two curves, the same will hold true for the points

Tl ybdy T2, y42) .. T4+n, y-4a,

where n is a positive or negative whole number. In order to determine all
the representative points, it is sufficient to know all those which are in-
cluded in the region 0 < x < 1, or in the region 0 < y < 1,

We would also like to note that the order in which the projections of
these representative points will occur on the x axis will have no relation-
ship with the order in which their projections will occur on the y axis.
This results in the following.

Let us consider several doubly asymptotic solutions. For t which is
negative and very large, they will all be very close to the periodic solu-
tion, and they will appear in a certain order —- some of them will be closer
to, and others will be farther from, the periodic solution.

All of them will then recede appreciably from the periodic solution, and
-- for t which is positive and very large -- they will all again be very
close to it. However, they will then appear in an entirely different order.
Out of two solutions, if the first is closer than the second to the periodic
solution for t = -, it may happen that for t = +« the first is farther away
than the second from the periodic solution, but the opposite could also occur.

We have pointed this out in order to illustrate the great complexity of
the three-body problem, and to show how many different transcendents out of
all those which we know must be considered in order to solve it.

Heteroclinous Solutions

399. Do heteroclinous solutions exist?

As far as we can determine, if there is one of them, there is an infinite
number of them.
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Let My be a point belonging to a periodic system. Let Mghg and MgBg /392
be two asymptotic curves bordering upon this point My —— one belonging to
the first family, and the other belonging to the second family. We have
just seen how these curves intersect, so that the doubly asymptotic, homo-
clinous solutions may be determined.

Now let M} be a point belonging to another periodic solution. Let
Moay, My By be two asymptotic curves, M'A'; belongs to the first family,
and M'B'y belongs tothe second family.

Let us assume that M'gAl) intersects MgBg at Qp. This intersection
will correspond to a doubly asymptotic, heteroclinous solution.

However, if these two curves intersect at Qp, they will also intersect
at an infinite number of points Q,, the consequents of Qgp.

I shall state this precisely. For example, I shall assume that the
periodic system of which Mp is a part is composed of five points My, M;, Mo,
M3, My. Then the fifth consequent of an arbitrary point of the curve MyBy
will still be located on this curve, and in general —- if Qg 1is on this
curve -- the same will hold true for its nth consequent Qn s provided that n
is a multiple of five.

In the same way, let us assume that the periodic system of which M'
is a part is composed of seven points. Then, if Qp is on the curve M'gAy,
the same will hold true for its nth consequent Qp, provided that n is a

multiple of 7.

Therefore, if the two curves have an intersection at Q , they will still
have an intersection at Q,, provided that n is a multiple of 35.

Let QoHoQ, be an arc of MoBg, and let QyKgQ be an arc of MigA'g. Due
to the fact that these two arcs have the same end points, together they will
form a closed curve. We may pursue the same line of reasoning as in No. 396
for this closed curve. We shall find that, if the two arcs have no other
point in common except their end points, this closed curve does not have a
double point, and defines an area which is similar to the area ag given in
Nos. 395 and 396. If the two arcs have points in common other than their
end points, we may obtainr two other arcs which are part of the two arcs
QoHoQp» QoKoQp which have only their end points in common and which define
an area similar to ap.

The same line of reasoning as was employed in Nos. 395 and 396 may be
used for this area ap, and we will find that an infinite number of other
points may he obtained on each of the two curves, between two arbitrary /393
points of intersection with the other curve.

This line of reasoning shows that if there is ome heteroclinous

384



"solution, there is an infinite number of them.

400, 1If there is a heteroclinous solution, the grid of which we
"spoke in No. 397 must be still more complicated. Instead of a single
curve MpAg bending back upon itself without ever cutting across itself,
and intersecting the other curve MyBy an infinite number of times, we
shall have two curves MpAp, M'pA; which must intersect MgBp an infinite
number of times without ever cutting across each other.

In No. 397, we defined the group E'y with respect to the point My and
to the asymptotic curves MpAp, MyBg. We may also define a similar group
with respect to the point M'; and to two asymptotic curves MgA,, M'yB.

