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PREFACE.

An increased interest in the history of the exact sciences manifested in recent
years by teachers everywhere, and the attention given to historical inquiry
in the mathematical class-rooms and seminaries of our leading universities,
cause me to believe that a brief general History of Mathematics will be found
acceptable to teachers and students.

The pages treating—necessarily in a very condensed form—of the progress
made during the present century, are put forth with great diHdence, although
I have spent much time in the evort to render them accurate and reasonably
complete. Many valuable suggestions and criticisms on the chapter on “Recent
Times” have been made by Dr. E. W. Davis, of the University of Nebraska. The
proof-sheets of this chapter have also been submitted to Dr. J. E. Davies and
Professor C. A. Van Velzer, both of the University of Wisconsin; to Dr. G. B.
Halsted, of the University of Texas; Professor L. M. Hoskins, of the Leland
Stanford Jr. University; and Professor G. D. Olds, of Amherst College,—all of
whom have avorded valuable assistance. I am specially indebted to Professor
F. H. Loud, of Colorado College, who has read the proof-sheets throughout.
To all the gentlemen above named, as well as to Dr. Carlo Veneziani of Salt
Lake City, who read the first part of my work in manuscript, I desire to express
my hearty thanks. But in acknowledging their kindness, I trust that I shall not
seem to lay upon them any share in the responsibility for errors which I may
have introduced in subsequent revision of the text.

FLORIAN CAJORI.

Colorado College, December, 1893.
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A HISTORY OF MATHEMATICS.

Introduction.

The contemplation of the various steps by which mankind has come into
possession of the vast stock of mathematical knowledge can hardly fail to
interest the mathematician. He takes pride in the fact that his science, more
than any other, is an exact science, and that hardly anything ever done in
mathematics has proved to be useless. The chemist smiles at the childish evorts
of alchemists, but the mathematician finds the geometry of the Greeks and the
arithmetic of the Hindoos as useful and admirable as any research of to-day.
He is pleased to notice that though, in course of its development, mathematics
has had periods of slow growth, yet in the main it has been pre-eminently a
progressive science.

The history of mathematics may be instructive as well as agreeable; it may
not only remind us of what we have, but may also teach us how to increase
our store. Says De Morgan, “The early history of the mind of men with regard
to mathematics leads us to point out our own errors; and in this respect it
is well to pay attention to the history of mathematics.” It warns us against
hasty conclusions; it points out the importance of a good notation upon the
progress of the science; it discourages excessive specialisation on the part of
investigators, by showing how apparently distinct branches have been found to
possess unexpected connecting links; it saves the student from wasting time and
energy upon problems which were, perhaps, solved long since; it discourages
him from attacking an unsolved problem by the same method which has led
other mathematicians to failure; it teaches that fortifications can be taken in
other ways than by direct attack, that when repulsed from a direct assault it
is well to reconnoitre and occupy the surrounding ground and to discover the
secret paths by which the apparently unconquerable position can be taken.
The importance of this strategic rule may be emphasised by citing a case in
which it has been violated. An untold amount of intellectual energy has been
expended on the quadrature of the circle, yet no conquest has been made by
direct assault. The circle-squarers have existed in crowds ever since the period
of Archimedes. After innumerable failures to solve the problem at a time, even,
when investigators possessed that most powerful tool, the diverential calculus,
persons versed in mathematics dropped the subject, while those who still

1



INTRODUCTION. 2

persisted were completely ignorant of its history and generally misunderstood
the conditions of the problem. “Our problem,” says De Morgan, “is to square
the circle with the old allowance of means: Euclid’s postulates and nothing
more. We cannot remember an instance in which a question to be solved by a
definite method was tried by the best heads, and answered at last, by that method,
after thousands of complete failures.” But progress was made on this problem
by approaching it from a diverent direction and by newly discovered paths.
Lambert proved in 1761 that the ratio of the circumference of a circle to its
diameter is incommensurable. Some years ago, Lindemann demonstrated that
this ratio is also transcendental and that the quadrature of the circle, by means
of the ruler and compass only, is impossible. He thus showed by actual proof
that which keen-minded mathematicians had long suspected; namely, that the
great army of circle-squarers have, for two thousand years, been assaulting a
fortification which is as indestructible as the firmament of heaven.

Another reason for the desirability of historical study is the value of historical
knowledge to the teacher of mathematics. The interest which pupils take in
their studies may be greatly increased if the solution of problems and the cold
logic of geometrical demonstrations are interspersed with historical remarks
and anecdotes. A class in arithmetic will be pleased to hear about the Hindoos
and their invention of the “Arabic notation”; they will marvel at the thousands
of years which elapsed before people had even thought of introducing into the
numeral notation that Columbus-egg—the zero; they will find it astounding
that it should have taken so long to invent a notation which they themselves
can now learn in a month. After the pupils have learned how to bisect a given
angle, surprise them by telling of the many futile attempts which have been
made to solve, by elementary geometry, the apparently very simple problem of
the trisection of an angle. When they know how to construct a square whose
area is double the area of a given square, tell them about the duplication of the
cube—how the wrath of Apollo could be appeased only by the construction of
a cubical altar double the given altar, and how mathematicians long wrestled
with this problem. After the class have exhausted their energies on the
theorem of the right triangle, tell them the legend about its discoverer—how
Pythagoras, jubilant over his great accomplishment, sacrificed a hecatomb to
the Muses who inspired him. When the value of mathematical training is
called in question, quote the inscription over the entrance into the academy of
Plato, the philosopher: “Let no one who is unacquainted with geometry enter
here.” Students in analytical geometry should know something of Descartes,
and, after taking up the diverential and integral calculus, they should become
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familiar with the parts that Newton, Leibniz, and Lagrange played in creating
that science. In his historical talk it is possible for the teacher to make it plain
to the student that mathematics is not a dead science, but a living one in which
steady progress is made.

The history of mathematics is important also as a valuable contribution
to the history of civilisation. Human progress is closely identified with
scientific thought. Mathematical and physical researches are a reliable record
of intellectual progress. The history of mathematics is one of the large windows
through which the philosophic eye looks into past ages and traces the line of
intellectual development.



ANTIQUITY.

THE BABYLONIANS.

The fertile valley of the Euphrates and Tigris was one of the primeval seats of
human society. Authentic history of the peoples inhabiting this region begins
only with the foundation, in Chaldæa and Babylonia, of a united kingdom out
of the previously disunited tribes. Much light has been thrown on their history
by the discovery of the art of reading the cuneiform or wedge-shaped system of
writing.

In the study of Babylonian mathematics we begin with the notation of
numbers. A vertical wedge stood for 1, while the characters and
signified 10 and 100 respectively. Grotefend believes the character for 10
originally to have been the picture of two hands, as held in prayer, the palms
being pressed together, the fingers close to each other, but the thumbs thrust
out. In the Babylonian notation two principles were employed—the additive
and multiplicative. Numbers below 100 were expressed by symbols whose
respective values had to be added. Thus, stood for 2, for 3, for 4,

for 23, for 30. Here the symbols of higher order appear always to
the left of those of lower order. In writing the hundreds, on the other hand,
a smaller symbol was placed to the left of the 100, and was, in that case, to be
multiplied by 100. Thus, signified 10 times 100, or 1000. But this symbol
for 1000 was itself taken for a new unit, which could take smaller coeHcients
to its left. Thus, denoted, not 20 times 100, but 10 times 1000. Of
the largest numbers written in cuneiform symbols, which have hitherto been
found, none go as high as a million.

If, as is believed by most specialists, the early Sumerians were the inventors
of the cuneiform writing, then they were, in all probability, also familiar
with the notation of numbers. Most surprising, in this connection, is
the fact that Sumerian inscriptions disclose the use, not only of the above
decimal system, but also of a sexagesimal one. The latter was used chiefly in
constructing tables for weights and measures. It is full of historical interest.
Its consequential development, both for integers and fractions, reveals a high
degree of mathematical insight. We possess two Babylonian tablets which
exhibit its use. One of them, probably written between 2300 and 1600 b.c.,

4



THE BABYLONIANS. 5

contains a table of square numbers up to 602. The numbers 1, 4, 9, 16, 25, 36, 49,
are given as the squares of the first seven integers respectively. We have next
1.4 “ 82, 1.21 “ 92, 1.40 “ 102, 2.1 “ 112, etc. This remains unintelligible, unless
we assume the sexagesimal scale, which makes 1.4 “ 60 ` 4, 1.21 “ 60 ` 21,
2.1 “ 2.60 ` 1. The second tablet records the magnitude of the illuminated
portion of the moon’s disc for every day from new to full moon, the whole
disc being assumed to consist of 240 parts. The illuminated parts during the
first five days are the series 5, 10, 20, 40, 1.20p“ 80q, which is a geometrical
progression. From here on the series becomes an arithmetical progression, the
numbers from the fifth to the fifteenth day being respectively 1.20, 1.36, 1.52,
1.8, 2.24, 2.40, 2.56, 3.12, 3.28, 3.44, 4. This table not only exhibits the use of the
sexagesimal system, but also indicates the acquaintance of the Babylonians with
progressions. Not to be overlooked is the fact that in the sexagesimal notation
of integers the “principle of position” was employed. Thus, in 1.4 (“ 64), the
1 is made to stand for 60, the unit of the second order, by virtue of its position
with respect to the 4. The introduction of this principle at so early a date is
the more remarkable, because in the decimal notation it was not introduced
till about the fifth or sixth century after Christ. The principle of position, in
its general and systematic application, requires a symbol for zero. We ask,
Did the Babylonians possess one? Had they already taken the gigantic step
of representing by a symbol the absence of units? Neither of the above tables
answers this question, for they happen to contain no number in which there
was occasion to use a zero. The sexagesimal system was used also in fractions.
Thus, in the Babylonian inscriptions, 1

2 and 1
3 are designated by 30 and 20, the

reader being expected, in his mind, to supply the word “sixtieths.” The Greek
geometer Hypsicles and the Alexandrian astronomer Ptolemæus borrowed
the sexagesimal notation of fractions from the Babylonians and introduced it
into Greece. From that time sexagesimal fractions held almost full sway in
astronomical and mathematical calculations until the sixteenth century, when
they finally yielded their place to the decimal fractions. It may be asked, What
led to the invention of the sexagesimal system? Why was it that 60 parts were
selected? To this we have no positive answer. Ten was chosen, in the decimal
system, because it represents the number of fingers. But nothing of the human
body could have suggested 60. Cantor overs the following theory: At first the
Babylonians reckoned the year at 360 days. This led to the division of the circle
into 360 degrees, each degree representing the daily amount of the supposed
yearly revolution of the sun around the earth. Now they were, very probably,
familiar with the fact that the radius can be applied to its circumference as a



THE BABYLONIANS. 6

chord 6 times, and that each of these chords subtends an arc measuring exactly
60 degrees. Fixing their attention upon these degrees, the division into 60 parts
may have suggested itself to them. Thus, when greater precision necessitated
a subdivision of the degree, it was partitioned into 60 minutes. In this way
the sexagesimal notation may have originated. The division of the day into
24 hours, and of the hour into minutes and seconds on the scale of 60, is due to
the Babylonians.

It appears that the people in the Tigro-Euphrates basin had made very
creditable advance in arithmetic. Their knowledge of arithmetical and
geometrical progressions has already been alluded to. Iamblichus attributes
to them also a knowledge of proportion, and even the invention of the so-
called musical proportion. Though we possess no conclusive proof, we have
nevertheless reason to believe that in practical calculation they used the abacus.
Among the races of middle Asia, even as far as China, the abacus is as old
as fable. Now, Babylon was once a great commercial centre,—the metropolis
of many nations,—and it is, therefore, not unreasonable to suppose that her
merchants employed this most improved aid to calculation.

In geometry the Babylonians accomplished almost nothing. Besides the
division of the circumference into 6 parts by its radius, and into 360 degrees,
they had some knowledge of geometrical figures, such as the triangle and
quadrangle, which they used in their auguries. Like the Hebrews (1 Kin. 7:23),
they took π “ 3. Of geometrical demonstrations there is, of course, no trace.
“As a rule, in the Oriental mind the intuitive powers eclipse the severely
rational and logical.”

The astronomy of the Babylonians has attracted much attention. They
worshipped the heavenly bodies from the earliest historic times. When
Alexander the Great, after the battle of Arbela (331 b.c.), took possession
of Babylon, Callisthenes found there on burned brick astronomical records
reaching back as far as 2234 b.c.Porphyrius says that these were sent to Aristotle.
Ptolemy, the Alexandrian astronomer, possessed a Babylonian record of eclipses
going back to 747 b.c. Recently Epping and Strassmaier threw considerable
light on Babylonian chronology and astronomy by explaining two calendars of
the years 123 b.c. and 111 b.c., taken from cuneiform tablets coming, presumably,
from an old observatory. These scholars have succeeded in giving an account
of the Babylonian calculation of the new and full moon, and have identified by
calculations the Babylonian names of the planets, and of the twelve zodiacal
signs and twenty-eight normal stars which correspond to some extent with
the twenty-eight nakshatras of the Hindoos. We append part of an Assyrian
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astronomical report, as translated by Oppert:—

“To the King, my lord, thy faithful servant, Mar-Istar.”

“. . . On the first day, as the new moon’s day of the month Thammuz declined, the moon was
again visible over the planet Mercury, as I had already predicted to my master the King. I erred
not.”

THE EGYPTIANS.

Though there is great diverence of opinion regarding the antiquity of
Egyptian civilisation, yet all authorities agree in the statement that, however
far back they go, they find no uncivilised state of society. “Menes, the first
king, changes the course of the Nile, makes a great reservoir, and builds the
temple of Phthah at Memphis.” The Egyptians built the pyramids at a very
early period. Surely a people engaging in enterprises of such magnitude must
have known something of mathematics—at least of practical mathematics.

All Greek writers are unanimous in ascribing, without envy, to Egypt the
priority of invention in the mathematical sciences. Plato in Phædrus says: “At
the Egyptian city of Naucratis there was a famous old god whose name was
Theuth; the bird which is called the Ibis was sacred to him, and he was the
inventor of many arts, such as arithmetic and calculation and geometry and
astronomy and draughts and dice, but his great discovery was the use of letters.”

Aristotle says that mathematics had its birth in Egypt, because there the
priestly class had the leisure needful for the study of it. Geometry, in particular,
is said by Herodotus, Diodorus, Diogenes Laertius, Iamblichus, and other
ancient writers to have originated in Egypt. In Herodotus we find this
(II. c. 109): “They said also that this king [Sesostris] divided the land among all
Egyptians so as to give each one a quadrangle of equal size and to draw from
each his revenues, by imposing a tax to be levied yearly. But every one from
whose part the river tore away anything, had to go to him and notify what had
happened; he then sent the overseers, who had to measure out by how much
the land had become smaller, in order that the owner might pay on what was
left, in proportion to the entire tax imposed. In this way, it appears to me,
geometry originated, which passed thence to Hellas.”

We abstain from introducing additional Greek opinion regarding Egyptian
mathematics, or from indulging in wild conjectures. We rest our account on
documentary evidence. A hieratic papyrus, included in the Rhind collection
of the British Museum, was deciphered by Eisenlohr in 1877, and found to be
a mathematical manual containing problems in arithmetic and geometry. It
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was written by Ahmes some time before 1700 b.c., and was founded on an
older work believed by Birch to date back as far as 3400 b.c.! This curious
papyrus—the most ancient mathematical handbook known to us—puts us at
once in contact with the mathematical thought in Egypt of three or five
thousand years ago. It is entitled “Directions for obtaining the Knowledge
of all Dark Things.” We see from it that the Egyptians cared but little for
theoretical results. Theorems are not found in it at all. It contains “hardly
any general rules of procedure, but chiefly mere statements of results intended
possibly to be explained by a teacher to his pupils.” In geometry the forte of
the Egyptians lay in making constructions and determining areas. The area of
an isosceles triangle, of which the sides measure 10 ruths and the base 4 ruths,
was erroneously given as 20 square ruths, or half the product of the base by
one side. The area of an isosceles trapezoid is found, similarly, by multiplying
half the sum of the parallel sides by one of the non-parallel sides. The area of
a circle is found by deducting from the diameter 1

9 of its length and squaring
the remainder. Here π is taken “ p 16

9 q
2 “ 3.1604 . . ., a very fair approximation.

The papyrus explains also such problems as these,—To mark out in the field
a right triangle whose sides are 10 and 4 units; or a trapezoid whose parallel
sides are 6 and 4, and the non-parallel sides each 20 units.

Some problems in this papyrus seem to imply a rudimentary knowledge of
proportion.

The base-lines of the pyramids run north and south, and east and west,
but probably only the lines running north and south were determined
by astronomical observations. This, coupled with the fact that the word
harpedonaptæ, applied to Egyptian geometers, means “rope-stretchers,” would
point to the conclusion that the Egyptian, like the Indian and Chinese
geometers, constructed a right triangle upon a given line, by stretching around
three pegs a rope consisting of three parts in the ratios 3 : 4 : 5, and thus
forming a right triangle. If this explanation is correct, then the Egyptians were
familiar, 2000 years b.c., with the well-known property of the right triangle,
for the special case at least when the sides are in the ratio 3 : 4 : 5.

On the walls of the celebrated temple of Horus at Edfu have been found
hieroglyphics, written about 100 b.c., which enumerate the pieces of land
owned by the priesthood, and give their areas. The area of any quadrilateral,

however irregular, is there found by the formula
a` b

2
¨
c ` d

2
. Thus, for a

quadrangle whose opposite sides are 5 and 8, 20 and 15, is given the area
113 1

2
1
4 . The incorrect formulæ of Ahmes of 3000 years b.c. yield generally
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closer approximations than those of the Edfu inscriptions, written 200 years
after Euclid!

The fact that the geometry of the Egyptians consists chiefly of constructions,
goes far to explain certain of its great defects. The Egyptians failed in two
essential points without which a science of geometry, in the true sense of the
word, cannot exist. In the first place, they failed to construct a rigorously
logical system of geometry, resting upon a few axioms and postulates. A great
many of their rules, especially those in solid geometry, had probably not been
proved at all, but were known to be true merely from observation or as matters
of fact. The second great defect was their inability to bring the numerous
special cases under a more general view, and thereby to arrive at broader and
more fundamental theorems. Some of the simplest geometrical truths were
divided into numberless special cases of which each was supposed to require
separate treatment.

Some particulars about Egyptian geometry can be mentioned more advan-
tageously in connection with the early Greek mathematicians who came to the
Egyptian priests for instruction.

An insight into Egyptian methods of numeration was obtained through the
ingenious deciphering of the hieroglyphics by Champollion, Young, and their
successors. The symbols used were the following: for 1, for 10, for 100,
for 1000, for 10, 000, for 100, 000, for 1, 000, 000, for 10, 000, 000.

The symbol for 1 represents a vertical stav; that for 10, 000 a pointing finger;
that for 100, 000 a burbot; that for 1, 000, 000, a man in astonishment. The
significance of the remaining symbols is very doubtful. The writing of numbers
with these hieroglyphics was very cumbrous. The unit symbol of each order
was repeated as many times as there were units in that order. The principle
employed was the additive. Thus, 23 was written .

Besides the hieroglyphics, Egypt possesses the hieratic and demotic writings,
but for want of space we pass them by.

Herodotus makes an important statement concerning the mode of computing
among the Egyptians. He says that they “calculate with pebbles by moving the
hand from right to left, while the Hellenes move it from left to right.” Herein
we recognise again that instrumental method of figuring so extensively used
by peoples of antiquity. The Egyptians used the decimal scale. Since, in
figuring, they moved their hands horizontally, it seems probable that they used
ciphering-boards with vertical columns. In each column there must have been
not more than nine pebbles, for ten pebbles would be equal to one pebble in
the column next to the left.
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The Ahmes papyrus contains interesting information on the way in which the
Egyptians employed fractions. Their methods of operation were, of course,
radically diverent from ours. Fractions were a subject of very great diHculty
with the ancients. Simultaneous changes in both numerator and denominator
were usually avoided. In manipulating fractions the Babylonians kept the
denominators (60) constant. The Romans likewise kept them constant,
but equal to 12. The Egyptians and Greeks, on the other hand, kept the
numerators constant, and dealt with variable denominators. Ahmes used the
term “fraction” in a restricted sense, for he applied it only to unit-fractions,
or fractions having unity for the numerator. It was designated by writing the
denominator and then placing over it a dot. Fractional values which could not
be expressed by any one unit-fraction were expressed as the sum of two or more
of them. Thus, he wrote 1

3
1
15 in place of 2

5 . The first important problem naturally
arising was, how to represent any fractional value as the sum of unit-fractions.
This was solved by aid of a table, given in the papyrus, in which all fractions

of the form
2

2n` 1
(where n designates successively all the numbers up to 49)

are reduced to the sum of unit-fractions. Thus, 2
7 “

1
4

1
28 ; 2

99 “
1

66
1

198 . When,
by whom, and how this table was calculated, we do not know. Probably it was
compiled empirically at diverent times, by diverent persons. It will be seen
that by repeated application of this table, a fraction whose numerator exceeds
two can be expressed in the desired form, provided that there is a fraction in the
table having the same denominator that it has. Take, for example, the problem,
to divide 5 by 21. In the first place, 5 “ 1`2`2. From the table we get 2

21 “
1

14
1

42 .
Then 5

21 “
1
21 ` p

1
14

1
42 q ` p

1
14

1
42 q “

1
21 ` p

2
14

2
42 q “

1
21

1
7

1
21 “

1
7

2
21 “

1
7

1
14

1
42 . The

papyrus contains problems in which it is required that fractions be raised by
addition or multiplication to given whole numbers or to other fractions. For
example, it is required to increase 1

4
1
8

1
10

1
30

1
45 to 1. The common denominator

taken appears to be 45, for the numbers are stated as 11 1
4 , 5 1

2
1
8 , 4 1

2 , 1 1
2 , 1. The

sum of these is 23 1
2

1
4

1
8 forty-fifths. Add to this 1

9
1

40 , and the sum is 2
3 . Add 1

3 ,
and we have 1. Hence the quantity to be added to the given fraction is 1

3
1
9

1
40 .

Having finished the subject of fractions, Ahmes proceeds to the solution of
equations of one unknown quantity. The unknown quantity is called ‘hau’ or
heap. Thus the problem, “heap, its 1

7 , its whole, it makes 19,” i.e.
x
7
` x “ 19. In

this case, the solution is as follows:
8x
7
“ 19;

x
7
“ 2 1

4
1
8 ; x “ 16 1

2
1
8 . But in other

problems, the solutions are evected by various other methods. It thus appears
that the beginnings of algebra are as ancient as those of geometry.
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The principal defect of Egyptian arithmetic was the lack of a simple,
comprehensive symbolism—a defect which not even the Greeks were able to
remove.

The Ahmes papyrus doubtless represents the most advanced attainments of
the Egyptians in arithmetic and geometry. It is remarkable that they should have
reached so great proficiency in mathematics at so remote a period of antiquity.
But strange, indeed, is the fact that, during the next two thousand years, they
should have made no progress whatsoever in it. The conclusion forces itself
upon us, that they resemble the Chinese in the stationary character, not only of
their government, but also of their learning. All the knowledge of geometry
which they possessed when Greek scholars visited them, six centuries b.c., was
doubtless known to them two thousand years earlier, when they built those
stupendous and gigantic structures—the pyramids. An explanation for this
stagnation of learning has been sought in the fact that their early discoveries
in mathematics and medicine had the misfortune of being entered upon their
sacred books and that, in after ages, it was considered heretical to augment
or modify anything therein. Thus the books themselves closed the gates to
progress.

THE GREEKS.

GREEK GEOMETRY.

About the seventh century b.c. an active commercial intercourse sprang up
between Greece and Egypt. Naturally there arose an interchange of ideas as
well as of merchandise. Greeks, thirsting for knowledge, sought the Egyptian
priests for instruction. Thales, Pythagoras, Œnopides, Plato, Democritus,
Eudoxus, all visited the land of the pyramids. Egyptian ideas were thus
transplanted across the sea and there stimulated Greek thought, directed it into
new lines, and gave to it a basis to work upon. Greek culture, therefore, is not
primitive. Not only in mathematics, but also in mythology and art, Hellas owes
a debt to older countries. To Egypt Greece is indebted, among other things,
for its elementary geometry. But this does not lessen our admiration for the
Greek mind. From the moment that Hellenic philosophers applied themselves
to the study of Egyptian geometry, this science assumed a radically diverent
aspect. “Whatever we Greeks receive, we improve and perfect,” says Plato. The
Egyptians carried geometry no further than was absolutely necessary for their
practical wants. The Greeks, on the other hand, had within them a strong
speculative tendency. They felt a craving to discover the reasons for things.
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They found pleasure in the contemplation of ideal relations, and loved science
as science.

Our sources of information on the history of Greek geometry before Euclid
consist merely of scattered notices in ancient writers. The early mathematicians,
Thales and Pythagoras, left behind no written records of their discoveries. A
full history of Greek geometry and astronomy during this period, written by
Eudemus, a pupil of Aristotle, has been lost. It was well known to Proclus,
who, in his commentaries on Euclid, gives a brief account of it. This abstract
constitutes our most reliable information. We shall quote it frequently under
the name of Eudemian Summary.

The Ionic School.

To Thales of Miletus (640–546 b.c.), one of the “seven wise men,” and the
founder of the Ionic school, falls the honour of having introduced the study of
geometry into Greece. During middle life he engaged in commercial pursuits,
which took him to Egypt. He is said to have resided there, and to have studied
the physical sciences and mathematics with the Egyptian priests. Plutarch
declares that Thales soon excelled his masters, and amazed King Amasis by
measuring the heights of the pyramids from their shadows. According to
Plutarch, this was done by considering that the shadow cast by a vertical stav
of known length bears the same ratio to the shadow of the pyramid as the
height of the stav bears to the height of the pyramid. This solution presupposes
a knowledge of proportion, and the Ahmes papyrus actually shows that the
rudiments of proportion were known to the Egyptians. According to Diogenes
Laertius, the pyramids were measured by Thales in a diverent way; viz. by
finding the length of the shadow of the pyramid at the moment when the
shadow of a stav was equal to its own length.

The Eudemian Summary ascribes to Thales the invention of the theorems
on the equality of vertical angles, the equality of the angles at the base of an
isosceles triangle, the bisection of a circle by any diameter, and the congruence
of two triangles having a side and the two adjacent angles equal respectively.
The last theorem he applied to the measurement of the distances of ships from
the shore. Thus Thales was the first to apply theoretical geometry to practical
uses. The theorem that all angles inscribed in a semicircle are right angles is
attributed by some ancient writers to Thales, by others to Pythagoras. Thales
was doubtless familiar with other theorems, not recorded by the ancients.
It has been inferred that he knew the sum of the three angles of a triangle
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to be equal to two right angles, and the sides of equiangular triangles to be
proportional. The Egyptians must have made use of the above theorems on
the straight line, in some of their constructions found in the Ahmes papyrus,
but it was left for the Greek philosopher to give these truths, which others saw,
but did not formulate into words, an explicit, abstract expression, and to put
into scientific language and subject to proof that which others merely felt to
be true. Thales may be said to have created the geometry of lines, essentially
abstract in its character, while the Egyptians studied only the geometry of
surfaces and the rudiments of solid geometry, empirical in their character.

With Thales begins also the study of scientific astronomy. He acquired great
celebrity by the prediction of a solar eclipse in 585 b.c. Whether he predicted
the day of the occurrence, or simply the year, is not known. It is told of him
that while contemplating the stars during an evening walk, he fell into a ditch.
The good old woman attending him exclaimed, “How canst thou know what
is doing in the heavens, when thou seest not what is at thy feet?”

The two most prominent pupils of Thales were Anaximander (b. 611 b.c.)
and Anaximenes (b. 570 b.c.). They studied chiefly astronomy and physical
philosophy. Of Anaxagoras, a pupil of Anaximenes, and the last philosopher
of the Ionic school, we know little, except that, while in prison, he passed his
time attempting to square the circle. This is the first time, in the history of
mathematics, that we find mention of the famous problem of the quadrature
of the circle, that rock upon which so many reputations have been destroyed.
It turns upon the determination of the exact value of π. Approximations to π

had been made by the Chinese, Babylonians, Hebrews, and Egyptians. But the
invention of a method to find its exact value, is the knotty problem which has
engaged the attention of many minds from the time of Anaxagoras down to
our own. Anaxagoras did not over any solution of it, and seems to have luckily
escaped paralogisms.

About the time of Anaxagoras, but isolated from the Ionic school, flourished
Œnopides of Chios. Proclus ascribes to him the solution of the following
problems: From a point without, to draw a perpendicular to a given line, and
to draw an angle on a line equal to a given angle. That a man could gain a
reputation by solving problems so elementary as these, indicates that geometry
was still in its infancy, and that the Greeks had not yet gotten far beyond the
Egyptian constructions.

The Ionic school lasted over one hundred years. The progress of mathematics
during that period was slow, as compared with its growth in a later epoch of
Greek history. A new impetus to its progress was given by Pythagoras.
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The School of Pythagoras.

Pythagoras (580?–500? b.c.) was one of those figures which impressed the
imagination of succeeding times to such an extent that their real histories have
become diHcult to be discerned through the mythical haze that envelops them.
The following account of Pythagoras excludes the most doubtful statements.
He was a native of Samos, and was drawn by the fame of Pherecydes to the
island of Syros. He then visited the ancient Thales, who incited him to study
in Egypt. He sojourned in Egypt many years, and may have visited Babylon.
On his return to Samos, he found it under the tyranny of Polycrates. Failing
in an attempt to found a school there, he quitted home again and, following
the current of civilisation, removed to Magna Græcia in South Italy. He
settled at Croton, and founded the famous Pythagorean school. This was
not merely an academy for the teaching of philosophy, mathematics, and
natural science, but it was a brotherhood, the members of which were united
for life. This brotherhood had observances approaching masonic peculiarity.
They were forbidden to divulge the discoveries and doctrines of their school.
Hence we are obliged to speak of the Pythagoreans as a body, and find it
diHcult to determine to whom each particular discovery is to be ascribed. The
Pythagoreans themselves were in the habit of referring every discovery back to
the great founder of the sect.

This school grew rapidly and gained considerable political ascendency. But
the mystic and secret observances, introduced in imitation of Egyptian usages,
and the aristocratic tendencies of the school, caused it to become an object of
suspicion. The democratic party in Lower Italy revolted and destroyed the
buildings of the Pythagorean school. Pythagoras fled to Tarentum and thence
to Metapontum, where he was murdered.

Pythagoras has left behind no mathematical treatises, and our sources of
information are rather scanty. Certain it is that, in the Pythagorean school,
mathematics was the principal study. Pythagoras raised mathematics to the
rank of a science. Arithmetic was courted by him as fervently as geometry. In
fact, arithmetic is the foundation of his philosophic system.

The Eudemian Summary says that “Pythagoras changed the study of geometry
into the form of a liberal education, for he examined its principles to the bottom,
and investigated its theorems in an immaterial and intellectual manner.” His
geometry was connected closely with his arithmetic. He was especially fond of
those geometrical relations which admitted of arithmetical expression.

LikeEgyptiangeometry, thegeometryof thePythagoreans ismuchconcerned
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with areas. To Pythagoras is ascribed the important theorem that the square
on the hypotenuse of a right triangle is equal to the sum of the squares on the
other two sides. He had probably learned from the Egyptians the truth of the
theorem in the special case when the sides are 3, 4, 5, respectively. The story
goes, that Pythagoras was so jubilant over this discovery that he sacrificed a
hecatomb. Its authenticity is doubted, because the Pythagoreans believed in
the transmigration of the soul and opposed, therefore, the shedding of blood.
In the later traditions of the Neo-Pythagoreans this objection is removed by
replacing this bloody sacrifice by that of “an ox made of flour”! The proof
of the law of three squares, given in Euclid’s Elements, I. 47, is due to Euclid
himself, and not to the Pythagoreans. What the Pythagorean method of proof
was has been a favourite topic for conjecture.

The theorem on the sum of the three angles of a triangle, presumably
known to Thales, was proved by the Pythagoreans after the manner of Euclid.
They demonstrated also that the plane about a point is completely filled by
six equilateral triangles, four squares, or three regular hexagons, so that it is
possible to divide up a plane into figures of either kind.

From the equilateral triangle and the square arise the solids, namely the
tetraedron, octaedron, icosaedron, and the cube. These solids were, in all
probability, known to the Egyptians, excepting, perhaps, the icosaedron. In
Pythagorean philosophy, they represent respectively the four elements of the
physical world; namely, fire, air, water, and earth. Later another regular solid
was discovered, namely the dodecaedron, which, in absence of a fifth element,
was made to represent the universe itself. Iamblichus states that Hippasus, a
Pythagorean, perished in the sea, because he boasted that he first divulged “the
sphere with the twelve pentagons.” The star-shaped pentagram was used as a
symbol of recognition by the Pythagoreans, and was called by them Health.

Pythagoras called the sphere the most beautiful of all solids, and the circle the
most beautiful of all plane figures. The treatment of the subjects of proportion
and of irrational quantities by him and his school will be taken up under the
head of arithmetic.

According to Eudemus, the Pythagoreans invented the problems concerning
the application of areas, including the cases of defect and excess, as in Euclid,
VI. 28, 29.

They were also familiar with the construction of a polygon equal in area to
a given polygon and similar to another given polygon. This problem depends
upon several important and somewhat advanced theorems, and testifies to the
fact that the Pythagoreans made no mean progress in geometry.
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Of the theorems generally ascribed to the Italian school, some cannot be
attributed to Pythagoras himself, nor to his earliest successors. The progress
from empirical to reasoned solutions must, of necessity, have been slow. It is
worth noticing that on the circle no theorem of any importance was discovered
by this school.

Though politics broke up the Pythagorean fraternity, yet the school continued
to exist at least two centuries longer. Among the later Pythagoreans, Philolaus
and Archytas are the most prominent. Philolaus wrote a book on the
Pythagorean doctrines. By him were first given to the world the teachings of
the Italian school, which had been kept secret for a whole century. The brilliant
Archytas of Tarentum (428–347 b.c.), known as a great statesman and general,
and universally admired for his virtues, was the only great geometer among the
Greeks when Plato opened his school. Archytas was the first to apply geometry
to mechanics and to treat the latter subject methodically. He also found a very
ingenious mechanical solution to the problem of the duplication of the cube.
His solution involves clear notions on the generation of cones and cylinders.
This problem reduces itself to finding two mean proportionals between two
given lines. These mean proportionals were obtained by Archytas from the
section of a half-cylinder. The doctrine of proportion was advanced through
him.

There is every reason to believe that the later Pythagoreans exercised a
strong influence on the study and development of mathematics at Athens. The
Sophists acquired geometry from Pythagorean sources. Plato bought the works
of Philolaus, and had a warm friend in Archytas.

The Sophist School.

After the defeat of the Persians under Xerxes at the battle of Salamis, 480 b.c.,
a league was formed among the Greeks to preserve the freedom of the now
liberated Greek cities on the islands and coast of the Ægæan Sea. Of this league
Athens soon became leader and dictator. She caused the separate treasury of
the league to be merged into that of Athens, and then spent the money of her
allies for her own aggrandisement. Athens was also a great commercial centre.
Thus she became the richest and most beautiful city of antiquity. All menial
work was performed by slaves. The citizen of Athens was well-to-do and
enjoyed a large amount of leisure. The government being purely democratic,
every citizen was a politician. To make his influence felt among his fellow-men
he must, first of all, be educated. Thus there arose a demand for teachers.
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The supply came principally from Sicily, where Pythagorean doctrines had
spread. These teachers were called Sophists, or “wise men.” Unlike the
Pythagoreans, they accepted pay for their teaching. Although rhetoric was the
principal feature of their instruction, they also taught geometry, astronomy,
and philosophy. Athens soon became the headquarters of Grecian men of
letters, and of mathematicians in particular. The home of mathematics among
the Greeks was first in the Ionian Islands, then in Lower Italy, and during the
time now under consideration, at Athens.

The geometry of the circle, which had been entirely neglected by the
Pythagoreans, was taken up by the Sophists. Nearly all their discoveries were
made in connection with their innumerable attempts to solve the following
three famous problems:—

(1) To trisect an arc or an angle.
(2) To “double the cube,” i.e. to find a cube whose volume is double that of a

given cube.
(3) To “square the circle,” i.e. to find a square or some other rectilinear figure

exactly equal in area to a given circle.
These problems have probably been the subject of more discussion and

research than any other problems in mathematics. The bisection of an angle
was one of the easiest problems in geometry. The trisection of an angle, on the
other hand, presented unexpected diHculties. A right angle had been divided
into three equal parts by the Pythagoreans. But the general problem, though
easy in appearance, transcended the power of elementary geometry. Among
the first to wrestle with it was Hippias of Elis, a contemporary of Socrates,
and born about 460 b.c. Like all the later geometers, he failed in evecting
the trisection by means of a ruler and compass only. Proclus mentions a man,
Hippias, presumably Hippias of Elis, as the inventor of a transcendental curve
which served to divide an angle not only into three, but into any number of
equal parts. This same curve was used later by Deinostratus and others for the
quadrature of the circle. On this account it is called the quadratrix.

The Pythagoreans had shown that the diagonal of a square is the side of
another square having double the area of the original one. This probably
suggested the problem of the duplication of the cube, i.e. to find the edge of a
cube having double the volume of a given cube. Eratosthenes ascribes to this
problem a diverent origin. The Delians were once suvering from a pestilence
and were ordered by the oracle to double a certain cubical altar. Thoughtless
workmen simply constructed a cube with edges twice as long, but this did
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not pacify the gods. The error being discovered, Plato was consulted on the
matter. He and his disciples searched eagerly for a solution to this “Delian
Problem.” Hippocrates of Chios (about 430 b.c.), a talented mathematician,
but otherwise slow and stupid, was the first to show that the problem could be
reduced to finding two mean proportionals between a given line and another
twice as long. For, in the proportion a : x “ x : y “ y : 2a, since x2 “ ay and
y2 “ 2ax and x4 “ a2y2, we have x4 “ 2a3x and x3 “ 2a3. But he failed to find the
two mean proportionals. His attempt to square the circle was also a failure;
for though he made himself celebrated by squaring a lune, he committed an
error in attempting to apply this result to the squaring of the circle.

In his study of the quadrature and duplication-problems, Hippocrates
contributed much to the geometry of the circle.

The subject of similar figures was studied and partly developed by Hip-
pocrates. This involved the theory of proportion. Proportion had, thus far,
been used by the Greeks only in numbers. They never succeeded in uniting the
notions of numbers and magnitudes. The term “number” was used by them
in a restricted sense. What we call irrational numbers was not included under
this notion. Not even rational fractions were called numbers. They used the
word in the same sense as we use “integers.” Hence numbers were conceived as
discontinuous, while magnitudes were continuous. The two notions appeared,
therefore, entirely distinct. The chasm between them is exposed to full view
in the statement of Euclid that “incommensurable magnitudes do not have the
same ratio as numbers.” In Euclid’s Elements we find the theory of proportion
of magnitudes developed and treated independent of that of numbers. The
transfer of the theory of proportion from numbers to magnitudes (and to
lengths in particular) was a diHcult and important step.

Hippocrates added to his fame by writing a geometrical text-book, called
the Elements. This publication shows that the Pythagorean habit of secrecy was
being abandoned; secrecy was contrary to the spirit of Athenian life.

The Sophist Antiphon, a contemporary of Hippocrates, introduced the
process of exhaustion for the purpose of solving the problem of the quadrature.
He did himself credit by remarking that by inscribing in a circle a square, and
on its sides erecting isosceles triangles with their vertices in the circumference,
and on the sides of these triangles erecting new triangles, etc., one could
obtain a succession of regular polygons of 8, 16, 32, 64 sides, and so on,
of which each approaches nearer to the circle than the previous one, until
the circle is finally exhausted. Thus is obtained an inscribed polygon whose
sides coincide with the circumference. Since there can be found squares
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equal in area to any polygon, there also can be found a square equal to
the last polygon inscribed, and therefore equal to the circle itself. Bryson
of Heraclea, a contemporary of Antiphon, advanced the problem of the
quadrature considerably by circumscribing polygons at the same time that he
inscribed polygons. He erred, however, in assuming that the area of a circle was
the arithmetical mean between circumscribed and inscribed polygons. Unlike
Bryson and the rest of Greek geometers, Antiphon seems to have believed it
possible, by continually doubling the sides of an inscribed polygon, to obtain
a polygon coinciding with the circle. This question gave rise to lively disputes
in Athens. If a polygon can coincide with the circle, then, says Simplicius, we
must put aside the notion that magnitudes are divisible ad infinitum. Aristotle
always supported the theory of the infinite divisibility, while Zeno, the Stoic,
attempted to show its absurdity by proving that if magnitudes are infinitely
divisible, motion is impossible. Zeno argues that Achilles could not overtake a
tortoise; for while he hastened to the place where the tortoise had been when
he started, the tortoise crept some distance ahead, and while Achilles reached
that second spot, the tortoise again moved forward a little, and so on. Thus the
tortoise was always in advance of Achilles. Such arguments greatly confounded
Greek geometers. No wonder they were deterred by such paradoxes from
introducing the idea of infinity into their geometry. It did not suit the rigour
of their proofs.

The process of Antiphon and Bryson gave rise to the cumbrous but perfectly
rigorous “method of exhaustion.” In determining the ratio of the areas
between two curvilinear plane figures, say two circles, geometers first inscribed
or circumscribed similar polygons, and then by increasing indefinitely the
number of sides, nearly exhausted the spaces between the polygons and
circumferences. From the theorem that similar polygons inscribed in circles
are to each other as the squares on their diameters, geometers may have divined
the theorem attributed to Hippocrates of Chios that the circles, which diver
but little from the last drawn polygons, must be to each other as the squares on
their diameters. But in order to exclude all vagueness and possibility of doubt,
later Greek geometers applied reasoning like that in Euclid, XII. 2, as follows:
Let C and c, D and d be respectively the circles and diameters in question.
Then if the proportion D2 : d2 “ C : c is not true, suppose that D2 : d2 “ C : c1.
If c1 ă c, then a polygon p can be inscribed in the circle c which comes nearer
to it in area than does c1. If P be the corresponding polygon in C, then
P : p “ D2 : d2 “ C : c1, and P : C “ p : c1. Since p ą c1, we have P ą C, which
is absurd. Next they proved by this same method of reductio ad absurdum the
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falsity of the supposition that c1 ą c. Since c1 can be neither larger nor smaller
than c, it must be equal to it, q.e.d. Hankel refers this Method of Exhaustion
back to Hippocrates of Chios, but the reasons for assigning it to this early
writer, rather than to Eudoxus, seem insuHcient.