If there is no heteroclinous solution, these two groups must be out~-
side of each other; therefore, they cannot occupy the half-plane. If, on
the contrary, there is a heteroclinous solution, these two groups will
coincide. It may be seen that the existence of such a solution -- if it
could be established -- would provide an argument against stability.

In Chapter XIII we studied the series of Newcomb and Lindstedt, and
we showed in No. 149 that these series cannot converge for every value of
the constants which they contain. However, one question remains in doubt.
Could these series converge for certain values of these constants andi for

example, could it happen that the convergence occurs when the ratio %_ is

2
the square root of a commensurable number which is not a perfect square

(see Volume II, page 104, in fine).

However, if a heteroclinous solution does exist, the answer to this ques-
tion must be in the negative. Let us assume that for certain values of the
ratio Eﬁ the series of Newcomb and Lindstedt converge, and let us return to
our method of representation. The solutions of the differential equations
which would correspond to this value of El could be represented by certain

trajectory curves. The group of these curves would form a surface, having
the same connections as the torus, and this surface would intersect our /394
half-plane proceeding along a certain closed curve C.

The group E'5 which we just mentioned would have to be completely out-
side of this curve, or completely inside of it.

Let My and M'y be two points belonging to two different systems. If My
is within the curve C and M'; is outside of this curve, the group EYy with
respect to My would have to be entirely within it, while the group EY with
respect to M'p would have to be entirely outside of it.

These two groups could not have any point in common, and no doubly
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asymptotic, heteroclinous solution could exist, proceeding from Mg to MY .

If we admit the hypothesis advanced in Volume II, page 104, which T
have just presented —— i.e., if the convergence occurs for an infinite

]
number of values of the ratio ;;, for example, for those whose square is

commensurable —- there would be an infinite number of curves C which would
separate the points belonging to different periodic systems. This hypothesis
is incompatible with the existence of heteroclinous solutions (at least if
the two points My and M'y which we are considering, or the corresponding
periodic solutions, correspond to two different values of the number %LJ

2

Comparison with No. 225

401. Before trying to present examples of heteroclinous solutions, we
shall return to the example of No. 225, where the existence of doubly asymp-
totic, homoclinous solutions may be illustrated.

We set

——F:p+q’—'}.psin’%—psc§()’)cosz
(p, X; q, y) are the two pairs of conjugate variables.

We then formulated the function S of Jacobi, and we developed it in
powers of € /395

S=So+515+8151+....

Let us consider the second term, neglecting €2, and let us write

S = So—Q‘ Slﬁ.

Sp= Aoz + \/2Tlf\/h - sin’% dy,

or, assigning the value zero to the constants Ag and h,

We then obtain

Sy = iz\/z—;xcos‘z;
2
and we then obtain
S,-- real part {efs,

where ¢ is a function of y defined by the equation

. — S r L Y d
u‘g-&—z\/zy.\/h—'r—sm’i—’ C—l_)i’ = pp ()
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We set

tangs = ¢,

and assuming that

o= o, ’.:(_y) B siny’ o == ¢

—)»
2y

we obtained (pages 464 and 465, Volume II) two values of corresponding
to the two asymptotic curves of the two families, One of these values 1is

— . ®rrade
Y, — —
= V2 ——— - 2
L4 \/ HI Iz} [ I+ t”

and the other is
Lpady

L. . t S
¥=Vap e mf 1+
The equations of the two asymptotic surfaces will then be

p=ct real part [eir];

&l

— . ¥ d :
q:»/'zp.Slﬂ;'—l—Ea}; real part [q;e"];

and /396

a .
p=c - real part [{e=];

q:/ﬂ:sin’;—’—%—s—i

4y real part[¥ei]

In order to obtain the doubly asymptotic solutions, we must determine

the intersection of these two asymptotic surfaces. It will be sufficient
for us to equate the two values of p and the two values of q.

J f"’ L1 ¢
= =,
A e a4

u==2logre.

Let us set

We shall obtain

d . .
7> real part [Jie-m+ir]=o,

d
Iy real part [Jie-au+iz] o,
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or, setting J = pelw,

1 T
r— — e bt = Kgrote -
2y *

where K is a whole number.

This is the equation of doubly asymptotic solutions.

In reality, this equation provides us with two different solutions,
one corresponding to even values of K, and the other corresponding to odd
values of K.

402. We may be surprised at not obtaining more than two doubly asymp-
totic solutions, when we know that there is an infinite number of them.

The following approximations should provide us with no more than a
finite number of doubly asymptotic solutions. How may this paradox be
explained?

In the preceding sections we saw that the different doubly asymptotic
solutions correspond in an infinite number to different intersections of a
certain arc AgHyCo with the different consequents of another arc AgKyCy.

Let us assume that the first of its consequents which encounters AgHoCyp
is the consequent of order N. The number N will clearly depend on the con- /397
stant e, and the smaller the constant is, the larger it will be. It will
become infinite when € is zero.

1f we develop in powers of € and stop at an arbitrary term in the ex-
pansion, it is as though we regarded ¢ as being infinitely small.

The arc AgHgCg no longer encounters the comsequents of infinitely large
order of the other arc ApKgCp, and for this reason we have not analyzed the
majority of the doubly asymptotic solutions.

Examples of Heteroclinous Solutions

403. Let us try to generalize, and let us set
F = Fy-cFy.

Fy is a function of p, q and y, and F; is a function of p, 4, x and Y.
These two functions are periodic, both in x and y.

Let us consider the curves

Fo = consl.

(1
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in which we regard p as a parameter, and q and y are regarded as the coor-
dinates of a point.

Out of these curves, those which must draw our attention are the ones
having double points. These double points correspond to periodic solutions
of the canonical equations when we assume that ¢ is zero and that F may be
reduced to Fy.

We have a double infinity of curves (1) whose general equation is

FO Tz Il.
and which depend on two parameters p and h.

I have just stated that the most interesting ones are those which have
a double point, especially in the case in which some of these curves have
two or more double points. It is in this case that we shall encounter /398
heteroclinous solutions.

Just as in No. 225, let us try to formulate the function S of Jacobi,
and let us set

S=S8Sp4-¢S;+¢e2S; ...,
The function Sy may be formulated immediately. We shall have

([Su dSo
TP Gy T So==px~+ [ qdy,

where q is a function of y defined by equation (1) and depending on two para-
meters p and h,

We then obtain

dly d8, dF, dS,
Tl;l; _(11,‘_ -+ ‘21(; (i_)’- -+ F,-“-O. (2)
dFO dFO
We regard p as a constant in :ﬂ;” jﬂr and F;, and we replace q by its

value obtained from equation (1). Equation (2) 1s therefore a linear equa-

tion with respect to the derivatives of S;, whose coefficients are the given

functions of x and y, which depend in addition on the parameters h and P
Since F; 1s periodic in x, I shall set

}<‘ P 3'1’,,;6”"1',

where &y only depends on y, just like the derivatives of Fy.

In the same way, I shall set
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C

Sy — };.;,mgim.r

and the function Yy will be given by the equation

APy | dFy Y,

m - JIe C
dg dy

(3)

([[)‘ Ym =P, 0

whose coefficients are the given functions of y.
This equation may clearly be integrated by quadratures.

Let us try to determine our asymptotic surfaces in this way. We must
first choose the constants h and p so that the curve (1) has a double point.
In addition, I shall assume that these constants are such that two real
values of q correspond to each value of y (this is what occurs in the
example presented in No. 225).

These two values of q are periodic functioms of vy, which become equal /399
to each other at the double point —- for example, for y = ygq.

Just as in No. 225, we may also assume that these two values of q are
the analytical extension of each other.

The function q then seems to us to be uniform in y and periodic of

period 4m such as the function sin %n

This uniform function will take the same value for y = yo and y = yg + 27.