Though progress in geometry at this period is traceable only at Athens, yet
Ionia, Sicily, Abdera in Thrace, and Cyrene produced mathematicians who
made creditable contributions to the science. We can mention here only
Democritus of Abdera (about 460–370 b.c.), a pupil of Anaxagoras, a friend of
Philolaus, and an admirer of the Pythagoreans. He visited Egypt and perhaps
even Persia. He was a successful geometer and wrote on incommensurable
lines, on geometry, on numbers, and on perspective. None of these works
are extant. He used to boast that in the construction of plane figures with
proof no one had yet surpassed him, not even the so-called harpedonaptæ
(“rope-stretchers”) of Egypt. By this assertion he pays a flattering compliment
to the skill and ability of the Egyptians.

The Platonic School.

During the Peloponnesian War (431–404 b.c.) the progress of geometry was
checked. After the war, Athens sank into the background as a minor political
power, but advanced more and more to the front as the leader in philosophy,
literature, and science. Plato was born at Athens in 429 b.c., the year of the
great plague, and died in 348 b.c. He was a pupil and near friend of Socrates,
but it was not from him that he acquired his taste for mathematics. After the
death of Socrates, Plato travelled extensively. In Cyrene he studied mathematics
under Theodorus. He went to Egypt, then to Lower Italy and Sicily, where he
came in contact with the Pythagoreans. Archytas of Tarentum and Timæus of
Locri became his intimate friends. On his return to Athens, about 389 b.c., he
founded his school in the groves of the Academia, and devoted the remainder
of his life to teaching and writing.

Plato’s physical philosophy is partly based on that of the Pythagoreans.
Like them, he sought in arithmetic and geometry the key to the universe.
When questioned about the occupation of the Deity, Plato answered that “He
geometrises continually.” Accordingly, a knowledge of geometry is a necessary
preparation for the study of philosophy. To show how great a value he put on
mathematics and how necessary it is for higher speculation, Plato placed the
inscription over his porch, “Let no one who is unacquainted with geometry
enter here.” Xenocrates, a successor of Plato as teacher in the Academy,
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followed in his master’s footsteps, by declining to admit a pupil who had no
mathematical training, with the remark, “Depart, for thou hast not the grip of
philosophy.” Plato observed that geometry trained the mind for correct and
vigorous thinking. Hence it was that the Eudemian Summary says, “He filled
his writings with mathematical discoveries, and exhibited on every occasion
the remarkable connection between mathematics and philosophy.”

With Plato as the head-master, we need not wonder that the Platonic school
produced so large a number of mathematicians. Plato did little real original
work, but he made valuable improvements in the logic and methods employed
in geometry. It is true that the Sophist geometers of the previous century
were rigorous in their proofs, but as a rule they did not reflect on the inward
nature of their methods. They used the axioms without giving them explicit
expression, and the geometrical concepts, such as the point, line, surface, etc.,
without assigning to them formal definitions. The Pythagoreans called a point
“unity in position,” but this is a statement of a philosophical theory rather
than a definition. Plato objected to calling a point a “geometrical fiction.” He
defined a point as the “beginning of a line” or as “an indivisible line,” and a line
as “length without breadth.” He called the point, line, surface, the ‘boundaries’
of the line, surface, solid, respectively. Many of the definitions in Euclid are
to be ascribed to the Platonic school. The same is probably true of Euclid’s
axioms. Aristotle refers to Plato the axiom that “equals subtracted from equals
leave equals.”

One of the greatest achievements of Plato and his school is the invention
of analysis as a method of proof. To be sure, this method had been used
unconsciously by Hippocrates and others; but Plato, like a true philosopher,
turned the instinctive logic into a conscious, legitimate method.

The terms synthesis and analysis are used in mathematics in a more special
sense than in logic. In ancient mathematics they had a diverent meaning from
what they now have. The oldest definition of mathematical analysis as opposed
to synthesis is that given in Euclid, XIII. 5, which in all probability was framed
by Eudoxus: “Analysis is the obtaining of the thing sought by assuming it
and so reasoning up to an admitted truth; synthesis is the obtaining of the
thing sought by reasoning up to the inference and proof of it.” The analytic
method is not conclusive, unless all operations involved in it are known to be
reversible. To remove all doubt, the Greeks, as a rule, added to the analytic
process a synthetic one, consisting of a reversion of all operations occurring in
the analysis. Thus the aim of analysis was to aid in the discovery of synthetic
proofs or solutions.
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Plato is said to have solved the problem of the duplication of the cube.
But the solution is open to the very same objection which he made to the
solutions by Archytas, Eudoxus, and Menæchmus. He called their solutions
not geometrical, but mechanical, for they required the use of other instruments
than the ruler and compasses. He said that thereby “the good of geometry is
set aside and destroyed, for we again reduce it to the world of sense, instead of
elevating and imbuing it with the eternal and incorporeal images of thought,
even as it is employed by God, for which reason He always is God.” These
objections indicate either that the solution is wrongly attributed to Plato or
that he wished to show how easily non-geometric solutions of that character
can be found. It is now generally admitted that the duplication problem, as
well as the trisection and quadrature problems, cannot be solved by means of
the ruler and compass only.

Plato gave a healthful stimulus to the study of stereometry, which until his
time had been entirely neglected. The sphere and the regular solids had been
studied to some extent, but the prism, pyramid, cylinder, and cone were hardly
known to exist. All these solids became the subjects of investigation by the
Platonic school. One result of these inquiries was epoch-making. Menæchmus,
an associate of Plato and pupil of Eudoxus, invented the conic sections, which,
in course of only a century, raised geometry to the loftiest height which it was
destined to reach during antiquity. Menæchmus cut three kinds of cones, the
‘right-angled,’ ‘acute-angled,’ and ‘obtuse-angled,’ by planes at right angles to
a side of the cones, and thus obtained the three sections which we now call the
parabola, ellipse, and hyperbola. Judging from the two very elegant solutions
of the “Delian Problem” by means of intersections of these curves, Menæchmus
must have succeeded well in investigating their properties.

Another great geometer was Dinostratus, the brother of Menæchmus and
pupil of Plato. Celebrated is his mechanical solution of the quadrature of the
circle, by means of the quadratrix of Hippias.

Perhaps the most brilliant mathematician of this period was Eudoxus. He
was born at Cnidus about 408 b.c., studied under Archytas, and later, for two
months, under Plato. He was imbued with a true spirit of scientific inquiry,
and has been called the father of scientific astronomical observation. From
the fragmentary notices of his astronomical researches, found in later writers,
Ideler and Schiaparelli succeeded in reconstructing the system of Eudoxus with
its celebrated representation of planetary motions by “concentric spheres.”
Eudoxus had a school at Cyzicus, went with his pupils to Athens, visiting
Plato, and then returned to Cyzicus, where he died 355 b.c. The fame of the
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academy of Plato is to a large extent due to Eudoxus’s pupils of the school at
Cyzicus, among whom are Menæchmus, Dinostratus, Athenæus, and Helicon.
Diogenes Laertius describes Eudoxus as astronomer, physician, legislator, as
well as geometer. The Eudemian Summary says that Eudoxus “first increased the
number of general theorems, added to the three proportions three more, and
raised to a considerable quantity the learning, begun by Plato, on the subject
of the section, to which he applied the analytical method.” By this ‘section’ is
meant, no doubt, the “golden section” (sectio aurea), which cuts a line in extreme
and mean ratio. The first five propositions in Euclid XIII. relate to lines cut by
this section, and are generally attributed to Eudoxus. Eudoxus added much to
the knowledge of solid geometry. He proved, says Archimedes, that a pyramid
is exactly one-third of a prism, and a cone one-third of a cylinder, having equal
base and altitude. The proof that spheres are to each other as the cubes of their
radii is probably due to him. He made frequent and skilful use of the method
of exhaustion, of which he was in all probability the inventor. A scholiast on
Euclid, thought to be Proclus, says further that Eudoxus practically invented
the whole of Euclid’s fifth book. Eudoxus also found two mean proportionals
between two given lines, but the method of solution is not known.

Plato has been called a maker of mathematicians. Besides the pupils already
named, the Eudemian Summary mentions the following: Theætetus of Athens,
a man of great natural gifts, to whom, no doubt, Euclid was greatly indebted in
the composition of the 10th book, treating of incommensurables; Leodamas
of Thasos; Neocleides and his pupil Leon, who added much to the work of
their predecessors, for Leon wrote an Elements carefully designed, both in
number and utility of its proofs; Theudius of Magnesia, who composed a
very good book of Elements and generalised propositions, which had been
confined to particular cases; Hermotimus of Colophon, who discovered many
propositions of the Elements and composed some on loci; and, finally, the names
of Amyclas of Heraclea, Cyzicenus of Athens, and Philippus of Mende.

A skilful mathematician of whose life and works we have no details is
Aristæus, the elder, probably a senior contemporary of Euclid. The fact that
he wrote a work on conic sections tends to show that much progress had been
made in their study during the time of Menæchmus. Aristæus wrote also
on regular solids and cultivated the analytic method. His works contained
probably a summary of the researches of the Platonic school.

Aristotle (384–322 b.c.), the systematiser of deductive logic, though not a
professed mathematician, promoted the science of geometry by improving
some of the most diHcult definitions. His Physics contains passages with
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suggestive hints of the principle of virtual velocities. About his time there
appeared a work called Mechanica, of which he is regarded by some as the
author. Mechanics was totally neglected by the Platonic school.

The First Alexandrian School.

In the previous pages we have seen the birth of geometry in Egypt, its
transference to the Ionian Islands, thence to Lower Italy and to Athens.
We have witnessed its growth in Greece from feeble childhood to vigorous
manhood, and now we shall see it return to the land of its birth and there
derive new vigour.

During her declining years, immediately following the Peloponnesian War,
Athens produced the greatest scientists and philosophers of antiquity. It
was the time of Plato and Aristotle. In 338 b.c., at the battle of Chæronea,
Athens was beaten by Philip of Macedon, and her power was broken forever.
Soon after, Alexander the Great, the son of Philip, started out to conquer the
world. In eleven years he built up a great empire which broke to pieces in
a day. Egypt fell to the lot of Ptolemy Soter. Alexander had founded the
seaport of Alexandria, which soon became “the noblest of all cities.” Ptolemy
made Alexandria the capital. The history of Egypt during the next three
centuries is mainly the history of Alexandria. Literature, philosophy, and
art were diligently cultivated. Ptolemy created the university of Alexandria.
He founded the great Library and built laboratories, museums, a zoölogical
garden, and promenades. Alexandria soon became the great centre of learning.

Demetrius Phalereus was invited from Athens to take charge of the Library,
and it is probable, says Gow, that Euclid was invited with him to open the
mathematical school. Euclid’s greatest activity was during the time of the
first Ptolemy, who reigned from 306 to 283 b.c. Of the life of Euclid, little is
known, except what is added by Proclus to the Eudemian Summary. Euclid, says
Proclus, was younger than Plato and older than Eratosthenes and Archimedes,
the latter of whom mentions him. He was of the Platonic sect, and well read in
its doctrines. He collected the Elements, put in order much that Eudoxus had
prepared, completed many things of Theætetus, and was the first who reduced
to unobjectionable demonstration the imperfect attempts of his predecessors.
When Ptolemy once asked him if geometry could not be mastered by an easier
process than by studying the Elements, Euclid returned the answer, “There is
no royal road to geometry.” Pappus states that Euclid was distinguished by the
fairness and kindness of his disposition, particularly toward those who could
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do anything to advance the mathematical sciences. Pappus is evidently making
a contrast to Apollonius, of whom he more than insinuates the opposite
character. A pretty little story is related by Stobæus: “A youth who had
begun to read geometry with Euclid, when he had learnt the first proposition,
inquired, ‘What do I get by learning these things?’ So Euclid called his slave and
said, ‘Give him threepence, since he must make gain out of what he learns.’ ”
These are about all the personal details preserved by Greek writers. Syrian and
Arabian writers claim to know much more, but they are unreliable. At one
time Euclid of Alexandria was universally confounded with Euclid of Megara,
who lived a century earlier.

The fame of Euclid has at all times rested mainly upon his book on geometry,
called the Elements. This book was so far superior to the Elements written by
Hippocrates, Leon, and Theudius, that the latter works soon perished in the
struggle for existence. The Greeks gave Euclid the special title of “the author
of the Elements.” It is a remarkable fact in the history of geometry, that the
Elements of Euclid, written two thousand years ago, are still regarded by many
as the best introduction to the mathematical sciences. In England they are
used at the present time extensively as a text-book in schools. Some editors of
Euclid have, however, been inclined to credit him with more than is his due.
They would have us believe that a finished and unassailable system of geometry
sprang at once from the brain of Euclid, “an armed Minerva from the head of
Jupiter.” They fail to mention the earlier eminent mathematicians from whom
Euclid got his material. Comparatively few of the propositions and proofs
in the Elements are his own discoveries. In fact, the proof of the “Theorem
of Pythagoras” is the only one directly ascribed to him. Allman conjectures
that the substance of Books I., II., IV. comes from the Pythagoreans, that the
substance of Book VI. is due to the Pythagoreans and Eudoxus, the latter
contributing the doctrine of proportion as applicable to incommensurables
and also the Method of Exhaustions (Book XII.), that Theætetus contributed
much toward Books X. and XIII., that the principal part of the original work of
Euclid himself is to be found in Book X. Euclid was the greatest systematiser
of his time. By careful selection from the material before him, and by logical
arrangement of the propositions selected, he built up, from a few definitions
and axioms, a proud and lofty structure. It would be erroneous to believe
that he incorporated into his Elements all the elementary theorems known at
his time. Archimedes, Apollonius, and even he himself refer to theorems not
included in his Elements, as being well-known truths.

The text of the Elements now commonly used is Theon’s edition. Theon
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of Alexandria, the father of Hypatia, brought out an edition, about 700 years
after Euclid, with some alterations in the text. As a consequence, later
commentators, especially Robert Simson, who laboured under the idea that
Euclid must be absolutely perfect, made Theon the scapegoat for all the defects
which they thought they could discover in the text as they knew it. But among
the manuscripts sent by Napoleon I. from the Vatican to Paris was found a copy
of the Elements believed to be anterior to Theon’s recension. Many variations
from Theon’s version were noticed therein, but they were not at all important,
and showed that Theon generally made only verbal changes. The defects in
the Elements for which Theon was blamed must, therefore, be due to Euclid
himself. The Elements has been considered as overing models of scrupulously
rigorous demonstrations. It is certainly true that in point of rigour it compares
favourably with its modern rivals; but when examined in the light of strict
mathematical logic, it has been pronounced by C. S. Peirce to be “riddled with
fallacies.” The results are correct only because the writer’s experience keeps
him on his guard.

At the beginning of our editions of the Elements, under the head of definitions,
are given the assumptions of such notions as the point, line, etc., and some
verbal explanations. Then follow three postulates or demands, and twelve
axioms. The term ‘axiom’ was used by Proclus, but not by Euclid. He speaks,
instead, of ‘common notions’—common either to all men or to all sciences.
There has been much controversy among ancient and modern critics on the
postulates and axioms. An immense preponderance of manuscripts and the
testimony of Proclus place the ‘axioms’ about right angles and parallels (Axioms
11 and 12) among the postulates. This is indeed their proper place, for they
are really assumptions, and not common notions or axioms. The postulate about
parallels plays an important rôle in the history of non-Euclidean geometry. The
only postulate which Euclid missed was the one of superposition, according to
which figures can be moved about in space without any alteration in form or
magnitude.

The Elements contains thirteen books by Euclid, and two, of which it is
supposed that Hypsicles and Damascius are the authors. The first four books
are on plane geometry. The fifth book treats of the theory of proportion as
applied to magnitudes in general. The sixth book develops the geometry of
similar figures. The seventh, eighth, ninth books are on the theory of numbers,
or on arithmetic. In the ninth book is found the proof to the theorem that
the number of primes is infinite. The tenth book treats of the theory of
incommensurables. The next three books are on stereometry. The eleventh



THE GREEKS. 27

contains its more elementary theorems; the twelfth, the metrical relations of
the pyramid, prism, cone, cylinder, and sphere. The thirteenth treats of the
regular polygons, especially of the triangle and pentagon, and then uses them as
faces of the five regular solids; namely, the tetraedron, octaedron, icosaedron,
cube, and dodecaedron. The regular solids were studied so extensively by the
Platonists that they received the name of “Platonic figures.” The statement of
Proclus that the whole aim of Euclid in writing the Elements was to arrive at
the construction of the regular solids, is obviously wrong. The fourteenth and
fifteenth books, treating of solid geometry, are apocryphal.

A remarkable feature of Euclid’s, and of all Greek geometry before Arch-
imedes is that it eschews mensuration. Thus the theorem that the area of a
triangle equals half the product of its base and its altitude is foreign to Euclid.

Another extant book of Euclid is the Data. It seems to have been written
for those who, having completed the Elements, wish to acquire the power of
solving new problems proposed to them. The Data is a course of practice in
analysis. It contains little or nothing that an intelligent student could not pick
up from the Elements itself. Hence it contributes little to the stock of scientific
knowledge. The following are the other extant works generally attributed to
Euclid: Phænomena, a work on spherical geometry and astronomy; Optics,
which develops the hypothesis that light proceeds from the eye, and not
from the object seen; Catoptrica, containing propositions on reflections from
mirrors; De Divisionibus, a treatise on the division of plane figures into parts
having to one another a given ratio; Sectio Canonis, a work on musical intervals.
His treatise on Porisms is lost; but much learning has been expended by Robert
Simson and M. Chasles in restoring it from numerous notes found in the
writings of Pappus. The term ‘porism’ is vague in meaning. The aim of a
porism is not to state some property or truth, like a theorem, nor to evect
a construction, like a problem, but to find and bring to view a thing which
necessarily exists with given numbers or a given construction, as, to find the
centre of a given circle, or to find the G.C.D. of two given numbers. His
other lost works are Fallacies, containing exercises in detection of fallacies;
Conic Sections, in four books, which are the foundation of a work on the same
subject by Apollonius; and Loci on a Surface, the meaning of which title is not
understood. Heiberg believes it to mean “loci which are surfaces.”

The immediate successors of Euclid in the mathematical school at Alexandria
were probably Conon, Dositheus, and Zeuxippus, but little is known of them.

Archimedes (287?–212 b.c.), the greatest mathematician of antiquity, was born
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in Syracuse. Plutarch calls him a relation of King Hieron; but more reliable
is the statement of Cicero, who tells us he was of low birth. Diodorus says he
visited Egypt, and, since he was a great friend of Conon and Eratosthenes, it is
highly probable that he studied in Alexandria. This belief is strengthened by the
fact that he had the most thorough acquaintance with all the work previously
done in mathematics. He returned, however, to Syracuse, where he made
himself useful to his admiring friend and patron, King Hieron, by applying
his extraordinary inventive genius to the construction of various war-engines,
by which he inflicted much loss on the Romans during the siege of Marcellus.
The story that, by the use of mirrors reflecting the sun’s rays, he set on fire
the Roman ships, when they came within bow-shot of the walls, is probably a
fiction. The city was taken at length by the Romans, and Archimedes perished
in the indiscriminate slaughter which followed. According to tradition, he
was, at the time, studying the diagram to some problem drawn in the sand. As
a Roman soldier approached him, he called out, “Don’t spoil my circles.” The
soldier, feeling insulted, rushed upon him and killed him. No blame attaches
to the Roman general Marcellus, who admired his genius, and raised in his
honour a tomb bearing the figure of a sphere inscribed in a cylinder. When
Cicero was in Syracuse, he found the tomb buried under rubbish.

Archimedes was admired by his fellow-citizens chiefly for his mechanical
inventions; he himself prized far more highly his discoveries in pure science.
He declared that “every kind of art which was connected with daily needs was
ignoble and vulgar.” Some of his works have been lost. The following are the
extant books, arranged approximately in chronological order: 1. Two books on
Equiponderance of Planes or Centres of Plane Gravities, between which is inserted
his treatise on the Quadrature of the Parabola; 2. Two books on the Sphere and
Cylinder; 3. The Measurement of the Circle; 4. On Spirals; 5. Conoids and Spheroids;
6. The Sand-Counter; 7. Two books on Floating Bodies; 8. Fifteen Lemmas.

In the book on the Measurement of the Circle, Archimedes proves first that
the area of a circle is equal to that of a right triangle having the length of the
circumference for its base, and the radius for its altitude. In this he assumes that
there exists a straight line equal in length to the circumference—an assumption
objected to by some ancient critics, on the ground that it is not evident that a
straight line can equal a curved one. The finding of such a line was the next
problem. He first finds an upper limit to the ratio of the circumference to the
diameter, or π. To do this, he starts with an equilateral triangle of which the base
is a tangent and the vertex is the centre of the circle. By successively bisecting
the angle at the centre, by comparing ratios, and by taking the irrational square
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roots always a little too small, he finally arrived at the conclusion that π ă 3 1
7 .

Next he finds a lower limit by inscribing in the circle regular polygons of 6,
12, 24, 48, 96 sides, finding for each successive polygon its perimeter, which is,
of course, always less than the circumference. Thus he finally concludes that
“the circumference of a circle exceeds three times its diameter by a part which
is less than 1

7 but more than 10
71 of the diameter.” This approximation is exact

enough for most purposes.
The Quadrature of the Parabola contains two solutions to the problem—one

mechanical, the other geometrical. The method of exhaustion is used in both.
Archimedes studied also the ellipse and accomplished its quadrature, but to

the hyperbola he seems to have paid less attention. It is believed that he wrote
a book on conic sections.

Of all his discoveries Archimedes prized most highly those in his Sphere and
Cylinder. In it are proved the new theorems, that the surface of a sphere is
equal to four times a great circle; that the surface of a segment of a sphere is
equal to a circle whose radius is the straight line drawn from the vertex of
the segment to the circumference of its basal circle; that the volume and the
surface of a sphere are 2

3 of the volume and surface, respectively, of the cylinder
circumscribed about the sphere. Archimedes desired that the figure to the last
proposition be inscribed on his tomb. This was ordered done by Marcellus.

The spiral now called the “spiral of Archimedes,” and described in the book
On Spirals, was discovered by Archimedes, and not, as some believe, by his
friend Conon. His treatise thereon is, perhaps, the most wonderful of all
his works. Nowadays, subjects of this kind are made easy by the use of the
infinitesimal calculus. In its stead the ancients used the method of exhaustion.
Nowhere is the fertility of his genius more grandly displayed than in his
masterly use of this method. With Euclid and his predecessors the method of
exhaustion was only the means of proving propositions which must have been
seen and believed before they were proved. But in the hands of Archimedes it
became an instrument of discovery.

By the word ‘conoid,’ in his book on Conoids and Spheroids, is meant the
solid produced by the revolution of a parabola or a hyperbola about its axis.
Spheroids are produced by the revolution of an ellipse, and are long or flat,
according as the ellipse revolves around the major or minor axis. The book
leads up to the cubature of these solids.

We have now reviewed briefly all his extant works on geometry. His
arithmetical treatise and problems will be considered later. We shall now
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notice his works on mechanics. Archimedes is the author of the first sound
knowledge on this subject. Archytas, Aristotle, and others attempted to form
the known mechanical truths into a science, but failed. Aristotle knew the
property of the lever, but could not establish its true mathematical theory. The
radical and fatal defect in the speculations of the Greeks, says Whewell, was
“that though they had in their possession facts and ideas, the ideas were not
distinct and appropriate to the facts.” For instance, Aristotle asserted that when
a body at the end of a lever is moving, it may be considered as having two
motions; one in the direction of the tangent and one in the direction of the
radius; the former motion is, he says, according to nature, the latter contrary
to nature. These inappropriate notions of ‘natural’ and ‘unnatural’ motions,
together with the habits of thought which dictated these speculations, made
the perception of the true grounds of mechanical properties impossible. It
seems strange that even after Archimedes had entered upon the right path, this
science should have remained absolutely stationary till the time of Galileo—a
period of nearly two thousand years.

The proof of the property of the lever, given in his Equiponderance of Planes,
holds its place in text-books to this day. His estimate of the eHciency of the
lever is expressed in the saying attributed to him, “Give me a fulcrum on which
to rest, and I will move the earth.”

While the Equiponderance treats of solids, or the equilibrium of solids, the
book on Floating Bodies treats of hydrostatics. His attention was first drawn to
the subject of specific gravity when King Hieron asked him to test whether a
crown, professed by the maker to be pure gold, was not alloyed with silver. The
story goes that our philosopher was in a bath when the true method of solution
flashed on his mind. He immediately ran home, naked, shouting, “I have
found it!” To solve the problem, he took a piece of gold and a piece of silver,
each weighing the same as the crown. According to one author, he determined
the volume of water displaced by the gold, silver, and crown respectively, and
calculated from that the amount of gold and silver in the crown. According
to another writer, he weighed separately the gold, silver, and crown, while
immersed in water, thereby determining their loss of weight in water. From
these data he easily found the solution. It is possible that Archimedes solved
the problem by both methods.

After examining the writings of Archimedes, one can well understand how,
in ancient times, an ‘Archimedean problem’ came to mean a problem too deep
for ordinary minds to solve, and how an ‘Archimedean proof’ came to be
the synonym for unquestionable certainty. Archimedes wrote on a very wide
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range of subjects, and displayed great profundity in each. He is the Newton of
antiquity.

Eratosthenes, eleven years younger than Archimedes, was a native of
Cyrene. He was educated in Alexandria under Callimachus the poet, whom he
succeeded as custodian of the Alexandrian Library. His many-sided activity
may be inferred from his works. He wrote on Good and Evil, Measurement of the
Earth, Comedy, Geography, Chronology, Constellations, and the Duplication of the
Cube. He was also a philologian and a poet. He measured the obliquity of the
ecliptic and invented a device for finding prime numbers. Of his geometrical
writings we possess only a letter to Ptolemy Euergetes, giving a history of the
duplication problem and also the description of a very ingenious mechanical
contrivance of his own to solve it. In his old age he lost his eyesight, and on
that account is said to have committed suicide by voluntary starvation.

About forty years after Archimedes flourished Apollonius of Perga, whose
genius nearly equalled that of his great predecessor. He incontestably occupies
the second place in distinction among ancient mathematicians. Apollonius was
born in the reign of Ptolemy Euergetes and died under Ptolemy Philopator,
who reigned 222–205 b.c. He studied at Alexandria under the successors of
Euclid, and for some time, also, at Pergamum, where he made the acquaintance
of that Eudemus to whom he dedicated the first three books of his Conic
Sections. The brilliancy of his great work brought him the title of the “Great
Geometer.” This is all that is known of his life.

His Conic Sections were in eight books, of which the first four only have come
down to us in the original Greek. The next three books were unknown in
Europe till the middle of the seventeenth century, when an Arabic translation,
made about 1250, was discovered. The eighth book has never been found. In 1710
Halley of Oxford published the Greek text of the first four books and a Latin
translation of the remaining three, together with his conjectural restoration of
the eighth book, founded on the introductory lemmas of Pappus. The first
four books contain little more than the substance of what earlier geometers
had done. Eutocius tells us that Heraclides, in his life of Archimedes, accused
Apollonius of having appropriated, in his Conic Sections, the unpublished
discoveries of that great mathematician. It is diHcult to believe that this charge
rests upon good foundation. Eutocius quotes Geminus as replying that neither
Archimedes nor Apollonius claimed to have invented the conic sections, but
that Apollonius had introduced a real improvement. While the first three or
four books were founded on the works of Menæchmus, Aristæus, Euclid, and
Archimedes, the remaining ones consisted almost entirely of new matter. The
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first three books were sent to Eudemus at intervals, the other books (after
Eudemus’s death) to one Attalus. The preface of the second book is interesting
as showing the mode in which Greek books were ‘published’ at this time. It
reads thus: “I have sent my son Apollonius to bring you (Eudemus) the second
book of my Conics. Read it carefully and communicate it to such others as
are worthy of it. If Philonides, the geometer, whom I introduced to you at
Ephesus, comes into the neighbourhood of Pergamum, give it to him also.”

The first book, says Apollonius in his preface to it, “contains the mode of
producing the three sections and the conjugate hyperbolas and their principal
characteristics, more fully and generally worked out than in the writings of
other authors.” We remember that Menæchmus, and all his successors down
to Apollonius, considered only sections of right cones by a plane perpendicular
to their sides, and that the three sections were obtained each from a diverent
cone. Apollonius introduced an important generalisation. He produced all
the sections from one and the same cone, whether right or scalene, and by
sections which may or may not be perpendicular to its sides. The old names
for the three curves were now no longer applicable. Instead of calling the three
curves, sections of the ‘acute-angled,’ ‘right-angled,’ and ‘obtuse-angled’ cone,
he called them ellipse, parabola, and hyperbola, respectively. To be sure, we find
the words ‘parabola’ and ‘ellipse’ in the works of Archimedes, but they are
probably only interpolations. The word ‘ellipse’ was applied because y2 ă px,
p being the parameter; the word ‘parabola’ was introduced because y2 “ px,
and the term ‘hyperbola’ because y2 ą px.

The treatise of Apollonius rests on a unique property of conic sections,
which is derived directly from the nature of the cone in which these sections
are found. How this property forms the key to the system of the ancients is
told in a masterly way by M. Chasles. “Conceive,” says he, “an oblique cone
on a circular base; the straight line drawn from its summit to the centre of
the circle forming its base is called the axis of the cone. The plane passing
through the axis, perpendicular to its base, cuts the cone along two lines and
determines in the circle a diameter; the triangle having this diameter for its
base and the two lines for its sides, is called the triangle through the axis. In the
formation of his conic sections, Apollonius supposed the cutting plane to be
perpendicular to the plane of the triangle through the axis. The points in which
this plane meets the two sides of this triangle are the vertices of the curve; and
the straight line which joins these two points is a diameter of it. Apollonius
called this diameter latus transversum. At one of the two vertices of the curve
erect a perpendicular (latus rectum) to the plane of the triangle through the
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axis, of a certain length, to be determined as we shall specify later, and from
the extremity of this perpendicular draw a straight line to the other vertex of
the curve; now, through any point whatever of the diameter of the curve, draw
at right angles an ordinate: the square of this ordinate, comprehended between
the diameter and the curve, will be equal to the rectangle constructed on the
portion of the ordinate comprised between the diameter and the straight line,
and the part of the diameter comprised between the first vertex and the foot of
the ordinate. Such is the characteristic property which Apollonius recognises
in his conic sections and which he uses for the purpose of inferring from it, by
adroit transformations and deductions, nearly all the rest. It plays, as we shall
see, in his hands, almost the same rôle as the equation of the second degree
with two variables (abscissa and ordinate) in the system of analytic geometry
of Descartes.

“It will be observed from this that the diameter of the curve and the
perpendicular erected at one of its extremities suHce to construct the curve.
These are the two elements which the ancients used, with which to establish
their theory of conics. The perpendicular in question was called by them
latus erectum; the moderns changed this name first to that of latus rectum, and
afterwards to that of parameter.”

The first book of the Conic Sections of Apollonius is almost wholly devoted
to the generation of the three principal conic sections.

The second book treats mainly of asymptotes, axes, and diameters.
The third book treats of the equality or proportionality of triangles,

rectangles, or squares, of which the component parts are determined by
portions of transversals, chords, asymptotes, or tangents, which are frequently
subject to a great number of conditions. It also touches the subject of foci of
the ellipse and hyperbola.

In the fourth book, Apollonius discusses the harmonic division of straight
lines. He also examines a system of two conics, and shows that they cannot
cut each other in more than four points. He investigates the various possible
relative positions of two conics, as, for instance, when they have one or two
points of contact with each other.

The fifth book reveals better than any other the giant intellect of its author.
DiHcult questions of maxima and minima, of which few examples are found in
earlier works, are here treated most exhaustively. The subject investigated is,
to find the longest and shortest lines that can be drawn from a given point to
a conic. Here are also found the germs of the subject of evolutes and centres of
osculation.
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The sixth book is on the similarity of conics.
The seventh book is on conjugate diameters.
The eighth book, as restored by Halley, continues the subject of conjugate

diameters.
It is worthy of notice that Apollonius nowhere introduces the notion of

directrix for a conic, and that, though he incidentally discovered the focus of an
ellipse and hyperbola, he did not discover the focus of a parabola. Conspicuous
in his geometry is also the absence of technical terms and symbols, which
renders the proofs long and cumbrous.

The discoveries of Archimedes and Apollonius, says M. Chasles, marked the
most brilliant epoch of ancient geometry. Two questions which have occupied
geometers of all periods may be regarded as having originated with them. The
first of these is the quadrature of curvilinear figures, which gave birth to the
infinitesimal calculus. The second is the theory of conic sections, which was
the prelude to the theory of geometrical curves of all degrees, and to that
portion of geometry which considers only the forms and situations of figures,
and uses only the intersection of lines and surfaces and the ratios of rectilineal
distances. These two great divisions of geometry may be designated by the
names of Geometry of Measurements and Geometry of Forms and Situations, or,
Geometry of Archimedes and of Apollonius.

Besides the Conic Sections, Pappus ascribes to Apollonius the following
works: On Contacts, Plane Loci, Inclinations, Section of an Area, Determinate
Section, and gives lemmas from which attempts have been made to restore the
lost originals. Two books on De Sectione Rationis have been found in the Arabic.
The book on Contacts, as restored by Vieta, contains the so-called “Apollonian
Problem”: Given three circles, to find a fourth which shall touch the three.

Euclid, Archimedes, and Apollonius brought geometry to as high a state
of perfection as it perhaps could be brought without first introducing some
more general and more powerful method than the old method of exhaustion.
A briefer symbolism, a Cartesian geometry, an infinitesimal calculus, were
needed. The Greek mind was not adapted to the invention of general methods.
Instead of a climb to still loftier heights we observe, therefore, on the part of
later Greek geometers, a descent, during which they paused here and there to
look around for details which had been passed by in the hasty ascent.

Among the earliest successors of Apollonius was Nicomedes. Nothing
definite is known of him, except that he invented the conchoid (“mussel-like”).
He devised a little machine by which the curve could be easily described.
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With aid of the conchoid he duplicated the cube. The curve can also be
used for trisecting angles in a way much resembling that in the eighth lemma
of Archimedes. Proclus ascribes this mode of trisection to Nicomedes, but
Pappus, on the other hand, claims it as his own. The conchoid was used by
Newton in constructing curves of the third degree.

About the time of Nicomedes, flourished also Diocles, the inventor of the
cissoid (“ivy-like”). This curve he used for finding two mean proportionals
between two given straight lines.

About the life of Perseus we know as little as about that of Nicomedes and
Diocles. He lived some time between 200 and 100 b.c. From Heron and
Geminus we learn that he wrote a work on the spire, a sort of anchor-ring
surface described by Heron as being produced by the revolution of a circle
around one of its chords as an axis. The sections of this surface yield peculiar
curves called spiral sections, which, according to Geminus, were thought out by
Perseus. These curves appear to be the same as the Hippopede of Eudoxus.

Probably somewhat later than Perseus lived Zenodorus. He wrote an
interesting treatise on a new subject; namely, isoperimetrical figures. Fourteen
propositions are preserved by Pappus and Theon. Here are a few of them: Of
isoperimetrical, regular polygons, the one having the largest number of angles
has the greatest area; the circle has a greater area than any regular polygon of
equal periphery; of all isoperimetrical polygons of n sides, the regular is the
greatest; of all solids having surfaces equal in area, the sphere has the greatest
volume.

Hypsicles (between 200 and 100 b.c.) was supposed to be the author of both
the fourteenth and fifteenth books of Euclid, but recent critics are of opinion
that the fifteenth book was written by an author who lived several centuries
after Christ. The fourteenth book contains seven elegant theorems on regular
solids. A treatise of Hypsicles on Risings is of interest because it is the first
Greek work giving the division of the circumference into 360 degrees after the
fashion of the Babylonians.

Hipparchus of Nicæa in Bithynia was the greatest astronomer of antiquity.
He established inductively the famous theory of epicycles and eccentrics. As
might be expected, he was interested in mathematics, not per se, but only as
an aid to astronomical inquiry. No mathematical writings of his are extant,
but Theon of Alexandria informs us that Hipparchus originated the science
of trigonometry, and that he calculated a “table of chords” in twelve books.
Such calculations must have required a ready knowledge of arithmetical and
algebraical operations.
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About 100 b.c. flourished Heron the Elder of Alexandria. He was the pupil
of Ctesibius, who was celebrated for his ingenious mechanical inventions, such
as the hydraulic organ, the water-clock, and catapult. It is believed by some
that Heron was a son of Ctesibius. He exhibited talent of the same order as did
his master by the invention of the eolipile and a curious mechanism known as
“Heron’s fountain.” Great uncertainty exists concerning his writings. Most
authorities believe him to be the author of an important Treatise on the Dioptra,
of which there exist three manuscript copies, quite dissimilar. But M. Marie
thinks that the Dioptra is the work of Heron the Younger, who lived in the seventh
or eighth century after Christ, and that Geodesy, another book supposed to be
by Heron, is only a corrupt and defective copy of the former work. Dioptra
contains the important formula for finding the area of a triangle expressed in
terms of its sides; its derivation is quite laborious and yet exceedingly ingenious.
“It seems to me diHcult to believe,” says Chasles, “that so beautiful a theorem
should be found in a work so ancient as that of Heron the Elder, without that
some Greek geometer should have thought to cite it.” Marie lays great stress
on this silence of the ancient writers, and argues from it that the true author
must be Heron the Younger or some writer much more recent than Heron the
Elder. But no reliable evidence has been found that there actually existed a
second mathematician by the name of Heron.

“Dioptra,” says Venturi, were instruments which had great resemblance to
our modern theodolites. The book Dioptra is a treatise on geodesy containing
solutions, with aid of these instruments, of a large number of questions in
geometry, such as to find the distance between two points, of which one only is
accessible, or between two points which are visible but both inaccessible; from
a given point to draw a perpendicular to a line which cannot be approached; to
find the diverence of level between two points; to measure the area of a field
without entering it.

Heron was a practical surveyor. This may account for the fact that his writings
bear so little resemblance to those of the Greek authors, who considered it
degrading the science to apply geometry to surveying. The character of his
geometry is not Grecian, but decidedly Egyptian. This fact is the more
surprising when we consider that Heron demonstrated his familiarity with
Euclid by writing a commentary on the Elements. Some of Heron’s formulas
point to an old Egyptian origin. Thus, besides the above exact formula for the

area of a triangle in terms of its sides, Heron gives the formula
a1 ` a2

2
ˆ

b
2

, which

bears a striking likeness to the formula
a1 ` a2

2
ˆ

b1 ` b2

2
for finding the area
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of a quadrangle, found in the Edfu inscriptions. There are, moreover, points of
resemblance between Heron’s writings and the ancient Ahmes papyrus. Thus
Ahmes used unit-fractions exclusively; Heron uses them oftener than other
fractions. Like Ahmes and the priests at Edfu, Heron divides complicated
figures into simpler ones by drawing auxiliary lines; like them, he shows,
throughout, a special fondness for the isosceles trapezoid.

The writings of Heron satisfied a practical want, and for that reason were
borrowed extensively by other peoples. We find traces of them in Rome, in the
Occident during the Middle Ages, and even in India.

Geminus of Rhodes (about 70 b.c.) published an astronomical work still
extant. Hewrotealsoabook, nowlost, on theArrangement of Mathematics, which
contained many valuable notices of the early history of Greek mathematics.
Proclus and Eutocius quote it frequently. Theodosius of Tripolis is the author
of a book of little merit on the geometry of the sphere. Dionysodorus of
Amisus in Pontus applied the intersection of a parabola and hyperbola to the
solution of a problem which Archimedes, in his Sphere and Cylinder, had left
incomplete. The problem is “to cut a sphere so that its segments shall be in a
given ratio.”

We have now sketched the progress of geometry down to the time of Christ.
Unfortunately, very little is known of the history of geometry between the
time of Apollonius and the beginning of the Christian era. The names of quite
a number of geometers have been mentioned, but very few of their works are
now extant. It is certain, however, that there were no mathematicians of real
genius from Apollonius to Ptolemy, excepting Hipparchus and perhaps Heron.

The Second Alexandrian School.

The close of the dynasty of the Lagides which ruled Egypt from the time
of Ptolemy Soter, the builder of Alexandria, for 300 years; the absorption
of Egypt into the Roman Empire; the closer commercial relations between
peoples of the East and of the West; the gradual decline of paganism and
spread of Christianity,—these events were of far-reaching influence on the
progress of the sciences, which then had their home in Alexandria. Alexandria
became a commercial and intellectual emporium. Traders of all nations met
in her busy streets, and in her magnificent Library, museums, lecture-halls,
scholars from the East mingled with those of the West; Greeks began to study
older literatures and to compare them with their own. In consequence of
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this interchange of ideas the Greek philosophy became fused with Oriental
philosophy. Neo-Pythagoreanism and Neo-Platonism were the names of the
modified systems. These stood, for a time, in opposition to Christianity. The
study of Platonism and Pythagorean mysticism led to the revival of the theory
of numbers. Perhaps the dispersion of the Jews and their introduction to Greek
learning helped in bringing about this revival. The theory of numbers became
a favourite study. This new line of mathematical inquiry ushered in what we
may call a new school. There is no doubt that even now geometry continued to
be one of the most important studies in the Alexandrian course. This Second
Alexandrian School may be said to begin with the Christian era. It was made
famous by the names of Claudius Ptolemæus, Diophantus, Pappus, Theon of
Smyrna, Theon of Alexandria, Iamblichus, Porphyrius, and others.

By the side of these we may place Serenus of Antissa, as having been
connected more or less with this new school. He wrote on sections of the
cone and cylinder, in two books, one of which treated only of the triangular
section of the cone through the apex. He solved the problem, “given a cone
(cylinder), to find a cylinder (cone), so that the section of both by the same
plane gives similar ellipses.” Of particular interest is the following theorem,
which is the foundation of the modern theory of harmonics: If from D we
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draw DF , cutting the triangle ABC,
and choose H on it, so that DE :
DF “ EH : HF , and if we draw the
line AH , then every transversal through
D, such as DG, will be divided by AH
so that DK : DG “ KJ : JG. Menelaus
of Alexandria (about 98 a.d.) was the
author of Sphærica, a work extant in
Hebrew and Arabic, but not in Greek. In it he proves the theorems on the
congruence of spherical triangles, and describes their properties in much the
same way as Euclid treats plane triangles. In it are also found the theorems that
the sum of the three sides of a spherical triangle is less than a great circle, and
that the sum of the three angles exceeds two right angles. Celebrated are two
theorems of his on plane and spherical triangles. The one on plane triangles
is that, “if the three sides be cut by a straight line, the product of the three
segments which have no common extremity is equal to the product of the other
three.” The illustrious Carnot makes this proposition, known as the ‘lemma of
Menelaus,’ the base of his theory of transversals. The corresponding theorem
for spherical triangles, the so-called ‘regula sex quantitatum,’ is obtained from
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the above by reading “chords of three segments doubled,” in place of “three
segments.”