1f we had several double points, instead of one, we could still regard
q as a uniform function of y of period 4w, if the number of double points
were odd. On the other hand, if this number were even, we would have two
values for q which would not be interchanged when y increased by 2m, and
which could consequently be regarded as two different uniform functions of
y, having 2n for the period.

In order to formulate our ideas more clearly, we shall assume that we
have two double points corresponding to the values yg and y; of y.
As a result, for y = yp and for y = y;, equation (1) must have a double

root, since the two values of q coincide, and consequently —29 must vanish.

3q

Equation (3) is a linear equation with a second term, whose integra-
tion is similar to the integration of an equation without a second term, and
consequently similar to the integration of the following equation
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Ay . dFy db (4)
dp

- =0
d(] lly

CdF,

'Ii_dp

— {"‘E-

0=c¢ faq .

The function 6 thus defined is a holomorphic function of y for all
real values of this variable, except for the values y = yg, y = y;, which

from which we have

correspond to the double points. For these values, the function 6 -- which
plays a role similar to that of t = tan %-in No. 226 -- becomes zero or
infinite.
We then obtain /400
| . nim Q- im {bm ({V [ "
Y — 0 ‘—'[']F';—-‘- - C,, 07
dp

where C; is an integration constant, from which we have

} . ST -
Sy = X0fmgime Q-.,_.A X‘)”‘f{}‘ - 50, 0imeimz
dF, " ’
L} (lp

In order to obtain equations of asymptotic surfaces, we may write
. dS __ds
A 1Ty

assigning suitable values to the integration constants.

Let us first neglect €. We shall set § = Sp» and we shall assign the
values corresponding to the curve which has two double points to the con-
stants h and p = py.

With this approximation, the differential equations have the following
as periodic solutions :

27 Py q = Qo J/:-_-)fo, (5)
i = oy 7—:7,’ .y::.}/h (6)

where yg, qg; y1, q1 are the coordinates of the two double points.

In order to represent our asymptotic surfaces, we may take a point
in four-dimensional space, whose coordinates are
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(p--a)ecosz, (p--a)ysinr, (g -b)cosy, (q-+-b)siny,

where a and b are two positive constants which are large enough that we
need only consider positive values of p + a and q + b.

Equations (5) and
dimensional space, corresponding to the two periodic solutions.

(6) then represent two closed curves of this four-

Two asymptotic surfaces pass through each of these curves -- one be-
longing to the first family, and the other belonging to the second family.

However, with the degree of approximation employed -- i.e., neglecting
¢ -- these four asymptotic surfaces coincide pairwise. /401

The equations of the asymptotic surfaces will be

P = Po Fo“:h

As we have seen, the equation Fy = h has two roots which coincide for
= y1, which are not interchanged when y increases by 2w,
and which are periodic in y of period 2m. Let q' and q" be these two roots.
The equations of our asymptotic surfaces thus become

y = yg and for y

p==py =9
2 = Pos q = ’,

(7

In order to determine the significance of these equations more pre-
cisely, let us distinguish between the different layers of our surfaces.
We have four asymptotic surfaces. Each of them passes through one of the
curves (5) or (6), and is divided into two layers by this curve, which I
shall designate by the following notation:

The surface
divided into two

The surface
divided into two

The surface
divided into two

The surface
divided into two

of the
layers

of the
layers

of the
layers

of the
layers

With the degree of
following equation

392

first family passing through the curve (5) will be
Ny and N'l .

second family passing through the curve (5) will be
Ny and N'z .

first family passing through the curve (6) will be
N3 and N'3.

second family passing through the curve (6) will be
Nq, and N'L} .

approximation employed, these layers will have the



Noio p=py, 9=¢ y>rui Ny  p=pn g=9, y<ro
Ne;  p=2pe, 9=9" y>yo; Ny  p=py, g=9¢" y<ro;
Nis p=pu 9=¢" y>r1; Ny p=p, g=¢q", y<vi;
Noi 2=pn g=9, ¥y>»; N p-=p, g=4q, y<n.

It can be seen that the two surfaces N, + N'1 and Ny, + N, coincide
with this degree of approximation, just like the two surfaces N, + N, and
N3 + N';3.