Claudius Ptolemæus, a celebrated astronomer, was a native of Egypt.
Nothing is known of his personal history except that he flourished in
Alexandria in 139 a.d. and that he made the earliest astronomical observations
recorded in his works, in 125 a.d., the latest in 151 a.d. The chief of his works
are the Syntaxis Mathematica (or the Almagest, as the Arabs call it) and the
Geographica, both of which are extant. The former work is based partly on his
own researches, but mainly on those of Hipparchus. Ptolemy seems to have
been not so much of an independent investigator, as a corrector and improver
of the work of his great predecessors. The Almagest forms the foundation of all
astronomical science down to Copernicus. The fundamental idea of his system,
the “Ptolemaic System,” is that the earth is in the centre of the universe, and
that the sun and planets revolve around the earth. Ptolemy did considerable
for mathematics. He created, for astronomical use, a trigonometry remarkably
perfect in form. The foundation of this science was laid by the illustrious
Hipparchus.

The Almagest is in 13 books. Chapter 9 of the first book shows how to
calculate tables of chords. The circle is divided into 360 degrees, each of
which is halved. The diameter is divided into 120 divisions; each of these into
60 parts, which are again subdivided into 60 smaller parts. In Latin, these parts
were called partes minutæ primæ and partes minutæ secundæ. Hence our names,
‘minutes’ and ‘seconds.’ The sexagesimal method of dividing the circle is of
Babylonian origin, and was known to Geminus and Hipparchus. But Ptolemy’s
method of calculating chords seems original with him. He first proved the
proposition, now appended to Euclid VI. (D), that “the rectangle contained by
the diagonals of a quadrilateral figure inscribed in a circle is equal to both the
rectangles contained by its opposite sides.” He then shows how to find from
the chords of two arcs the chords of their sum and diverence, and from the
chord of any arc that of its half. These theorems he applied to the calculation
of his tables of chords. The proofs of these theorems are very pretty.

Another chapter of the first book in the Almagest is devoted to trigonometry,
and to spherical trigonometry in particular. Ptolemy proved the ‘lemma of
Menelaus,’ and also the ‘regula sex quantitatum.’ Upon these propositions he
built up his trigonometry. The fundamental theorem of plane trigonometry,
that two sides of a triangle are to each other as the chords of double the
arcs measuring the angles opposite the two sides, was not stated explicitly by
him, but was contained implicitly in other theorems. More complete are the
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propositions in spherical trigonometry.
The fact that trigonometry was cultivated not for its own sake, but

to aid astronomical inquiry, explains the rather startling fact that spherical
trigonometry came to exist in a developed state earlier than plane trigonometry.

The remaining books of the Almagest are on astronomy. Ptolemy has written
other works which have little or no bearing on mathematics, except one on
geometry. Extracts from this book, made by Proclus, indicate that Ptolemy did
not regard the parallel-axiom of Euclid as self-evident, and that Ptolemy was
the first of the long line of geometers from ancient time down to our own who
toiled in the vain attempt to prove it.

Two prominent mathematicians of this time were Nicomachus and Theon
of Smyrna. Their favourite study was theory of numbers. The investigations in
this science culminated later in the algebra of Diophantus. But no important
geometer appeared after Ptolemy for 150 years. The only occupant of this
long gap was Sextus Julius Africanus, who wrote an unimportant work on
geometry applied to the art of war, entitled Cestes.

Pappus, probably born about 340 a.d., in Alexandria, was the last great
mathematician of the Alexandrian school. His genius was inferior to that of
Archimedes, Apollonius, and Euclid, who flourished over 500 years earlier.
But living, as he did, at a period when interest in geometry was declining,
he towered above his contemporaries “like the peak of Teneriva above the
Atlantic.” He is the author of a Commentary on the Almagest, a Commentary
on Euclid’s Elements, a Commentary on the Analemma of Diodorus,—a writer of
whom nothing is known. All these works are lost. Proclus, probably quoting
from the Commentary on Euclid, says that Pappus objected to the statement
that an angle equal to a right angle is always itself a right angle.

The only work of Pappus still extant is his Mathematical Collections. This
was originally in eight books, but the first and portions of the second are
now missing. The Mathematical Collections seems to have been written by
Pappus to supply the geometers of his time with a succinct analysis of the most
diHcult mathematical works and to facilitate the study of them by explanatory
lemmas. But these lemmas are selected very freely, and frequently have little
or no connection with the subject on hand. However, he gives very accurate
summaries of the works of which he treats. The Mathematical Collections is
invaluable to us on account of the rich information it gives on various treatises
by the foremost Greek mathematicians, which are now lost. Mathematicians
of the last century considered it possible to restore lost works from the résumé
by Pappus alone.
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We shall now cite the more important of those theorems in the Mathematical
Collections which are supposed to be original with Pappus. First of all ranks
the elegant theorem re-discovered by Guldin, over 1000 years later, that the
volume generated by the revolution of a plane curve which lies wholly on one
side of the axis, equals the area of the curve multiplied by the circumference
described by its centre of gravity. Pappus proved also that the centre of gravity
of a triangle is that of another triangle whose vertices lie upon the sides of
the first and divide its three sides in the same ratio. In the fourth book are
new and brilliant propositions on the quadratrix which indicate an intimate
acquaintance with curved surfaces. He generates the quadratrix as follows: Let
a spiral line be drawn upon a right circular cylinder; then the perpendiculars
to the axis of the cylinder drawn from each point of the spiral line form the
surface of a screw. A plane passed through one of these perpendiculars, making
any convenient angle with the base of the cylinder, cuts the screw-surface in
a curve, the orthogonal projection of which upon the base is the quadratrix.
A second mode of generation is no less admirable: If we make the spiral of
Archimedes the base of a right cylinder, and imagine a cone of revolution
having for its axis the side of the cylinder passing through the initial point
of the spiral, then this cone cuts the cylinder in a curve of double curvature.
The perpendiculars to the axis drawn through every point in this curve form
the surface of a screw which Pappus here calls the plectoidal surface. A plane
passed through one of the perpendiculars at any convenient angle cuts that
surface in a curve whose orthogonal projection upon the plane of the spiral
is the required quadratrix. Pappus considers curves of double curvature still
further. He produces a spherical spiral by a point moving uniformly along the
circumference of a great circle of a sphere, while the great circle itself revolves
uniformly around its diameter. He then finds the area of that portion of the
surface of the sphere determined by the spherical spiral, “a complanation which
claims the more lively admiration, if we consider that, although the entire
surface of the sphere was known since Archimedes’ time, to measure portions
thereof, such as spherical triangles, was then and for a long time afterwards
an unsolved problem.” A question which was brought into prominence by
Descartes and Newton is the “problem of Pappus.” Given several straight lines
in a plane, to find the locus of a point such that when perpendiculars (or, more
generally, straight lines at given angles) are drawn from it to the given lines,
the product of certain ones of them shall be in a given ratio to the product of
the remaining ones. It is worth noticing that it was Pappus who first found the
focus of the parabola, suggested the use of the directrix, and propounded the
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theory of the involution of points. He solved the problem to draw through
three points lying in the same straight line, three straight lines which shall
form a triangle inscribed in a given circle. From the Mathematical Collections
many more equally diHcult theorems might be quoted which are original with
Pappus as far as we know. It ought to be remarked, however, that he is known
in three instances to have copied theorems without giving due credit, and that
he may have done the same thing in other cases in which we have no data by
which to ascertain the real discoverer.

About the time of Pappus lived Theon of Alexandria. He brought out an
edition of Euclid’s Elements with notes, which he probably used as a text-book
in his classes. His commentary on the Almagest is valuable for the many
historical notices, and especially for the specimens of Greek arithmetic which
it contains. Theon’s daughter Hypatia, a woman celebrated for her beauty and
modesty, was the last Alexandrian teacher of reputation, and is said to have
been an abler philosopher and mathematician than her father. Her notes on
the works of Diophantus and Apollonius have been lost. Her tragic death in
415 a.d. is vividly described in Kingsley’s Hypatia.

From now on, mathematics ceased to be cultivated in Alexandria. The leading
subject of men’s thoughts was Christian theology. Paganism disappeared, and
with it pagan learning. The Neo-Platonic school at Athens struggled on a
century longer. Proclus, Isidorus, and others kept up the “golden chain of
Platonic succession.” Proclus, the successor of Syrianus, at the Athenian
school, wrote a commentary on Euclid’s Elements. We possess only that on
the first book, which is valuable for the information it contains on the history
of geometry. Damascius of Damascus, the pupil of Isidorus, is now believed
to be the author of the fifteenth book of Euclid. Another pupil of Isidorus
was Eutocius of Ascalon, the commentator of Apollonius and Archimedes.
Simplicius wrote a commentary on Aristotle’s De Cœlo. In the year 529,
Justinian, disapproving heathen learning, finally closed by imperial edict the
schools at Athens.

As a rule, the geometers of the last 500 years showed a lack of creative power.
They were commentators rather than discoverers.

The principal characteristics of ancient geometry are:—
(1) A wonderful clearness and definiteness of its concepts and an almost

perfect logical rigour of its conclusions.
(2) A complete want of general principles and methods. Ancient geometry

is decidedly special. Thus the Greeks possessed no general method of drawing
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tangents. “The determination of the tangents to the three conic sections did not
furnish any rational assistance for drawing the tangent to any other new curve,
such as the conchoid, the cissoid, etc.” In the demonstration of a theorem,
there were, for the ancient geometers, as many diverent cases requiring separate
proof as there were diverent positions for the lines. The greatest geometers
considered it necessary to treat all possible cases independently of each other,
and to prove each with equal fulness. To devise methods by which the various
cases could all be disposed of by one stroke, was beyond the power of the
ancients. “If we compare a mathematical problem with a huge rock, into
the interior of which we desire to penetrate, then the work of the Greek
mathematicians appears to us like that of a vigorous stonecutter who, with
chisel and hammer, begins with indefatigable perseverance, from without, to
crumble the rock slowly into fragments; the modern mathematician appears
like an excellent miner, who first bores through the rock some few passages,
from which he then bursts it into pieces with one powerful blast, and brings to
light the treasures within.”

GREEK ARITHMETIC.

Greek mathematicians were in the habit of discriminating between the science
of numbers and the art of calculation. The former they called arithmetica,
the latter logistica. The drawing of this distinction between the two was very
natural and proper. The diverence between them is as marked as that between
theory and practice. Among the Sophists the art of calculation was a favourite
study. Plato, on the other hand, gave considerable attention to philosophical
arithmetic, but pronounced calculation a vulgar and childish art.

In sketching the history of Greek calculation, we shall first give a brief
account of the Greek mode of counting and of writing numbers. Like the
Egyptians and Eastern nations, the earliest Greeks counted on their fingers or
with pebbles. In case of large numbers, the pebbles were probably arranged in
parallel vertical lines. Pebbles on the first line represented units, those on the
second tens, those on the third hundreds, and so on. Later, frames came into
use, in which strings or wires took the place of lines. According to tradition,
Pythagoras, who travelled in Egypt and, perhaps, in India, first introduced
this valuable instrument into Greece. The abacus, as it is called, existed among
diverent peoples and at diverent times, in various stages of perfection. An
abacus is still employed by the Chinese under the name of Swan-pan. We
possess no specific information as to how the Greek abacus looked or how it
was used. Boethius says that the Pythagoreans used with the abacus certain
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nine signs called apices, which resembled in form the nine “Arabic numerals.”
But the correctness of this assertion is subject to grave doubts.

The oldest Grecian numerical symbols were the so-called Herodianic signs
(after Herodianus, a Byzantine grammarian of about 200 a.d., who describes
them). These signs occur frequently in Athenian inscriptions and are, on that
account, now generally called Attic. For some unknown reason these symbols
were afterwards replaced by the alphabetic numerals, in which the letters of
the Greek alphabet were used, together with three strange and antique letters
ϛ, , and , and the symbol M. This change was decidedly for the worse,
for the old Attic numerals were less burdensome on the memory, inasmuch as
they contained fewer symbols and were better adapted to show forth analogies
in numerical operations. The following table shows the Greek alphabetic
numerals and their respective values:—

α β γ δ ε ϛ ζ η θ ι κ λ µ ν ξ o π

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90

ρ σ τ υ ϕ χ ψ ω ͵α ͵β ͵γ etc.
100 200 300 400 500 600 700 800 900 1000 2000 3000

M
β

M
γ

M etc.
10,000 20,000 30,000

It will be noticed that at 1000, the alphabet is begun over again, but, to prevent
confusion, a stroke is now placed before the letter and generally somewhat
below it. A horizontal line drawn over a number served to distinguish it more
readily from words. The coeHcient for M was sometimes placed before or
behind instead of over the M. Thus 43, 678 was written δM͵γχoη. It is to be
observed that the Greeks had no zero.

Fractions were denoted by first writing the numerator marked with an
accent, then the denominator marked with two accents and written twice.
Thus, ιγ 1κθ2κθ2 “

13
29 . In case of fractions having unity for the numerator, the

α1 was omitted and the denominator was written only once. Thus µδ2 “ 1
44 .

Greek writers seldom refer to calculation with alphabetic numerals. Addi-
tion, subtraction, and even multiplication were probably performed on the
abacus. Expert mathematicians may have used the symbols. Thus Euto-
cius, a commentator of the sixth century after Christ, gives a great many
multiplications of which the following is a specimen: —

σ ξ ε 2 6 5
σ ξ ε 2 6 5

δ

M
α

M ͵β ͵α 40000, 12000, 1000
α

M ͵β ͵γχ τ 12000, 3600, 300

͵α τ κε 1000, 300, 25
ζ

M σ κ ε 70225

The operation is explained suHciently
by the modern numerals appended. In
case of mixed numbers, the process was
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still more clumsy. Divisions are found
in Theon of Alexandria’s commentary on
the Almagest. As might be expected, the
process is long and tedious.

We have seen in geometry that the more
advanced mathematicians frequently had occasion to extract the square root.
Thus Archimedes in his Mensuration of the Circle gives a large number of square
roots. He states, for instance, that ?3 ă 1351

780 and ?3 ą 265
153 , but he gives no

clue to the method by which he obtained these approximations. It is not
improbable that the earlier Greek mathematicians found the square root by
trial only. Eutocius says that the method of extracting it was given by Heron,
Pappus, Theon, and other commentators on the Almagest. Theon’s is the only
ancient method known to us. It is the same as the one used nowadays, except
that sexagesimal fractions are employed in place of our decimals. What the
mode of procedure actually was when sexagesimal fractions were not used, has
been the subject of conjecture on the part of numerous modern writers.

Of interest, in connection with arithmetical symbolism, is the Sand-Counter
(Arenarius), an essay addressed by Archimedes to Gelon, king of Syracuse.
In it Archimedes shows that people are in error who think the sand cannot
be counted, or that if it can be counted, the number cannot be expressed by
arithmetical symbols. He shows that the number of grains in a heap of sand
not only as large as the whole earth, but as large as the entire universe, can
be arithmetically expressed. Assuming that 10, 000 grains of sand suHce to
make a little solid of the magnitude of a poppy-seed, and that the diameter of a
poppy-seed be not smaller than 1

40 part of a finger’s breadth; assuming further,
that the diameter of the universe (supposed to extend to the sun) be less than
10, 000 diameters of the earth, and that the latter be less than 1, 000, 000 stadia,
Archimedes finds a number which would exceed the number of grains of sand
in the sphere of the universe. He goes on even further. Supposing the universe
to reach out to the fixed stars, he finds that the sphere, having the distance from
the earth’s centre to the fixed stars for its radius, would contain a number of
grains of sand less than 1000 myriads of the eighth octad. In our notation, this
number would be 1063 or 1 with 63 ciphers after it. It can hardly be doubted that
one object which Archimedes had in view in making this calculation was the
improvement of the Greek symbolism. It is not known whether he invented
some short notation by which to represent the above number or not.

We judge from fragments in the second book of Pappus that Apollonius
proposed an improvement in the Greek method of writing numbers, but its
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nature we do not know. Thus we see that the Greeks never possessed the
boon of a clear, comprehensive symbolism. The honour of giving such to the
world, once for all, was reserved by the irony of fate for a nameless Indian of
an unknown time, and we know not whom to thank for an invention of such
importance to the general progress of intelligence.

Passing from the subject of logistica to that of arithmetica, our attention is first
drawn to the science of numbers of Pythagoras. Before founding his school,
Pythagoras studied for many years under the Egyptian priests and familiarised
himself with Egyptian mathematics and mysticism. If he ever was in Babylon,
as some authorities claim, he may have learned the sexagesimal notation in
use there; he may have picked up considerable knowledge on the theory of
proportion, and may have found a large number of interesting astronomical
observations. Saturated with that speculative spirit then pervading the Greek
mind, he endeavoured to discover some principle of homogeneity in the
universe. Before him, the philosophers of the Ionic school had sought it in
the matter of things; Pythagoras looked for it in the structure of things. He
observed various numerical relations or analogies between numbers and the
phenomena of the universe. Being convinced that it was in numbers and their
relations that he was to find the foundation to true philosophy, he proceeded
to trace the origin of all things to numbers. Thus he observed that musical
strings of equal length stretched by weights having the proportion of 1

2 , 2
3 ,

3
4 , produced intervals which were an octave, a fifth, and a fourth. Harmony,
therefore, depends on musical proportion; it is nothing but a mysterious
numerical relation. Where harmony is, there are numbers. Hence the order
and beauty of the universe have their origin in numbers. There are seven
intervals in the musical scale, and also seven planets crossing the heavens.
The same numerical relations which underlie the former must underlie the
latter. But where numbers are, there is harmony. Hence his spiritual ear
discerned in the planetary motions a wonderful ‘harmony of the spheres.’ The
Pythagoreans invested particular numbers with extraordinary attributes. Thus
one is the essence of things; it is an absolute number; hence the origin of all
numbers and so of all things. Four is the most perfect number, and was in some
mystic way conceived to correspond to the human soul. Philolaus believed
that 5 is the cause of color, 6 of cold, 7 of mind and health and light, 8 of love
and friendship. In Plato’s works are evidences of a similar belief in religious
relations of numbers. Even Aristotle referred the virtues to numbers.

Enough has been said about these mystic speculations to show what lively
interest in mathematics they must have created and maintained. Avenues
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of mathematical inquiry were opened up by them which otherwise would
probably have remained closed at that time.

The Pythagoreans classified numbers into odd and even. They observed that
the sum of the series of odd numbers from 1 to 2n ` 1 was always a complete
square, and that by addition of the even numbers arises the series 2, 6, 12, 20,
in which every number can be decomposed into two factors divering from
each other by unity. Thus, 6 “ 2¨3, 12 “ 3¨4, etc. These latter numbers were
considered of suHcient importance to receive the separate name of heteromecic

(not equilateral). Numbers of the form
npn` 1q

2
were called triangular, because

they could always be arranged thus, . Numbers which were equal to the

sum of all their possible factors, such as 6, 28, 496, were called perfect; those
exceeding that sum, excessive; and those which were less, defective. Amicable
numbers were those of which each was the sum of the factors in the other.
Much attention was paid by the Pythagoreans to the subject of proportion. The
quantities a, b, c, d were said to be in arithmetical proportion when a´b “ c´d;
in geometrical proportion, when a : b “ c : d; in harmonic proportion, when
a´ b : b´ c “ a : c. It is probable that the Pythagoreans were also familiar with

the musical proportion a :
a` b

2
“

2ab
a` b

: b. Iamblichus says that Pythagoras

introduced it from Babylon.
In connection with arithmetic, Pythagoras made extensive investigations into

geometry. He believed that an arithmetical fact had its analogue in geometry,
and vice versa. In connection with his theorem on the right triangle he devised
a rule by which integral numbers could be found, such that the sum of the
squares of two of them equalled the square of the third. Thus, take for one

side an odd number p2n ` 1q; then
p2n` 1q2 ´ 1

2
“ 2n2 ` 2n “ the other side,

and p2n2 ` 2n` 1q “ hypotenuse. If 2n` 1 “ 9, then the other two numbers are
40 and 41. But this rule only applies to cases in which the hypotenuse divers
from one of the sides by 1. In the study of the right triangle there doubtless
arose questions of puzzling subtlety. Thus, given a number equal to the side of
an isosceles right triangle, to find the number which the hypotenuse is equal
to. The side may have been taken equal to 1, 2, 3

2 , 6
5 , or any other number, yet

in every instance all evorts to find a number exactly equal to the hypotenuse
must have remained fruitless. The problem may have been attacked again and
again, until finally “some rare genius, to whom it is granted, during some
happy moments, to soar with eagle’s flight above the level of human thinking,”
grasped the happy thought that this problem cannot be solved. In some such
manner probably arose the theory of irrational quantities, which is attributed
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by Eudemus to the Pythagoreans. It was indeed a thought of extraordinary
boldness, to assume that straight lines could exist, divering from one another
not only in length,—that is, in quantity,—but also in a quality, which, though
real, was absolutely invisible. Need we wonder that the Pythagoreans saw in
irrationals a deep mystery, a symbol of the unspeakable? We are told that the
one who first divulged the theory of irrationals, which the Pythagoreans kept
secret, perished in consequence in a shipwreck. Its discovery is ascribed to
Pythagoras, but we must remember that all important Pythagorean discoveries
were, according to Pythagorean custom, referred back to him. The first
incommensurable ratio known seems to have been that of the side of a square
to its diagonal, as 1 :

?
2. Theodorus of Cyrene added to this the fact that the

sides of squares represented in length by?3,
?

5, etc., up to?17, and Theætetus,
that the sides of any square, represented by a surd, are incommensurable with
the linear unit. Euclid (about 300 b.c.), in his Elements, X. 9, generalised still
further: Two magnitudes whose squares are (or are not) to one another as a
square number to a square number are commensurable (or incommensurable),
and conversely. In the tenth book, he treats of incommensurable quantities at
length. He investigates every possible variety of lines which can be represented
by

a?
a˘

?
b, a and b representing two commensurable lines, and obtains

25 species. Every individual of every species is incommensurable with all
the individuals of every other species. “This book,” says De Morgan, “has a
completeness which none of the others (not even the fifth) can boast of; and
we could almost suspect that Euclid, having arranged his materials in his own
mind, and having completely elaborated the tenth book, wrote the preceding
books after it, and did not live to revise them thoroughly.” The theory of
incommensurables remained where Euclid left it, till the fifteenth century.

Euclid devotes the seventh, eighth, and ninth books of his Elements to
arithmetic. Exactly how much contained in these books is Euclid’s own
invention, and how much is borrowed from his predecessors, we have no means
of knowing. Without doubt, much is original with Euclid. The seventh book
begins with twenty-one definitions. All except that for ‘prime’ numbers are
known to have been given by the Pythagoreans. Next follows a process for
finding the G.C.D. of two or more numbers. The eighth book deals with numbers
in continued proportion, and with the mutual relations of squares, cubes, and
plane numbers. Thus, XXII., if three numbers are in continued proportion,
and the first is a square, so is the third. In the ninth book, the same subject is
continued. It contains the proposition that the number of primes is greater
than any given number.
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After the death of Euclid, the theory of numbers remained almost stationary
for 400 years. Geometry monopolised the attention of all Greek mathemati-
cians. Only two are known to have done work in arithmetic worthy of mention.
Eratosthenes (275–194 b.c.) invented a ‘sieve’ for finding prime numbers. All
composite numbers are ‘sifted’ out in the following manner: Write down the
odd numbers from 3 up, in succession. By striking out every third number
after the 3, we remove all multiples of 3. By striking out every fifth number
after the 5, we remove all multiples of 5. In this way, by rejecting multiples
of 7, 11, 13, etc., we have left prime numbers only. Hypsicles (between 200
and 100 b.c.) worked at the subjects of polygonal numbers and arithmetical
progressions, which Euclid entirely neglected. In his work on ‘risings of the
stars,’ he showed (1) that in an arithmetical series of 2n terms, the sum of the
last n terms exceeds the sum of the first n by a multiple of n2; (2) that in such a
series of 2n ` 1 terms, the sum of the series is the number of terms multiplied
by the middle term; (3) that in such a series of 2n terms, the sum is half the
number of terms multiplied by the two middle terms.

For two centuries after the time of Hypsicles, arithmetic disappears from
history. It is brought to light again about 100 a.d. by Nicomachus, a Neo-
Pythagorean, who inaugurated the final era of Greek mathematics. From
now on, arithmetic was a favourite study, while geometry was neglected.
Nicomachus wrote a work entitled Introductio Arithmetica, which was very
famous in its day. The great number of commentators it has received vouch
for its popularity. Boethius translated it into Latin. Lucian could pay no
higher compliment to a calculator than this: “You reckon like Nicomachus of
Gerasa.” The Introductio Arithmetica was the first exhaustive work in which
arithmetic was treated quite independently of geometry. Instead of drawing
lines, like Euclid, he illustrates things by real numbers. To be sure, in his
book the old geometrical nomenclature is retained, but the method is inductive
instead of deductive. “Its sole business is classification, and all its classes are
derived from, and exhibited by, actual numbers.” The work contains few
results that are really original. We mention one important proposition which
is probably the author’s own. He states that cubical numbers are always equal
to the sum of successive odd numbers. Thus, 8 “ 23 “ 3`5, 27 “ 33 “ 7`9` 11,
64 “ 43 “ 13` 15` 17` 19, and so on. This theorem was used later for finding
the sum of the cubical numbers themselves. Theon of Smyrna is the author of a
treatise on “the mathematical rules necessary for the study of Plato.” The work
is ill arranged and of little merit. Of interest is the theorem, that every square
number, or that number minus 1, is divisible by 3 or 4 or both. A remarkable
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discovery is a proposition given by Iamblichus in his treatise on Pythagorean
philosophy. It is founded on the observation that the Pythagoreans called 1,
10, 100, 1000, units of the first, second, third, fourth ‘course’ respectively. The
theorem is this: If we add any three consecutive numbers, of which the highest
is divisible by 3, then add the digits of that sum, then, again, the digits of that
sum, and so on, the final sum will be 6. Thus, 61`62`63 “ 186, 1` 8`6 “ 15,
1 ` 5 “ 6. This discovery was the more remarkable, because the ordinary
Greek numerical symbolism was much less likely to suggest any such property
of numbers than our “Arabic” notation would have been.

The works of Nicomachus, Theon of Smyrna, Thymaridas, and others
contain at times investigations of subjects which are really algebraic in their
nature. Thymaridas in one place uses the Greek word meaning “unknown
quantity” in a way which would lead one to believe that algebra was not far
distant. Of interest in tracing the invention of algebra are the arithmetical
epigrams in the Palatine Anthology, which contain about fifty problems leading
to linear equations. Before the introduction of algebra these problems were
propounded as puzzles. A riddle attributed to Euclid and contained in the
Anthology is to this evect: A mule and a donkey were walking along, laden with
corn. The mule says to the donkey, “If you gave me one measure, I should carry
twice as much as you. If I gave you one, we should both carry equal burdens.
Tell me their burdens, O most learned master of geometry.”

It will be allowed, says Gow, that this problem, if authentic, was not beyond
Euclid, and the appeal to geometry smacks of antiquity. A far more diHcult
puzzle was the famous ‘cattle-problem,’ which Archimedes propounded to the
Alexandrian mathematicians. The problem is indeterminate, for from only
seven equations, eight unknown quantities in integral numbers are to be found.
It may be stated thus: The sun had a herd of bulls and cows, of diverent
colours. (1) Of Bulls, the white (W ) were, in number, p 1

2 `
1
3 q of the blue (B)

and yellow (Y ): the B were p 1
4 `

1
5 q of the Y and piebald (P): the P were p 1

6 `
1
7 q

of the W and Y . (2) Of Cows, which had the same colours (w, b, y, p),

w “ p 1
3 `

1
4 qpB ` bq : b “ p 1

4 `
1
5 qpP ` pq : p

“ p 1
5 `

1
6 qpY ` yq : y “ p 1

6 `
1
7 qpW `wq.

Find the number of bulls and cows. Another problem in the Anthology is
quite familiar to school-boys: “Of four pipes, one fills the cistern in one day,
the next in two days, the third in three days, the fourth in four days: if all run
together, how soon will they fill the cistern?” A great many of these problems,
puzzling to an arithmetician, would have been solved easily by an algebraist.
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They became very popular about the time of Diophantus, and doubtless acted
as a powerful stimulus on his mind.

Diophantus was one of the last and most fertile mathematicians of the
second Alexandrian school. He died about 330 a.d. His age was eighty-four,
as is known from an epitaph to this evect: Diophantus passed 1

6 of his life in
childhood, 1

12 in youth, and 1
7 more as a bachelor; five years after his marriage

was born a son who died four years before his father, at half his father’s age.
The place of nativity and parentage of Diophantus are unknown. If his works
were not written in Greek, no one would think for a moment that they were
the product of Greek mind. There is nothing in his works that reminds us of
the classic period of Greek mathematics. His were almost entirely new ideas
on a new subject. In the circle of Greek mathematicians he stands alone in
his specialty. Except for him, we should be constrained to say that among the
Greeks algebra was always an unknown science.

Of his works we have lost the Porisms, but possess a fragment of Polygonal
Numbers, and seven books of his great work on Arithmetica, said to have been
written in 13 books.

If we except the Ahmes papyrus, which contains the first suggestions of
algebraic notation, and of the solution of equations, then his Arithmetica is the
earliest treatise on algebra now extant. In this work is introduced the idea of
an algebraic equation expressed in algebraic symbols. His treatment is purely
analytical and completely divorced from geometrical methods. He is, as far
as we know, the first to state that “a negative number multiplied by a negative
number gives a positive number.” This is applied to the multiplication of
diverences, such as px´1qpx´2q. It must be remarked, however, that Diophantus
had no notion whatever of negative numbers standing by themselves. All he
knew were diverences, such as p2x ´ 10q, in which 2x could not be smaller
than 10 without leading to an absurdity. He appears to be the first who could
perform such operations as px´ 1qˆpx´2qwithout reference to geometry. Such
identities as pa` bq2 “ a2 ` 2ab ` b2, which with Euclid appear in the elevated
rank of geometric theorems, are with Diophantus the simplest consequences
of the algebraic laws of operation. His sign for subtraction was , for
equality ι. For unknown quantities he had only one symbol, ς . He had no
sign for addition except juxtaposition. Diophantus used but few symbols, and
sometimes ignored even these by describing an operation in words when the
symbol would have answered just as well.

In the solution of simultaneous equations Diophantus adroitly managed
with only one symbol for the unknown quantities and arrived at answers, most
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commonly, by the method of tentative assumption, which consists in assigning
to some of the unknown quantities preliminary values, that satisfy only one
or two of the conditions. These values lead to expressions palpably wrong,
but which generally suggest some stratagem by which values can be secured
satisfying all the conditions of the problem.

Diophantus also solved determinate equations of the second degree. We are
ignorant of his method, for he nowhere goes through with the whole process of
solution, but merely states the result. Thus, “84x2 ` 7x “ 7, whence x is found
“ 1

4 .” Notice he gives only one root. His failure to observe that a quadratic
equation has two roots, even when both roots are positive, rather surprises
us. It must be remembered, however, that this same inability to perceive more
than one out of the several solutions to which a problem may point is common
to all Greek mathematicians. Another point to be observed is that he never
accepts as an answer a quantity which is negative or irrational.

Diophantus devotes only the first book of his Arithmetica to the solution
of determinate equations. The remaining books extant treat mainly of
indeterminate quadratic equations of the form Ax2 ` Bx ` C “ y2, or of two
simultaneous equations of the same form. He considers several but not all the
possible cases which may arise in these equations. The opinion of Nesselmann
on the method of Diophantus, as stated by Gow, is as follows: “(1) Indeterminate
equations of the second degree are treated completely only when the quadratic
or the absolute term is wanting: his solution of the equations Ax2`C “ y2 and
Ax2 ` Bx` C “ y2 is in many respects cramped. (2) For the ‘double equation’
of the second degree he has a definite rule only when the quadratic term is
wanting in both expressions: even then his solution is not general. More
complicated expressions occur only under specially favourable circumstances.”
Thus, he solves Bx` C2 “ y2, B1x` C2

1 “ y2
1 .

The extraordinary ability of Diophantus lies rather in another direction,
namely, in his wonderful ingenuity to reduce all sorts of equations to particular
forms which he knows how to solve. Very great is the variety of problems
considered. The 130 problems found in the great work of Diophantus contain
over 50 diverent classes of problems, which are strung together without any
attempt at classification. But still more multifarious than the problems are
the solutions. General methods are unknown to Diophantus. Each problem
has its own distinct method, which is often useless for the most closely
related problems. “It is, therefore, diHcult for a modern, after studying
100 Diophantine solutions, to solve the 101st.”

That which robs his work of much of its scientific value is the fact that he
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always feels satisfied with one solution, though his equation may admit of an
indefinite number of values. Another great defect is the absence of general
methods. Modern mathematicians, such as Euler, Lagrange, Gauss, had to
begin the study of indeterminate analysis anew and received no direct aid from
Diophantus in the formulation of methods. In spite of these defects we cannot
fail to admire the work for the wonderful ingenuity exhibited therein in the
solution of particular equations.

It is still an open question and one of great diHculty whether Diophantus
derived portions of his algebra from Hindoo sources or not.

THE ROMANS.

Nowhere is the contrast between the Greek and Roman mind shown forth
more distinctly than in their attitude toward the mathematical science. The
sway of the Greek was a flowering time for mathematics, but that of the Roman
a period of sterility. In philosophy, poetry, and art the Roman was an imitator.
But in mathematics he did not even rise to the desire for imitation. The
mathematical fruits of Greek genius lay before him untasted. In him a science
which had no direct bearing on practical life could awake no interest. As a
consequence, not only the higher geometry of Archimedes and Apollonius, but
even the Elements of Euclid, were entirely neglected. What little mathematics
the Romans possessed did not come from the Greeks, but from more ancient
sources. Exactly where and how it originated is a matter of doubt. It seems
most probable that the “Roman notation,” as well as the practical geometry of
the Romans, came from the old Etruscans, who, at the earliest period to which
our knowledge of them extends, inhabited the district between the Arno and
Tiber.

Livy tells us that the Etruscans were in the habit of representing the number
of years elapsed, by driving yearly a nail into the sanctuary of Minerva, and
that the Romans continued this practice. A less primitive mode of designating
numbers, presumably of Etruscan origin, was a notation resembling the present
“Roman notation.” This system is noteworthy from the fact that a principle
is involved in it which is not met with in any other; namely, the principle of
subtraction. If a letter be placed before another of greater value, its value is
not to be added to, but subtracted from, that of the greater. In the designation
of large numbers a horizontal bar placed over a letter was made to increase its
value one thousand fold. In fractions the Romans used the duodecimal system.
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Of arithmetical calculations, the Romans employed three diverent kinds:
Reckoning on the fingers, upon the abacus, and by tables prepared for the
purpose. Finger-symbolism was known as early as the time of King Numa,
for he had erected, says Pliny, a statue of the double-faced Janus, of which
the fingers indicated 365 (355?), the number of days in a year. Many other
passages from Roman authors point out the use of the fingers as aids to
calculation. In fact, a finger-symbolism of practically the same form was in
use not only in Rome, but also in Greece and throughout the East, certainly
as early as the beginning of the Christian era, and continued to be used in
Europe during the Middle Ages. We possess no knowledge as to where or
when it was invented. The second mode of calculation, by the abacus, was
a subject of elementary instruction in Rome. Passages in Roman writers
indicate that the kind of abacus most commonly used was covered with dust
and then divided into columns by drawing straight lines. Each column was
supplied with pebbles (calculi, whence ‘calculare’ and ‘calculate’) which served
for calculation. Additions and subtractions could be performed on the abacus
quite easily, but in multiplication the abacus could be used only for adding the
particular products, and in division for performing the subtractions occurring
in the process. Doubtless at this point recourse was made to mental operations
and to the multiplication table. Possibly finger-multiplication may also have
been used. But the multiplication of large numbers must, by either method,
have been beyond the power of the ordinary arithmetician. To obviate this
diHculty, the arithmetical tables mentioned above were used, from which the
desired products could be copied at once. Tables of this kind were prepared
by Victorius of Aquitania. His tables contain a peculiar notation for fractions,
which continued in use throughout the Middle Ages. Victorius is best known
for his canon paschalis, a rule for finding the correct date for Easter, which he
published in 457 a.d.

Payments of interest and problems in interest were very old among the
Romans. The Roman laws of inheritance gave rise to numerous arithmetical
examples. Especially unique is the following: A dying man wills that, if his
wife, being with child, gives birth to a son, the son shall receive 2

3 and she 1
3 of

his estates; but if a daughter is born, she shall receive 1
3 and his wife 2

3 . It happens
that twins are born, a boy and a girl. How shall the estates be divided so as to
satisfy the will? The celebrated Roman jurist, Salvianus Julianus, decided that
the estates shall be divided into seven equal parts, of which the son receives
four, the wife two, the daughter one.

We next consider Roman geometry. He who expects to find in Rome a
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science of geometry, with definitions, axioms, theorems, and proofs arranged
in logical order, will be disappointed. The only geometry known was a practical
geometry, which, like the old Egyptian, consisted only of empirical rules. This
practical geometry was employed in surveying. Treatises thereon have come
down to us, compiled by the Roman surveyors, called agrimensores or gromatici.
One would naturally expect rules to be clearly formulated. But no; they are
left to be abstracted by the reader from a mass of numerical examples. “The
total impression is as though the Roman gromatic were thousands of years
older than Greek geometry, and as though a deluge were lying between the
two.” Some of their rules were probably inherited from the Etruscans, but
others are identical with those of Heron. Among the latter is that for finding
the area of a triangle from its sides and the approximate formula, 13

30 a2, for
the area of equilateral triangles (a being one of the sides). But the latter area
was also calculated by the formulas 1

2 pa
2 ` aq and 1

2 a2, the first of which was
unknown to Heron. Probably the expression 1

2 a2 was derived from the Egyptian

formula
a` b

2
¨
c ` d

2
for the determination of the surface of a quadrilateral.

This Egyptian formula was used by the Romans for finding the area, not
only of rectangles, but of any quadrilaterals whatever. Indeed, the gromatici
considered it even suHciently accurate to determine the areas of cities, laid out
irregularly, simply by measuring their circumferences. Whatever Egyptian
geometry the Romans possessed was transplanted across the Mediterranean at
the time of Julius Cæsar, who ordered a survey of the whole empire to secure
an equitable mode of taxation. Cæsar also reformed the calendar, and, for
that purpose, drew from Egyptian learning. He secured the services of the
Alexandrian astronomer, Sosigenes.

In the fifth century, the Western Roman Empire was fast falling to pieces.
Three great branches—Spain, Gaul, and the province of Africa—broke ov
from the decaying trunk. In 476, the Western Empire passed away, and the
Visigothic chief, Odoacer, became king. Soon after, Italy was conquered
by the Ostrogoths under Theodoric. It is remarkable that this very period
of political humiliation should be the one during which Greek science was
studied in Italy most zealously. School-books began to be compiled from the
elements of Greek authors. These compilations are very deficient, but are
of absorbing interest, from the fact that, down to the twelfth century, they
were the only sources of mathematical knowledge in the Occident. Foremost
among these writers is Boethius (died 524). At first he was a great favourite
of King Theodoric, but later, being charged by envious courtiers with treason,



THE ROMANS. 56

he was imprisoned, and at last decapitated. While in prison he wrote On the
Consolations of Philosophy. As a mathematician, Boethius was a Brobdingnagian
among Roman scholars, but a Liliputian by the side of Greek masters. He wrote
an Institutis Arithmetica, which is essentially a translation of the arithmetic of
Nicomachus, and a Geometry in several books. Some of the most beautiful
results of Nicomachus are omitted in Boethius’ arithmetic. The first book
on geometry is an extract from Euclid’s Elements, which contains, in addition
to definitions, postulates, and axioms, the theorems in the first three books,
without proofs. How can this omission of proofs be accounted for? It has
been argued by some that Boethius possessed an incomplete Greek copy of the
Elements; by others, that he had Theon’s edition before him, and believed that
only the theorems came from Euclid, while the proofs were supplied by Theon.
The second book, as also other books on geometry attributed to Boethius,
teaches, from numerical examples, the mensuration of plane figures after the
fashion of the agrimensores.

A celebrated portion in the geometry of Boethius is that pertaining to an
abacus, which he attributes to the Pythagoreans. A considerable improvement
on the old abacus is there introduced. Pebbles are discarded, and apices
(probably small cones) are used. Upon each of these apices is drawn a
numeral giving it some value below 10. The names of these numerals are pure
Arabic, or nearly so, but are added, apparently, by a later hand. These figures
are obviously the parents of our modern “Arabic” numerals. The 0 is not
mentioned by Boethius in the text. These numerals bear striking resemblance
to the Gubar-numerals of the West-Arabs, which are admittedly of Indian
origin. These facts have given rise to an endless controversy. Some contended
that Pythagoras was in India, and from there brought the nine numerals to
Greece, where the Pythagoreans used them secretly. This hypothesis has been
generally abandoned, for it is not certain that Pythagoras or any disciple of his
ever was in India, nor is there any evidence in any Greek author, that the apices
were known to the Greeks, or that numeral signs of any sort were used by them
with the abacus. It is improbable, moreover, that the Indian signs, from which
the apices are derived, are so old as the time of Pythagoras. A second theory is
that the Geometry attributed to Boethius is a forgery; that it is not older than
the tenth, or possibly the ninth, century, and that the apices are derived from
the Arabs. This theory is based on contradictions between passages in the
Arithmetica and others in the Geometry. But there is an Encyclopædia written
by Cassiodorius (died about 570) in which both the arithmetic and geometry
of Boethius are mentioned. There appears to be no good reason for doubting



THE ROMANS. 57

the trustworthiness of this passage in the Encyclopædia. A third theory
(Woepcke’s) is that the Alexandrians either directly or indirectly obtained the
nine numerals from the Hindoos, about the second century a.d., and gave them
to the Romans on the one hand, and to the Western Arabs on the other. This
explanation is the most plausible.



MIDDLE AGES.

THE HINDOOS.

The first people who distinguished themselves in mathematical research,
after the time of the ancient Greeks, belonged, like them, to the Aryan race. It
was, however, not a European, but an Asiatic nation, and had its seat in far-ov
India.

Unlike the Greek, Indian society was fixed into castes. The only castes
enjoying the privilege and leisure for advanced study and thinking were the
Brahmins, whose prime business was religion and philosophy, and the Kshatriyas,
who attended to war and government.