Let us proceed to the following approximation, and let us set 40

S = So—%~ES|.

In order to define S;, we must choose the constants Cp.

For the layers Nj; and N';, we must choose these constants so that the
functions Y, have a regular behavior for q = q', y = yy. We need only refer
to the analysis given on page 466, Volume II, in order to understand that
this condition is sufficient for completely determining its constants. I
shall call S; ; the function S; which is thus determined.

For the layers N, and N';, we shall choose the Cp's so that the yp's
are regular for q = q", y = y;, and we shall call S1,2 the function S;
which is thus determined.

For the layers N, and N';, we shall choose the Cy's so that the y,'s
are regular for q = ¢", y = y;. For the layers N, and N',, the yp's must
be regular for q = q', y = y;. We shall designate the two functions $;
which are thus determined by S; 3 and S; 4.

The equations of our four surfaces thus become

! . dSy. , dSyq -
Ny -1- NYy: p'-po-ks—&;";-'-; = 1.

. o S, .
‘\)»‘-N,‘. p:—:])o,l,_s d;’_’; g=q +¢

P v (8)
Now Ny popere T gmgtae 2

‘U dS .
Nea NG pepore=pts g=g e

However, we should note that the function S;,;, for example, has a regu-
lar behavior for y = yj, and has an irregular behavior for y = y;. As a
result, our equations cease to be valid, even as a first approximation,
after the value y; is exceeded.

In order to provide a better illustration of this, I shall confine
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myself to the following remarks.

Let y' and y" be two values of y such that
Vol y <y <y

Let My be the point of our asymptotic curve which corresponds to the
value y'. Let M, be its consequent. I shall assume that n is chosen /403
large enough that the corresponding value of y is larger than y".

The value which must be assigned to n clearly depends on €, and it
increases indefinitely when ¢ strives to zero.

In general, the following are the values of y for which our equations
may serve as the first approximation:

Ny et Ny i >y > Yol N, et Nji yo>y >yi—am.
N; et Nos yo+am >y >y Ny et Nos 7>y >

For example, if the surfaces Nj and N', coincide, the intersection will
correspond to a heteroclinous, doubly asymptotic solution which will be
very close to the periodic solution (5) for t = -=, and very close to the
periodic solution (6) for t = t+=,

In order to determine this intersection, let us compare the equatioms
of N; and N,

o dSu o
P =Po dx ’ P =pPo dz *

and the intersection will clearly be given by

d(S1a—S8u8) _ . (9)
dzx

S1.1 - S1.4 is a function of x and y, which may be developed in positive and
negative whole powers of

Bielx,

The fact that it is a periodic function of x is important to us. It there-
fore has at least a maximum and a minimum. Equation (9) therefore has at
least two solutions, which means that there are at least two heteroclinous
solutions.

In the same way, it could be shown that there are two solutions corres-
ponding to the intersections of the surfaces Ny and N'p, two corresponding
to the surfaces N, and N'3, and two corresponding to the surfaces Nj and N'.

The preceding analysis does not yield the homoclinous solutions.
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404. TFor example, let us set

Fo=—p—q?+ 'zpsin’y:y"sin:-":yl,

Fy= pcoszsin(y —yo)sin(y -y )

The periodic solutions (5) and (6) toward which the heteroclinous solutions /404
strive for t = -w and t = +» are then

= pEEqgmo, Yot Y,
,7;—,:[, 1),—:7,»:0, )’—-}’l-

It will be noted that, for u = 0, F may be reduced to -p - q2. Therefore, for
p = 0, the function F depends only on variables of the first series p and q,
and does not depend on variables of the second series x and y. The function

F therefore has the form considered in Nos. 13, 125, etc.

Nevertheless, we shall not be content with this example, which proves
that the canonical equations having the form comnsidered in No. 13 can have
heteroclinous solutions.

The two solutioms (5) and (6) both correspond to the same value of the

ties 95 oog 4¥ __
quantities T and at i.e.,

dx dy
i d T -

However, these quantities %%3 %%'are nothing else than the numbers

which were called n; and n; above.