Of the development of Hindoo mathematics we know but little. A few
manuscripts bear testimony that the Indians had climbed to a lofty height,
but their path of ascent is no longer traceable. It would seem that Greek
mathematics grew up under more favourable conditions than the Hindoo, for
in Greece it attained an independent existence, and was studied for its own sake,
while Hindoo mathematics always remained merely a servant to astronomy.
Furthermore, in Greece mathematics was a science of the people, free to be
cultivated by all who had a liking for it; in India, as in Egypt, it was in the
hands chiefly of the priests. Again, the Indians were in the habit of putting
into verse all mathematical results they obtained, and of clothing them in
obscure and mystic language, which, though well adapted to aid the memory
of him who already understood the subject, was often unintelligible to the
uninitiated. Although the great Hindoo mathematicians doubtless reasoned
out most or all of their discoveries, yet they were not in the habit of preserving
the proofs, so that the naked theorems and processes of operation are all that
have come down to our time. Very diverent in these respects were the Greeks.
Obscurity of language was generally avoided, and proofs belonged to the stock
of knowledge quite as much as the theorems themselves. Very striking was the
diverence in the bent of mind of the Hindoo and Greek; for, while the Greek
mind was pre-eminently geometrical, the Indian was first of all arithmetical.
The Hindoo dealt with number, the Greek with form. Numerical symbolism,
the science of numbers, and algebra attained in India far greater perfection
than they had previously reached in Greece. On the other hand, we believe
that there was little or no geometry in India of which the source may not be

58
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traced back to Greece. Hindoo trigonometry might possibly be mentioned as
an exception, but it rested on arithmetic more than on geometry.

An interesting but diHcult task is the tracing of the relation between Hindoo
and Greek mathematics. It is well known that more or less trade was carried on
between Greece and India from early times. After Egypt had become a Roman
province, a more lively commercial intercourse sprang up between Rome and
India, by way of Alexandria. A priori, it does not seem improbable, that with
the traHc of merchandise there should also be an interchange of ideas. That
communications of thought from the Hindoos to the Alexandrians actually
did take place, is evident from the fact that certain philosophic and theologic
teachings of the Manicheans, Neo-Platonists, Gnostics, show unmistakable
likeness to Indian tenets. Scientific facts passed also from Alexandria to India.
This is shown plainly by the Greek origin of some of the technical terms used
by the Hindoos. Hindoo astronomy was influenced by Greek astronomy. Most
of the geometrical knowledge which they possessed is traceable to Alexandria,
and to the writings of Heron in particular. In algebra there was, probably, a
mutual giving and receiving. We suspect that Diophantus got the first glimpses
of algebraic knowledge from India. On the other hand, evidences have been
found of Greek algebra among the Brahmins. The earliest knowledge of algebra
in India may possibly have been of Babylonian origin. When we consider that
Hindoo scientists looked upon arithmetic and algebra merely as tools useful in
astronomical research, there appears deep irony in the fact that these secondary
branches were after all the only ones in which they won real distinction, while
in their pet science of astronomy they displayed an inaptitude to observe, to
collect facts, and to make inductive investigations.

We shall now proceed to enumerate the names of the leading Hindoo
mathematicians, and then to review briefly Indian mathematics. We shall
consider the science only in its complete state, for our data are not suHcient
to trace the history of the development of methods. Of the great Indian
mathematicians, or rather, astronomers,—for India had no mathematicians
proper,—Aryabhatta is the earliest. He was born 476 a.d., at Pataliputra, on
the upper Ganges. His celebrity rests on a work entitled Aryabhattiyam, of
which the third chapter is devoted to mathematics. About one hundred years
later, mathematics in India reached the highest mark. At that time flourished
Brahmagupta (born 598). In 628 he wrote his Brahma-sphuta-siddhanta (“The
Revised System of Brahma”), of which the twelfth and eighteenth chapters
belong to mathematics. To the fourth or fifth century belongs an anonymous
astronomical work, called Surya-siddhanta (“Knowledge from the Sun”), which
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by native authorities was ranked second only to the Brahma-siddhanta, but is of
interest to us merely as furnishing evidence that Greek science influenced Indian
science even before the time of Aryabhatta. The following centuries produced
only two names of importance; namely, Cridhara, who wrote a Ganita-sara
(“Quintessence of Calculation”), and Padmanabha, the author of an algebra.
The science seems to have made but little progress at this time; for a work
entitled Siddhantaciromani (“Diadem of an Astronomical System”), written
by Bhaskara Acarya in 1150, stands little higher than that of Brahmagupta,
written over 500 years earlier. The two most important mathematical chapters
in this work are the Lilavati (“ “the beautiful,” i.e. the noble science) and
Viga-ganita (“ “root-extraction”), devoted to arithmetic and algebra. From
now on, the Hindoos in the Brahmin schools seemed to content themselves
with studying the masterpieces of their predecessors. Scientific intelligence
decreases continually, and in modern times a very deficient Arabic work of the
sixteenth century has been held in great authority.

The mathematical chapters of the Brahma-siddhanta and Siddhantaciromani
were translated into English by H. T. Colebrooke, London, 1817. The Surya-
siddhanta was translated by E. Burgess, and annotated by W. D. Whitney, New
Haven, Conn., 1860.

The grandest achievement of the Hindoos and the one which, of all
mathematical inventions, has contributed most to the general progress of
intelligence, is the invention of the principle of position in writing numbers.
Generally we speak of our notation as the “Arabic” notation, but it should be
called the “Hindoo” notation, for the Arabs borrowed it from the Hindoos.
That the invention of this notation was not so easy as we might suppose at
first thought, may be inferred from the fact that, of other nations, not even
the keen-minded Greeks possessed one like it. We inquire, who invented this
ideal symbolism, and when? But we know neither the inventor nor the time of
invention. That our system of notation is of Indian origin is the only point of
which we are certain. From the evolution of ideas in general we may safely infer
that our notation did not spring into existence a completely armed Minerva
from the head of Jupiter. The nine figures for writing the units are supposed to
have been introduced earliest, and the sign of zero and the principle of position
to be of later origin. This view receives support from the fact that on the island
of Ceylon a notation resembling the Hindoo, but without the zero has been
preserved. We know that Buddhism and Indian culture were transplanted to
Ceylon about the third century after Christ, and that this culture remained
stationary there, while it made progress on the continent. It seems highly
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probable, then, that the numerals of Ceylon are the old, imperfect numerals
of India. In Ceylon, nine figures were used for the units, nine others for the
tens, one for 100, and also one for 1000. These 20 characters enabled them to
write all the numbers up to 9999. Thus, 8725 would have been written with
six signs, representing the following numbers: 8, 1000, 7, 100, 20, 5. These
Singhalesian signs, like the old Hindoo numerals, are supposed originally to
have been the initial letters of the corresponding numeral adjectives. There
is a marked resemblance between the notation of Ceylon and the one used
by Aryabhatta in the first chapter of his work, and there only. Although the
zero and the principle of position were unknown to the scholars of Ceylon,
they were probably known to Aryabhatta; for, in the second chapter, he gives
directions for extracting the square and cube roots, which seem to indicate
a knowledge of them. It would appear that the zero and the accompanying
principle of position were introduced about the time of Aryabhatta. These are
the inventions which give the Hindoo system its great superiority, its admirable
perfection.

There appear to have been several notations in use in diverent parts of India,
which divered, not in principle, but merely in the forms of the signs employed.
Of interest is also a symbolical system of position, in which the figures generally
were not expressed by numerical adjectives, but by objects suggesting the
particular numbers in question. Thus, for 1 were used the words moon, Brahma,
Creator, or form; for 4, the words Veda, (because it is divided into four parts) or
ocean, etc. The following example, taken from the Surya-siddhanta, illustrates
the idea. The number 1, 577, 917, 828 is expressed from right to left as follows:
Vasu (a class of 8 gods) ` two ` eight `mountains (the 7 mountain-chains)
` form` digits (the 9 digits)` seven`mountains` lunar days (half of which
equal 15). The use of such notations made it possible to represent a number in
several diverent ways. This greatly facilitated the framing of verses containing
arithmetical rules or scientific constants, which could thus be more easily
remembered.

At an early period the Hindoos exhibited great skill in calculating, even with
large numbers. Thus, they tell us of an examination to which Buddha, the
reformer of the Indian religion, had to submit, when a youth, in order to win
the maiden he loved. In arithmetic, after having astonished his examiners by
naming all the periods of numbers up to the 53d, he was asked whether he could
determine the number of primary atoms which, when placed one against the
other, would form a line one mile in length. Buddha found the required answer
in this way: 7 primary atoms make a very minute grain of dust, 7 of these make
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a minute grain of dust, 7 of these a grain of dust whirled up by the wind, and
so on. Thus he proceeded, step by step, until he finally reached the length of
a mile. The multiplication of all the factors gave for the multitude of primary
atoms in a mile a number consisting of 15 digits. This problem reminds one of
the ‘Sand-Counter’ of Archimedes.

After the numerical symbolism had been perfected, figuring was made
much easier. Many of the Indian modes of operation diver from ours. The
Hindoos were generally inclined to follow the motion from left to right, as in
writing. Thus, they added the left-hand columns first, and made the necessary
corrections as they proceeded. For instance, they would have added 254 and
663 thus: 2 ` 6 “ 8, 5 ` 6 “ 11, which changes 8 into 9, 4 ` 3 “ 7. Hence the
sum 917. In subtraction they had two methods. Thus in 821´ 348 they would say,
8 from 11 “ 3, 4 from 11 “ 7, 3 from 7 “ 4. Or they would say, 8 from 11 “ 3,
5 from 12 “ 7, 4 from 8 “ 4. In multiplication of a number by another of
only one digit, say 569 by 5, they generally said, 5¨5 “ 25, 5¨6 “ 30, which
changes 25 into 28, 5¨9 “ 45, hence the 0 must be increased by 4. The product
is 2845. In the multiplication with each other of many-figured numbers, they
first multiplied, in the manner just indicated, with the left-hand digit of the
multiplier, which was written above the multiplicand, and placed the product
above the multiplier. On multiplying with the next digit of the multiplier, the
product was not placed in a new row, as with us, but the first product obtained
was corrected, as the process continued, by erasing, whenever necessary, the
old digits, and replacing them by new ones, until finally the whole product
was obtained. We who possess the modern luxuries of pencil and paper, would
not be likely to fall in love with this Hindoo method. But the Indians wrote
“with a cane-pen upon a small blackboard with a white, thinly liquid paint
which made marks that could be easily erased, or upon a white tablet, less than
a foot square, strewn with red flour, on which they wrote the figures with a
small stick, so that the figures appeared white on a red ground.” Since the
digits had to be quite large to be distinctly legible, and since the boards were
small, it was desirable to have a method which would not require much space.
Such a one was the above method of multiplication. Figures could be easily
erased and replaced by others without sacrificing neatness. But the Hindoos
had also other ways of multiplying, of which we mention the following: The

2

1

7 3 5

4 6 0

7 3 5

1 1

8 8 2 0

tablet was divided into squares like a chess-board.
Diagonals were also drawn, as seen in the figure.
The multiplication of 12ˆ 735 “ 8820 is exhibited
in the adjoining diagram. The manuscripts extant
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giveno informationofhowdivisionswereexecuted.
The correctness of their additions, subtractions,
and multiplications was tested “by excess of 9’s.”
In writing fractions, the numerator was placed
above the denominator, but no line was drawn between them.

We shall now proceed to the consideration of some arithmetical problems
and the Indian modes of solution. A favourite method was that of inversion.
With laconic brevity, Aryabhatta describes it thus: “Multiplication becomes
division, division becomes multiplication; what was gain becomes loss, what
loss, gain; inversion.” Quite diverent from this quotation in style is the
following problem from Aryabhatta, which illustrates the method: “Beautiful
maiden with beaming eyes, tell me, as thou understandst the right method of
inversion, which is the number which multiplied by 3, then increased by 3

4 of
the product, divided by 7, diminished by 1

3 of the quotient, multiplied by itself,
diminished by 52, the square root extracted, addition of 8, and division by 10,
gives the number 2?” The process consists in beginning with 2 and working
backwards. Thus, p2¨10´ 8q2 ` 52 “ 196,

a

196 “ 14, and 14¨ 32 ¨7¨
4
7 ˜ 3 “ 28, the

answer.
Here is another example taken from Lilavati, a chapter in Bhaskara’s great

work: “The square root of half the number of bees in a swarm has flown out
upon a jessamine-bush, 8

9 of the whole swarm has remained behind; one female
bee flies about a male that is buzzing within a lotus-flower into which he was
allured in the night by its sweet odour, but is now imprisoned in it. Tell me the
number of bees.” Answer, 72. The pleasing poetic garb in which all arithmetical
problems are clothed is due to the Indian practice of writing all school-books
in verse, and especially to the fact that these problems, propounded as puzzles,
were a favourite social amusement. Says Brahmagupta: “These problems are
proposed simply for pleasure; the wise man can invent a thousand others, or he
can solve the problems of others by the rules given here. As the sun eclipses the
stars by his brilliancy, so the man of knowledge will eclipse the fame of others
in assemblies of the people if he proposes algebraic problems, and still more if
he solves them.”

The Hindoos solved problems in interest, discount, partnership, alligation,
summation of arithmetical and geometric series, devised rules for determining
the numbers of combinations and permutations, and invented magic squares.
It may here be added that chess, the profoundest of all games, had its origin in
India.

The Hindoos made frequent use of the “rule of three,” and also of the
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method of “falsa positio,” which is almost identical with that of the “tentative
assumption” of Diophantus. These and other rules were applied to a large
number of problems.

Passing now to algebra, we shall first take up the symbols of operation.
Addition was indicated simply by juxtaposition as in Diophantine algebra;
subtraction, by placing a dot over the subtrahend; multiplication, by putting
after the factors, bha, the abbreviation of the word bhavita, “the product”;
division, by placing the divisor beneath the dividend; square-root, by writing
ka, from the word karana (irrational), before the quantity. The unknown
quantity was called by Brahmagupta yâvattâvat (quantum tantum). When
several unknown quantities occurred, he gave, unlike Diophantus, to each a
distinct name and symbol. The first unknown was designated by the general
term “unknown quantity.” The rest were distinguished by names of colours,
as the black, blue, yellow, red, or green unknown. The initial syllable of each
word constituted the symbol for the respective unknown quantity. Thus yâ
meant x; kâ (from kâlaka “ black) meant y; yâ kâ bha, “x times y”; ka 15 ka 10,
“
?

15´
?

10.”
The Indians were the first to recognise the existence of absolutely negative

quantities. They brought out the diverence between positive and negative
quantities by attaching to the one the idea of ‘possession,’ to the other
that of ‘debts.’ The conception also of opposite directions on a line, as an
interpretation of ` and ´ quantities, was not foreign to them. They advanced
beyond Diophantus in observing that a quadratic has always two roots. Thus
Bhaskara gives x “ 50 and x “ ´5 for the roots of x2 ´ 45x “ 250. “But,” says
he, “the second value is in this case not to be taken, for it is inadequate; people
do not approve of negative roots.” Commentators speak of this as if negative
roots were seen, but not admitted.

Another important generalisation, says Hankel, was this, that the Hindoos
never confined their arithmetical operations to rational numbers. For instance,
Bhaskara showed how, by the formula

b

a`
?

b “

d

a`
?

a2 ´ b
2

`

d

a´
?

a2 ´ b
2

the square root of the sum of rational and irrational numbers could be
found. The Hindoos never discerned the dividing line between numbers
and magnitudes, set up by the Greeks, which, though the product of a
scientific spirit, greatly retarded the progress of mathematics. They passed
from magnitudes to numbers and from numbers to magnitudes without
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anticipating that gap which to a sharply discriminating mind exists between
the continuous and discontinuous. Yet by doing so the Indians greatly aided
the general progress of mathematics. “Indeed, if one understands by algebra
the application of arithmetical operations to complex magnitudes of all sorts,
whether rational or irrational numbers or space-magnitudes, then the learned
Brahmins of Hindostan are the real inventors of algebra.”

Let us now examine more closely the Indian algebra. In extracting the
square and cube roots they used the formulas pa ` bq2 “ a2 ` 2ab ` b2 and
pa`bq3 “ a3`3a2b`3ab2`b3. In this connection Aryabhatta speaks of dividing
a number into periods of two and three digits. From this we infer that the
principle of position and the zero in the numeral notation were already known
to him. In figuring with zeros, a statement of Bhaskara is interesting. A
fraction whose denominator is zero, says he, admits of no alteration, though
much be added or subtracted. Indeed, in the same way, no change takes place in
the infinite and immutable Deity when worlds are destroyed or created, even
though numerous orders of beings be taken up or brought forth. Though in
this he apparently evinces clear mathematical notions, yet in other places he
makes a complete failure in figuring with fractions of zero denominator.

In the Hindoo solutions of determinate equations, Cantor thinks he can
see traces of Diophantine methods. Some technical terms betray their Greek
origin. Even if it be true that the Indians borrowed from the Greeks, they
deserve great credit for improving and generalising the solutions of linear
and quadratic equations. Bhaskara advances far beyond the Greeks and even
beyond Brahmagupta when he says that “the square of a positive, as also of
a negative number, is positive; that the square root of a positive number is
twofold, positive and negative. There is no square root of a negative number,
for it is not a square.” Of equations of higher degrees, the Indians succeeded
in solving only some special cases in which both sides of the equation could be
made perfect powers by the addition of certain terms to each.

Incomparably greater progress than in the solution of determinate equa-
tions was made by the Hindoos in the treatment of indeterminate equations.
Indeterminate analysis was a subject to which the Hindoo mind showed a
happy adaptation. We have seen that this very subject was a favourite with
Diophantus, and that his ingenuity was almost inexhaustible in devising solu-
tions for particular cases. But the glory of having invented general methods in
this most subtle branch of mathematics belongs to the Indians. The Hindoo
indeterminate analysis divers from the Greek not only in method, but also
in aim. The object of the former was to find all possible integral solutions.
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Greek analysis, on the other hand, demanded not necessarily integral, but
simply rational answers. Diophantus was content with a single solution; the
Hindoos endeavoured to find all solutions possible. Aryabhatta gives solutions
in integers to linear equations of the form ax˘ by “ c, where a, b, c are integers.
The rule employed is called the pulveriser. For this, as for most other rules, the
Indians give no proof. Their solution is essentially the same as the one of Euler.
Euler’s process of reducing

a
b

to a continued fraction amounts to the same
as the Hindoo process of finding the greatest common divisor of a and b by
division. This is frequently called the Diophantine method. Hankel protests
against this name, on the ground that Diophantus not only never knew the
method, but did not even aim at solutions purely integral. These equations
probably grew out of problems in astronomy. They were applied, for instance,
to determine the time when a certain constellation of the planets would occur
in the heavens.

Passing by the subject of linear equations with more than two unknown
quantities, we come to indeterminate quadratic equations. In the solution
of xy “ ax ` by ` c, they applied the method re-invented later by Euler, of
decomposing pab ` cq into the product of two integers m¨n and of placing
x “ m` b and y “ n` a.

Remarkable is the Hindoo solution of the quadratic equation cy2 “ ax2 ` b.
With great keenness of intellect they recognised in the special case y2 “ ax2 ` 1
a fundamental problem in indeterminate quadratics. They solved it by the
cyclic method. “It consists,” says De Morgan, “in a rule for finding an indefinite
number of solutions of y2 “ ax2 ` 1 (a being an integer which is not a square),
by means of one solution given or found, and of feeling for one solution by
making a solution of y2 “ ax2` b give a solution of y2 “ ax2` b2. It amounts to
the following theorem: If p and q be one set of values of x and y in y2 “ ax2 ` b
and p1 and q1 the same or another set, then qp` pq1 and app1` qq1 are values of x
and y in y2 “ ax2 ` b2. From this it is obvious that one solution of y2 “ ax2 ` 1
may be made to give any number, and that if, taking b at pleasure, y2 “ ax2 ` b2

can be solved so that x and y are divisible by b, then one preliminary solution
of y2 “ ax2 ` 1 can be found. Another mode of trying for solutions is a
combination of the preceding with the cuttaca (pulveriser).” These calculations
were used in astronomy.

Doubtless this “cyclic method” constitutes the greatest invention in the
theory of numbers before the time of Lagrange. The perversity of fate has
willed it, that the equation y2 “ ax2 ` 1 should now be called Pell’s problem,
while in recognition of Brahmin scholarship it ought to be called the “Hindoo
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problem.” It is a problem that has exercised the highest faculties of some of
our greatest modern analysts. By them the work of the Hindoos was done over
again; for, unfortunately, the Arabs transmitted to Europe only a small part of
Indian algebra and the original Hindoo manuscripts, which we now possess,
were unknown in the Occident.

Hindoo geometry is far inferior to the Greek. In it are found no def-
initions, no postulates, no axioms, no logical chain of reasoning or rigid
form of demonstration, as with Euclid. Each theorem stands by itself as
an independent truth. Like the early Egyptian, it is empirical. Thus,
in the proof of the theorem of the right triangle, Bhaskara draws the
right triangle four times in the square
of the hypotenuse, so that in the mid-
dle there remains a square whose side
equals the diverence between the two
sides of the right triangle. Arranging
this square and the four triangles in a diverent way, they are seen, together,
to make up the sum of the square of the two sides. “Behold!” says Bhaskara,
without adding another word of explanation. Bretschneider conjectures that
the Pythagorean proof was substantially the same as this. In another place,
Bhaskara gives a second demonstration of this theorem by drawing from the
vertex of the right angle a perpendicular to the hypotenuse, and comparing the
two triangles thus obtained with the given triangle to which they are similar.
This proof was unknown in Europe till Wallis re-discovered it. The Brahmins
never inquired into the properties of figures. They considered only metrical
relations applicable in practical life. In the Greek sense, the Brahmins never
had a science of geometry. Of interest is the formula given by Brahmagupta
for the area of a triangle in terms of its sides. In the great work attributed to
Heron the Elder this formula is first found. Whether the Indians themselves
invented it, or whether they borrowed it from Heron, is a disputed question.
Several theorems are given by Brahmagupta on quadrilaterals which are true
only of those which can be inscribed on a circle—a limitation which he omits
to state. Among these is the proposition of Ptolemæus, that the product of
the diagonals is equal to the sum of the products of the opposite sides. The
Hindoos were familiar with the calculation of the areas of circles and their
segments, of the length of chords and perimeters of regular inscribed polygons.
An old Indian tradition makes π “ 3, also“

?
10; but Aryabhatta gives the value

31416
10000 . Bhaskara gives two values,—the ‘accurate,’ 3927

1250 , and the ‘inaccurate,’
Archimedean value, 22

7 . A commentator on Lilavati says that these values
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were calculated by beginning with a regular inscribed hexagon, and applying

repeatedly the formula AD “

c

2´
b

4´ AB
2
, wherein AB is the side of the

given polygon, and AD that of one with double the number of sides. In this
way were obtained the perimeters of the inscribed polygons of 12, 24, 48, 96,
192, 384 sides. Taking the radius “ 100, the perimeter of the last one gives the
value which Aryabhatta used for π.

Greater taste than for geometry was shown by the Hindoos for trigonometry.
Like the Babylonians and Greeks, they divided the circle into quadrants, each
quadrant into 90 degrees and 5400 minutes. The whole circle was therefore
made up of 21, 600 equal parts. From Bhaskara’s ‘accurate’ value for π it was
found that the radius contained 3438 of these circular parts. This last step was
not Grecian. The Greeks might have had scruples about taking a part of a
curve as the measure of a straight line. Each quadrant was divided into 24 equal
parts, so that each part embraced 225 units of the whole circumference, and
corresponds to 3 3

4 degrees. Notable is the fact that the Indians never reckoned,
like the Greeks, with the whole chord of double the arc, but always with the
sine (joa) and versed sine. Their mode of calculating tables was theoretically
very simple. The sine of 90˝ was equal to the radius, or 3438; the sine of 30˝

was evidently half that, or 1719. Applying the formula sin2 a` cos2 a “ r2, they

obtained sin 45˝ “
c

r2

2
“ 2431. Substituting for cos a its equal sinp90 ´ aq,

and making a “ 60˝, they obtained sin 60˝ “
?

3r2

2
“ 2978. With the sines

of 90, 60, 45, and 30 as starting-points, they reckoned the sines of half the
angles by the formula versin 2a “ 2 sin2 a, thus obtaining the sines of 22˝ 301,
11˝ 151, 7˝ 301, 3˝ 451. They now figured out the sines of the complements of
these angles, namely, the sines of 86˝ 151, 82˝ 301, 78˝ 451, 75˝, 67˝ 301; then
they calculated the sines of half these angles; then of their complements; then,
again, of half their complements; and so on. By this very simple process they
got the sines of angles at intervals of 3˝ 451. In this table they discovered the
unique law that if a, b, c be three successive arcs such that a´ b “ b´ c “ 3˝ 451,

then sin a ´ sin b “ psin b ´ sin cq ´
sin b
225

. This formula was afterwards used

whenever a re-calculation of tables had to be made. No Indian trigonometrical
treatise on the triangle is extant. In astronomy they solved plane and spherical
right triangles.

It is remarkable to what extent Indian mathematics enters into the science
of our time. Both the form and the spirit of the arithmetic and algebra of
modern times are essentially Indian and not Grecian. Think of that most
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perfect of mathematical symbolisms—the Hindoo notation, think of the Indian
arithmetical operations nearly as perfect as our own, think of their elegant
algebraical methods, and then judge whether the Brahmins on the banks of
the Ganges are not entitled to some credit. Unfortunately, some of the most
brilliant of Hindoo discoveries in indeterminate analysis reached Europe too
late to exert the influence they would have exerted, had they come two or three
centuries earlier.

THE ARABS.

After the flight of Mohammed from Mecca to Medina in 622 a.d., an obscure
people of Semitic race began to play an important part in the drama of history.
Before the lapse of ten years, the scattered tribes of the Arabian peninsula were
fused by the furnace blast of religious enthusiasm into a powerful nation. With
sword in hand the united Arabs subdued Syria and Mesopotamia. Distant
Persia and the lands beyond, even unto India, were added to the dominions of
the Saracens. They conquered Northern Africa, and nearly the whole Spanish
peninsula, but were finally checked from further progress in Western Europe
by the firm hand of Charles Martel (732 a.d.). The Moslem dominion extended
now from India to Spain; but a war of succession to the caliphate ensued, and
in 755 the Mohammedan empire was divided,—one caliph reigning at Bagdad,
the other at Cordova in Spain. Astounding as was the grand march of conquest
by the Arabs, still more so was the ease with which they put aside their former
nomadic life, adopted a higher civilisation, and assumed the sovereignty over
cultivated peoples. Arabic was made the written language throughout the
conquered lands. With the rule of the Abbasides in the East began a new period
in the history of learning. The capital, Bagdad, situated on the Euphrates, lay
half-way between two old centres of scientific thought,—India in the East, and
Greece in the West. The Arabs were destined to be the custodians of the torch of
Greek and Indian science, to keep it ablaze during the period of confusion and
chaos in the Occident, and afterwards to pass it over to the Europeans. Thus
science passed from Aryan to Semitic races, and then back again to the Aryan.
The Mohammedans have added but little to the knowledge in mathematics
which they received. They now and then explored a small region to which
the path had been previously pointed out, but they were quite incapable of
discovering new fields. Even the more elevated regions in which the Hellenes
and Hindoos delighted to wander—namely, the Greek conic sections and the
Indian indeterminate analysis—were seldom entered upon by the Arabs. They
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were less of a speculative, and more of a practical turn of mind.
The Abbasides at Bagdad encouraged the introduction of the sciences by

inviting able specialists to their court, irrespective of nationality or religious
belief. Medicine and astronomy were their favourite sciences. Thus Haroun-
al-Raschid, the most distinguished Saracen ruler, drew Indian physicians to
Bagdad. In the year 772 there came to the court of Caliph Almansur a Hindoo
astronomer with astronomical tables which were ordered to be translated into
Arabic. These tables, known by the Arabs as the Sindhind, and probably taken
from the Brahma-sphuta-siddhanta of Brahmagupta, stood in great authority.
They contained the important Hindoo table of sines.

Doubtless at this time, and along with these astronomical tables, the Hindoo
numerals, with the zero and the principle of position, were introduced among
the Saracens. Before the time of Mohammed the Arabs had no numerals.
Numbers were written out in words. Later, the numerous computations
connected with the financial administration over the conquered lands made
a short symbolism indispensable. In some localities, the numerals of the
more civilised conquered nations were used for a time. Thus in Syria,
the Greek notation was retained; in Egypt, the Coptic. In some cases, the
numeral adjectives may have been abbreviated in writing. The Diwani-numerals,
found in an Arabic-Persian dictionary, are supposed to be such abbreviations.
Gradually it became the practice to employ the 28 Arabic letters of the
alphabet for numerals, in analogy to the Greek system. This notation was in
turn superseded by the Hindoo notation, which quite early was adopted by
merchants, and also by writers on arithmetic. Its superiority was so universally
recognised, that it had no rival, except in astronomy, where the alphabetic
notation continued to be used. Here the alphabetic notation overed no great
disadvantage, since in the sexagesimal arithmetic, taken from the Almagest,
numbers of generally only one or two places had to be written.

As regards the form of the so-called Arabic numerals, the statement of the
Arabic writer Albiruni (died 1039), who spent many years in India, is of interest.
He says that the shape of the numerals, as also of the letters in India, divered in
diverent localities, and that the Arabs selected from the various forms the most
suitable. An Arabian astronomer says there was among people much diverence
in the use of symbols, especially of those for 5, 6, 7, and 8. The symbols
used by the Arabs can be traced back to the tenth century. We find material
diverences between those used by the Saracens in the East and those used in
the West. But most surprising is the fact that the symbols of both the East
and of the West Arabs deviate so extraordinarily from the Hindoo Devanagari
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numerals (“ divine numerals) of to-day, and that they resemble much more
closely the apices of the Roman writer Boethius. This strange similarity on
the one hand, and dissimilarity on the other, is diHcult to explain. The most
plausible theory is the one of Woepcke: (1) that about the second century after
Christ, before the zero had been invented, the Indian numerals were brought
to Alexandria, whence they spread to Rome and also to West Africa; (2) that in
the eighth century, after the notation in India had been already much modified
and perfected by the invention of the zero, the Arabs at Bagdad got it from the
Hindoos; (3) that the Arabs of the West borrowed the Columbus-egg, the zero,
from those in the East, but retained the old forms of the nine numerals, if for
no other reason, simply to be contrary to their political enemies of the East;
(4) that the old forms were remembered by the West-Arabs to be of Indian
origin, and were hence called Gubar-numerals (“ dust-numerals, in memory of
the Brahmin practice of reckoning on tablets strewn with dust or sand; (5) that,
since the eighth century, the numerals in India underwent further changes,
and assumed the greatly modified forms of the modern Devanagari-numerals.
This is rather a bold theory, but, whether true or not, it explains better than
any other yet propounded, the relations between the apices, the Gubar, the
East-Arabic, and Devanagari numerals.

It has been mentioned that in 772 the Indian Siddhanta was brought to Bagdad
and there translated into Arabic. There is no evidence that any intercourse
existed between Arabic and Indian astronomers either before or after this time,
excepting the travels of Albiruni. But we should be very slow to deny the
probability that more extended communications actually did take place.

Better informed are we regarding the way in which Greek science, in
successive waves, dashed upon and penetrated Arabic soil. In Syria the sciences,
especially philosophy and medicine, were cultivated by Greek Christians.
Celebrated were the schools at Antioch and Emesa, and, first of all, the
flourishing Nestorian school at Edessa. From Syria, Greek physicians and
scholars were called to Bagdad. Translations of works from the Greek began
to be made. A large number of Greek manuscripts were secured by Caliph Al
Mamun (813–833) from the emperor in Constantinople and were turned over to
Syria. The successors of Al Mamun continued the work so auspiciously begun,
until, at the beginning of the tenth century, the more important philosophic,
medical, mathematical, and astronomical works of the Greeks could all be read
in the Arabic tongue. The translations of mathematical works must have been
very deficient at first, as it was evidently diHcult to secure translators who
were masters of both the Greek and Arabic and at the same time proficient
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in mathematics. The translations had to be revised again and again before
they were satisfactory. The first Greek authors made to speak in Arabic were
Euclid and Ptolemæus. This was accomplished during the reign of the famous
Haroun-al-Raschid. A revised translation of Euclid’s Elements was ordered by
Al Mamun. As this revision still contained numerous errors, a new translation
was made, either by the learned Honein ben Ishak, or by his son, Ishak ben
Honein. To the thirteen books of the Elements were added the fourteenth,
written by Hypsicles, and the fifteenth by Damascius. But it remained for
Tabit ben Korra to bring forth an Arabic Euclid satisfying every need. Still
greater diHculty was experienced in securing an intelligible translation of the
Almagest. Among other important translations into Arabic were the works
of Apollonius, Archimedes, Heron, and Diophantus. Thus we see that in
the course of one century the Arabs gained access to the vast treasures of
Greek science. Having been little accustomed to abstract thought, we need not
marvel if, during the ninth century, all their energy was exhausted merely in
appropriating the foreign material. No attempts were made at original work
in mathematics until the next century.

In astronomy, on the other hand, great activity in original research existed
as early as the ninth century. The religious observances demanded by
Mohammedanism presented to astronomers several practical problems. The
Moslem dominions being of such enormous extent, it remained in some
localities for the astronomer to determine which way the “Believer” must turn
during prayer that he may be facing Mecca. The prayers and ablutions had to
take place at definite hours during the day and night. This led to more accurate
determinations of time. To fix the exact date for the Mohammedan feasts it
became necessary to observe more closely the motions of the moon. In addition
to all this, the old Oriental superstition that extraordinary occurrences in the
heavens in some mysterious way avect the progress of human avairs added
increased interest to the prediction of eclipses.

For these reasons considerable progress was made. Astronomical tables
and instruments were perfected, observatories erected, and a connected series
of observations instituted. This intense love for astronomy and astrology
continued during the whole Arabic scientific period. As in India, so here, we
hardly ever find a man exclusively devoted to pure mathematics. Most of the
so-called mathematicians were first of all astronomers.

The first notable author of mathematical books was Mohammed ben Musa
Al Hovarezmi, who lived during the reign of Caliph Al Mamun (813–833). He
was engaged by the caliph in making extracts from the Sindhind, in revising
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the tablets of Ptolemæus, in taking observations at Bagdad and Damascus, and
in measuring a degree of the earth’s meridian. Important to us is his work on
algebra and arithmetic. The portion on arithmetic is not extant in the original,
and it was not till 1857 that a Latin translation of it was found. It begins
thus: “Spoken has Algoritmi. Let us give deserved praise to God, our leader
and defender.” Here the name of the author, Al Hovarezmi, has passed into
Algoritmi, from which comes our modern word, algorithm, signifying the art of
computing in any particular way. The arithmetic of Hovarezmi, being based on
the principle of position and the Hindoo method of calculation, “excels,” says
an Arabic writer, “all others in brevity and easiness, and exhibits the Hindoo
intellect and sagacity in the grandest inventions.” This book was followed by
a large number of arithmetics by later authors, which divered from the earlier
ones chiefly in the greater variety of methods. Arabian arithmetics generally
contained the four operations with integers and fractions, modelled after the
Indian processes. They explained the operation of casting out the 9’s, which
was sometimes called the “Hindoo proof.” They contained also the regula falsa
and the regula duorum falsorum, by which algebraical examples could be solved
without algebra. Both these methods were known to the Indians. The regula
falsa or falsa positio was the assigning of an assumed value to the unknown
quantity, which value, if wrong, was corrected by some process like the “rule
of three.” Diophantus used a method almost identical with this. The regula
duorum falsorum was as follows: To solve an equation f pxq “ V , assume, for
the moment, two values for x; namely, x “ a and x “ b. Then form f paq “ A
and f pbq “ B, and determine the errors V ´ A “ Ea and V ´ B “ Eb; then the

required x “
bEa ´ aEb
Ea ´ Eb

is generally a close approximation, but is absolutely

accurate whenever f pxq is a linear function of x.
We now return to Hovarezmi, and consider the other part of his work,—the

algebra. This is the first book known to contain this word itself as title. Really
the title consists of two words, aldshebr walmukabala, the nearest English
translation of which is “restoration” and “reduction.” By “restoration” was
meant the transposing of negative terms to the other side of the equation; by
“reduction,” the uniting of similar terms. Thus, x2 ´ 2x “ 5x ` 6 passes by
aldshebr into x2 “ 5x ` 2x ` 6; and this, by walmukabala, into x2 “ 7x ` 6.
The work on algebra, like the arithmetic, by the same author, contains nothing
original. It explains the elementary operations and the solutions of linear
and quadratic equations. From whom did the author borrow his knowledge
of algebra? That it came entirely from Indian sources is impossible, for the
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Hindoos had no such rules like the “restoration” and “reduction.” They were,
for instance, never in the habit of making all terms in an equation positive,
as is done by the process of “restoration.” Diophantus gives two rules which
resemble somewhat those of our Arabic author, but the probability that the
Arab got all his algebra from Diophantus is lessened by the considerations that
he recognised both roots of a quadratic, while Diophantus noticed only one;
and that the Greek algebraist, unlike the Arab, habitually rejected irrational
solutions. It would seem, therefore, that the algebra of Hovarezmi was neither
purely Indian nor purely Greek, but was a hybrid of the two, with the Greek
element predominating.

The algebra of Hovarezmi contains also a few meagre fragments on geometry.
He gives the theorem of the right triangle, but proves it after Hindoo fashion
and only for the simplest case, when the right triangle is isosceles. He then
calculates the areas of the triangle, parallelogram, and circle. For π he uses
the value 3 1

7 , and also the two Indian, π “
?

10 and π “
62832
20000 . Strange to say,

the last value was afterwards forgotten by the Arabs, and replaced by others
less accurate. This bit of geometry doubtless came from India. Later Arabic
writers got their geometry almost entirely from Greece.

Next to be noticed are the three sons of Musa ben Sakir, who lived in Bagdad
at the court of the Caliph Al Mamun. They wrote several works, of which we
mention a geometry in which is also contained the well-known formula for
the area of a triangle expressed in terms of its sides. We are told that one of the
sons travelled to Greece, probably to collect astronomical and mathematical
manuscripts, and that on his way back he made acquaintance with Tabit ben
Korra. Recognising in him a talented and learned astronomer, Mohammed
procured for him a place among the astronomers at the court in Bagdad. Tabit
ben Korra (836–901) was born at Harran in Mesopotamia. He was proficient
not only in astronomy and mathematics, but also in the Greek, Arabic, and
Syrian languages. His translations of Apollonius, Archimedes, Euclid, Ptolemy,
Theodosius, rank among the best. His dissertation on amicable numbers (of
which each is the sum of the factors of the other) is the first known specimen
of original work in mathematics on Arabic soil. It shows that he was familiar
with the Pythagorean theory of numbers. Tabit invented the following rule
for finding amicable numbers: If p “ 3¨2n ´ 1, q “ 3¨2n´1 ´ 1, r “ 9¨22n´1 ´ 1
(n being a whole number) are three primes, then a “ 2npq, b “ 2nr are a pair
of amicable numbers. Thus, if n “ 2, then p “ 11, q “ 5, r “ 71, and a “ 220,
b “ 284. Tabit also trisected an angle.

Foremost among the astronomers of the ninth century ranked Al Battani,
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called Albategnius by the Latins. Battan in Syria was his birthplace. His
observations were celebrated for great precision. His work, De scientia
stellarum, was translated into Latin by Plato Tiburtinus, in the twelfth century.
Out of this translation sprang the word ‘sinus,’ as the name of a trigonometric
function. The Arabic word for “sine,” dschiba, was derived from the Sanscrit
jiva, and resembled the Arabic word dschaib, meaning an indentation or gulf.
Hence the Latin “sinus.” Al Battani was a close student of Ptolemy, but did
not follow him altogether. He took an important step for the better, when he
introduced the Indian “sine” or half the chord, in place of the whole chord of
Ptolemy. Another improvement on Greek trigonometry made by the Arabs
points likewise to Indian influences. Propositions and operations which were
treated by the Greeks geometrically are expressed by the Arabs algebraically.

Thus, Al Battani at once gets from an equation
sin θ

cos θ
“ D, the value of θ by

means of sin θ “
D

?
1`D2

,—a process unknown to the ancients. He knows, of

course, all the formulas for spherical triangles given in the Almagest, but goes
further, and adds an important one of his own for oblique-angled triangles;
namely, cos a “ cos b cos c ` sin b sin c cos A.

At the beginning of the tenth century political troubles arose in the East, and
as a result the house of the Abbasides lost power. One province after another
was taken, till, in 945, all possessions were wrested from them. Fortunately,
the new rulers at Bagdad, the Persian Buyides, were as much interested in
astronomy as their predecessors. The progress of the sciences was not only
unchecked, but the conditions for it became even more favourable. The Emir
Adud-ed-daula (978–983) gloried in having studied astronomy himself. His son
Saraf-ed-daula erected an observatory in the garden of his palace, and called
thither a whole group of scholars. Among them were Abul Wefa, Al Kuhi, Al
Sagani.

Abul Wefa (940–998) was born at Buzshan in Chorassan, a region among
the Persian mountains, which has brought forth many Arabic astronomers. He
forms an important exception to the unprogressive spirit of Arabian scientists
by his brilliant discovery of the variation of the moon, an inequality usually
supposed to have been first discovered by Tycho Brahe. Abul Wefa translated
Diophantus. He is one of the last Arabic translators and commentators of
Greek authors. The fact that he esteemed the algebra of Mohammed ben
Musa Hovarezmi worthy of his commentary indicates that thus far algebra
had made little or no progress on Arabic soil. Abul Wefa invented a method
for computing tables of sines which gives the sine of half a degree correct to
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nine decimal places. He did himself credit by introducing the tangent into
trigonometry and by calculating a table of tangents. The first step toward this
had been taken by Al Battani. Unfortunately, this innovation and the discovery
of the moon’s variation excited apparently no notice among his contemporaries
and followers. “We can hardly help looking upon this circumstance as an
evidence of a servility of intellect belonging to the Arabian period.” A treatise
by Abul Wefa on “geometric constructions” indicates that evorts were being
made at that time to improve draughting. It contains a neat construction of
the corners of the regular polyhedrons on the circumscribed sphere. Here, for
the first time, appears the condition which afterwards became very famous in
the Occident, that the construction be evected with a single opening of the
compass.

Al Kuhi, the second astronomer at the observatory of the emir at Bagdad,
was a close student of Archimedes and Apollonius. He solved the problem,
to construct a segment of a sphere equal in volume to a given segment and
having a curved surface equal in area to that of another given segment. He, Al
Sagani, and Al Biruni made a study of the trisection of angles. Abul Gud, an
able geometer, solved the problem by the intersection of a parabola with an
equilateral hyperbola.

The Arabs had already discovered the theorem that the sum of two cubes can
never be a cube. Abu Mohammed Al Hogendi of Chorassan thought he had
proved this, but we are told that the demonstration was defective. Creditable
work in theory of numbers and algebra was done by Al Karhi of Bagdad,
who lived at the beginning of the eleventh century. His treatise on algebra
is the greatest algebraic work of the Arabs. In it he appears as a disciple
of Diophantus. He was the first to operate with higher roots and to solve
equations of the form x2n` axn “ b. For the solution of quadratic equations he
gives both arithmetical and geometric proofs. He was the first Arabic author
to give and prove the theorems on the summation of the series:—

12 ` 22 ` 32 ` ¨ ¨ ¨ ` n2 “ p1` 2` ¨ ¨ ¨ ` nq
2n` 1

3
,

13 ` 23 ` 33 ` ¨ ¨ ¨ ` n3 “ p1` 2` ¨ ¨ ¨ ` nq2.

Al Karhi also busied himself with indeterminate analysis. He showed skill in
handling the methods of Diophantus, but added nothing whatever to the stock
of knowledge already on hand. As a subject for original research, indeterminate
analysis was too subtle for even the most gifted of Arabian minds. Rather
surprising is the fact that Al Karhi’s algebra shows no traces whatever of
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Hindoo indeterminate analysis. But most astonishing it is, that an arithmetic
by the same author completely excludes the Hindoo numerals. It is constructed
wholly after Greek pattern. Abul Wefa also, in the second half of the tenth
century, wrote an arithmetic in which Hindoo numerals find no place. This
practice is the very opposite to that of other Arabian authors. The question,
why the Hindoo numerals were ignored by so eminent authors, is certainly a
puzzle. Cantor suggests that at one time there may have been rival schools, of
which one followed almost exclusively Greek mathematics, the other Indian.

The Arabs were familiar with geometric solutions of quadratic equations.
Attempts were now made to solve cubic equations geometrically. They were
led to such solutions by the study of questions like the Archimedean problem,
demanding the section of a sphere by a plane so that the two segments shall be
in a prescribed ratio. The first to state this problem in form of a cubic equation
was Al Mahani of Bagdad, while Abu Gafar Al Hazin was the first Arab to
solve the equation by conic sections. Solutions were given also by Al Kuhi, Al
Hasan ben Al Haitam, and others. Another diHcult problem, to determine
the side of a regular heptagon, required the construction of the side from the
equation x3 ´ x2 ´ 2x` 1 “ 0. It was attempted by many and at last solved by
Abul Gud.

The one who did most to elevate to a method the solution of algebraic
equations by intersecting conics, was Omar al Hayyami of Chorassan, about
1079 a.d. He divides cubics into two classes, the trinomial and quadrinomial,
and each class into families and species. Each species is treated separately but
according to a general plan. He believed that cubics could not be solved by
calculation, nor biquadratics by geometry. He rejected negative roots and often
failed to discover all the positive ones. Attempts at biquadratic equations were
made by Abul Wefa, who solved geometrically x4 “ a and x4 ` ax3 “ b.

The solution of cubic equations by intersecting conics was the greatest
achievement of the Arabs in algebra. The foundation to this work had been
laid by the Greeks, for it was Menæchmus who first constructed the roots of
x3´ a “ 0 or x3´ 2a3 “ 0. It was not his aim to find the number corresponding
to x, but simply to determine the side x of a cube double another cube of side a.
The Arabs, on the other hand, had another object in view: to find the roots
of given numerical equations. In the Occident, the Arabic solutions of cubics
remained unknown until quite recently. Descartes and Thomas Baker invented
these constructions anew. The works of Al Hayyami, Al Karhi, Abul Gud,
show how the Arabs departed further and further from the Indian methods,
and placed themselves more immediately under Greek influences. In this way
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they barred the road of progress against themselves. The Greeks had advanced
to a point where material progress became diHcult with their methods; but
the Hindoos furnished new ideas, many of which the Arabs now rejected.

With Al Karhi and Omar Al Hayyami, mathematics among the Arabs of the
East reached flood-mark, and now it begins to ebb. Between 1100 and 1300 a.d.

come the crusades with war and bloodshed, during which European Christians
profited much by their contact with Arabian culture, then far superior to
their own; but the Arabs got no science from the Christians in return. The
crusaders were not the only adversaries of the Arabs. During the first half
of the thirteenth century, they had to encounter the wild Mongolian hordes,
and, in 1256, were conquered by them under the leadership of Hulagu. The
caliphate at Bagdad now ceased to exist. At the close of the fourteenth century
still another empire was formed by Timur or Tamerlane, the Tartar. During
such sweeping turmoil, it is not surprising that science declined. Indeed, it is a
marvel that it existed at all. During the supremacy of Hulagu, lived Nasir Eddin
(1201–1274), a man of broad culture and an able astronomer. He persuaded
Hulagu to build him and his associates a large observatory at Maraga. Treatises
on algebra, geometry, arithmetic, and a translation of Euclid’s Elements, were
prepared by him. Even at the court of Tamerlane in Samarkand, the sciences
were by no means neglected. A group of astronomers was drawn to this court.
Ulug Beg (1393–1449), a grandson of Tamerlane, was himself an astronomer.
Most prominent at this time was Al Kaschi, the author of an arithmetic. Thus,
during intervals of peace, science continued to be cultivated in the East for
several centuries. The last Oriental writer was Beha Eddin (1547–1622). His
Essence of Arithmetic stands on about the same level as the work of Mohammed
ben Musa Hovarezmi, written nearly 800 years before.

“Wonderful is the expansive power of Oriental peoples, with which upon the
wings of the wind they conquer half the world, but more wonderful the energy
with which, in less than two generations, they raise themselves from the lowest
stages of cultivation to scientific evorts.” During all these centuries, astronomy
and mathematics in the Orient greatly excel these sciences in the Occident.

Thus far we have spoken only of the Arabs in the East. Between the Arabs
of the East and of the West, which were under separate governments, there
generally existed considerable political animosity. In consequence of this, and
of the enormous distance between the two great centres of learning, Bagdad
and Cordova, there was less scientific intercourse among them than might
be expected to exist between peoples having the same religion and written
language. Thus the course of science in Spain was quite independent of that in
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Persia. While wending our way westward to Cordova, we must stop in Egypt
long enough to observe that there, too, scientific activity was rekindled. Not
Alexandria, but Cairo with its library and observatory, was now the home
of learning. Foremost among her scientists ranked Ben Junus (died 1008), a
contemporary of Abul Wefa. He solved some diHcult problems in spherical
trigonometry. Another Egyptian astronomer was Ibn Al Haitam (died 1038),
who wrote on geometric loci. Travelling westward, we meet in Morocco Abul
Hasan Ali, whose treatise ‘on astronomical instruments’ discloses a thorough
knowledge of the Conics of Apollonius. Arriving finally in Spain at the capital,
Cordova, we are struck by the magnificent splendour of her architecture. At
this renowned seat of learning, schools and libraries were founded during the
tenth century.

Little is known of the progress of mathematics in Spain. The earliest name
that has come down to us is Al Madshriti (died 1007), the author of a mystic
paper on ‘amicable numbers.’ His pupils founded schools at Cordova, Dania,
and Granada. But the only great astronomer among the Saracens in Spain is
Gabir ben Aflah of Sevilla, frequently called Geber. He lived in the second
half of the eleventh century. It was formerly believed that he was the inventor
of algebra, and that the word algebra came from ‘Gabir’ or ‘Geber.’ He ranks
among the most eminent astronomers of this time, but, like so many of his
contemporaries, his writings contain a great deal of mysticism. His chief work
is an astronomy in nine books, of which the first is devoted to trigonometry.
In his treatment of spherical trigonometry, he exercises great independence
of thought. He makes war against the time-honoured procedure adopted by
Ptolemy of applying “the rule of six quantities,” and gives a new way of his
own, based on the ‘rule of four quantities.’ This is: If PP1 and QQ1 be two arcs
of great circles intersecting in A, and if PQ and P1Q1 be arcs of great circles
drawn perpendicular to QQ1, then we have the proportion

sin AP : sin PQ “ sin AP1 : sin P1Q1.

From this he derives the formulas for spherical right triangles. To the four
fundamental formulas already given by Ptolemy, he added a fifth, discovered
by himself. If a, b, c, be the sides, and A, B, C, the angles of a spherical triangle,
right-angled at A, then cos B “ cos b sin C. This is frequently called “Geber’s
Theorem.” Radical and bold as were his innovations in spherical trigonometry,
in plane trigonometry he followed slavishly the old beaten path of the Greeks.
Not even did he adopt the Indian ‘sine’ and ‘cosine,’ but still used the Greek
‘chord of double the angle.’ So painful was the departure from old ideas,
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even to an independent Arab! After the time of Gabir ben Aflah there was no
mathematician among the Spanish Saracens of any reputation. In the year in
which Columbus discovered America, the Moors lost their last foothold on
Spanish soil.

We have witnessed a laudable intellectual activity among the Arabs. They
had the good fortune to possess rulers who, by their munificence, furthered
scientific research. At the courts of the caliphs, scientists were supplied with
libraries and observatories. A large number of astronomical and mathematical
works were written by Arabic authors. Yet we fail to find a single important
principle in mathematics brought forth by the Arabic mind. Whatever
discoveries they made, were in fields previously traversed by the Greeks or
the Indians, and consisted of objects which the latter had overlooked in their
rapid march. The Arabic mind did not possess that penetrative insight and
invention by which mathematicians in Europe afterwards revolutionised the
science. The Arabs were learned, but not original. Their chief service to science
consists in this, that they adopted the learning of Greece and India, and kept
what they received with scrupulous care. When the love for science began to
grow in the Occident, they transmitted to the Europeans the valuable treasures
of antiquity. Thus a Semitic race was, during the Dark Ages, the custodian of
the Aryan intellectual possessions.

EUROPE DURING THE MIDDLE AGES.

With the third century after Christ begins an era of migration of nations
in Europe. The powerful Goths quit their swamps and forests in the North
and sweep onward in steady southwestern current, dislodging the Vandals,
Sueves, and Burgundians, crossing the Roman territory, and stopping and
recoiling only when reaching the shores of the Mediterranean. From the Ural
Mountains wild hordes sweep down on the Danube. The Roman Empire falls
to pieces, and the Dark Ages begin. But dark though they seem, they are the
germinating season of the institutions and nations of modern Europe. The
Teutonic element, partly pure, partly intermixed with the Celtic and Latin,
produces that strong and luxuriant growth, the modern civilisation of Europe.
Almost all the various nations of Europe belong to the Aryan stock. As
the Greeks and the Hindoos—both Aryan races—were the great thinkers of
antiquity, so the nations north of the Alps became the great intellectual leaders
of modern times.
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Introduction of Roman Mathematics.

We shall now consider how these as yet barbaric nations of the North
gradually came in possession of the intellectual treasures of antiquity. With
the spread of Christianity the Latin language was introduced not only in
ecclesiastical but also in scientific and all important worldly transactions.
Naturally the science of the Middle Ages was drawn largely from Latin sources.
In fact, during the earlier of these ages Roman authors were the only ones
read in the Occident. Though Greek was not wholly unknown, yet before
the thirteenth century not a single Greek scientific work had been read or
translated into Latin. Meagre indeed was the science which could be gotten
from Roman writers, and we must wait several centuries before any substantial
progress is made in mathematics.

After the time of Boethius and Cassiodorius mathematical activity in Italy
died out. The first slender blossom of science among tribes that came from the
North was an encyclopædia entitled Origines, written by Isidorus (died 636 as
bishop of Seville). This work is modelled after the Roman encyclopædias of
Martianus Capella of Carthage and of Cassiodorius. Part of it is devoted to the
quadrivium, arithmetic, music, geometry, and astronomy. He gives definitions
and grammatical explications of technical terms, but does not describe the
modes of computation then in vogue. After Isidorus there follows a century of
darkness which is at last dissipated by the appearance of Bede the Venerable
(672–735), the most learned man of his time. He was a native of Ireland, then
the home of learning in the Occident. His works contain treatises on the
Computus, or the computation of Easter-time, and on finger-reckoning. It
appears that a finger-symbolism was then widely used for calculation. The
correct determination of the time of Easter was a problem which in those
days greatly agitated the Church. It became desirable to have at least one
monk at each monastery who could determine the day of religious festivals and
could compute the calendar. Such determinations required some knowledge of
arithmetic. Hence we find that the art of calculating always found some little
corner in the curriculum for the education of monks.

The year in which Bede died is also the year in which Alcuin (735–804)
was born. Alcuin was educated in Ireland, and was called to the court of
Charlemagne to direct the progress of education in the great Frankish Empire.
Charlemagne was a great patron of learning and of learned men. In the great
sees and monasteries he founded schools in which were taught the psalms,
writing, singing, computation (computus), and grammar. By computus was here
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meant, probably, not merely the determination of Easter-time, but the art of
computation in general. Exactly what modes of reckoning were then employed
we have no means of knowing. It is not likely that Alcuin was familiar with
the apices of Boethius or with the Roman method of reckoning on the abacus.
He belongs to that long list of scholars who dragged the theory of numbers
into theology. Thus the number of beings created by God, who created all
things well, is 6, because 6 is a perfect number (the sum of its divisors being
1 ` 2 ` 3 “ 6); 8, on the other hand, is an imperfect number (1 ` 2 ` 4 ă 8);
hence the second origin of mankind emanated from the number 8, which is the
number of souls said to have been in Noah’s ark.

There is a collection of “Problems for Quickening the Mind” (propositiones
ad acuendos iuvenes), which are certainly as old as 1000 a.d. and possibly older.
Cantor is of the opinion that they were written much earlier and by Alcuin.
The following is a specimen of these “Problems”: A dog chasing a rabbit, which
has a start of 150 feet, jumps 9 feet every time the rabbit jumps 7. In order to
determine in how many leaps the dog overtakes the rabbit, 150 is to be divided
by 2. In this collection of problems, the areas of triangular and quadrangular
pieces of land are found by the same formulas of approximation as those used
by the Egyptians and given by Boethius in his geometry. An old problem is the
“cistern-problem” (given the time in which several pipes can fill a cistern singly,
to find the time in which they fill it jointly), which has been found previously
in Heron, in the Greek Anthology, and in Hindoo works. Many of the problems
show that the collection was compiled chiefly from Roman sources. The
problem which, on account of its uniqueness, gives the most positive testimony
regarding the Roman origin is that on the interpretation of a will in a case
where twins are born. The problem is identical with the Roman, except that
diverent ratios are chosen. Of the exercises for recreation, we mention the one
of the wolf, goat, and cabbage, to be rowed across a river in a boat holding
only one besides the ferry-man. Query: How must he carry them across so
that the goat shall not eat the cabbage, nor the wolf the goat? The solutions
of the “problems for quickening the mind” require no further knowledge than
the recollection of some few formulas used in surveying, the ability to solve
linear equations and to perform the four fundamental operations with integers.
Extraction of roots was nowhere demanded; fractions hardly ever occur.

The great empire of Charlemagne tottered and fell almost immediately after
his death. War and confusion ensued. Scientific pursuits were abandoned,
not to be resumed until the close of the tenth century, when under Saxon
rule in Germany and Capetian in France, more peaceful times began. The
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thick gloom of ignorance commenced to disappear. The zeal with which the
study of mathematics was now taken up by the monks is due principally to
the energy and influence of one man,—Gerbert. He was born in Aurillac in
Auvergne. After receiving a monastic education, he engaged in study, chiefly
of mathematics, in Spain. On his return he taught school at Rheims for ten
years and became distinguished for his profound scholarship. By King Otto I.
and his successors Gerbert was held in highest esteem. He was elected bishop
of Rheims, then of Ravenna, and finally was made Pope under the name of
Sylvester II. by his former pupil Emperor Otho III. He died in 1003, after a life
intricately involved in many political and ecclesiastical quarrels. Such was the
career of the greatest mathematician of the tenth century in Europe. By his
contemporaries his mathematical knowledge was considered wonderful. Many
even accused him of criminal intercourse with evil spirits.

Gerbert enlarged the stock of his knowledge by procuring copies of rare
books. Thus in Mantua he found the geometry of Boethius. Though this is
of small scientific value, yet it is of great importance in history. It was at that
time the only book from which European scholars could learn the elements of
geometry. Gerbert studied it with zeal, and is generally believed himself to be
the author of a geometry. H. Weissenborn denies his authorship, and claims
that the book in question consists of three parts which cannot come from one
and the same author. This geometry contains nothing more than the one of
Boethius, but the fact that occasional errors in the latter are herein corrected
shows that the author had mastered the subject. “The first mathematical paper
of the Middle Ages which deserves this name,” says Hankel, “is a letter of
Gerbert to Adalbold, bishop of Utrecht,” in which is explained the reason
why the area of a triangle, obtained “geometrically” by taking the product of
the base by half its altitude, divers from the area calculated “arithmetically,”
according to the formula 1

2 apa` 1q, used by surveyors, where a stands for a side
of an equilateral triangle. He gives the correct explanation that in the latter
formula all the small squares, in which the triangle is supposed to be divided,
are counted in wholly, even though parts of them project beyond it.

Gerbert made a careful study of the arithmetical works of Boethius. He
himself published two works,—Rule of Computation on the Abacus, and A Small
Book on the Division of Numbers. They give an insight into the methods
of calculation practised in Europe before the introduction of the Hindoo
numerals. Gerbert used the abacus, which was probably unknown to Alcuin.
Bernelinus, a pupil of Gerbert, describes it as consisting of a smooth board
upon which geometricians were accustomed to strew blue sand, and then to
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draw their diagrams. For arithmetical purposes the board was divided into 30
columns, of which 3 were reserved for fractions, while the remaining 27 were
divided into groups with 3 columns in each. In every group the columns were
marked respectively by the letters C (centum), D (decem), and S (singularis) or
M (monas). Bernelinus gives the nine numerals used, which are the apices of
Boethius, and then remarks that the Greek letters may be used in their place.
By the use of these columns any number can be written without introducing a
zero, and all operations in arithmetic can be performed in the same way as we
execute ours without the columns, but with the symbol for zero. Indeed, the
methods of adding, subtracting, and multiplying in vogue among the abacists
agree substantially with those of to-day. But in a division there is very great
diverence. The early rules for division appear to have been framed to satisfy
the following three conditions: (1) The use of the multiplication table shall
be restricted as far as possible; at least, it shall never be required to multiply
mentally a figure of two digits by another of one digit. (2) Subtractions shall
be avoided as much as possible and replaced by additions. (3) The operation
shall proceed in a purely mechanical way, without requiring trials. That it
should be necessary to make such conditions seems strange to us; but it must be
remembered that the monks of the Middle Ages did not attend school during
childhood and learn the multiplication table while the memory was fresh.
Gerbert’s rules for division are the oldest extant. They are so brief as to be very
obscure to the uninitiated. They were probably intended simply to aid the
memory by calling to mind the successive steps in the work. In later manuscripts
they are stated more fully. In dividing any number by another of one digit,
say 668 by 6, the divisor was first increased to 10 by adding 4. The process is
exhibited in the adjoining figure. As it continues, we must imagine the digits
which are crossed out, to be erased and then replaced by the ones beneath. It is
as follows: 600˜10 “ 60, but, to rectify the error, 4ˆ60, or 240, must be added;
200˜ 10 “ 20, but 4ˆ 20, or 80, must be added. We now write for 60`40`80,

)
) )

C D S
6
4

6 6 8
6{ 6{ 8{
2{ 4{ 4{
1{ 8{ 8{
1{ 4{ 8{

2{ 2
4{
6{
2{
2{
6{ 6{
2{ 2{
1{ 2{
1 1

its sum 180, and continue thus: 100 ˜ 10 “ 10; the correction
necessary is 4ˆ 10, or 40, which, added to 80, gives 120. Now
100˜ 10 “ 10, and the correction 4ˆ 10, together with the 20,
gives 60. Proceeding as before, 60˜ 10 “ 6; the correction is
4ˆ 6 “ 24. Now 20˜ 10 “ 2, the correction being 4ˆ 2 “ 8.
In the column of units we have now 8 ` 4 ` 8, or 20. As
before, 20 ˜ 10 “ 2; the correction is 2 ˆ 4 “ 8, which is not
divisible by 10, but only by 6, giving the quotient 1 and the
remainder 2. All the partial quotients taken together give
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60` 20` 10` 10` 6` 2` 2` 1 “ 111, and the remainder 2.
Similar but more complicated, is the process when the

divisor contains two or more digits. Were the divisor 27, then
the next higher multiple of 10, or 30, would be taken for the
divisor, but corrections would be required for the 3. He who
has the patience to carry such a division through to the end,
will understand why it has been said of Gerbert that “Regulas
dedit, quæ a sudantibus abacistis vix intelliguntur.” He will
also perceive why the Arabic method of division, when first
introduced, was called the divisio aurea, but the one on the
abacus, the divisio ferrea.

In his book on the abacus, Bernelinus devotes a chapter to
fractions. These are, of course, the duodecimals, first used by the Romans. For
want of a suitable notation, calculation with them was exceedingly diHcult. It
would be so even to us, were we accustomed, like the early abacists, to express
them, not by a numerator or denominator, but by the application of names,
such as uncia for 1

12 , quincunx for 5
12 , dodrans for 9

12 .
In the tenth century, Gerbert was the central figure among the learned. In his

time the Occident came into secure possession of all mathematical knowledge of
the Romans. During the eleventh century it was studied assiduously. Though
numerous works were written on arithmetic and geometry, mathematical
knowledge in the Occident was still very insignificant. Scanty indeed were the
mathematical treasures obtained from Roman sources.

Translation of Arabic Manuscripts.

By his great erudition and phenomenal activity, Gerbert infused new life
into the study not only of mathematics, but also of philosophy. Pupils from
France, Germany, and Italy gathered at Rheims to enjoy his instruction. When
they themselves became teachers, they taught of course not only the use of
the abacus and geometry, but also what they had learned of the philosophy of
Aristotle. His philosophy was known, at first, only through the writings of
Boethius. But the growing enthusiasm for it created a demand for his complete
works. Greek texts were wanting. But the Latins heard that the Arabs, too,
were great admirers of Peripatetism, and that they possessed translations of
Aristotle’s works and commentaries thereon. This led them finally to search
for and translate Arabic manuscripts. During this search, mathematical works
also came to their notice, and were translated into Latin. Though some few
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unimportant works may have been translated earlier, yet the period of greatest
activity began about 1100. The zeal displayed in acquiring the Mohammedan
treasures of knowledge excelled even that of the Arabs themselves, when, in the
eighth century, they plundered the rich covers of Greek and Hindoo science.

Among the earliest scholars engaged in translating manuscripts into Latin
was Athelard of Bath. The period of his activity is the first quarter of the
twelfth century. He travelled extensively in Asia Minor, Egypt, and Spain, and
braved a thousand perils, that he might acquire the language and science of the
Mohammedans. He made the earliest translations, from the Arabic, of Euclid’s
Elements and of the astronomical tables of Mohammed ben Musa Hovarezmi.
In 1857, a manuscript was found in the library at Cambridge, which proved to
be the arithmetic by Mohammed ben Musa in Latin. This translation also is
very probably due to Athelard.

At about the same time flourished Plato of Tivoli or Plato Tiburtinus. He
evected a translation of the astronomy of Al Battani and of the Sphærica
of Theodosius. Through the former, the term sinus was introduced into
trigonometry.

About the middle of the twelfth century there was a group of Christian
scholars busily at work at Toledo, under the leadership of Raymond, then
archbishop of Toledo. Among those who worked under his direction, John
of Seville was most prominent. He translated works chiefly on Aristotelian
philosophy. Of importance to us is a liber algorismi, compiled by him from
Arabic authors. On comparing works like this with those of the abacists, we
notice at once the most striking diverence, which shows that the two parties
drew from independent sources. It is argued by some that Gerbert got his
apices and his arithmetical knowledge, not from Boethius, but from the Arabs
in Spain, and that part or the whole of the geometry of Boethius is a forgery,
dating from the time of Gerbert. If this were the case, then the writings of
Gerbert would betray Arabic sources, as do those of John of Seville. But no
points of resemblance are found. Gerbert could not have learned from the
Arabs the use of the abacus, because all evidence we have goes to show that
they did not employ it. Nor is it probable that he borrowed from the Arabs
the apices, because they were never used in Europe except on the abacus. In
illustrating an example in division, mathematicians of the tenth and eleventh
centuries state an example in Roman numerals, then draw an abacus and insert
in it the necessary numbers with the apices. Hence it seems probable that the
abacus and apices were borrowed from the same source. The contrast between
authors like John of Seville, drawing from Arabic works, and the abacists,
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consists in this, that, unlike the latter, the former mention the Hindoos, use
the term algorism, calculate with the zero, and do not employ the abacus.
The former teach the extraction of roots, the abacists do not; they teach
the sexagesimal fractions used by the Arabs, while the abacists employ the
duodecimals of the Romans.

A little later than John of Seville flourished Gerard of Cremona in Lombardy.
Being desirous to gain possession of the Almagest, he went to Toledo, and
there, in 1175, translated this great work of Ptolemy. Inspired by the richness
of Mohammedan literature, he gave himself up to its study. He translated
into Latin over 70 Arabic works. Of mathematical treatises, there were among
these, besides the Almagest, the 15 books of Euclid, the Sphærica of Theodosius,
a work of Menelaus, the algebra of Mohammed ben Musa Hovarezmi, the
astronomy of Dshabir ben Aflah, and others less important.

In the thirteenth century, the zeal for the acquisition of Arabic learning
continued. Foremost among the patrons of science at this time ranked Emperor
Frederick II. of Hohenstaufen (died 1250). Through frequent contact with
Mohammedan scholars, he became familiar with Arabic science. He employed
a number of scholars in translating Arabic manuscripts, and it was through
him that we came in possession of a new translation of the Almagest. Another
royal head deserving mention as a zealous promoter of Arabic science was
Alfonso X. of Castile (died 1284). He gathered around him a number of Jewish
and Christian scholars, who translated and compiled astronomical works from
Arabic sources. Rabbi Zag and Iehuda ben Mose Cohen were the most
prominent among them. Astronomical tables prepared by these two Jews
spread rapidly in the Occident, and constituted the basis of all astronomical
calculation till the sixteenth century. The number of scholars who aided in
transplanting Arabic science upon Christian soil was large. But we mention
only one more. Giovanni Campano of Novara (about 1260) brought out a new
translation of Euclid, which drove the earlier ones from the field, and which
formed the basis of the printed editions.

At the close of the twelfth century, the Occident was in possession of the
so-called Arabic notation. The Hindoo methods of calculation began to
supersede the cumbrous methods inherited from Rome. Algebra, with its rules
for solving linear and quadratic equations, had been made accessible to the
Latins. The geometry of Euclid, the Sphærica of Theodosius, the astronomy of
Ptolemy, and other works were now accessible in the Latin tongue. Thus a great
amount of new scientific material had come into the hands of the Christians.
The talent necessary to digest this heterogeneous mass of knowledge was not
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wanting. The figure of Leonardo of Pisa adorns the vestibule of the thirteenth
century.

It is important to notice that no work either on mathematics or astronomy
was translated directly from the Greek previous to the fifteenth century.

The First Awakening and its Sequel.

Thus far, France and the British Isles have been the headquarters of
mathematics in Christian Europe. But at the beginning of the thirteenth
century the talent and activity of one man was suHcient to assign the
mathematical science a new home in Italy. This man was not a monk, like Bede,
Alcuin, or Gerbert, but a merchant, who in the midst of business pursuits found
time for scientific study. Leonardo of Pisa is the man to whom we owe the first
renaissance of mathematics on Christian soil. He is also called Fibonacci, i.e. son
of Bonaccio. His father was secretary at one of the numerous factories erected
on the south and east coast of the Mediterranean by the enterprising merchants
of Pisa. He made Leonardo, when a boy, learn the use of the abacus. The boy
acquired a strong taste for mathematics, and, in later years, during his extensive
business travels in Egypt, Syria, Greece, and Sicily, collected from the various
peoples all the knowledge he could get on this subject. Of all the methods of
calculation, he found the Hindoo to be unquestionably the best. Returning to
Pisa, he published, in 1202, his great work, the Liber Abaci. A revised edition
of this appeared in 1228. This work contains about all the knowledge the
Arabs possessed in arithmetic and algebra, and treats the subject in a free and
independent way. This, together with the other books of Leonardo, shows that
he was not merely a compiler, or, like other writers of the Middle Ages, a slavish
imitator of the form in which the subject had been previously presented, but
that he was an original worker of exceptional power.

He was the first great mathematician to advocate the adoption of the “Arabic
notation.” The calculation with the zero was the portion of Arabic mathematics
earliest adopted by the Christians. The minds of men had been prepared for
the reception of this by the use of the abacus and the apices. The reckoning
with columns was gradually abandoned, and the very word abacus changed its
meaning and became a synonym for algorism. For the zero, the Latins adopted
the name zephirum, from the Arabic sifr (sifra=empty); hence our English word
cipher. The new notation was accepted readily by the enlightened masses, but,
at first, rejected by the learned circles. The merchants of Italy used it as early
as the thirteenth century, while the monks in the monasteries adhered to the
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old forms. In 1299, nearly 100 years after the publication of Leonardo’s Liber
Abaci, the Florentine merchants were forbidden the use of the Arabic numerals
in book-keeping, and ordered either to employ the Roman numerals or to
write the numeral adjectives out in full. In the fifteenth century the abacus
with its counters ceased to be used in Spain and Italy. In France it was used
later, and it did not disappear in England and Germany before the middle of
the seventeenth century. Thus, in the Winter’s Tale (iv. 3), Shakespeare lets the
clown be embarrassed by a problem which he could not do without counters.
Iago (in Othello, i. 1) expresses his contempt for Michael Cassio, “forsooth a
great mathematician,” by calling him a “counter-caster.” So general, indeed,
says Peacock, appears to have been the practice of this species of arithmetic,
that its rules and principles form an essential part of the arithmetical treatises
of that day. The real fact seems to be that the old methods were used long after
the Hindoo numerals were in common and general use. With such dogged
persistency does man cling to the old!

The Liber Abaci was, for centuries, the storehouse from which authors got
material for works on arithmetic and algebra. In it are set forth the most
perfect methods of calculation with integers and fractions, known at that time;
the square and cube root are explained; equations of the first and second
degree leading to problems, either determinate or indeterminate, are solved
by the methods of ‘single’ or ‘double position,’ and also by real algebra. The
book contains a large number of problems. The following was proposed to
Leonardo of Pisa by a magister in Constantinople, as a diHcult problem: If A
gets from B 7 denare, then A’s sum is five-fold B’s; if B gets from A 5 denare,
then B’s sum is seven-fold A’s. How much has each? The Liber Abaci contains
another problem, which is of historical interest, because it was given with some
variations by Ahmes, 3000 years earlier: 7 old women go to Rome; each woman
has 7 mules, each mule carries 7 sacks, each sack contains 7 loaves, with each
loaf are 7 knives, each knife is put up in 7 sheaths. What is the sum total of all
named? Ans. 137, 256.

In 1220, Leonardo of Pisa published his Practica Geometriæ, which contains
all the knowledge of geometry and trigonometry transmitted to him. The
writings of Euclid and of some other Greek masters were known to him,
either from Arabic manuscripts directly or from the translations made by his
countrymen, Gerard of Cremona and Plato of Tivoli. Leonardo’s Geometry
contains an elegant geometrical demonstration of Heron’s formula for the area
of a triangle, as a function of its three sides. Leonardo treats the rich material
before him with skill and Euclidean rigour.
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Of still greater interest than the preceding works are those containing
Fibonacci’s original investigations. We must here preface that after the
publication of the Liber Abaci, Leonardo was presented by the astronomer
Dominicus to Emperor Frederick II. of Hohenstaufen. On that occasion, John
of Palermo, an imperial notary, proposed several problems, which Leonardo
solved promptly. The first problem was to find a number x, such that x2` 5 and
x2 ´ 5 are each square numbers. The answer is x “ 3 5

12 ; for p3 5
12 q

2 ` 5 “ p4 1
12 q

2,
p3 5

12 q
2´5 “ p2 7

12 q
2. His masterly solution of this is given in his liber quadratorum,

a copy of which work was sent by him to Frederick II. The problem was not
original with John of Palermo, since the Arabs had already solved similar ones.
Some parts of Leonardo’s solution may have been borrowed from the Arabs,
but the method which he employed of building squares by the summation of
odd numbers is original with him.

The second problem proposed to Leonardo at the famous scientific tourna-
ment which accompanied the presentation of this celebrated algebraist to that
great patron of learning, Emperor Frederick II., was the solving of the equation
x3 ` 2x2 ` 10x “ 20. As yet cubic equations had not been solved algebraically.
Instead of brooding stubbornly over this knotty problem, and after many
failures still entertaining new hopes of success, he changed his method of
inquiry and showed by clear and rigorous demonstration that the roots of this
equation could not be represented by the Euclidean irrational quantities, or,
in other words, that they could not be constructed with the ruler and compass
only. He contented himself with finding a very close approximation to the
required root. His work on this cubic is found in the Flos, together with the
solution of the following third problem given him by John of Palermo: Three
men possess in common an unknown sum of money t; the share of the first

is
t
2

; that of the second,
t
3
; that of the third,

t
6

. Desirous of depositing the

sum at a safer place, each takes at hazard a certain amount; the first takes x,
but deposits only

x
2

; the second carries y, but deposits only
y
3
; the third takes z,

and deposits
z
6

. Of the amount deposited each one must receive exactly 1
3 , in

order to possess his share of the whole sum. Find x, y, z. Leonardo shows the
problem to be indeterminate. Assuming 7 for the sum drawn by each from the
deposit, he finds t “ 47, x “ 33, y “ 13, z “ 1.

One would have thought that after so brilliant a beginning, the sciences
transplanted from Mohammedan to Christian soil would have enjoyed a steady
and vigorous development. But this was not the case. During the fourteenth
and fifteenth centuries, the mathematical science was almost stationary. Long
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wars absorbed the energies of the people and thereby kept back the growth of
the sciences. The death of Frederick II. in 1254 was followed by a period of
confusion in Germany. The German emperors and the popes were continually
quarrelling, and Italy was inevitably drawn into the struggles between the
Guelphs and the Ghibellines. France and England were engaged in the
Hundred Years’ War (1338–1453). Then followed in England the Wars of
the Roses. The growth of science was retarded not only by war, but also
by the injurious influence of scholastic philosophy. The intellectual leaders
of those times quarrelled over subtle subjects in metaphysics and theology.
Frivolous questions, such as “How many angels can stand on the point of a
needle?” were discussed with great interest. Indistinctness and confusion of
ideas characterised the reasoning during this period. Among the mathematical
productions of the Middle Ages, the works of Leonardo of Pisa appear to us
like jewels among quarry-rubbish. The writers on mathematics during this
period were not few in number, but their scientific evorts were vitiated by the
method of scholastic thinking. Though they possessed the Elements of Euclid,
yet the true nature of a mathematical proof was so little understood, that
Hankel believes it no exaggeration to say that “since Fibonacci, not a single
proof, not borrowed from Euclid, can be found in the whole literature of these
ages, which fulfils all necessary conditions.”

The only noticeable advance is a simplification of numerical operations and
a more extended application of them. Among the Italians are evidences of an
early maturity of arithmetic. Peacock says: The Tuscans generally, and the
Florentines in particular, whose city was the cradle of the literature and arts
of the thirteenth and fourteenth centuries, were celebrated for their knowledge
of arithmetic and book-keeping, which were so necessary for their extensive
commerce; the Italians were in familiar possession of commercial arithmetic
long before the other nations of Europe; to them we are indebted for the formal
introduction into books of arithmetic, under distinct heads, of questions in
the single and double rule of three, loss and gain, fellowship, exchange, simple
and compound interest, discount, and so on.

There was also a slow improvement in the algebraic notation. The
Hindoo algebra possessed a tolerable symbolic notation, which was, however,
completely ignored by the Mohammedans. In this respect, Arabic algebra
approached much more closely to that of Diophantus, which can scarcely be
said to employ symbols in a systematic way. Leonardo of Pisa possessed no
algebraic symbolism. Like the Arabs, he expressed the relations of magnitudes
to each other by lines or in words. But in the mathematical writings of the
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monk Luca Pacioli (also called Lucas de Burgo sepulchri) symbols began to
appear. They consisted merely in abbreviations of Italian words, such as p for
piu (more), m for meno (less), co for cosa (the thing or unknown quantity).
“Our present notation has arisen by almost insensible degrees as convenience
suggested diverent marks of abbreviation to diverent authors; and that perfect
symbolic language which addresses itself solely to the eye, and enables us to
take in at a glance the most complicated relations of quantity, is the result of a
large series of small improvements.”

We shall now mention a few authors who lived during the thirteenth and
fourteenth and the first half of the fifteenth centuries. About the time of
Leonardo of Pisa (1200 a.d.), lived the German monk Jordanus Nemorarius,
who wrote a once famous work on the properties of numbers (1496), modelled
after the arithmetic of Boethius. The most trifling numeral properties are
treated with nauseating pedantry and prolixity. A practical arithmetic based
on the Hindoo notation was also written by him. John Halifax (Sacro Bosco,
died 1256) taught in Paris and made an extract from the Almagest containing
only the most elementary parts of that work. This extract was for nearly
400 years a work of great popularity and standard authority. Other prominent
writers are Albertus Magnus and George Purbach in Germany, and Roger
Bacon in England. It appears that here and there some of our modern
ideas were anticipated by writers of the Middle Ages. Thus, Nicole Oresme,
a bishop in Normandy (died 1382), first conceived a notation of fractional
powers, afterwards re-discovered by Stevinus, and gave rules for operating with
them. His notation was totally diverent from ours. Thomas Bradwardine,
archbishop of Canterbury, studied star-polygons,—a subject which has recently
received renewed attention. The first appearance of such polygons was with
Pythagoras and his school. We next meet with such polygons in the geometry
of Boethius and also in the translation of Euclid from the Arabic by Athelard
of Bath. Bradwardine’s philosophic writings contain discussions on the infinite
and the infinitesimal—subjects never since lost sight of. To England falls the
honour of having produced the earliest European writers on trigonometry.
The writings of Bradwardine, of Richard of Wallingford, and John Maudith,
both professors at Oxford, and of Simon Bredon of Winchecombe, contain
trigonometry drawn from Arabic sources.

The works of the Greek monk Maximus Planudes, who lived in the first
half of the fourteenth century, are of interest only as showing that the Hindoo
numerals were then known in Greece. A writer belonging, like Planudes, to the
Byzantine school, was Moschopulus, who lived in Constantinople in the early
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part of the fifteenth century. To him appears to be due the introduction into
Europe of magic squares. He wrote a treatise on this subject. Magic squares
were known to the Arabs, and perhaps to the Hindoos. Mediæval astrologers
and physicians believed them to possess mystical properties and to be a charm
against plague, when engraved on silver plate.

In 1494 was printed the Summa de Arithmetica, Geometria, Proportione et
Proportionalita, writtenby theTuscanmonkLucasPacioli, who, asweremarked,
first introduced symbols in algebra. This contains all the knowledge of his
day on arithmetic, algebra, and trigonometry, and is the first comprehensive
work which appeared after the Liber Abaci of Fibonacci. It contains little of
importance which cannot be found in Fibonacci’s great work, published three
centuries earlier.

Perhaps the greatest result of the influx of Arabic learning was the estab-
lishment of universities. What was their attitude toward mathematics? The
University of Paris, so famous at the beginning of the twelfth century under
the teachings of Abelard, paid but little attention to this science during the
Middle Ages. Geometry was neglected, and Aristotle’s logic was the favourite
study. In 1336, a rule was introduced that no student should take a degree
without attending lectures on mathematics, and from a commentary on the
first six books of Euclid, dated 1536, it appears that candidates for the degree
of A.M. had to give an oath that they had attended lectures on these books.
Examinations, when held at all, probably did not extend beyond the first book,
as is shown by the nickname “magister matheseos,” applied to the Theorem of
Pythagoras, the last in the first book. More attention was paid to mathematics
at the University of Prague, founded 1384. For the Baccalaureate degree, students
were required to take lectures on Sacro Bosco’s famous work on astronomy.
Of candidates for the A.M. were required not only the six books of Euclid,
but an additional knowledge of applied mathematics. Lectures were given
on the Almagest. At the University of Leipzig, the daughter of Prague, and
at Cologne, less work was required, and, as late as the sixteenth century, the
same requirements were made at these as at Prague in the fourteenth. The
universities of Bologna, Padua, Pisa, occupied similar positions to the ones in
Germany, only that purely astrological lectures were given in place of lectures
on the Almagest. At Oxford, in the middle of the fifteenth century, the first two
books of Euclid were read.

Thus it will be seen that the study of mathematics was maintained at the
universities only in a half-hearted manner. No great mathematician and
teacher appeared, to inspire the students. The best energies of the schoolmen
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were expended upon the stupid subtleties of their philosophy. The genius
of Leonardo of Pisa left no permanent impress upon the age, and another
Renaissance of mathematics was wanted.



MODERN EUROPE.

We find it convenient to choose the time of the capture of Constantinople
by the Turks as the date at which the Middle Ages ended and Modern Times
began. In 1453, the Turks battered the walls of this celebrated metropolis
with cannon, and finally captured the city; the Byzantine Empire fell, to rise
no more. Calamitous as was this event to the East, it acted favourably upon
the progress of learning in the West. A great number of learned Greeks fled
into Italy, bringing with them precious manuscripts of Greek literature. This
contributed vastly to the reviving of classic learning. Up to this time, Greek
masters were known only through the often very corrupt Arabic manuscripts,
but now they began to be studied from original sources and in their own
language. The first English translation of Euclid was made in 1570 from the
Greek by Sir Henry Billingsley, assisted by John Dee. About the middle of the
fifteenth century, printing was invented; books became cheap and plentiful;
the printing-press transformed Europe into an audience-room. Near the close
of the fifteenth century, America was discovered, and, soon after, the earth was
circumnavigated. The pulse and pace of the world began to quicken. Men’s
minds became less servile; they became clearer and stronger. The indistinctness
of thought, which was the characteristic feature of mediæval learning, began
to be remedied chiefly by the steady cultivation of Pure Mathematics and
Astronomy. Dogmatism was attacked; there arose a long struggle with the
authority of the Church and the established schools of philosophy. The
Copernican System was set up in opposition to the time-honoured Ptolemaic
System. The long and eager contest between the two culminated in a crisis
at the time of Galileo, and resulted in the victory of the new system. Thus,
by slow degrees, the minds of men were cut adrift from their old scholastic
moorings and sent forth on the wide sea of scientific inquiry, to discover new
islands and continents of truth.