Therefore, we find that doubly asymptotic solutions exist, which come
infinitely close to two different periodic solutions for t = -» and t = 4+,
However, these two periodic solutions correspond to the same values of the
numbers n; and nj.

Therefore, I shall formulate another example, in which we shall deal
with equations having the same form as those presented up to No. 13, and
which have doubly asymptotic solutions coming arbitrarily close to two period-
ic solutions which are not only different, but correspond to different values

nj
of the ratio —.
np

Unfortunately, I would like to show that these- solutions exist for
values of u which are close to 1, but I still am not able to establish the
fact that they also exist for small values of u.

405, We shall take two pairs of conjugate variables
Eh T, Eh M2
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or /405

Ty )’I; zh yh

by setting
&= Vazicosys;  w=vazsinyi.

This change in variables does not alter the canonical form of the
equations. We shall set

F=F,(1—p)+ pF,.

We shall assume that Fy is a holomorphic function of x3 and X3, inde-
2
pendent of y; and y;, and that for x; = %r, Xy = %3 we have

aFy _ dFe_
d.‘l‘,— d.Z\ - '
1 a2
We shall also assume that for xp =7, X1 = 75 we have
d—E‘:—o‘=—-—l, gg:O-
dl" dxl

I shall assume that a < 1 holds for the quantity a.

It follows from these hypotheses that, if we set u = 0, from which we
have F = Fy, our equations will have two special periodic solutions.

The first solution, which I shall call o, may be written

1= acosi; Ty =asint, =1, Ty =o.

The second solution, which I shall call o', may be written

a?

T= o ;=5 =0, yi=¢,

El=

._' [SHE]

=0, 2 = x cos¢, ny=asint.

The first corresponds to n; = 1, np = 0, and the second corresponds to
1 2 P
n; = 0, np = 1. These two periodic solutions do not correspond to the same

value of the ratio %l.
2

In order to define F;, I shall set

Lh=1—rcosw, gy=1—rsinw,
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assigning a value which is essentially positive to the variable r.

I shall then assume that (due to the fact that p is a positive, /406
very small quantity) we have the following for r > p
Fo— — 2irnd  (r—r +_E¢(?), 1)
2 2 r

where y(w) is a function of w, which is regular for every real value of w,
periodic with the period 2w, and finally which vanishes with its derivative

for w = 0 and for w = %.

Since the function (1) would be infinite for r = 0 —- i.e., for g =

€2 = 1 —- T shall assume that for r < p, the function Fy takes on arbitrary

values, in such a way that it nevertheless remains finite and continuous,
as well as its derivatives of the two first orders.

It may be readily verified that for y = 1 -~ i,e., for F = F; —- our
equations still have two periodic solutions ¢ and o'. For the first of
these solutions, we have w = 0, and for the second we have w = gu

It may be immediately concluded that for every value of u, our equations
will have these two periodic solutions.

406. We shall now integrate our equations in the case of u = 1 (assuming
at least that r constantly remains > o).

If we first assumed that ¢ = 0, we would be dealing with the problem of
central forces, and the integration would be immediately possible, This is
hardly true in the general case,

The Jacobi method leads to the partial differential equation

1 (_/S 2 I A5\ (r oogp G(m)
i) () et o,

where h is a constant. Let us set

1/ dS\?
3 () ==,

where k is a second constant, and we shall have

A h Ko e
5= /2f\//L R T AP dr - &/2‘/\//\‘ - e duw.

The general solution of our equations is therefore /407
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(G- O+ (b= Dme = Va ket ok —r2(r -0,
(Bi— 1) — Ea— Dme = V2 Vk 5.

f"’" 7_»__,r~a'r o ,

Vahit ak—r(r—1) = At (2)
m__#_il_‘i’__ N [* 2dr — (3)

o Vokasy  J ot Vadirt =2k —rigr —1)t o

where h' and k' are two new constants.