THE RENAISSANCE.

With the sixteenth century began a period of increased intellectual activity.
The human mind made a vast evort to achieve its freedom. Attempts at
its emancipation from Church authority had been made before, but they
were stifled and rendered abortive. The first great and successful revolt against
ecclesiastical authority was made in Germany. The new desire for judging freely

95



THE RENAISSANCE. 96

and independently in matters of religion was preceded and accompanied by a
growing spirit of scientific inquiry. Thus it was that, for a time, Germany led
the van in science. She produced Regiomontanus, Copernicus, Rhæticus, Kepler,
and Tycho Brahe, at a period when France and England had, as yet, brought forth
hardly any great scientific thinkers. This remarkable scientific productiveness
was no doubt due, to a great extent, to the commercial prosperity of Germany.
Material prosperity is an essential condition for the progress of knowledge. As
long as every individual is obliged to collect the necessaries for his subsistence,
there can be no leisure for higher pursuits. At this time, Germany had
accumulated considerable wealth. The Hanseatic League commanded the
trade of the North. Close commercial relations existed between Germany and
Italy. Italy, too, excelled in commercial activity and enterprise. We need only
mention Venice, whose glory began with the crusades, and Florence, with her
bankers and her manufacturers of silk and wool. These two cities became
great intellectual centres. Thus, Italy, too, produced men in art, literature, and
science, who shone forth in fullest splendour. In fact, Italy was the fatherland
of what is termed the Renaissance.

For the first great contributions to the mathematical sciences we must,
therefore, look to Italy and Germany. In Italy brilliant accessions were made
to algebra, in Germany to astronomy and trigonometry.

On the threshold of this new era we meet in Germany with the figure of John
Mueller, more generally called Regiomontanus (1436–1476). Chiefly to him
we owe the revival of trigonometry. He studied astronomy and trigonometry
at Vienna under the celebrated George Purbach. The latter perceived that the
existing Latin translations of the Almagest were full of errors, and that Arabic
authors had not remained true to the Greek original. Purbach therefore began
to make a translation directly from the Greek. But he did not live to finish
it. His work was continued by Regiomontanus, who went beyond his master.
Regiomontanus learned the Greek language from Cardinal Bessarion, whom
he followed to Italy, where he remained eight years collecting manuscripts from
Greeks who had fled thither from the Turks. In addition to the translation
of and the commentary on the Almagest, he prepared translations of the
Conics of Apollonius, of Archimedes, and of the mechanical works of Heron.
Regiomontanus and Purbach adopted the Hindoo sine in place of the Greek
chord of double the arc. The Greeks and afterwards the Arabs divided the
radius into 60 equal parts, and each of these again into 60 smaller ones. The
Hindoos expressed the length of the radius by parts of the circumference,
saying that of the 21, 600 equal divisions of the latter, it took 3438 to measure



THE RENAISSANCE. 97

the radius. Regiomontanus, to secure greater precision, constructed one table
of sines on a radius divided into 600, 000 parts, and another on a radius
divided decimally into 10, 000, 000 divisions. He emphasised the use of the
tangent in trigonometry. Following out some ideas of his master, he calculated
a table of tangents. German mathematicians were not the first Europeans to
use this function. In England it was known a century earlier to Bradwardine,
who speaks of tangent (umbra recta) and cotangent (umbra versa), and to
John Maudith. Regiomontanus was the author of an arithmetic and also of
a complete treatise on trigonometry, containing solutions of both plane and
spherical triangles. The form which he gave to trigonometry has been retained,
in its main features, to the present day.

Regiomontanus ranks among the greatest men that Germany has ever
produced. His complete mastery of astronomy and mathematics, and his
enthusiasm for them, were of far-reaching influence throughout Germany. So
great was his reputation, that Pope Sixtus IV. called him to Italy to improve the
calendar. Regiomontanus left his beloved city of Nürnberg for Rome, where
he died in the following year.

After the time of Purbach and Regiomontanus, trigonometry and especially
the calculation of tables continued to occupy German scholars. More refined
astronomical instruments were made, which gave observations of greater
precision; but these would have been useless without trigonometrical tables of
corresponding accuracy. Of the several tables calculated, that by Georg Joachim
of Feldkirch in Tyrol, generally called Rhæticus, deserves special mention.
He calculated a table of sines with the radius “ 10, 000, 000, 000 and from
102 to 102; and, later on, another with the radius “ 1, 000, 000, 000, 000, 000,
and proceeding from 102 to 102. He began also the construction of tables of
tangents and secants, to be carried to the same degree of accuracy; but he died
before finishing them. For twelve years he had had in continual employment
several calculators. The work was completed by his pupil, Valentine Otho,
in 1596. This was indeed a gigantic work,—a monument of German diligence
and indefatigable perseverance. The tables were republished in 1613 by Pitiscus,
who spared no pains to free them of errors. Astronomical tables of so great
a degree of accuracy had never been dreamed of by the Greeks, Hindoos, or
Arabs. That Rhæticus was not a ready calculator only, is indicated by his views
on trigonometrical lines. Up to his time, the trigonometric functions had been
considered always with relation to the arc; he was the first to construct the
right triangle and to make them depend directly upon its angles. It was from
the right triangle that Rhæticus got his idea of calculating the hypotenuse;
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i.e. he was the first to plan a table of secants. Good work in trigonometry was
done also by Vieta and Romanus.

We shall now leave the subject of trigonometry to witness the progress in the
solution of algebraical equations. To do so, we must quit Germany for Italy.
The first comprehensive algebra printed was that of Lucas Pacioli. He closes his
book by saying that the solution of the equations x3`mx “ n, x3`n “ mx is as
impossible at the present state of science as the quadrature of the circle. This
remark doubtless stimulated thought. The first step in the algebraic solution
of cubics was taken by Scipio Ferro (died 1526), a professor of mathematics at
Bologna, who solved the equation x3 `mx “ n. Nothing more is known of
his discovery than that he imparted it to his pupil, Floridas, in 1505. It was
the practice in those days and for two centuries afterwards to keep discoveries
secret, in order to secure by that means an advantage over rivals by proposing
problems beyond their reach. This practice gave rise to numberless disputes
regarding the priority of inventions. A second solution of cubics was given
by Nicolo of Brescia (1506(?)–1557). When a boy of six, Nicolo was so badly
cut by a French soldier that he never again gained the free use of his tongue.
Hence he was called Tartaglia, i.e. the stammerer. His widowed mother being
too poor to pay his tuition in school, he learned to read and picked up a
knowledge of Latin, Greek, and mathematics by himself. Possessing a mind
of extraordinary power, he was able to appear as teacher of mathematics at an
early age. In 1530, one Colla proposed him several problems, one leading to the
equation x3`px2 “ q. Tartaglia found an imperfect method for solving this, but
kept it secret. He spoke about his secret in public and thus caused Ferro’s pupil,
Floridas, to proclaim his own knowledge of the form x3 `mx “ n. Tartaglia,
believing him to be a mediocrist and braggart, challenged him to a public
discussion, to take place on the 22d of February, 1535. Hearing, meanwhile,
that his rival had gotten the method from a deceased master, and fearing that
he would be beaten in the contest, Tartaglia put in all the zeal, industry, and
skill to find the rule for the equations, and he succeeded in it ten days before
the appointed date, as he himself modestly says. The most diHcult step was,
no doubt, the passing from quadratic irrationals, used in operating from time
of old, to cubic irrationals. Placing x “ 3

?
t ´ 3

?
u, Tartaglia perceived that the

irrationals disappeared from the equation x3 `mx “ n, making n “ t ´ u. But
this last equality, together with p 1
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This is Tartaglia’s solution of x3 `mx “ n. On the 13th of February, he found
a similar solution for x3 “ mx ` n. The contest began on the 22d. Each
contestant proposed thirty problems. The one who could solve the greatest
number within fifty days should be the victor. Tartaglia solved the thirty
problems proposed by Floridas in two hours; Floridas could not solve any of
Tartaglia’s. From now on, Tartaglia studied cubic equations with a will. In 1541
he discovered a general solution for the cubic x3 ˘ px2 “ ˘q, by transforming
it into the form x3 ˘mx “ ˘n. The news of Tartaglia’s victory spread all over
Italy. Tartaglia was entreated to make known his method, but he declined
to do so, saying that after his completion of the translation from the Greek
of Euclid and Archimedes, he would publish a large algebra containing his
method. But a scholar from Milan, named Hieronimo Cardano (1501–1576),
after many solicitations, and after giving the most solemn and sacred promises
of secrecy, succeeded in obtaining from Tartaglia a knowledge of his rules.

At this time Cardan was writing his Ars Magna, and he knew no better way
to crown his work than by inserting the much sought for rules for solving
cubics. Thus Cardan broke his most solemn vows, and published in 1545 in
his Ars Magna Tartaglia’s solution of cubics. Tartaglia became desperate. His
most cherished hope, of giving to the world an immortal work which should
be the monument of his deep learning and power for original research, was
suddenly destroyed; for the crown intended for his work had been snatched
away. His first step was to write a history of his invention; but, to completely
annihilate his enemies, he challenged Cardan and his pupil Lodovico Ferrari to
a contest: each party should propose thirty-one questions to be solved by the
other within fifteen days. Tartaglia solved most questions in seven days, but
the other party did not send in their solution before the expiration of the fifth
month; moreover, all their solutions except one were wrong. A replication and
a rejoinder followed. Endless were the problems proposed and solved on both
sides. The dispute produced much chagrin and heart-burnings to the parties,
and to Tartaglia especially, who met with many other disappointments. After
having recovered himself again, Tartaglia began, in 1556, the publication of
the work which he had had in his mind for so long; but he died before he
reached the consideration of cubic equations. Thus the fondest wish of his life
remained unfulfilled; the man to whom we owe the greatest contribution to
algebra made in the sixteenth century was forgotten, and his method came to
be regarded as the discovery of Cardan and to be called Cardan’s solution.

Remarkable is the great interest that the solution of cubics excited throughout
Italy. It is but natural that after this great conquest mathematicians should
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attack biquadratic equations. As in the case of cubics, so here, the first
impulse was given by Colla, who, in 1540, proposed for solution the equation
x4 ` 6x2 ` 36 “ 60x. To be sure, Cardan had studied particular cases as early
as 1539. Thus he solved the equation 13x2 “ x4`2x3`2x`1 by a process similar to
that employed by Diophantus and the Hindoos; namely, by adding to both sides
3x2 and thereby rendering both numbers complete squares. But Cardan failed to
find a general solution; it remained for his pupil Ferrari to prop the reputation
of his master by the brilliant discovery of the general solution of biquadratic
equations. Ferrari reduced Colla’s equation to the form px2 ` 6q2 “ 60x` 6x2.
In order to give also the right member the form of a complete square he added
to both members the expression 2px2 ` 6qy ` y2, containing a new unknown
quantity y. This gave him px2 ` 6 ` yq2 “ p6 ` 2yqx2 ` 60x ` p12y ` y2q. The
condition that the right member be a complete square is expressed by the
cubic equation p2y ` 6qp12y ` y2q “ 900. Extracting the square root of the

biquadratic, he got x2 ` 6` y “ x
a

2y` 6`
900

a

2y` 6
. Solving the cubic for y

and substituting, it remained only to determine x from the resulting quadratic.
Ferrari pursued a similar method with other numerical biquadratic equations.
Cardan had the pleasure of publishing this discovery in his Ars Magna in 1545.
Ferrari’s solution is sometimes ascribed to Bombelli, but he is no more the
discoverer of it than Cardan is of the solution called by his name.

To Cardan algebra is much indebted. In his Ars Magna he takes notice of
negative roots of an equation, calling them fictitious, while the positive roots
are called real. Imaginary roots he does not consider; cases where they appear
he calls impossible. Cardan also observed the diHculty in the irreducible
case in the cubics, which, like the quadrature of the circle, has since “so
much tormented the perverse ingenuity of mathematicians.” But he did not
understand its nature. It remained for Raphael Bombelli of Bologna, who
published in 1572 an algebra of great merit, to point out the reality of the
apparently imaginary expression which the root assumes, and thus to lay the
foundation of a more intimate knowledge of imaginary quantities.

After this brilliant success in solving equations of the third and fourth
degrees, there was probably no one who doubted, that with aid of irrationals
of higher degrees, the solution of equations of any degree whatever could be
found. But all attempts at the algebraic solution of the quintic were fruitless,
and, finally, Abel demonstrated that all hopes of finding algebraic solutions to
equations of higher than the fourth degree were purely Utopian.

Since no solution by radicals of equations of higher degrees could be found,
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there remained nothing else to be done than the devising of rules by which at
least the numerical values of the roots could be ascertained. Cardan applied the
Hindoo rule of “false position” (called by him regula aurea) to the cubic, but
this mode of approximating was exceedingly rough. An incomparably better
method was invented by Franciscus Vieta, a French mathematician, whose
transcendent genius enriched mathematics with several important innovations.
Taking the equation f pxq “ Q, wherein f pxq is a polynomial containing diverent
powers of x, with numerical coeHcients, and Q is a given number, Vieta first
substitutes in f pxq a known approximate value of the root, and then shows that
another figure of the root can be obtained by division. A repetition of the same
process gives the next figure of the root, and so on. Thus, in x2 ` 14x “ 7929,
taking 80 for the approximate root, and placing x “ 80` b, we get

p80` bq2 ` 14p80` bq “ 7929,

or 174b ` b2 “ 409.

Since 174b is much greater than b2, we place 174b “ 409, and obtain thereby
b “ 2. Hence the second approximation is 82. Put x “ 82 ` c, then
p82 ` cq2 ` 14p82 ` cq “ 7929, or 178c ` c2 “ 57. As before, place 178c “ 57,
then c “ .3, and the third approximation gives 82.3. Assuming x “ 82.3` d, and
substituting, gives 178.6d ` d2 “ 3.51, and 178.6d “ 3.51, 6 d “ .01; giving for
the fourth approximation 82.31. In the same way, e “ .009, and the value for
the root of the given equation is 82.319 . . . . For this process, Vieta was greatly
admired by his contemporaries. It was employed by Harriot, Oughtred, Pell,
and others. Its principle is identical with the main principle involved in the
methods of approximation of Newton and Horner. The only change lies in
the arrangement of the work. This alteration was made to avord facility and
security in the process of evolution of the root.

We pause a moment to sketch the life of Vieta, the most eminent French
mathematician of the sixteenth century. He was born in Poitou in 1540, and
died in 1603 at Paris. He was employed throughout life in the service of the
state, under Henry III. and Henry IV. He was, therefore, not a mathematician
by profession, but his love for the science was so great that he remained in
his chamber studying, sometimes several days in succession, without eating
and sleeping more than was necessary to sustain himself. So great devotion to
abstract science is the more remarkable, because he lived at a time of incessant
political and religious turmoil. During the war against Spain, Vieta rendered
service to Henry IV. by deciphering intercepted letters written in a species of
cipher, and addressed by the Spanish Court to their governor of Netherlands.
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The Spaniards attributed the discovery of the key to magic.
An ambassador from Netherlands once told Henry IV. that France did

not possess a single geometer capable of solving a problem propounded to
geometers by a Belgian mathematician, Adrianus Romanus. It was the solution
of the equation of the forty-fifth degree:—

45y´ 3795y3 ` 95634y5 ´ ¨ ¨ ¨ ` 945y41 ´ 45y43 ` y45 “ C.

Henry IV. called Vieta, who, having already pursued similar investigations,
saw at once that this awe-inspiring problem was simply the equation by which
C “ 2 sin ϕ was expressed in terms of y “ 2 sin 1

45 ϕ; that, since 45 “ 3¨3¨5, it
was necessary only to divide an angle once into 5 equal parts, and then twice
into 3,—a division which could be evected by corresponding equations of the
fifth and third degrees. Brilliant was the discovery by Vieta of 23 roots to this
equation, instead of only one. The reason why he did not find 45 solutions,
is that the remaining ones involve negative sines, which were unintelligible
to him. Detailed investigations on the famous old problem of the section of
an angle into an odd number of equal parts, led Vieta to the discovery of a
trigonometrical solution of Cardan’s irreducible case in cubics. He applied the
equation

`

2 cos 1
3 ϕ
˘3
´ 3

`

2 cos 1
3 ϕ
˘

“ 2 cos ϕ to the solution of x3 ´ 3a2x “ a2b,
when a ą 1

2 b, by placing x “ 2a cos 1
3 ϕ, and determining ϕ from b “ 2a cos ϕ.

The main principle employed by him in the solution of equations is that of
reduction. He solves the quadratic by making a suitable substitution which will
remove the term containing x to the first degree. Like Cardan, he reduces the
general expression of the cubic to the form x3 `mx ` n “ 0; then, assuming
x “

` 1
3 a´ z2˘˜ z and substituting, he gets z6 ´ bz3 ´ 1

27 a3 “ 0. Putting z3 “ y,
he has a quadratic. In the solution of biquadratics, Vieta still remains true to
his principle of reduction. This gives him the well-known cubic resolvent. He
thus adheres throughout to his favourite principle, and thereby introduces into
algebra a uniformity of method which claims our lively admiration. In Vieta’s
algebra we discover a partial knowledge of the relations existing between the
coeHcients and the roots of an equation. He shows that if the coeHcient of
the second term in an equation of the second degree is minus the sum of two
numbers whose product is the third term, then the two numbers are roots of
the equation. Vieta rejected all except positive roots; hence it was impossible
for him to fully perceive the relations in question.

The most epoch-making innovation in algebra due to Vieta is the denoting
of general or indefinite quantities by letters of the alphabet. To be sure,
Regiomontanus and Stifel in Germany, and Cardan in Italy, used letters
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before him, but Vieta extended the idea and first made it an essential part of
algebra. The new algebra was called by him logistica speciosa in distinction
to the old logistica numerosa. Vieta’s formalism divered considerably from
that of to-day. The equation a3 ` 3a2b ` 3ab2 ` b3 “ pa ` bq3 was written by
him “a cubus ` b in a quadr. 3 ` a in b quadr. 3 ` b cubo æqualia a` b cubo.”
In numerical equations the unknown quantity was denoted by N , its square
by Q, and its cube by C. Thus the equation x3 ´ 8x2 ` 16x “ 40 was written
1C ´ 8Q ` 16N æqual. 40. Observe that exponents and our symbol (“) for
equality were not yet in use; but that Vieta employed the Maltese cross (`)
as the short-hand symbol for addition, and the (´) for subtraction. These
two characters had not been in general use before the time of Vieta. “It is
very singular,” says Hallam, “that discoveries of the greatest convenience, and,
apparently, not above the ingenuity of a village schoolmaster, should have
been overlooked by men of extraordinary acuteness like Tartaglia, Cardan,
and Ferrari; and hardly less so that, by dint of that acuteness, they dispensed
with the aid of these contrivances in which we suppose that so much of the
utility of algebraic expression consists.” Even after improvements in notation
were once proposed, it was with extreme slowness that they were admitted
into general use. They were made oftener by accident than design, and their
authors had little notion of the evect of the change which they were making.
The introduction of the ` and ´ symbols seems to be due to the Germans,
who, although they did not enrich algebra during the Renaissance with great
inventions, as did the Italians, still cultivated it with great zeal. The arithmetic
of John Widmann, printed a.d. 1489 in Leipzig, is the earliest book in which
the ` and ´ symbols have been found. There are indications leading us to
surmise that they were in use first among merchants. They occur again in the
arithmetic of Grammateus, a teacher at the University of Vienna. His pupil,
Christov Rudolv, the writer of the first text-book on algebra in the German
language (printed in 1525), employs these symbols also. So did Stifel, who
brought out a second edition of Rudolv’s Coss in 1553. Thus, by slow degrees,
their adoption became universal. There is another short-hand symbol of which
we owe the origin to the Germans. In a manuscript published sometime in
the fifteenth century, a dot placed before a number is made to signify the
extraction of a root of that number. This dot is the embryo of our present
symbol for the square root. Christov Rudolv, in his algebra, remarks that “the
radix quadrata is, for brevity, designated in his algorithm with the character
?, as ?4.” Here the dot has grown into a symbol much like our own. This
same symbol was used by Michael Stifel. Our sign of equality is due to Robert
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Recorde (1510–1558), the author of The Whetstone of Witte (1557), which is the
first English treatise on algebra. He selected this symbol because no two things
could be more equal than two parallel lines“. The sign˜ for division was first
used by Johann Heinrich Rahn, a Swiss, in 1659, and was introduced in England
by John Pell in 1668.

Michael Stifel (1486?–1567), the greatest German algebraist of the sixteenth
century, was born in Esslingen, and died in Jena. He was educated in the
monastery of his native place, and afterwards became Protestant minister. The
study of the significance of mystic numbers in Revelation and in Daniel drew
him to mathematics. He studied German and Italian works, and published
in 1544, in Latin, a book entitled Arithmetica integra. Melanchthon wrote a
preface to it. Its three parts treat respectively of rational numbers, irrational
numbers, and algebra. Stifel gives a table containing the numerical values of the
binomial coeHcients for powers below the 18th. He observes an advantage in
letting a geometric progression correspond to an arithmetical progression, and
arrives at the designation of integral powers by numbers. Here are the germs
of the theory of exponents. In 1545 Stifel published an arithmetic in German.
His edition of Rudolv’s Coss contains rules for solving cubic equations, derived
from the writings of Cardan.

We remarked above that Vieta discarded negative roots of equations. Indeed,
we find few algebraists before and during the Renaissance who understood the
significance even of negative quantities. Fibonacci seldom uses them. Pacioli
states the rule that “minus times minus gives plus,” but applies it really only
to the development of the product of pa´ bqpc ´ dq; purely negative quantities
do not appear in his work. The great German “Cossist” (algebraist), Michael
Stifel, speaks as early as 1544 of numbers which are “absurd” or “fictitious
below zero,” and which arise when “real numbers above zero” are subtracted
from zero. Cardan, at last, speaks of a “pure minus”; “but these ideas,” says
Hankel, “remained sparsely, and until the beginning of the seventeenth century,
mathematicians dealt exclusively with absolute positive quantities.” The first
algebraist who occasionally places a purely negative quantity by itself on one
side of an equation, is Harriot in England. As regards the recognition of
negative roots, Cardan and Bombelli were far in advance of all writers of the
Renaissance, including Vieta. Yet even they mentioned these so-called false
or fictitious roots only in passing, and without grasping their real significance
and importance. On this subject Cardan and Bombelli had advanced to about
the same point as had the Hindoo Bhaskara, who saw negative roots, but did
not approve of them. The generalisation of the conception of quantity so as
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to include the negative, was an exceedingly slow and diHcult process in the
development of algebra.

We shall now consider the history of geometry during the Renaissance.
Unlike algebra, it made hardly any progress. The greatest gain was a more
intimate knowledge of Greek geometry. No essential progress was made before
the time of Descartes. Regiomontanus, Xylander of Augsburg, Tartaglia,
Commandinus of Urbino in Italy, Maurolycus, and others, made translations
of geometrical works from the Greek. John Werner of Nürnberg published in
1522 the first work on conics which appeared in Christian Europe. Unlike the
geometers of old, he studied the sections in relation with the cone, and derived
their properties directly from it. This mode of studying the conics was followed
by Maurolycus of Messina (1494–1575). The latter is, doubtless, the greatest
geometer of the sixteenth century. From the notes of Pappus, he attempted to
restore the missing fifth book of Apollonius on maxima and minima. His chief
work is his masterly and original treatment of the conic sections, wherein he
discusses tangents and asymptotes more fully than Apollonius had done, and
applies them to various physical and astronomical problems.

The foremost geometrician of Portugal was Nonius; of France, before Vieta,
was Peter Ramus, who perished in the massacre of St. Bartholomew. Vieta
possessed great familiarity with ancient geometry. The new form which he
gave to algebra, by representing general quantities by letters, enabled him to
point out more easily how the construction of the roots of cubics depended
upon the celebrated ancient problems of the duplication of the cube and the
trisection of an angle. He reached the interesting conclusion that the former
problem includes the solutions of all cubics in which the radical in Tartaglia’s
formula is real, but that the latter problem includes only those leading to the
irreducible case.

The problem of the quadrature of the circle was revived in this age, and was
zealously studied even by men of eminence and mathematical ability. The army
of circle-squarers became most formidable during the seventeenth century.
Among the first to revive this problem was the German Cardinal Nicolaus
Cusanus (died 1464), who had the reputation of being a great logician. His
fallacies were exposed to full view by Regiomontanus. As in this case, so in
others, every quadrator of note raised up an opposing mathematician: Orontius
was met by Buteo and Nonius; Joseph Scaliger by Vieta, Adrianus Romanus,
and Clavius; A. Quercu by Peter Metius. Two mathematicians of Netherlands,
Adrianus Romanus and Ludolph van Ceulen, occupied themselves with
approximating to the ratio between the circumference and the diameter. The
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former carried the value π to 15, the latter to 35, places. The value of π is
therefore often named “Ludolph’s number.” His performance was considered
so extraordinary, that the numbers were cut on his tomb-stone in St. Peter’s
church-yard, at Leyden. Romanus was the one who propounded for solution
that equation of the forty-fifth degree solved by Vieta. On receiving Vieta’s
solution, he at once departed for Paris, to make his acquaintance with so great
a master. Vieta proposed to him the Apollonian problem, to draw a circle
touching three given circles. “Adrianus Romanus solved the problem by the
intersection of two hyperbolas; but this solution did not possess the rigour
of the ancient geometry. Vieta caused him to see this, and then, in his turn,
presented a solution which had all the rigour desirable.” Romanus did much
toward simplifying spherical trigonometry by reducing, by means of certain
projections, the 28 cases in triangles then considered to only six.

Mention must here be made of the improvements of the Julian calendar. The
yearly determination of the movable feasts had for a long time been connected
with an untold amount of confusion. The rapid progress of astronomy led
to the consideration of this subject, and many new calendars were proposed.
Pope Gregory XIII. convoked a large number of mathematicians, astronomers,
and prelates, who decided upon the adoption of the calendar proposed by the
Jesuit Lilius Clavius. To rectify the errors of the Julian calendar it was agreed
to write in the new calendar the 15th of October immediately after the 4th of
October of the year 1582. The Gregorian calendar met with a great deal of
opposition both among scientists and among Protestants. Clavius, who ranked
high as a geometer, met the objections of the former most ably and evectively;
the prejudices of the latter passed away with time.

The passion for the study of mystical properties of numbers descended
from the ancients to the moderns. Much was written on numerical mysticism
even by such eminent men as Pacioli and Stifel. The Numerorum Mysteria
of Peter Bungus covered 700 quarto pages. He worked with great industry
and satisfaction on 666, which is the number of the beast in Revelation
(xiii. 18), the symbol of Antichrist. He reduced the name of the ‘impious’
Martin Luther to a form which may express this formidable number. Placing
a “ 1, b “ 2, etc, k “ 10, l “ 20, etc., he finds, after misspelling the name,
that Mp30qAp1qRp80qTp100qIp9qNp40q Lp20qVp200qTp100qEp5qRp80qAp1q constitutes the
number required. These attacks on the great reformer were not unprovoked,
for his friend, Michael Stifel, the most acute and original of the early
mathematicians of Germany, exercised an equal ingenuity in showing that the
above number referred to Pope Leo X.,—a demonstration which gave Stifel
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unspeakable comfort.
Astrology also was still a favourite study. It is well known that Cardan,

Maurolycus, Regiomontanus, and many other eminent scientists who lived at a
period even later than this, engaged in deep astrological study; but it is not so
generally known that besides the occult sciences already named, men engaged
in the mystic study of star-polygons and magic squares. “The pentagramma
gives you pain,” says Faust to Mephistopheles. It is of deep psychological
interest to see scientists, like the great Kepler, demonstrate on one page a
theorem on star-polygons, with strict geometric rigour, while on the next page,
perhaps, he explains their use as amulets or in conjurations. Playfair, speaking
of Cardan as an astrologer, calls him “a melancholy proof that there is no folly
or weakness too great to be united to high intellectual attainments.” Let our
judgment not be too harsh. The period under consideration is too near the
Middle Ages to admit of complete emancipation from mysticism even among
scientists. Scholars like Kepler, Napier, Albrecht Dürer, while in the van of
progress and planting one foot upon the firm ground of truly scientific inquiry,
were still resting with the other foot upon the scholastic ideas of preceding
ages.

VIETA TO DESCARTES.

The ecclesiastical power, which in the ignorant ages was an unmixed benefit,
in more enlightened ages became a serious evil. Thus, in France, during the
reigns preceding that of Henry IV., the theological spirit predominated. This
is painfully shown by the massacres of Vassy and of St. Bartholomew. Being
engaged in religious disputes, people had no leisure for science and for secular
literature. Hence, down to the time of Henry IV., the French “had not put
forth a single work, the destruction of which would now be a loss to Europe.”
In England, on the other hand, no religious wars were waged. The people
were comparatively indiverent about religious strifes; they concentrated their
ability upon secular matters, and acquired, in the sixteenth century, a literature
which is immortalised by the genius of Shakespeare and Spenser. This great
literary age in England was followed by a great scientific age. At the close
of the sixteenth century, the shackles of ecclesiastical authority were thrown
ov by France. The ascension of Henry IV. to the throne was followed in 1598
by the Edict of Nantes, granting freedom of worship to the Huguenots, and
thereby terminating religious wars. The genius of the French nation now began
to blossom. Cardinal Richelieu, during the reign of Louis XIII., pursued the
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broad policy of not favouring the opinions of any sect, but of promoting the
interests of the nation. His age was remarkable for the progress of knowledge.
It produced that great secular literature, the counterpart of which was found in
England in the sixteenth century. The seventeenth century was made illustrious
also by the great French mathematicians, Roberval, Descartes, Desargues,
Fermat, and Pascal.

More gloomy is the picture in Germany. The great changes which
revolutionised the world in the sixteenth century, and which led England
to national greatness, led Germany to degradation. The first evects of the
Reformation there were salutary. At the close of the fifteenth and during the
sixteenth century, Germany had been conspicuous for her scientific pursuits.
She had been the leader in astronomy and trigonometry. Algebra also,
excepting for the discoveries in cubic equations, was, before the time of Vieta,
in a more advanced state there than elsewhere. But at the beginning of the
seventeenth century, when the sun of science began to rise in France, it set
in Germany. Theologic disputes and religious strife ensued. The Thirty
Years’ War (1618–1648) proved ruinous. The German empire was shattered,
and became a mere lax confederation of petty despotisms. Commerce was
destroyed; national feeling died out. Art disappeared, and in literature there
was only a slavish imitation of French artificiality. Nor did Germany recover
from this low state for 200 years; for in 1756 began another struggle, the Seven
Years’ War, which turned Prussia into a wasted land. Thus it followed that at
the beginning of the seventeenth century, the great Kepler was the only German
mathematician of eminence, and that in the interval of 200 years between
Kepler and Gauss, there arose no great mathematician in Germany excepting
Leibniz.

Up to the seventeenth century, mathematics was cultivated but little in Great
Britain. During the sixteenth century, she brought forth no mathematician
comparable with Vieta, Stifel, or Tartaglia. But with the time of Recorde,
the English became conspicuous for numerical skill. The first important
arithmetical work of English authorship was published in Latin in 1522 by
Cuthbert Tonstall (1474–1559). He had studied at Oxford, Cambridge, and
Padua, and drew freely from the works of Pacioli and Regiomontanus. Reprints
of his arithmetic appeared in England and France. After Recorde the higher
branches of mathematics began to be studied. Later, Scotland brought forth
Napier, the inventor of logarithms. The instantaneous appreciation of their
value is doubtless the result of superiority in calculation. In Italy, and especially
in France, geometry, which for a long time had been an almost stationary
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science, began to be studied with success. Galileo, Torricelli, Roberval, Fermat,
Desargues, Pascal, Descartes, and the English Wallis are the great revolutioners
of this science. Theoretical mechanics began to be studied. The foundations
were laid by Fermat and Pascal for the theory of numbers and the theory of
probability.

We shall first consider the improvements made in the art of calculating. The
nations of antiquity experimented thousands of years upon numeral notations
before they happened to strike upon the so-called “Arabic notation.” In the
simple expedient of the cipher, which was introduced by the Hindoos about
the fifth or sixth century after Christ, mathematics received one of the most
powerful impulses. It would seem that after the “Arabic notation” was once
thoroughly understood, decimal fractions would occur at once as an obvious
extension of it. But “it is curious to think how much science had attempted
in physical research and how deeply numbers had been pondered, before it
was perceived that the all-powerful simplicity of the ‘Arabic notation’ was
as valuable and as manageable in an infinitely descending as in an infinitely
ascending progression.” Simple as decimal fractions appear to us, the invention
of them is not the result of one mind or even of one age. They came into use by
almost imperceptible degrees. The first mathematicians identified with their
history did not perceive their true nature and importance, and failed to invent
a suitable notation. The idea of decimal fractions makes its first appearance
in methods for approximating to the square roots of numbers. Thus John of
Seville, presumably in imitation of Hindoo rules, adds 2 n ciphers to the number,
then finds the square root, and takes this as the numerator of a fraction whose
denominator is 1 followed by n ciphers. The same method was followed by
Cardan, but it failed to be generally adopted even by his Italian contemporaries;
for otherwise it would certainly have been at least mentioned by Cataldi (died
1626) in a work devoted exclusively to the extraction of roots. Cataldi finds the
square root by means of continued fractions—a method ingenious and novel,
but for practical purposes inferior to Cardan’s. Orontius Finaeus (died 1555)
in France, and William Buckley (died about 1550) in England extracted the
square root in the same way as Cardan and John of Seville. The invention
of decimals is frequently attributed to Regiomontanus, on the ground that
instead of placing the sinus totus, in trigonometry, equal to a multiple of 60,
like the Greeks, he put it “ 100, 000. But here the trigonometrical lines were
expressed in integers, and not in fractions. Though he adopted a decimal
division of the radius, he and his successors did not apply the idea outside of
trigonometry and, indeed, had no notion whatever of decimal fractions. To
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Simon Stevin of Bruges in Belgium (1548–1620), a man who did a great deal of
work in most diverse fields of science, we owe the first systematic treatment of
decimal fractions. In his La Disme (1585) he describes in very express terms the
advantages, not only of decimal fractions, but also of the decimal division in
systems of weights and measures. Stevin applied the new fractions “to all the
operations of ordinary arithmetic.” What he lacked was a suitable notation.
In place of our decimal point, he used a cipher; to each place in the fraction
was attached the corresponding index. Thus, in his notation, the number
5.912 would be

0
5 1921

3
2 or 5©0 9©1 1©2 2©3 . These indices, though cumbrous in

practice, are of interest, because they are the germ of an important innovation.
To Stevin belongs the honour of inventing our present mode of designating
powers and also of introducing fractional exponents into algebra. Strictly
speaking, this had been done much earlier by Oresme, but it remained wholly
unnoticed. Not even Stevin’s innovations were immediately appreciated or at
once accepted, but, unlike Oresme’s, they remained a secure possession. No
improvement was made in the notation of decimals till the beginning of the
seventeenth century. After Stevin, decimals were used by Joost Bürgi, a Swiss
by birth, who prepared a manuscript on arithmetic soon after 1592, and by
Johann Hartmann Beyer, who assumes the invention as his own. In 1603,
he published at Frankfurt on the Main a Logistica Decimalis. With Bürgi, a
zero placed underneath the digit in unit’s place answers as sign of separation.
Beyer’s notation resembles Stevin’s. The decimal point, says Peacock, is due to
Napier, who in 1617 published his Rabdologia, containing a treatise on decimals,
wherein the decimal point is used in one or two instances. In the English
translation of Napier’s Mirifici logarithmorum canonis descriptio, executed by
Edward Wright in 1616, and corrected by the author, the decimal point occurs
in the tables. There is no mention of decimals in English arithmetics between
1619 and 1631. Oughtred in 1631 designates the fraction .56 thus, 0 56. Albert
Girard, a pupil of Stevin, in 1629 uses the point on one occasion. John Wallis
in 1657 writes 12 345 , but afterwards in his algebra adopts the usual point.
De Morgan says that “to the first quarter of the eighteenth century we must
refer not only the complete and final victory of the decimal point, but also
that of the now universal method of performing the operations of division and
extraction of the square root. We have dwelt at some length on the progress
of the decimal notation, because “the history of language . . . is of the highest
order of interest, as well as utility: its suggestions are the best lesson for the
future which a reflecting mind can have.”

The miraculous powers of modern calculation are due to three inventions:
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the Arabic Notation, Decimal Fractions, and Logarithms. The invention of
logarithms in the first quarter of the seventeenth century was admirably timed,
for Kepler was then examining planetary orbits, and Galileo had just turned
the telescope to the stars. During the Renaissance German mathematicians had
constructed trigonometrical tables of great accuracy, but this greater precision
enormously increased the work of the calculator. It is no exaggeration to
say that the invention of logarithms “by shortening the labours doubled the
life of the astronomer.” Logarithms were invented by John Napier, Baron of
Merchiston, in Scotland (1550–1617). It is one of the greatest curiosities of the
history of science that Napier constructed logarithms before exponents were
used. To be sure, Stifel and Stevin made some attempts to denote powers by
indices, but this notation was not generally known,—not even to Harriot, whose
algebra appeared long after Napier’s death. That logarithms flow naturally
from the exponential symbol was not observed until much later. It was Euler
who first considered logarithms as being indices of powers. What, then, was
Napier’s line of thought?

Let AB be a definite line, DE a line extending from D indefinitely. Imagine two
points starting at the same

A BC

D EF

moment; the one moving from A
toward B, the other from D to-
ward E. Let the velocity during the
first moment be the same for both:
let that of the point on line DE
be uniform; but the velocity of the

point on AB decreasing in such a way that when it arrives at any point C, its
velocity is proportional to the remaining distance BC. While the first point
moves over a distance AC, the second one moves over a distance DF . Napier
calls DF the logarithm of BC.

Napier’s process is so unique and so diverent from all other modes of
presenting the subject that there cannot be the shadow of a doubt that this
invention is entirely his own; it is the result of unaided, isolated speculation.
He first sought the logarithms only of sines; the line AB was the sine of 90˝

and was taken “ 107; BC was the sine of the arc, and DF its logarithm. We
notice that as the motion proceeds, BC decreases in geometrical progression,
while DF increases in arithmetical progression. Let AB “ a “ 107, let x “ DF ,

y “ BC, then AC “ a´ y. The velocity of the point C is
dpa´ yq

dt
“ y; this gives

´nat. log y “ t ` c. When t “ 0, then y “ a and c “ ´nat. log a. Again, let
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dx
dt
“ a be the velocity of the point F , then x “ at. Substituting for t and c their

values and remembering that a “ 107 and that by definition x “ Nap. log y, we
get

Nap. log y “ 107 nat. log
107

y
.

It is evident from this formula that Napier’s logarithms are not the same
as the natural logarithms. Napier’s logarithms increase as the number itself
decreases. He took the logarithm of sin 90 “ 0; i.e. the logarithm of 107 “ 0.
The logarithm of sin α increased from zero as α decreased from 90˝. Napier’s
genesis of logarithms from the conception of two flowing points reminds
us of Newton’s doctrine of fluxions. The relation between geometric and
arithmetical progressions, so skilfully utilised by Napier, had been observed by
Archimedes, Stifel, and others. Napier did not determine the base to his system
of logarithms. The notion of a “base” in fact never suggested itself to him. The
one demanded by his reasoning is the reciprocal of that of the natural system,
but such a base would not reproduce accurately all of Napier’s figures, owing
to slight inaccuracies in the calculation of the tables. Napier’s great invention
was given to the world in 1614 in a work entitled Mirifici logarithmorum canonis
descriptio. In it he explained the nature of his logarithms, and gave a logarithmic
table of the natural sines of a quadrant from minute to minute.

Henry Briggs (1556–1631), in Napier’s time professor of geometry at
Gresham College, London, and afterwards professor at Oxford, was so struck
with admiration of Napier’s book, that he left his studies in London to do
homage to the Scottish philosopher. Briggs was delayed in his journey, and
Napier complained to a common friend, “Ah, John, Mr. Briggs will not come.”
At that very moment knocks were heard at the gate, and Briggs was brought
into the lord’s chamber. Almost one-quarter of an hour was spent, each
beholding the other without speaking a word. At last Briggs began: “My lord,
I have undertaken this long journey purposely to see your person, and to know
by what engine of wit or ingenuity you came first to think of this most excellent
help in astronomy, viz. the logarithms; but, my lord, being by you found out, I
wonder nobody found it out before, when now known it is so easy.” Briggs
suggested to Napier the advantage that would result from retaining zero for the
logarithm of the whole sine, but choosing 10, 000, 000, 000 for the logarithm
of the 10th part of that same sine, i.e. of 5˝ 441222. Napier said that he had
already thought of the change, and he pointed out a slight improvement on
Briggs’ idea; viz. that zero should be the logarithm of 1, and 10, 000, 000, 000
that of the whole sine, thereby making the characteristic of numbers greater
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than unity positive and not negative, as suggested by Briggs. Briggs admitted
this to be more convenient. The invention of “Briggian logarithms” occurred,
therefore, to Briggs and Napier independently. The great practical advantage
of the new system was that its fundamental progression was accommodated
to the base, 10, of our numerical scale. Briggs devoted all his energies to
the construction of tables upon the new plan. Napier died in 1617, with the
satisfaction of having found in Briggs an able friend to bring to completion
his unfinished plans. In 1624 Briggs published his Arithmetica logarithmica,
containing the logarithms to 14 places of numbers, from 1 to 20, 000 and from
90, 000 to 100, 000. The gap from 20, 000 to 90, 000 was filled up by that
illustrious successor of Napier and Briggs, Adrian Vlacq of Gouda in Holland.
He published in 1628 a table of logarithms from 1 to 100, 000, of which 70, 000
were calculated by himself. The first publication of Briggian logarithms of
trigonometric functions was made in 1620 by Gunter, a colleague of Briggs,
who found the logarithmic sines and tangents for every minute to seven places.
Gunter was the inventor of the words cosine and cotangent. Briggs devoted
the last years of his life to calculating more extensive Briggian logarithms
of trigonometric functions, but he died in 1631, leaving his work unfinished.
It was carried on by the English Henry Gellibrand, and then published by
Vlacq at his own expense. Briggs divided a degree into 100 parts, but owing
to the publication by Vlacq of trigonometrical tables constructed on the old
sexagesimal division, Briggs’ innovation remained unrecognised. Briggs and
Vlacq published four fundamental works, the results of which “have never been
superseded by any subsequent calculations.”

The first logarithms upon the natural base e were published by John Speidell
in his New Logarithmes (London, 1619), which contains the natural logarithms
of sines, tangents, and secants.

The only possible rival of John Napier in the invention of logarithms was the
Swiss Justus Byrgius (Joost Bürgi). He published a rude table of logarithms
six years after the appearance of the Canon Mirificus, but it appears that he
conceived the idea and constructed that table as early, if not earlier, than Napier
did his. But he neglected to have the results published until Napier’s logarithms
were known and admired throughout Europe.

Among the various inventions of Napier to assist the memory of the student
or calculator, is “Napier’s rule of circular parts” for the solution of spherical
right triangles. It is, perhaps, “the happiest example of artificial memory that
is known.”

The most brilliant conquest in algebra during the sixteenth century had
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been the solution of cubic and biquadratic equations. All attempts at solving
algebraically equations of higher degrees remaining fruitless, a new line of
inquiry—the properties of equations and their roots—was gradually opened
up. We have seen that Vieta had attained a partial knowledge of the relations
between roots and coeHcients. Peletarius, a Frenchman, had observed as early
as 1558, that the root of an equation is a divisor of the last term. One who
extended the theory of equations somewhat further than Vieta, was Albert
Girard (1590–1634), a Flemish mathematician. Like Vieta, this ingenious
author applied algebra to geometry, and was the first who understood the use
of negative roots in the solution of geometric problems. He spoke of imaginary
quantities; inferred by induction that every equation has as many roots as
there are units in the number expressing its degree; and first showed how to
express the sums of their powers in terms of the coeHcients. Another algebraist
of considerable power was the English Thomas Harriot (1560–1621). He
accompanied the first colony sent out by Sir Walter Raleigh to Virginia. After
having surveyed that country he returned to England. As a mathematician, he
was the boast of his country. He brought the theory of equations under one
comprehensive point of view by grasping that truth in its full extent to which
Vieta and Girard only approximated; viz. that in an equation in its simplest
form, the coeHcient of the second term with its sign changed is equal to the sum
of the roots; the coeHcient of the third is equal to the sum of the products of
every two of the roots; etc. He was the first to decompose equations into their
simple factors; but, since he failed to recognise imaginary and even negative
roots, he failed also to prove that every equation could be thus decomposed.
Harriot made some changes in algebraic notation, adopting small letters of
the alphabet in place of the capitals used by Vieta. The symbols of inequality
ą and ă were introduced by him. Harriot’s work, Artis Analyticæ praxis, was
published in 1631, ten years after his death. William Oughtred (1574–1660)
contributed vastly to the propagation of mathematical knowledge in England
by his treatises, which were long used in the universities. He introduced ˆ
as symbol of multiplication, and :: as that of proportion. By him ratio was
expressed by only one dot. In the eighteenth century Christian Wolf secured
the general adoption of the dot as a symbol of multiplication, and the sign
for ratio was thereupon changed to two dots. Oughtred’s ministerial duties
left him but little time for the pursuit of mathematics during daytime, and
evenings his economical wife denied him the use of a light.

Algebra was now in a state of suHcient perfection to enable Descartes to
take that important step which forms one of the grand epochs in the history
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of mathematics,—the application of algebraic analysis to define the nature and
investigate the properties of algebraic curves.

In geometry, the determination of the areas of curvilinear figures was dili-
gently studied at this period. Paul Guldin (1577–1643), a Swiss mathematician
of considerable note, re-discovered the following theorem, published in his
Centrobaryca, which has been named after him, though first found in the
Mathematical Collections of Pappus: The volume of a solid of revolution is
equal to the area of the generating figure, multiplied by the circumference
described by the centre of gravity. We shall see that this method excels that of
Kepler and Cavalieri in following a more exact and natural course; but it has
the disadvantage of necessitating the determination of the centre of gravity,
which in itself may be a more diHcult problem than the original one of finding
the volume. Guldin made some attempts to prove his theorem, but Cavalieri
pointed out the weakness of his demonstration.

Johannes Kepler (1571–1630) was a native of Würtemberg and imbibed
Copernican principles while at the University of Tübingen. His pursuit of
science was repeatedly interrupted by war, religious persecution, pecuniary
embarrassments, frequent changes of residence, and family troubles. In 1600
he became for one year assistant to the Danish astronomer, Tycho Brahe, in the
observatory near Prague. The relation between the two great astronomers was
not always of an agreeable character. Kepler’s publications are voluminous.
His first attempt to explain the solar system was made in 1596, when he thought
he had discovered a curious relation between the five regular solids and the
number and distance of the planets. The publication of this pseudo-discovery
brought him much fame. Maturer reflection and intercourse with Tycho
Brahe and Galileo led him to investigations and results more worthy of his
genius—“Kepler’s laws.” He enriched pure mathematics as well as astronomy.
It is not strange that he was interested in the mathematical science which had
done him so much service; for “if the Greeks had not cultivated conic sections,
Kepler could not have superseded Ptolemy.” The Greeks never dreamed that
these curves would ever be of practical use; Aristæus and Apollonius studied
them merely to satisfy their intellectual cravings after the ideal; yet the conic
sections assisted Kepler in tracing the march of the planets in their elliptic
orbits. Kepler made also extended use of logarithms and decimal fractions,
and was enthusiastic in divusing a knowledge of them. At one time, while
purchasing wine, he was struck by the inaccuracy of the ordinary modes of
determining the contents of kegs. This led him to the study of the volumes of
solids of revolution and to the publication of the Stereometria Doliorum in 1615.
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In it he deals first with the solids known to Archimedes and then takes up
others. Kepler introduced a new idea into geometry; namely, that of infinitely
great and infinitely small quantities. Greek mathematicians always shunned
this notion, but with it modern mathematicians have completely revolutionised
the science. In comparing rectilinear figures, the method of superposition was
employed by the ancients, but in comparing rectilinear and curvilinear figures
with each other, this method failed because no addition or subtraction of
rectilinear figures could ever produce curvilinear ones. To meet this case, they
devised the Method of Exhaustion, which was long and diHcult; it was purely
synthetical, and in general required that the conclusion should be known at the
outset. The new notion of infinity led gradually to the invention of methods
immeasurably more powerful. Kepler conceived the circle to be composed of
an infinite number of triangles having their common vertices at the centre, and
their bases in the circumference; and the sphere to consist of an infinite number
of pyramids. He applied conceptions of this kind to the determination of the
areas and volumes of figures generated by curves revolving about any line as
axis, but succeeded in solving only a few of the simplest out of the 84 problems
which he proposed for investigation in his Stereometria.

Other points of mathematical interest in Kepler’s works are (1) the statement
of the earliest problem of inverse tangents; (2) an investigation which amounts

to the evaluation of the definite integral
ż ϕ

0
sin ϕ dϕ “ 1´cos ϕ; (3) the assertion

that the circumference of an ellipse, whose axes are 2a and 2b, is nearly πpa` bq;
(4) a passage from which it has been inferred that Kepler knew the variation
of a function near its maximum value to disappear; (5) the assumption of the
principle of continuity (which diverentiates modern from ancient geometry),
when he shows that a parabola has a focus at infinity, that lines radiating from
this “cæcus focus” are parallel and have no other point at infinity.

The Stereometria led Cavalieri, an Italian Jesuit, to the consideration of
infinitely small quantities. Bonaventura Cavalieri (1598–1647), a pupil of
Galileo and professor at Bologna, is celebrated for his Geometria indivisibilibus
continuorum nova quadam ratione promota, 1635. This work expounds his
method of Indivisibles, which occupies an intermediate place between the
method of exhaustion of the Greeks and the methods of Newton and Leibniz.
He considers lines as composed of an infinite number of points, surfaces as
composed of an infinite number of lines, and solids of an infinite number of
planes. The relative magnitude of two solids or surfaces could then be found
simply by the summation of series of planes or lines. For example, he finds the
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sum of the squares of all lines making up a triangle equal to one-third the sum
of the squares of all lines of a parallelogram of equal base and altitude; for if in
a triangle, the first line at the apex be 1, then the second is 2, the third is 3, and
so on; and the sum of their squares is

12 ` 22 ` 32 ` ¨ ¨ ¨ ` n2 “ npn` 1qp2n` 1q ˜ 6.

In the parallelogram, each of the lines is n and their number is n; hence the
total sum of their squares is n3. The ratio between the two sums is therefore

npn` 1qp2n` 1q ˜ 6n3 “ 1
3 ,

since n is infinite. From this he concludes that the pyramid or cone is
respectively 1

3 of a prism or cylinder of equal base and altitude, since the
polygons or circles composing the former decrease from the base to the apex
in the same way as the squares of the lines parallel to the base in a triangle
decrease from base to apex. By the Method of Indivisibles, Cavalieri solved
the majority of the problems proposed by Kepler. Though expeditious and
yielding correct results, Cavalieri’s method lacks a scientific foundation. If a
line has absolutely no width, then no number, however great, of lines can ever
make up an area; if a plane has no thickness whatever, then even an infinite
number of planes cannot form a solid. The reason why this method led to
correct conclusions is that one area is to another area in the same ratio as the
sum of the series of lines in the one is to the sum of the series of lines in the
other. Though unscientific, Cavalieri’s method was used for fifty years as a sort
of integral calculus. It yielded solutions to some diHcult problems. Guldin
made a severe attack on Cavalieri and his method. The latter published in 1647,
after the death of Guldin, a treatise entitled Exercitationes geometricæ sex, in
which he replied to the objections of his opponent and attempted to give a
clearer explanation of his method. Guldin had never been able to demonstrate
the theorem named after him, except by metaphysical reasoning, but Cavalieri
proved it by the method of indivisibles. A revised edition of the Geometry of
Indivisibles appeared in 1653.

There is an important curve, not known to the ancients, which now began to
be studied with great zeal. Roberval gave it the name of “trochoid,” Pascal the
name of “roulette,” Galileo the name of “cycloid.” The invention of this curve
seems to be due to Galileo, who valued it for the graceful form it would give to
arches in architecture. He ascertained its area by weighing paper figures of the
cycloid against that of the generating circle, and found thereby the first area
to be nearly but not exactly thrice the latter. A mathematical determination



VIETA TO DESCARTES. 118

was made by his pupil, Evangelista Torricelli (1608–1647), who is more widely
known as a physicist than as a mathematician.

By the Method of Indivisibles he demonstrated its area to be triple that of
the revolving circle, and published his solution. This same quadrature had
been evected a few years earlier by Roberval in France, but his solution was
not known to the Italians. Roberval, being a man of irritable and violent
disposition, unjustly accused the mild and amiable Torricelli of stealing the
proof. This accusation of plagiarism created so much chagrin with Torricelli
that it is considered to have been the cause of his early death. Vincenzo Viviani,
another prominent pupil of Galileo, determined the tangent to the cycloid.
This was accomplished in France by Descartes and Fermat.

In France, where geometry began to be cultivated with greatest success,
Roberval, Fermat, Pascal, employed the Method of Indivisibles and made
new improvements in it. Giles Persone de Roberval (1602–1675), for forty
years professor of mathematics at the College of France in Paris, claimed for
himself the invention of the Method of Indivisibles. Since his complete works
were not published until after his death, it is diHcult to settle questions of
priority. Montucla and Chasles are of the opinion that he invented the method
independent of and earlier than the Italian geometer, though the work of the
latter was published much earlier than Roberval’s. Marie finds it diHcult to
believe that the Frenchman borrowed nothing whatever from the Italian, for
both could not have hit independently upon the word Indivisibles, which is
applicable to infinitely small quantities, as conceived by Cavalieri, but not as
conceived by Roberval. Roberval and Pascal improved the rational basis of
the Method of Indivisibles, by considering an area as made up of an indefinite
number of rectangles instead of lines, and a solid as composed of indefinitely
small solids instead of surfaces. Roberval applied the method to the finding of
areas, volumes, and centres of gravity. He evected the quadrature of a parabola
of any degree ym “ am´1x, and also of a parabola ym “ am´nxn. We have already
mentioned his quadrature of the cycloid. Roberval is best known for his method
of drawing tangents. He was the first to apply motion to the resolution of this
important problem. His method is allied to Newton’s principle of fluxions.
Archimedes conceived his spiral to be generated by a double motion. This idea
Roberval extended to all curves. Plane curves, as for instance the conic sections,
may be generated by a point acted upon by two forces, and are the resultant
of two motions. If at any point of the curve the resultant be resolved into its
components, then the diagonal of the parallelogram determined by them is the
tangent to the curve at that point. The greatest diHculty connected with this
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ingenious method consisted in resolving the resultant into components having
the proper lengths and directions. Roberval did not always succeed in doing
this, yet his new idea was a great step in advance. He broke ov from the ancient
definition of a tangent as a straight line having only one point in common
with a curve,—a definition not valid for curves of higher degrees, nor apt even
in curves of the second degree to bring out the properties of tangents and the
parts they may be made to play in the generation of the curves. The subject of
tangents received special attention also from Fermat, Descartes, and Barrow,
and reached its highest development after the invention of the diverential
calculus. Fermat and Descartes defined tangents as secants whose two points
of intersection with the curve coincide; Barrow considered a curve a polygon,
and called one of its sides produced a tangent.

A profound scholar in all branches of learning and a mathematician of
exceptional powers was Pierre de Fermat (1601–1665). He studied law at
Toulouse, and in 1631 was made councillor for the parliament of Toulouse.
His leisure time was mostly devoted to mathematics, which he studied with
irresistible passion. Unlike Descartes and Pascal, he led a quiet and unaggressive
life. Fermat has left the impress of his genius upon all branches of mathematics
then known. A great contribution to geometry was his De maximis et minimis.
About twenty years earlier, Kepler had first observed that the increment of a
variable, as, for instance, the ordinate of a curve, is evanescent for values very
near a maximum or a minimum value of the variable. Developing this idea,
Fermat obtained his rule for maxima and minima. He substituted x ` e for x
in the given function of x and then equated to each other the two consecutive
values of the function and divided the equation by e. If e be taken 0, then the
roots of this equation are the values of x, making the function a maximum or a
minimum. Fermat was in possession of this rule in 1629. The main diverence
between it and the rule of the diverential calculus is that it introduces the
indefinite quantity e instead of the infinitely small dx. Fermat made it the basis
for his method of drawing tangents.

Owing to a want of explicitness in statement, Fermat’s method of maxima
and minima, and of tangents, was severely attacked by his great contemporary,
Descartes, who could never be brought to render due justice to his merit. In the
ensuing dispute, Fermat found two zealous defenders in Roberval and Pascal,
the father; while Mydorge, Desargues, and Hardy supported Descartes.

Since Fermat introduced the conception of infinitely small diverences
between consecutive values of a function and arrived at the principle for finding
the maxima and minima, it was maintained by Lagrange, Laplace, and Fourier,
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that Fermat may be regarded as the first inventor of the diverential calculus.
This point is not well taken, as will be seen from the words of Poisson, himself a
Frenchman, who rightly says that the diverential calculus “consists in a system
of rules proper for finding the diverentials of all functions, rather than in the
use which may be made of these infinitely small variations in the solution of
one or two isolated problems.”

A contemporary mathematician, whose genius excelled even that of the great
Fermat, was Blaise Pascal (1623–1662). He was born at Clermont in Auvergne.
In 1626 his father retired to Paris, where he devoted himself to teaching his
son, for he would not trust his education to others. Blaise Pascal’s genius
for geometry showed itself when he was but twelve years old. His father
was well skilled in mathematics, but did not wish his son to study it until
he was perfectly acquainted with Latin and Greek. All mathematical books
were hidden out of his sight. The boy once asked his father what mathematics
treated of, and was answered, in general, “that it was the method of making
figures with exactness, and of finding out what proportions they relatively had
to one another.” He was at the same time forbidden to talk any more about it,
or ever to think of it. But his genius could not submit to be confined within
these bounds. Starting with the bare fact that mathematics taught the means
of making figures infallibly exact, he employed his thoughts about it and with
a piece of charcoal drew figures upon the tiles of the pavement, trying the
methods of drawing, for example, an exact circle or equilateral triangle. He
gave names of his own to these figures and then formed axioms, and, in short,
came to make perfect demonstrations. In this way he arrived unaided at the
theorem that the sum of the three angles of a triangle is equal to two right
angles. His father caught him in the act of studying this theorem, and was
so astonished at the sublimity and force of his genius as to weep for joy. The
father now gave him Euclid’s Elements, which he, without assistance, mastered
easily. His regular studies being languages, the boy employed only his hours
of amusement on the study of geometry, yet he had so ready and lively a
penetration that, at the age of sixteen, he wrote a treatise upon conics, which
passed for such a surprising evort of genius, that it was said nothing equal
to it in strength had been produced since the time of Archimedes. Descartes
refused to believe that it was written by one so young as Pascal. This treatise
was never published, and is now lost. Leibniz saw it in Paris and reported
on a portion of its contents. The precocious youth made vast progress in all
the sciences, but the constant application at so tender an age greatly impaired
his health. Yet he continued working, and at nineteen invented his famous
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machine for performing arithmetical operations mechanically. This continued
strain from overwork resulted in a permanent indisposition, and he would
sometimes say that from the time he was eighteen, he never passed a day free
from pain. At the age of twenty-four he resolved to lay aside the study of
the human sciences and to consecrate his talents to religion. His Provincial
Letters against the Jesuits are celebrated. But at times he returned to the
favourite study of his youth. Being kept awake one night by a toothache,
some thoughts undesignedly came into his head concerning the roulette or
cycloid; one idea followed another; and he thus discovered properties of this
curve even to demonstration. A correspondence between him and Fermat
on certain problems was the beginning of the theory of probability. Pascal’s
illness increased, and he died at Paris at the early age of thirty-nine years. By
him the answer to the objection to Cavalieri’s Method of Indivisibles was put
in the clearest form. Like Roberval, he explained “the sum of right lines” to
mean “the sum of infinitely small rectangles.” Pascal greatly advanced the
knowledge of the cycloid. He determined the area of a section produced by any
line parallel to the base; the volume generated by it revolving around its base or
around the axis; and, finally, the centres of gravity of these volumes, and also of
half these volumes cut by planes of symmetry. Before publishing his results, he
sent, in 1658, to all mathematicians that famous challenge overing prizes for the
first two solutions of these problems. Only Wallis and A. La Louère competed
for them. The latter was quite unequal to the task; the former, being pressed
for time, made numerous mistakes: neither got a prize. Pascal then published
his own solutions, which produced a great sensation among scientific men.
Wallis, too, published his, with the errors corrected. Though not competing
for the prizes, Huygens, Wren, and Fermat solved some of the questions. The
chief discoveries of Christopher Wren (1632–1723), the celebrated architect of
St. Paul’s Cathedral in London, were the rectification of a cycloidal arc and the
determination of its centre of gravity. Fermat found the area generated by an
arc of the cycloid. Huygens invented the cycloidal pendulum.

The beginning of the seventeenth century witnessed also a revival of synthetic
geometry. One who treated conics still by ancient methods, but who succeeded
in greatly simplifying many prolix proofs of Apollonius, was Claude Mydorge
in Paris (1585–1647), a friend of Descartes. But it remained for Girard
Desargues (1593–1662) of Lyons, and for Pascal, to leave the beaten track and
cut out fresh paths. They introduced the important method of Perspective.
All conics on a cone with circular base appear circular to an eye at the apex.
Hence Desargues and Pascal conceived the treatment of the conic sections
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as projections of circles. Two important and beautiful theorems were given
by Desargues: The one is on the “involution of the six points,” in which a
transversal meets a conic and an inscribed quadrangle; the other is that, if
the vertices of two triangles, situated either in space or in a plane, lie on
three lines meeting in a point, then their sides meet in three points lying on
a line; and conversely. This last theorem has been employed in recent times
by Brianchon, Sturm, Gergonne, and Poncelet. Poncelet made it the basis of
his beautiful theory of homoligical figures. We owe to Desargues the theory
of involution and of transversals; also the beautiful conception that the two
extremities of a straight line may be considered as meeting at infinity, and
that parallels diver from other pairs of lines only in having their points of
intersection at infinity. Pascal greatly admired Desargues’ results, saying (in
his Essais pour les Coniques), “I wish to acknowledge that I owe the little that
I have discovered on this subject, to his writings.” Pascal’s and Desargues’
writings contained the fundamental ideas of modern synthetic geometry. In
Pascal’s wonderful work on conics, written at the age of sixteen and now lost,
were given the theorem on the anharmonic ratio, first found in Pappus, and
also that celebrated proposition on the mystic hexagon, known as “Pascal’s
theorem,” viz. that the opposite sides of a hexagon inscribed in a conic intersect
in three points which are collinear. This theorem formed the keystone to his
theory. He himself said that from this alone he deduced over 400 corollaries,
embracing the conics of Apollonius and many other results. Thus the genius
of Desargues and Pascal uncovered several of the rich treasures of modern
synthetic geometry; but owing to the absorbing interest taken in the analytical
geometry of Descartes and later in the diverential calculus, the subject was
almost entirely neglected until the present century.

In the theory of numbers no new results of scientific value had been reached
for over 1000 years, extending from the times of Diophantus and the Hindoos
until the beginning of the seventeenth century. But the illustrious period we
are now considering produced men who rescued this science from the realm
of mysticism and superstition, in which it had been so long imprisoned; the
properties of numbers began again to be studied scientifically. Not being in
possession of the Hindoo indeterminate analysis, many beautiful results of
the Brahmins had to be re-discovered by the Europeans. Thus a solution in
integers of linear indeterminate equations was re-discovered by the Frenchman
Bachet de Méziriac (1581–1638), who was the earliest noteworthy European
Diophantist. In 1612 he published Problèmes plaisants et délectables qui se font par
les nombres, and in 1621 a Greek edition of Diophantus with notes. The father
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of the modern theory of numbers is Fermat. He was so uncommunicative
in disposition, that he generally concealed his methods and made known his
results only. In some cases later analysts have been greatly puzzled in the
attempt of supplying the proofs. Fermat owned a copy of Bachet’s Diophantus,
in which he entered numerous marginal notes. In 1670 these notes were
incorporated in a new edition of Diophantus, brought out by his son. Other
theorems on numbers, due to Fermat, were published in his Opera varia (edited
by his son) and in Wallis’s Commercium epistolicum of 1658. Of the following
theorems, the first seven are found in the marginal notes:—

(1) xn ` yn “ zn is impossible for integral values of x, y, and z, when n ą 2.
Remark: “I have found for this a truly wonderful proof, but the margin is
too small to hold it.” Repeatedly was this theorem made the prize question
of learned societies. It has given rise to investigations of great interest and
diHculty on the part of Euler, Lagrange, Dirichlet, and Kummer.

(2) A prime of the form 4n ` 1 is only once the hypothenuse of a right
triangle; its square is twice; its cube is three times, etc. Example: 52 “ 32 ` 42;
252 “ 152 ` 202 “ 72 ` 242; 1252 “ 752 ` 1002 “ 352 ` 1202 “ 442 ` 1172.

(3) A prime of the form 4n` 1 can be expressed once, and only once, as the
sum of two squares. Proved by Euler.

(4) A number composed of two cubes can be resolved into two other cubes
in an infinite multiplicity of ways.

(5) Every number is either a triangular number or the sum of two or three
triangular numbers; either a square or the sum of two, three, or four squares;
either a pentagonal number or the sum of two, three, four, or five pentagonal
numbers; similarly for polygonal numbers in general. The proof of this and
other theorems is promised by Fermat in a future work which never appeared.
This theorem is also given, with others, in a letter of 1637(?) addressed to Pater
Mersenne.

(6) As many numbers as you please may be found, such that the square of
each remains a square on the addition to or subtraction from it of the sum of
all the numbers.

(7) x4 ` y4 “ z2 is impossible.
(8) In a letter of 1640 he gives the celebrated theorem generally known as

“Fermat’s theorem,” which we state in Gauss’s notation: If p is prime, and a is
prime to p, then ap´1 ” 1 pmod pq. It was proved by Euler.

(9) Fermat died with the belief that he had found a long-sought-for law of
prime numbers in the formula 22n

` 1 “ a prime, but he admitted that he was
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unable to prove it rigorously. The law is not true, as was pointed out by Euler
in the example 225

` 1 “ 4, 294, 967, 297 “ 6, 700, 417 times 641. The American
lightning calculator Zerah Colburn, when a boy, readily found the factors, but
was unable to explain the method by which he made his marvellous mental
computation.

(10) An odd prime number can be expressed as the diverence of two squares
in one, and only one, way. This theorem, given in the Relation, was used by
Fermat for the decomposition of large numbers into prime factors.

(11) If the integers a, b, c represent the sides of a right triangle, then its area
cannot be a square number. This was proved by Lagrange.

(12) Fermat’s solution of ax2 ` 1 “ y2, where a is integral but not a square,
has come down in only the broadest outline, as given in the Relation. He
proposed the problem to the Frenchman, Bernhard Frenicle de Bessy, and in 1657
to all living mathematicians. In England, Wallis and Lord Brounker conjointly
found a laborious solution, which was published in 1658, and also in 1668,
in an algebraical work brought out by John Pell. Though Pell had no other
connection with the problem, it went by the name of “Pell’s problem.” The
first solution was given by the Hindoos.

We are not sure that Fermat subjected all his theorems to rigorous proof. His
methods of proof were entirely lost until 1879, when a document was found
buried among the manuscripts of Huygens in the library of Leyden, entitled
Relation des découvertes en la science des nombres. It appears from it that he
used an inductive method, called by him la descente infinie ou indefinie. He
says that this was particularly applicable in proving the impossibility of certain
relations, as, for instance, Theorem 11, given above, but that he succeeded
in using the method also in proving aHrmative statements. Thus he proved
Theorem 3 by showing that if we suppose there be a prime 4n ` 1 which does
not possess this property, then there will be a smaller prime of the form 4n` 1
not possessing it; and a third one smaller than the second, not possessing it;
and so on. Thus descending indefinitely, he arrives at the number 5, which is
the smallest prime factor of the form 4n ` 1. From the above supposition it
would follow that 5 is not the sum of two squares—a conclusion contrary to
fact. Hence the supposition is false, and the theorem is established. Fermat
applied this method of descent with success in a large number of theorems. By
this method Euler, Legendre, Dirichlet, proved several of his enunciations and
many other numerical propositions.

A correspondence between Pascal and Fermat relating to a certain game of
chance was the germ of the theory of probabilities, which has since attained a
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vast growth. Chevalier de Méré proposed to Pascal the fundamental problem,
to determine the probability which each player has, at any given stage of the
game, of winning the game. Pascal and Fermat supposed that the players have
equal chances of winning a single point.

The former communicated this problem to Fermat, who studied it with
lively interest and solved it by the theory of combinations, a theory which
was diligently studied both by him and Pascal. The calculus of probabilities
engaged the attention also of Huygens. The most important theorem reached
by him was that, if A has p chances of winning a sum a, and q chances of

winning a sum b, then he may expect to win the sum
ap` bq
p` q

. The next great

work on the theory of probability was the Ars conjectandi of Jakob Bernoulli.
Among the ancients, Archimedes was the only one who attained clear and

correct notions on theoretical statics. He had acquired firm possession of the
idea of pressure, which lies at the root of mechanical science. But his ideas
slept nearly twenty centuries, until the time of Stevin and Galileo. Stevin
determined accurately the force necessary to sustain a body on a plane inclined
at any angle to the horizon. He was in possession of a complete doctrine
of equilibrium. While Stevin investigated statics, Galileo pursued principally
dynamics. Galileo was the first to abandon the Aristotelian idea that bodies
descend more quickly in proportion as they are heavier; he established the first
law of motion; determined the laws of falling bodies; and, having obtained
a clear notion of acceleration and of the independence of diverent motions,
was able to prove that projectiles move in parabolic curves. Up to his time
it was believed that a cannon-ball moved forward at first in a straight line
and then suddenly fell vertically to the ground. Galileo had an understanding
of centrifugal forces, and gave a correct definition of momentum. Though he
formulated the fundamental principle of statics, known as the parallelogram of
forces, yet he did not fully recognise its scope. The principle of virtual velocities
was partly conceived by Guido Ubaldo (died 1607), and afterwards more fully
by Galileo.

Galileo is the founder of the science of dynamics. Among his contemporaries
it was chiefly the novelties he detected in the sky that made him celebrated,
but Lagrange claims that his astronomical discoveries required only a telescope
and perseverance, while it took an extraordinary genius to discover laws from
phenomena, which we see constantly and of which the true explanation escaped
all earlier philosophers. The first contributor to the science of mechanics after
Galileo was Descartes.
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DESCARTES TO NEWTON.

Among the earliest thinkers of the seventeenth and eighteenth centuries,
who employed their mental powers toward the destruction of old ideas and
the up-building of new ones, ranks René Descartes (1596–1650). Though he
professed orthodoxy in faith all his life, yet in science he was a profound
sceptic. He found that the world’s brightest thinkers had been long exercised
in metaphysics, yet they had discovered nothing certain; nay, had even flatly
contradicted each other. This led him to the gigantic resolution of taking
nothing whatever on authority, but of subjecting everything to scrutinous
examination, according to new methods of inquiry. The certainty of the
conclusions in geometry and arithmetic brought out in his mind the contrast
between the true and false ways of seeking the truth. He thereupon attempted
to apply mathematical reasoning to all sciences. “Comparing the mysteries of
nature with the laws of mathematics, he dared to hope that the secrets of both
could be unlocked with the same key.” Thus he built up a system of philosophy
called Cartesianism.

Great as was Descartes’ celebrity as a metaphysician, it may be fairly
questioned whether his claim to be rememberedby posterity as a mathematician
is not greater. His philosophy has long since been superseded by other systems,
but the analytical geometry of Descartes will remain a valuable possession
forever. At the age of twenty-one, Descartes enlisted in the army of Prince
Maurice of Orange. His years of soldiering were years of leisure, in which he had
time to pursue his studies. At that time mathematics was his favourite science.
But in 1625 he ceased to devote himself to pure mathematics. Sir William
Hamilton is in error when he states that Descartes considered mathematical
studies absolutely pernicious as a means of internal culture. In a letter to
Mersenne, Descartes says: “M. Desargues puts me under obligations on account
of the pains that it has pleased him to have in me, in that he shows that he
is sorry that I do not wish to study more in geometry, but I have resolved
to quit only abstract geometry, that is to say, the consideration of questions
which serve only to exercise the mind, and this, in order to study another kind
of geometry, which has for its object the explanation of the phenomena of
nature. . . . You know that all my physics is nothing else than geometry.” The
years between 1629 and 1649 were passed by him in Holland in the study,
principally, of physics and metaphysics. His residence in Holland was during
the most brilliant days of the Dutch state. In 1637 he published his Discours de
la Méthode, containing among others an essay of 106 pages on geometry. His
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Geometry is not easy reading. An edition appeared subsequently with notes by
his friend De Beaune, which were intended to remove the diHculties.

It is frequently stated that Descartes was the first to apply algebra to geometry.
This statement is inaccurate, for Vieta and others had done this before him.
Even the Arabs sometimes used algebra in connection with geometry. The new
step that Descartes did take was the introduction into geometry of an analytical
method based on the notion of variables and constants, which enabled him to
represent curves by algebraic equations. In the Greek geometry, the idea of
motion was wanting, but with Descartes it became a very fruitful conception.
By him a point on a plane was determined in position by its distances from two
fixed right lines or axes. These distances varied with every change of position
in the point. This geometric idea of co-ordinate representation, together with
the algebraic idea of two variables in one equation having an indefinite number
of simultaneous values, furnished a method for the study of loci, which is
admirable for the generality of its solutions. Thus the entire conic sections
of Apollonius is wrapped up and contained in a single equation of the second
degree.

The Latin term for “ordinate” used by Descartes comes from the expression
lineæ ordinatæ, employed by Roman surveyors for parallel lines. The term
abscissa occurs for the first time in a Latin work of 1659, written by Stefano degli
Angeli (1623–1697), a professor of mathematics in Rome. Descartes’ geometry
was called “analytical geometry,” partly because, unlike the synthetic geometry
of the ancients, it is actually analytical, in the sense that the word is used in
logic; and partly because the practice had then already arisen, of designating
by the term analysis the calculus with general quantities.

The first important example solved by Descartes in his geometry is the
“problem of Pappus”; viz. “Given several straight lines in a plane, to find the
locus of a point such that the perpendiculars, or more generally, straight lines at
given angles, drawn from the point to the given lines, shall satisfy the condition
that the product of certain of them shall be in a given ratio to the product of the
rest.” Of this celebrated problem, the Greeks solved only the special case when
the number of given lines is four, in which case the locus of the point turns out
to be a conic section. By Descartes it was solved completely, and it avorded an
excellent example of the use which can be made of his analytical method in the
study of loci. Another solution was given later by Newton in the Principia.

The methods of drawing tangents invented by Roberval and Fermat were
noticed earlier. Descartes gave a third method. Of all the problems which
he solved by his geometry, none gave him as great pleasure as his mode of
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constructing tangents. It is profound but operose, and, on that account, inferior
to Fermat’s. His solution rests on the method of Indeterminate Coefficients,
of which he bears the honour of invention. Indeterminate coeHcients were
employed by him also in solving biquadratic equations.

The essays of Descartes on dioptrics and geometry were sharply criticised
by Fermat, who wrote objections to the former, and sent his own treatise on
“maxima and minima” to show that there were omissions in the geometry.
Descartes thereupon made an attack on Fermat’s method of tangents. Descartes
was in the wrong in this attack, yet he continued the controversy with obstinacy.
He had a controversy also with Roberval on the cycloid. This curve has been
called the “Helen of geometers,” on account of its beautiful properties and the
controversies which their discovery occasioned. Its quadrature by Roberval
was generally considered a brilliant achievement, but Descartes commented on
it by saying that any one moderately well versed in geometry might have done
this. He then sent a short demonstration of his own. On Roberval’s intimating
that he had been assisted by a knowledge of the solution, Descartes constructed
the tangent to the curve, and challenged Roberval and Fermat to do the same.
Fermat accomplished it, but Roberval never succeeded in solving this problem,
which had cost the genius of Descartes but a moderate degree of attention.

He studied some new curves, now called “ovals of Descartes,” which were
intended by him to serve in the construction of converging lenses, but which
yielded no results of practical value.

The application of algebra to the doctrine of curved lines reacted favourably
upon algebra. As an abstract science, Descartes improved it by the systematic
use of exponents and by the full interpretation and construction of negative
quantities. Descartes alsoestablished sometheoremsonthe theoryof equations.
Celebrated is his “rule of signs” for determining the number of positive and
negative roots; viz. an equation may have as many` roots as there are variations
of signs, and as many ´ roots as there are permanencies of signs. Descartes
was charged by Wallis with availing himself, without acknowledgment, of
Harriot’s theory of equations, particularly his mode of generating equations;
but there seems to be no good ground for the charge. Wallis also claimed that
Descartes failed to observe that the above rule of signs is not true whenever
the equation has imaginary roots; but Descartes does not say that the equation
always has, but that it may have so many roots. It is true that Descartes does
not consider the case of imaginaries directly, but further on in his Geometry he
gives incontestable evidence of being able to handle this case also.

In mechanics, Descartes can hardly be said to have advanced beyond Galileo.
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The latter had overthrown the ideas of Aristotle on this subject, and Descartes
simply “threw himself upon the enemy” that had already been “put to the rout.”
His statement of the first and second laws of motion was an improvement in
form, but his third law is false in substance. The motions of bodies in their
direct impact was imperfectly understood by Galileo, erroneously given by
Descartes, and first correctly stated by Wren, Wallis, and Huygens.

One of the most devoted pupils of Descartes was the learned Princess
Elizabeth, daughter of Frederick V. She applied the new analytical geometry
to the solution of the “Apollonian problem.” His second royal follower was
Queen Christina, the daughter of Gustavus Adolphus. She urged upon Descartes
to come to the Swedish court. After much hesitation he accepted the invitation
in 1649. He died at Stockholm one year later. His life had been one long
warfare against the prejudices of men.

It is most remarkable that the mathematics and philosophy of Descartes
should at first have been appreciated less by his countrymen than by foreigners.
The indiscreet temper of Descartes alienated the great contemporary French
mathematicians, Roberval, Fermat, Pascal. They continued in investigations of
their own, and on some points strongly opposed Descartes. The universities
of France were under strict ecclesiastical control and did nothing to introduce
his mathematics and philosophy. It was in the youthful universities of Holland
that the evect of Cartesian teachings was most immediate and strongest.

The only prominent Frenchman who immediately followed in the footsteps
of the great master was De Beaune (1601–1652). He was one of the first to
point out that the properties of a curve can be deduced from the properties of
its tangent. This mode of inquiry has been called the inverse method of tangents.
He contributed to the theory of equations by considering for the first time the
upper and lower limits of the roots of numerical equations.

In the Netherlands a large number of distinguished mathematicians were
at once struck with admiration for the Cartesian geometry. Foremost among
these are van Schooten, John de Witt, van Heuraet, Sluze, and Hudde. Van
Schooten (died 1660), professor of mathematics at Leyden, brought out an
edition of Descartes’ geometry, together with the notes thereon by De Beaune.
His chief work is his Exercitationes Mathematicæ, in which he applies the
analytical geometry to the solution of many interesting and diHcult problems.
The noble-hearted Johann de Witt, grand-pensioner of Holland, celebrated as
a statesman and for his tragical end, was an ardent geometrician. He conceived
a new and ingenious way of generating conics, which is essentially the same as
that by projective pencils of rays in modern synthetic geometry. He treated the
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subject not synthetically, but with aid of the Cartesian analysis. René François
de Sluze (1622–1685) and Johann Hudde (1633–1704) made some improvements
on Descartes’ and Fermat’s methods of drawing tangents, and on the theory
of maxima and minima. With Hudde, we find the first use of three variables
in analytical geometry. He is the author of an ingenious rule for finding
equal roots. We illustrate it by the equation x3 ´ x2 ´ 8x ` 12 “ 0. Taking an
arithmetical progression 3, 2, 1, 0, of which the highest term is equal to the
degree of the equation, and multiplying each term of the equation respectively
by the corresponding term of the progression, we get 3x3 ´ 2x2 ´ 8x “ 0, or
3x2 ´ 2x ´ 8 “ 0. This last equation is by one degree lower than the original
one. Find the G.C.D. of the two equations. This is x ´ 2; hence 2 is one of
the two equal roots. Had there been no common divisor, then the original
equation would not have possessed equal roots. Hudde gave a demonstration
for this rule.

Heinrich van Heuraet must be mentioned as one of the earliest geometers
who occupied themselves with success in the rectification of curves. He observed
in a general way that the two problems of quadrature and of rectification are
really identical, and that the one can be reduced to the other. Thus he carried
the rectification of the hyperbola back to the quadrature of the hyperbola.
The semi-cubical parabola y3 “ ax2 was the first curve that was ever rectified
absolutely. This appears to have been accomplished independently by Van
Heuraet in Holland and by William Neil (1637–1670) in England. According
to Wallis the priority belongs to Neil. Soon after, the cycloid was rectified by
Wren and Fermat.

The prince of philosophers in Holland, and one of the greatest scientists of
the seventeenth century, was Christian Huygens (1629–1695), a native of the
Hague. Eminent as a physicist and astronomer, as well as mathematician, he
was a worthy predecessor of Sir Isaac Newton. He studied at Leyden under
the younger Van Schooten. The perusal of some of his earliest theorems led
Descartes to predict his future greatness. In 1651 Huygens wrote a treatise in
which he pointed out the fallacies of Gregory St. Vincent (1584–1667) on the
subject of quadratures. He himself gave a remarkably close and convenient
approximation to the length of a circular arc. In 1660 and 1663 he went to
Paris and to London. In 1666 he was appointed by Louis XIV. member of the
French Academy of Sciences. He was induced to remain in Paris from that
time until 1681, when he returned to his native city, partly for consideration of
his health and partly on account of the revocation of the Edict of Nantes.

The majority of his profound discoveries were made with aid of the ancient



DESCARTES TO NEWTON. 131

geometry, though at times he used the geometry of Descartes or of Cavalieri
and Fermat. Thus, like his illustrious friend, Sir Isaac Newton, he always
showed partiality for the Greek geometry. Newton and Huygens were kindred
minds, and had the greatest admiration for each other. Newton always speaks
of him as the “Summus Hugenius.”

To the two curves (cubical parabola and cycloid) previously rectified he added
a third,—the cissoid. He solved the problem of the catenary, determined the
surface of the parabolic and hyperbolic conoid, and discovered the properties
of the logarithmic curve and the solids generated by it. Huygens’ De horologio
oscillatorio (Paris, 1673) is a work that ranks second only to the Principia of
Newton and constitutes historically a necessary introduction to it. The
book opens with a description of pendulum clocks, of which Huygens is the
inventor. Then follows a treatment of accelerated motion of bodies falling
free, or sliding on inclined planes, or on given curves,—culminating in the
brilliant discovery that the cycloid is the tautochronous curve. To the theory
of curves he added the important theory of “evolutes.” After explaining that
the tangent of the evolute is normal to the involute, he applied the theory to
the cycloid, and showed by simple reasoning that the evolute of this curve is
an equal cycloid. Then comes the complete general discussion of the centre
of oscillation. This subject had been proposed for investigation by Mersenne
and discussed by Descartes and Roberval. In Huygens’ assumption that the
common centre of gravity of a group of bodies, oscillating about a horizontal
axis, rises to its original height, but no higher, is expressed for the first time one
of the most beautiful principles of dynamics, afterwards called the principle of
the conservation of vis viva. The thirteen theorems at the close of the work
relate to the theory of centrifugal force in circular motion. This theory aided
Newton in discovering the law of gravitation.

Huygens wrote the first formal treatise on probability. He proposed the
wave-theory of light and with great skill applied geometry to its development.
This theory was long neglected, but was revived and successfully worked out
by Young and Fresnel a century later. Huygens and his brother improved the
telescope by devising a better way of grinding and polishing lenses. With
more eHcient instruments he determined the nature of Saturn’s appendage and
solved other astronomical questions. Huygens’ Opuscula posthuma appeared
in 1703.

Passing now from Holland to England, we meet there one of the most
original mathematicians of his day—John Wallis (1616–1703). He was educated
for the Church at Cambridge and entered Holy Orders. But his genius was
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employed chiefly in the study of mathematics. In 1649 he was appointed
Savilian professor of geometry at Oxford. He was one of the original members
of the Royal Society, which was founded in 1663. Wallis thoroughly grasped
the mathematical methods both of Cavalieri and Descartes. His Conic Sections
is the earliest work in which these curves are no longer considered as sections
of a cone, but as curves of the second degree, and are treated analytically by the
Cartesian method of co-ordinates. In this work Wallis speaks of Descartes in
the highest terms, but in his Algebra he, without good reason, accuses Descartes
of plagiarising from Harriot. We have already mentioned elsewhere Wallis’s
solution of the prize questions on the cycloid, which were proposed by Pascal.