We shall obtain our two periodic solutions ¢ and o', assigning the
following particular values to the constants

2 _
k—o, h:“‘;, K2k = o,

a?

vk =T,
kozo, h-_;, l\\/v.k-fz

Let us assume that we would like to employ equation (2) to defime r as
a function of h' + t. If we assign values which are close to zero and
2
%{ to the constants k and h, r will then be a periodic function of t + h'.

We shall set

w=a(t-+ N,

where the number n is chosen in such a way that r is a periodic function of
u with the period 2w, This number n, which is a type of mean motion, will
naturally depend on the constants h and k.

In the same way, %% will be a periodic function of u.

Tor k = 0, we simply have

=1 y2 ki cose.

407. We therefore have two periodic solutions 0 and o' which will be
represented by two closed curves, if we may regard the £'s and the n's as
the coordinates of a point in four-dimensional space. Two asymptotic sur-
faces pass through each of these curves —— one belonging to the first
family, the other belonging to the second family. We shall see that the /(408
four surfaces coincide pairwise, as occurred in No. 403 (equation 7), when
e is neglected.

In order to obtain the equations of these surfaces, it is sufficient to
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2
assign the values zero and %r-to k and h. We thus have

=D+ —)n=rya—(r 0,
G—)n—(Er—1)n =+ Vaed.
These are the equations of asymptotic surfaces for y = 1. It may be
seen that we only obtain two of these surfaces, corresponding to the double

sign of the second radical.

We shall assume that the function ey, which vanishes for w = 0 and

il e
W =, is positive for every other value of w.

We shall now try to formulate the equations of asymptotic surfaces
for values of y which are close to 1.

We have

F = Fy (0 — u)(Fo— Fy);

where Fy and F; are holomorphic functions of the &'s and the n's, and con-

sequently of r, w, %% and g%.

The equations of our surfaces may be written
(Ex—")m*(sz—l)m="§'
Gi—1ne—(—1)m = gg,
where 5 is a function of r and w, satisfying the partial differential equa-

tion

== const.,

dr duw ds 1 ds
where we have replaced at and at by ar and 22 duw’

Let us develop S in powers of 1 - u

S5=8+(— S +(1—p)Sy+...,

and we shall have, as the first approximation, {409
ds dS
By —Dm+ (Ea—)7a= "7: +{(i—p)r d_r”
dsS (N]
(Ea—l)ﬂ!—(gz—-')'ﬁx=g§ *‘("‘}*)%&l'

for the equations of our asymptotic surfaces.
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We have already obtained

S,

So =gy, 4

% _ e /iR

We must now determine S;. For this purpose, we have the equation

dS, dS, 1 dSg dSy _
T TR de ST

In the second term, %E and dv must be replaced by 450 - Va2 - (r - 1)2
t dt dr

ds 4= /3l .
%-Ef::-—zfuf- This second term is therefore a known function of r

and by

and w.
The equation becomes

rtyat—(r—1)? %S} +/2ed %%‘ = r*(F, - Fy).

Let us set

A

0 =

It may be seen that r and Vo2 - (r - 1)2 are periodic functions of v,
and we may regard S as a function of v and w.

Our equation then becomes

dS;

—d—w- - I"(F‘— FU'

dS‘ o —
T =V

The second term is a known function of v and w, which is periodic with
respect to v.

This equation thus has exactly the same form as equation (2) given in
No. 403, where v plays the role of x, and w plays the role of y.

It will be handled in the same way. The procedures presented in No. 403
will be employed to determine the four functions S1.15 S1.2» S1.3» S1.4
corresponding to four asymptotic surfaces.

Just as in No. 403, it will be found that these asymptotic surfaces /410
coincide, and consequently heteroclinous solutions exist.

However, this has only been established for values of u which are close
to 1. I do not know whether this is still valid for small values of u.
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The result is therefore incomplete. However, I hope that the reader
will pardon the length of this digression, because the question which I
have posed, rather than solved, seems to be directly related to the question
of stability, as I indicated in No. 400.

END OF THE THIRD AND LAST VOLUME
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