The Arithmetic of Infinites, published in 1655, is his greatest work. By the
application of analysis to the Method of Indivisibles, he greatly increased
the power of this instrument for evecting quadratures. He advanced beyond
Kepler by making more extended use of the “law of continuity” and placing full
reliance in it. By this law he was led to regard the denominators of fractions as
powers with negative exponents. Thus, the descending geometrical progression
x3, x2, x1, x0, if continued, gives x´1, x´2, x´3, etc.; which is the same thing as
1
x

,
1

x2 ,
1
x3 . The exponents of this geometric series are in continued arithmetical

progression, 3, 2, 1, 0, ´1, ´2, ´3. He also used fractional exponents, which,
like the negative, had been invented long before, but had failed to be generally
introduced. The symbol8 for infinity is due to him.

Cavalieri and the French geometers had ascertained the formula for squaring
the parabola of any degree, y “ xm, m being a positive integer. By the summation
of the powers of the terms of infinite arithmetical series, it was found that
the curve y “ xm is to the area of the parallelogram having the same base and
altitude as 1 is to m ` 1. Aided by the law of continuity, Wallis arrived at the
result that this formula holds true not only when m is positive and integral, but
also when it is fractional or negative. Thus, in the parabola y “

a

px, m “ 1
2 ;

hence the area of the parabolic segment is to that of the circumscribed rectangle
as 1 : 1 1

2 , or as 2 : 3. Again, suppose that in y “ xm, m “ ´ 1
2 ; then the curve is a

kind of hyperbola referred to its asymptotes, and the hyperbolic space between
the curve and its asymptotes is to the corresponding parallelogram as 1 : 1

2 . If
m “ ´1, as in the common equilateral hyperbola y “ x´1 or xy “ 1, then this
ratio is 1 : ´1` 1, or 1 : 0, showing that its asymptotic space is infinite. But in the
case when m is greater than unity and negative, Wallis was unable to interpret
correctly his results. For example, if m “ ´3, then the ratio becomes 1 : ´2, or
as unity to a negative number. What is the meaning of this? Wallis reasoned
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thus: If the denominator is only zero, then the area is already infinite; but if it
is less than zero, then the area must be more than infinite. It was pointed out
later by Varignon, that this space, supposed to exceed infinity, is really finite,
but taken negatively; that is, measured in a contrary direction. The method
of Wallis was easily extended to cases such as y “ ax m

n ` bx
p
q by performing the

quadrature for each term separately, and then adding the results.
The manner in which Wallis studied the quadrature of the circle and arrived

at his expression for the value of π is extraordinary. He found that the
areas comprised between the axes, the ordinate corresponding to x, and the
curves represented by the equations y “ p1 ´ x2q0, y “ p1 ´ x2q1, y “ p1 ´ x2q2,
y “ p1 ´ x2q3, etc., are expressed in functions of the circumscribed rectangles
having x and y for their sides, by the quantities forming the series

x,

x´ 1
3 x3,

x´ 2
3 x3 ` 1

5 x5,

x´ 3
3 x3 `

3
5 x5 ´ 1

7 x7, etc.

When x “ 1, these values become respectively 1, 2
3 , 8

15 , 48
105 , etc. Now since the

ordinate of the circle is y “ p1 ´ x2q
1
2 , the exponent of which is 1

2 or the mean
value between 0 and 1, the question of this quadrature reduced itself to this:
If 0, 1, 2, 3, etc., operated upon by a certain law, give 1, 2

3 , 8
15 , 48

105 , what will
1
2 give, when operated upon by the same law? He attempted to solve this by
interpolation, a method first brought into prominence by him, and arrived by
a highly complicated and diHcult analysis at the following very remarkable
expression:

π

2
“

2¨2¨4¨4¨6¨6¨8¨8 ¨ ¨ ¨
1¨3¨3¨5¨5¨7¨7¨9 ¨ ¨ ¨

He did not succeed in making the interpolation itself, because he did not
employ literal or general exponents, and could not conceive a series with more
than one term and less than two, which it seemed to him the interpolated series
must have. The consideration of this diHculty led Newton to the discovery
of the Binomial Theorem. This is the best place to speak of that discovery.
Newton virtually assumed that the same conditions which underlie the general
expressions for the areas given above must also hold for the expression to be
interpolated. In the first place, he observed that in each expression the first
term is x, that x increases in odd powers, that the signs alternate ` and ´,
and that the second terms 0

3 x3, 1
3 x3, 2

3 x3, 3
3 x3, are in arithmetical progression.



DESCARTES TO NEWTON. 134

Hence the first two terms of the interpolated series must be x ´
1
2 x3

3
. He next

considered that the denominators 1, 3, 5, 7, etc., are in arithmetical progression,
and that the coeHcients in the numerators in each expression are the digits
of some power of the number 11; namely, for the first expression, 110 or 1; for
the second, 111 or 1, 1; for the third, 112 or 1, 2, 1; for the fourth, 113 or 1, 3,
3, 1; etc. He then discovered that, having given the second digit (call it m),
the remaining digits can be found by continual multiplication of the terms

of the series
m´ 0

1
¨
m´ 1

2
¨
m´ 2

3
¨
m´ 3

4
¨ etc. Thus, if m “ 4, then 4¨

m´ 1
2

gives 6; 6¨
m´ 2

3
gives 4; 4¨

m´ 3
4

gives 1. Applying this rule to the required

series, since the second term is
1
2 x3

3
, we have m “ 1

2 , and then get for the

succeeding coeHcients in the numerators respectively´ 1
8 ,` 1

16 ,´ 5
128 , etc.; hence

the required area for the circular segment is x´
1
2 x3

3
´

1
8 x5

5
´

1
16 x7

7
´ etc. Thus he

found the interpolated expression to be an infinite series, instead of one having
more than one term and less than two, as Wallis believed it must be. This
interpolation suggested to Newton a mode of expanding p1 ´ x2q

1
2 , or, more

generally, p1 ´ x2qm, into a series. He observed that he had only to omit from
the expression just found the denominators 1, 3, 5, 7, etc., and to lower each
power of x by unity, and he had the desired expression. In a letter to Oldenburg
(June 13, 1676), Newton states the theorem as follows: The extraction of roots
is much shortened by the theorem

pP ` PQq
m
n “ P

m
n `

m
n

AQ`
m´ n

2n
BQ`

m´ 2n
3n

CQ` etc.,

where A means the first term, P m
n , B the second term, C the third term, etc. He

verified it by actual multiplication, but gave no regular proof of it. He gave it
for any exponent whatever, but made no distinction between the case when the
exponent is positive and integral, and the others.

It should here be mentioned that very rude beginnings of the binomial
theorem are found very early. The Hindoos and Arabs used the expansions of
pa` bq2 and pa` bq3 for extracting roots; Vieta knew the expansion of pa` bq4;
but these were the results of simple multiplication without the discovery of
any law. The binomial coeHcients for positive whole exponents were known
to some Arabic and European mathematicians. Pascal derived the coeHcients
from the method of what is called the “arithmetical triangle.” Lucas de
Burgo, Stifel, Stevinus, Briggs, and others, all possessed something from which
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one would think the binomial theorem could have been gotten with a little
attention, “if we did not know that such simple relations were diHcult to
discover.”

Though Wallis had obtained an entirely new expression for π, he was not
satisfied with it; for instead of a finite number of terms yielding an absolute
value, it contained merely an infinite number, approaching nearer and nearer to
that value. He therefore induced his friend, Lord Brouncker (1620?-1684), the
first president of the Royal Society, to investigate this subject. Of course Lord
Brouncker did not find what they were after, but he obtained the following
beautiful equality:—

π “
4

1`
1

2`
9

2`
25

2`
49

2` etc.

Continued fractions, both ascending and descending, appear to have been
known already to the Greeks and Hindoos, though not in our present notation.
Brouncker’s expression gave birth to the theory of continued fractions.

Wallis’ method of quadratures was diligently studied by his disciples. Lord
Brouncker obtained the first infinite series for the area of an equilateral
hyperbola between its asymptotes. Nicolaus Mercator of Holstein, who had
settled in England, gave, in his Logarithmotechnia (London, 1668), a similar
series. He started with the grand property of the equilateral hyperbola,
discovered in 1647 by Gregory St. Vincent, which connected the hyperbolic space
between the asymptotes with the natural logarithms and led to these logarithms
being called hyperbolic. By it Mercator arrived at the logarithmic series, which
Wallis had attempted but failed to obtain. He showed how the construction
of logarithmic tables could be reduced to the quadrature of hyperbolic spaces.
Following up some suggestions of Wallis, William Neil succeeded in rectifying
the cubical parabola, and Wren in rectifying any cycloidal arc.

A prominent English mathematician and contemporary of Wallis was Isaac
Barrow (1630-1677). He was professor of mathematics in London, and then
in Cambridge, but in 1669 he resigned his chair to his illustrious pupil, Isaac
Newton, and renounced the study of mathematics for that of divinity. As a
mathematician, he is most celebrated for his method of tangents. He simplified
the method of Fermat by introducing two infinitesimals instead of one, and
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approximated to the course of reasoning afterwards followed by Newton in his
doctrine on Ultimate Ratios.

He considered the infinitesimal right triangle ABB1 having

T P P ′

B

B′

A

for its sides the diverence between two
successive ordinates, the distance between
them, and the portion of the curve inter-
cepted by them. This triangle is similar to
BPT , formed by the ordinate, the tangent,
and the sub-tangent. Hence, if we know
the ratio of B1A to BA, then we know the
ratio of the ordinate and the sub-tangent,

and the tangent can be constructed at once. For any curve, say y2 “ px, the
ratio of B1A to BA is determined from its equation as follows: If x receives an
infinitesimal increment PP1 “ e, then y receives an increment B1A “ a, and the
equation for the ordinate B1P1 becomes y2 ` 2ay` a2 “ px` pe. Since y2 “ px,
we get 2ay ` a2 “ pe; neglecting higher powers of the infinitesimals, we have
2ay “ pe, which gives

a : e “ p : 2y “ p : 2
?

px.

But a : e “ the ordinate : the sub-tangent; hence

p : 2
?

px “
?

px : sub-tangent,

giving 2x for the value of the sub-tangent. This method divers from that of the
diverential calculus only in notation.

NEWTON TO EULER.

It has been seen that in France prodigious scientific progress was made
during the beginning and middle of the seventeenth century. The toleration
which marked the reign of Henry IV. and Louis XIII. was accompanied by
intense intellectual activity. Extraordinary confidence came to be placed in
the power of the human mind. The bold intellectual conquests of Descartes,
Fermat, and Pascal enriched mathematics with imperishable treasures. During
the early part of the reign of Louis XIV. we behold the sunset splendour of
this glorious period. Then followed a night of mental eveminacy. This lack
of great scientific thinkers during the reign of Louis XIV. may be due to the
simple fact that no great minds were born; but, according to Buckle, it was due
to the paternalism, to the spirit of dependence and subordination, and to the
lack of toleration, which marked the policy of Louis XIV.



NEWTON TO EULER. 137

In the absence of great French thinkers, Louis XIV. surrounded himself by
eminent foreigners. Römer from Denmark, Huygens from Holland, Dominic
Cassini from Italy, were the mathematicians and astronomers adorning his
court. They were in possession of a brilliant reputation before going to Paris.
Simply because they performed scientific work in Paris, that work belongs no
more to France than the discoveries of Descartes belong to Holland, or those
of Lagrange to Germany, or those of Euler and Poncelet to Russia. We must
look to other countries than France for the great scientific men of the latter
part of the seventeenth century.

About the time when Louis XIV. assumed the direction of the French
government Charles II. became king of England. At this time England
was extending her commerce and navigation, and advancing considerably in
material prosperity. A strong intellectual movement took place, which was
unwittingly supported by the king. The age of poetry was soon followed by an
age of science and philosophy. In two successive centuries England produced
Shakespeare and Newton!

Germany still continued in a state of national degradation. The Thirty Years’
War had dismembered the empire and brutalised the people. Yet this darkest
period of Germany’s history produced Leibniz, one of the greatest geniuses of
modern times.

There are certain focal points in history toward which the lines of past
progress converge, and from which radiate the advances of the future. Such
was the age of Newton and Leibniz in the history of mathematics. During fifty
years preceding this era several of the brightest and acutest mathematicians
bent the force of their genius in a direction which finally led to the discovery of
the infinitesimal calculus by Newton and Leibniz. Cavalieri, Roberval, Fermat,
Descartes, Wallis, and others had each contributed to the new geometry.
So great was the advance made, and so near was their approach toward
the invention of the infinitesimal analysis, that both Lagrange and Laplace
pronounced their countryman, Fermat, to be the true inventor of it. The
diverential calculus, therefore, was not so much an individual discovery as the
grand result of a succession of discoveries by diverent minds. Indeed, no great
discovery ever flashed upon the mind at once, and though those of Newton
will influence mankind to the end of the world, yet it must be admitted that
Pope’s lines are only a “poetic fancy”:—

“ Nature and Nature’s laws lay hid in night;
God said, ‘Let Newton be,’ and all was light.”

Isaac Newton (1642-1727) was born at Woolsthorpe, in Lincolnshire, the
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same year in which Galileo died. At his birth he was so small and weak that
his life was despaired of. His mother sent him at an early age to a village
school, and in his twelfth year to the public school at Grantham. At first he
seems to have been very inattentive to his studies and very low in the school;
but when, one day, the little Isaac received a severe kick upon his stomach
from a boy who was above him, he laboured hard till he ranked higher in
school than his antagonist. From that time he continued to rise until he was
the head boy. At Grantham, Isaac showed a decided taste for mechanical
inventions. He constructed a water-clock, a wind-mill, a carriage moved by the
person who sat in it, and other toys. When he had attained his fifteenth year
his mother took him home to assist her in the management of the farm, but
his great dislike for farm-work and his irresistible passion for study, induced
her to send him back to Grantham, where he remained till his eighteenth
year, when he entered Trinity College, Cambridge (1660). Cambridge was
the real birthplace of Newton’s genius. Some idea of his strong intuitive
powers may be drawn from the fact that he regarded the theorems of ancient
geometry as self-evident truths, and that, without any preliminary study, he
made himself master of Descartes’ Geometry. He afterwards regarded this
neglect of elementary geometry a mistake in his mathematical studies, and he
expressed to Dr. Pemberton his regret that “he had applied himself to the works
of Descartes and other algebraic writers before he had considered the Elements
of Euclid with that attention which so excellent a writer deserves.” Besides
Descartes’ Geometry, he studied Oughtred’s Clavis, Kepler’s Optics, the works
of Vieta, Schooten’s Miscellanies, Barrow’s Lectures, and the works of Wallis. He
was particularly delighted with Wallis’ Arithmetic of Infinites, a treatise fraught
with rich and varied suggestions. Newton had the good fortune of having
for a teacher and fast friend the celebrated Dr. Barrow, who had been elected
professor of Greek in 1660, and was made Lucasian professor of mathematics
in 1663. The mathematics of Barrow and of Wallis were the starting-points
from which Newton, with a higher power than his masters’, moved onward
into wider fields. Wallis had evected the quadrature of curves whose ordinates
are expressed by any integral and positive power of p1´ x2q. We have seen how
Wallis attempted but failed to interpolate between the areas thus calculated,
the areas of other curves, such as that of the circle; how Newton attacked the
problem, evected the interpolation, and discovered the Binomial Theorem,
which avorded a much easier and direct access to the quadrature of curves than
did the method of interpolation; for even though the binomial expression for
the ordinate be raised to a fractional or negative power, the binomial could at
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once be expanded into a series, and the quadrature of each separate term of
that series could be evected by the method of Wallis. Newton introduced the
system of literal indices.

Newton’s study of quadratures soon led him to another and most profound
invention. He himself says that in 1665 and 1666 he conceived the method
of fluxions and applied them to the quadrature of curves. Newton did not
communicate the invention to any of his friends till 1669, when he placed in the
hands of Barrow a tract, entitled De Analysi per Æquationes Numero Terminorum
Infinitas, which was sent by Barrow to Collins, who greatly admired it. In this
treatise the principle of fluxions, though distinctly pointed out, is only partially
developed and explained. Supposing the abscissa to increase uniformly in
proportion to the time, he looked upon the area of a curve as a nascent quantity
increasing by continued fluxion in the proportion of the length of the ordinate.
The expression which was obtained for the fluxion he expanded into a finite
or infinite series of monomial terms, to which Wallis’ rule was applicable.
Barrow urged Newton to publish this treatise; “but the modesty of the author,
of which the excess, if not culpable, was certainly in the present instance very
unfortunate, prevented his compliance.” Had this tract been published then,
instead of forty-two years later, there would probably have been no occasion
for that long and deplorable controversy between Newton and Leibniz.

For a long time Newton’s method remained unknown, except to his friends
and their correspondents. In a letter to Collins, dated December 10th, 1672,
Newton states the fact of his invention with one example, and then says: “This
is one particular, or rather corollary, of a general method, which extends itself,
without any troublesome calculation, not only to the drawing of tangents to
any curve lines, whether geometrical or mechanical, or anyhow respecting right
lines or other curves, but also to the resolving other abstruser kinds of problems
about the crookedness, areas, lengths, centres of gravity of curves, etc.; nor is
it (as Hudden’s method of Maximis and Minimis) limited to equations which
are free from surd quantities. This method I have interwoven with that other
of working in equations, by reducing them to infinite series.”

These last words relate to a treatise he composed in the year 1671, entitled
Method of Fluxions, in which he aimed to represent his method as an independent
calculus and as a complete system. This tract was intended as an introduction
to an edition of Kinckhuysen’s Algebra, which he had undertaken to publish.
“But the fear of being involved in disputes about this new discovery, or perhaps
the wish to render it more complete, or to have the sole advantage of employing
it in his physical researches, induced him to abandon this design.”
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Excepting two papers on optics, all of his works appear to have been
published only after the most pressing solicitations of his friends and against
his own wishes. His researches on light were severely criticised, and he wrote
in 1675: “I was so persecuted with discussions arising out of my theory of light
that I blamed my own imprudence for parting with so substantial a blessing as
my quiet to run after a shadow.”

The Method of Fluxions, translated by J. Colson from Newton’s Latin, was
first published in 1736, or sixty-five years after it was written. In it he explains
first the expansion into series of fractional and irrational quantities,—a subject
which, in his first years of study, received the most careful attention. He then
proceeds to the solution of the two following mechanical problems, which
constitute the pillars, so to speak, of the abstract calculus:—

“I. The length of the space described being continually (i.e. at all times)
given; to find the velocity of the motion at any time proposed.

“II. The velocity of the motion being continually given; to find the length of
the space described at any time proposed.”

Preparatory to the solution, Newton says: “Thus, in the equation y “ x2, if y
represents the length of the space at any time described, which (time) another
space x, by increasing with an uniform celerity 9x, measures and exhibits as
described: then 2x 9x will represent the celerity by which the space y, at the same
moment of time, proceeds to be described; and contrarywise.”

“But whereas we need not consider the time here, any farther than it is
expounded and measured by an equable local motion; and besides, whereas
only quantities of the same kind can be compared together, and also their
velocities of increase and decrease; therefore, in what follows I shall have
no regard to time formally considered, but I shall suppose some one of the
quantities proposed, being of the same kind, to be increased by an equable
fluxion, to which the rest may be referred, as it were to time; and, therefore,
by way of analogy, it may not improperly receive the name of time.” In this
statement of Newton there is contained a satisfactory answer to the objection
which has been raised against his method, that it introduces into analysis the
foreign idea of motion. A quantity thus increasing by uniform fluxion, is what
we now call an independent variable.

Newton continues: “Now those quantities which I consider as gradually and
indefinitely increasing, I shall hereafter call fluents, or flowing quantities, and
shall represent them by the final letters of the alphabet, v, x, y, and z; . . . and the
velocities by which every fluent is increased by its generating motion (which
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I may call fluxions, or simply velocities, or celerities), I shall represent by the
same letters pointed, thus, 9v, 9x, 9y, 9z. That is, for the celerity of the quantity v I
shall put 9v, and so for the celerities of the other quantities x, y, and z, I shall put
9x, 9y, and 9z, respectively.” It must here be observed that Newton does not take
the fluxions themselves infinitely small. The “moments of fluxions,” a term
introduced further on, are infinitely small quantities. These “moments,” as
defined and used in the Method of Fluxions, are substantially the diverentials of
Leibniz. De Morgan points out that no small amount of confusion has arisen
from the use of the word fluxion and the notation 9x by all the English writers
previous to 1704, excepting Newton and Cheyne, in the sense of an infinitely
small increment. Strange to say, even in the Commercium Epistolicum the
words moment and fluxion appear to be used as synonymous.

After showing by examples how to solve the first problem, Newton proceeds
to the demonstration of his solution:—

“The moments of flowing quantities (that is, their indefinitely small parts, by
the accession of which, in infinitely small portions of time, they are continually
increased) are as the velocities of their flowing or increasing.

“Wherefore, if the moment of any one (as x) be represented by the product
of its celerity 9x into an infinitely small quantity 0 (i.e.by 9x0), the moments of
the others, v, y, z, will be represented by 9v0, 9y0, 9z0; because 9v0, 9x0, 9y0, and 9z0
are to each other as 9v, 9x, 9y, and 9z.

“Now since the moments, as 9x0 and 9y0, are the indefinitely little accessions
of the flowing quantities x and y, by which those quantities are increased
through the several indefinitely little intervals of time, it follows that those
quantities, x and y, after any indefinitely small interval of time, become x` 9x0
and y` 9y0, and therefore the equation, which at all times indiverently expresses
the relation of the flowing quantities, will as well express the relation between
x` 9x0 and y` 9y0, as between x and y; so that x` 9x0 and y` 9y0 may be substituted
in the same equation for those quantities, instead of x and y. Thus let any
equation x3´ ax2` axy´ y3 “ 0 be given, and substitute x` 9x0 for x, and y` 9y0
for y, and there will arise

x3 ` 3x2 9x0 ` 3x 9x0 9x0` 9x303

´ax2 ´ 2ax 9x0´ a 9x0 9x0

`axy` ay 9x0 ` a 9x0 9y0

` ax 9y0

´y3 ´ 3y2 9y0 ´ 3y 9y0 9y0 ´ 9y303

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

“ 0.
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“Now, by supposition, x3 ´ ax2 ` axy ´ y3 “ 0, which therefore, being
expunged and the remaining terms being divided by 0, there will remain

3x2 9x´ 2ax 9x` ay 9x` ax 9y´ 3y2 9y` 3x 9x 9x0´ a 9x 9x0` a 9x 9y0

´ 3y 9y 9y0` 9x300´ 9y300 “ 0.

But whereas zero is supposed to be infinitely little, that it may represent the
moments of quantities, the terms that are multiplied by it will be nothing in
respect of the rest (termini in eam ducti pro nihilo possunt haberi cum aliis collati);
therefore I reject them, and there remains

3x2 9x´ 2ax 9x` ay 9x` ax 9y´ 3y2 9y “ 0,

as above in Example I.” Newton here uses infinitesimals.
Much greater than in the first problem were the diHculties encountered in

the solution of the second problem, involving, as it does, inverse operations
which have been taxing the skill of the best analysts since his time. Newton
gives first a special solution to the second problem in which he resorts to a rule
for which he has given no proof.

In the general solution of his second problem, Newton assumed homogeneity
with respect to the fluxions and then considered three cases: (1) when the
equation contains two fluxions of quantities and but one of the fluents; (2) when
the equation involves both the fluents as well as both the fluxions; (3) when the
equation contains the fluents and the fluxions of three or more quantities. The

first case is the easiest since it requires simply the integration of
dy
dx
“ f pxq, to

which his “special solution” is applicable. The second case demanded nothing
less than the general solution of a diverential equation of the first order. Those
who know what evorts were afterwards needed for the complete exploration
of this field in analysis, will not depreciate Newton’s work even though he
resorted to solutions in form of infinite series. Newton’s third case comes
now under the solution of partial diverential equations. He took the equation
2 9x´ 9z` x 9y “ 0 and succeeded in finding a particular integral of it.

The rest of the treatise is devoted to the determination of maxima and
minima, the radius of curvature of curves, and other geometrical applications
of his fluxionary calculus. All this was done previous to the year 1672.

It must be observed that in the Method of Fluxions (as well as in his De Analysi
and all earlier papers) the method employed by Newton is strictly infinitesimal,
and in substance like that of Leibniz. Thus, the original conception of the
calculus in England, as well as on the Continent, was based on infinitesimals.
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The fundamental principles of the fluxionary calculus were first given to
the world in the Principia; but its peculiar notation did not appear until
published in the second volume of Wallis’ Algebra in 1693. The exposition
given in the Algebra was substantially a contribution of Newton; it rests on
infinitesimals. In the first edition of the Principia (1687) the description of
fluxions is likewise founded on infinitesimals, but in the second (1713) the
foundation is somewhat altered. In Book II. Lemma II. of the first edition
we read: “Cave tamen intellexeris particulas finitas. Momenta quam primum
finitæ sunt magnitudinis, desinunt esse momenta. Finiri enim repugnat aliquatenus
perpetuo eorum incremento vel decremento. Intelligenda sunt principia jamjam
nascentia finitorum magnitudinum.” In the second edition the two sentences
which we print in italics are replaced by the following: “Particulæ finitæ
non sunt momenta sed quantitates ipsæ ex momentis genitæ.” Through the
diHculty of the phrases in both extracts, this much distinctly appears, that
in the first, moments are infinitely small quantities. What else they are in
the second is not clear. In the Quadrature of Curves of 1704, the infinitely
small quantity is completely abandoned. It has been shown that in the Method
of Fluxions Newton rejected terms involving the quantity 0, because they
are infinitely small compared with other terms. This reasoning is evidently
erroneous; for as long as 0 is a quantity, though ever so small, this rejection
cannot be made without avecting the result. Newton seems to have felt this,
for in the Quadrature of Curves he remarked that “in mathematics the minutest
errors are not to be neglected” (errores quam minimi in rebus mathematicis
non sunt contemnendi).

The early distinction between the system of Newton and Leibniz lies in
this, that Newton, holding to the conception of velocity or fluxion, used the
infinitely small increment as a means of determining it, while with Leibniz the
relation of the infinitely small increments is itself the object of determination.
The diverence between the two rests mainly upon a diverence in the mode of
generating quantities.

We give Newton’s statement of the method of fluxions or rates, as given
in the introduction to his Quadrature of Curves. “I consider mathematical
quantities in this place not as consisting of very small parts, but as described
by a continued motion. Lines are described, and thereby generated, not by the
apposition of parts, but by the continued motion of points; superficies by the
motion of lines; solids by the motion of superficies; angles by the rotation of
the sides; portions of time by continual flux: and so on in other quantities.
These geneses really take place in the nature of things, and are daily seen in the
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motion of bodies. . . .
“Fluxions are, as near as we please (quam proxime), as the increments of fluents

generated in times, equal and as small as possible, and to speak accurately, they
are in the prime ratio of nascent increments; yet they can be expressed by any
lines whatever, which are proportional to them.”

Newton exemplifies this last assertion by the problem of tangency: Let AB
be the abscissa, BC the ordinate, VCH the tangent, Ec the increment of the
ordinate, which produced meets VH at T , and Cc the increment of the curve.
The right line Cc being produced to K, there are formed three small triangles,
the rectilinear CEc, the mixtilinear CEc, and the rectilinear CET . Of these,
the first is evidently the smallest, and the last the greatest. Now suppose the
ordinate bc to move into the place BC, so that the point c exactly coincides with

V B
b

EC

c

H
K

A

T
the point C; CK, and there-
fore the curve Cc, is coincident
with the tangent CH , Ec is ab-
solutely equal to ET , and the
mixtilinear evanescent triangle
CEc is, in the last form, sim-
ilar to the triangle CET ; and
its evanescent sides CE, Ec, Cc,

will be proportional to CE, ET , and CT , the sides of the triangle CET . Hence
it follows that the fluxions of the lines AB, BC, AC, being in the last ratio of
their evanescent increments, are proportional to the sides of the triangle CET ,
or, which is all one, of the triangle VBC similar thereunto. As long as the
points C and c are distant from each other by an interval, however small, the
line CK will stand apart by a small angle from the tangent CH . But when CK
coincides with CH , and the lines CE, Ec, cC reach their ultimate ratios, then
the points C and c accurately coincide and are one and the same. Newton then
adds that “in mathematics the minutest errors are not to be neglected.” This is
plainly a rejection of the postulates of Leibniz. The doctrine of infinitely small
quantities is here renounced in a manner which would lead one to suppose that
Newton had never held it himself. Thus it appears that Newton’s doctrine was
diverent in diverent periods. Though, in the above reasoning, the Charybdis
of infinitesimals is safely avoided, the dangers of a Scylla stare us in the face.
We are required to believe that a point may be considered a triangle, or that a
triangle can be inscribed in a point; nay, that three dissimilar triangles become
similar and equal when they have reached their ultimate form in one and the
same point.
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In the introduction to the Quadrature of Curves the fluxion of xn is determined
as follows:—

“In the same time that x, by flowing, becomes x ` 0, the power xn becomes
px` 0qn, i.e. by the method of infinite series

xn ` n0xn´1 `
n2 ´ n

2
02xn´2 ` etc.,

and the increments

0 and n0xn´1 `
n2 ´ n

2
02xn´2 ` etc.,

are to one another as

1 to nxn´1 `
n2 ´ n

2
0xn´2 ` etc.

“Let now the increments vanish, and their last proportion will be 1 to nxn´1:
hence the fluxion of the quantity x is to the fluxion of the quantity xn as 1 : nxn´1.

“The fluxion of lines, straight or curved, in all cases whatever, as also the
fluxions of superficies, angles, and other quantities, can be obtained in the same
manner by the method of prime and ultimate ratios. But to establish in this way
the analysis of infinite quantities, and to investigate prime and ultimate ratios
of finite quantities, nascent or evanescent, is in harmony with the geometry of
the ancients; and I have endeavoured to show that, in the method of fluxions, it
is not necessary to introduce into geometry infinitely small quantities.” This
mode of diverentiating does not remove all the diHculties connected with the
subject. When 0 becomes nothing, then we get the ratio

0
0
“ nxn´1, which needs

further elucidation. Indeed, the method of Newton, as delivered by himself,
is encumbered with diHculties and objections. Among the ablest admirers of
Newton, there have been obstinate disputes respecting his explanation of his
method of “prime and ultimate ratios.”

The so-called “method of limits” is frequently attributed to Newton, but the
pure method of limits was never adopted by him as his method of constructing
the calculus. All he did was to establish in his Principia certain principles which
are applicable to that method, but which he used for a diverent purpose. The
first lemma of the first book has been made the foundation of the method of
limits:—

“Quantities and the ratios of quantities, which in any finite time converge
continually to equality, and before the end of that time approach nearer the
one to the other than by any given diverence, become ultimately equal.”
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In this, as well as in the lemmas following this, there are obscurities and
diHculties. Newton appears to teach that a variable quantity and its limit will
ultimately coincide and be equal. But it is now generally agreed that in the
clearest statements which have been made of the theory of limits, the variable
does not actually reach its limit, though the variable may approach it as near
as we please.

The full title of Newton’s Principia is Philosophiæ Naturalis Principia Math-
ematica. It was printed in 1687 under the direction, and at the expense, of
Dr. Edmund Halley. A second edition was brought out in 1713 with many
alterations and improvements, and accompanied by a preface from Mr. Cotes.
It was sold out in a few months, but a pirated edition published in Amsterdam
supplied the demand. The third and last edition which appeared in England
during Newton’s lifetime was published in 1726 by Henry Pemberton. The
Principia consists of three books, of which the first two, constituting the great
bulk of the work, treat of the mathematical principles of natural philosophy,
namely, the laws and conditions of motions and forces. In the third book
is drawn up the constitution of the universe as deduced from the foregoing
principles. The great principle underlying this memorable work is that of
universal gravitation. The first book was completed on April 28, 1686. After
the remarkably short period of three months, the second book was finished.
The third book is the result of the next nine or ten months’ labours. It is only
a sketch of a much more extended elaboration of the subject which he had
planned, but which was never brought to completion.

The law of gravitation is enunciated in the first book. Its discovery envelops
the name of Newton in a halo of perpetual glory. The current version of the
discovery is as follows: it was conjectured by Hooke, Huygens, Halley, Wren,
Newton, and others, that, if Kepler’s third law was true (its absolute accuracy
was doubted at that time), then the attraction between the earth and other
members of the solar system varied inversely as the square of the distance. But
the proof of the truth or falsity of the guess was wanting. In 1666 Newton
reasoned, in substance, that if g represent the acceleration of gravity on the
surface of the earth, r be the earth’s radius, R the distance of the moon from
the earth, T the time of lunar revolution, and a a degree at the equator, then, if
the law is true,

g
r2

R2 “ 4π
2 R

T 2 , or g “
4π

T 2

ˆ

R
r

˙3

¨180a.

The data at Newton’s command gave R “ 60.4r, T “ 2, 360, 628 seconds, but
a only 60 instead of 69 1

2 English miles. This wrong value of a rendered
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the calculated value of g smaller than its true value, as known from actual
measurement. It looked as though the law of inverse squares were not the true
law, and Newton laid the calculation aside. In 1684 he casually ascertained at
a meeting of the Royal Society that Jean Picard had measured an arc of the
meridian, and obtained a more accurate value for the earth’s radius. Taking
the corrected value for a, he found a figure for g which corresponded to the
known value. Thus the law of inverse squares was verified. In a scholium in the
Principia, Newton acknowledged his indebtedness to Huygens for the laws on
centrifugal force employed in his calculation.

The perusal by the astronomer Adams of a great mass of unpublished
letters and manuscripts of Newton forming the Portsmouth collection (which
remained private property until 1872, when its owner placed it in the hands of
the University of Cambridge) seems to indicate that the diHculties encountered
by Newton in the above calculation were of a diverent nature. According
to Adams, Newton’s numerical verification was fairly complete in 1666, but
Newton had not been able to determine what the attraction of a spherical
shell upon an external point would be. His letters to Halley show that he
did not suppose the earth to attract as though all its mass were concentrated
into a point at the centre. He could not have asserted, therefore, that the
assumed law of gravity was verified by the figures, though for long distances
he might have claimed that it yielded close approximations. When Halley
visited Newton in 1684, he requested Newton to determine what the orbit of a
planet would be if the law of attraction were that of inverse squares. Newton
had solved a similar problem for Hooke in 1679, and replied at once that it
was an ellipse. After Halley’s visit, Newton, with Picard’s new value for the
earth’s radius, reviewed his early calculation, and was able to show that if the
distances between the bodies in the solar system were so great that the bodies
might be considered as points, then their motions were in accordance with the
assumed law of gravitation. In 1685 he completed his discovery by showing
that a sphere whose density at any point depends only on the distance from the
centre attracts an external point as though its whole mass were concentrated at
the centre.

Newton’s unpublished manuscripts in the Portsmouth collection show that
he had worked out, by means of fluxions and fluents, his lunar calculations to
a higher degree of approximation than that given in the Principia, but that he
was unable to interpret his results geometrically. The papers in that collection
throw light upon the mode by which Newton arrived at some of the results in
the Principia, as, for instance, the famous construction in Book II., Prop. 25,
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which is unproved in the Principia, but is demonstrated by him twice in a draft
of a letter to David Gregory, of Oxford.

It is chiefly upon the Principia that the fame of Newton rests. Brewster calls
it “the brightest page in the records of human reason.” Let us listen, for a
moment, to the comments of Laplace, the foremost among those followers
of Newton who grappled with the subtle problems of the motions of planets
under the influence of gravitation: “Newton has well established the existence
of the principle which he had the merit of discovering, but the development
of its consequences and advantages has been the work of the successors of
this great mathematician. The imperfection of the infinitesimal calculus,
when first discovered, did not allow him completely to resolve the diHcult
problems which the theory of the universe overs; and he was oftentimes forced
to give mere hints, which were always uncertain till confirmed by rigorous
analysis. Notwithstanding these unavoidable defects, the importance and the
generality of his discoveries respecting the system of the universe, and the most
interesting points of natural philosophy, the great number of profound and
original views, which have been the origin of the most brilliant discoveries of
the mathematicians of the last century, which were all presented with much
elegance, will insure to the Principia a lasting pre-eminence over all other
productions of the human mind."

Newton’s Arithmetica Universalis, consisting of algebraical lectures delivered
by him during the first nine years he was professor at Cambridge, were
published in 1707, or more than thirty years after they were written. This
work was published by Mr. Whiston. We are not accurately informed how
Mr. Whiston came in possession of it, but according to some authorities its
publication was a breach of confidence on his part.

The Arithmetica Universalis contains new and important results on the
theory of equations. His theorem on the sums of powers of roots is well
known. Newton showed that in equations with real coeHcients, imaginary
roots always occur in pairs. His inventive genius is grandly displayed in his
rule for determining the inferior limit of the number of imaginary roots, and
the superior limits for the number of positive and negative roots. Though less
expeditious than Descartes’, Newton’s rule always gives as close, and generally
closer, limits to the number of positive and negative roots. Newton did not
prove his rule. It awaited demonstration for a century and a half, until, at last,
Sylvester established a remarkable general theorem which includes Newton’s
rule as a special case.

The treatise on Method of Fluxions contains Newton’s method of approx-
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imating to the roots of numerical equations. This is simply the method of
Vieta improved. The same treatise contains “Newton’s parallelogram,” which
enabled him, in an equation, f px, yq “ 0, to find a series in powers of x equal to
the variable y. The great utility of this rule lay in its determining the form of the
series; for, as soon as the law was known by which the exponents in the series
vary, then the expansion could be evected by the method of indeterminate
coeHcients. The rule is still used in determining the infinite branches to curves,
or their figure at multiple points. Newton gave no proof for it, nor any clue
as to how he discovered it. The proof was supplied half a century later, by
Kaestner and Cramer, independently.

In 1704 was published, as an appendix to the Opticks, the Enumeratio linearum
tertii ordinis, which contains theorems on the theory of curves. Newton
divides cubics into seventy-two species, arranged in larger groups, for which
his commentators have supplied the names “genera” and “classes,” recognising
fourteen of the former and seven (or four) of the latter. He overlooked six
species demanded by his principles of classification, and afterwards added by
Stirling, Murdoch, and Cramer. He enunciates the remarkable theorem that
the five species which he names “divergent parabolas” give by their projection
every cubic curve whatever. As a rule, the tract contains no proofs. It has been
the subject of frequent conjecture how Newton deduced his results. Recently
we have gotten at the facts, since much of the analysis used by Newton and a few
additional theorems have been discovered among the Portsmouth papers. An
account of the four holograph manuscripts on this subject has been published
by W. W. Rouse Ball, in the Transactions of the London Mathematical Society
(vol. xx., pp. 104–143). It is interesting to observe how Newton begins his
research on the classification of cubic curves by the algebraic method, but,
finding it laborious, attacks the problem geometrically, and afterwards returns
again to analysis.

Space does not permit us to do more than merely mention Newton’s
prolonged researches in other departments of science. He conducted a long
series of experiments in optics and is the author of the corpuscular theory
of light. The last of a number of papers on optics, which he contributed
to the Royal Society, 1687, elaborates the theory of “fits.” He explained
the decomposition of light and the theory of the rainbow. By him were
invented the reflecting telescope and the sextant (afterwards re-discovered
by Thomas Godfrey of Philadelphia and by John Hadley). He deduced a
theoretical expression for the velocity of sound in air, engaged in experiments
on chemistry, elasticity, magnetism, and the law of cooling, and entered upon
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geological speculations.
During the two years following the close of 1692, Newton suvered from

insomnia and nervous irritability. Some thought that he laboured under
temporary mental aberration. Though he recovered his tranquillity and
strength of mind, the time of great discoveries was over; he would study
out questions propounded to him, but no longer did he by his own accord
enter upon new fields of research. The most noted investigation after his
sickness was the testing of his lunar theory by the observations of Flamsteed,
the astronomer royal. In 1695 he was appointed warden, and in 1699 master,
of the mint, which oHce he held until his death. His body was interred
in Westminster Abbey, where in 1731 a magnificent monument was erected,
bearing an inscription ending with, “Sibi gratulentur mortales tale tantumque
exstitisse humani generis decus.” It is not true that the Binomial Theorem is
also engraved on it.

We pass to Leibniz, the second and independent inventor of the calculus.
Gottfried Wilhelm Leibniz (1646–1716) was born in Leipzig. No period in
the history of any civilised nation could have been less favourable for literary
and scientific pursuits than the middle of the seventeenth century in Germany.
Yet circumstances seem to have happily combined to bestow on the youthful
genius an education hardly otherwise obtainable during this darkest period
of German history. He was brought early in contact with the best of the
culture then existing. In his fifteenth year he entered the University of Leipzig.
Though law was his principal study, he applied himself with great diligence
to every branch of knowledge. Instruction in German universities was then
very low. The higher mathematics was not taught at all. We are told that a
certain John Kuhn lectured on Euclid’s Elements, but that his lectures were so
obscure that none except Leibniz could understand them. Later on, Leibniz
attended, for a half-year, at Jena, the lectures of Erhard Weigel, a philosopher
and mathematician of local reputation. In 1666 Leibniz published a treatise,
De Arte Combinatoria, in which he does not pass beyond the rudiments of
mathematics. Other theses written by him at this time were metaphysical and
juristical in character. A fortunate circumstance led Leibniz abroad. In 1672
he was sent by Baron Boineburg on a political mission to Paris. He there
formed the acquaintance of the most distinguished men of the age. Among
these was Huygens, who presented a copy of his work on the oscillation of
the pendulum to Leibniz, and first led the gifted young German to the study
of higher mathematics. In 1673 Leibniz went to London, and remained there
from January till March. He there became incidentally acquainted with the
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mathematician Pell, to whom he explained a method he had found on the
summation of series of numbers by their diverences. Pell told him that a
similar formula had been published by Mouton as early as 1670, and then called
his attention to Mercator’s work on the rectification of the parabola. While
in London, Leibniz exhibited to the Royal Society his arithmetical machine,
which was similar to Pascal’s, but more eHcient and perfect. After his return
to Paris, he had the leisure to study mathematics more systematically. With
indomitable energy he set about removing his ignorance of higher mathematics.
Huygens was his principal master. He studied the geometric works of Descartes,
Honorarius Fabri, Gregory St. Vincent, and Pascal. A careful study of infinite
series led him to the discovery of the following expression for the ratio of the
circumference to the diameter of the circle, previously discovered by James
Gregory:—

π

4
“ 1´ 1

3 `
1
5 ´

1
7 `

1
9 ´ etc.

This elegant series was found in the same way as Mercator’s on the hyperbola.
Huygens was highly pleased with it and urged him on to new investigations.
Leibniz entered into a detailed study of the quadrature of curves and thereby
became intimately acquainted with the higher mathematics. Among the papers
of Leibniz is still found a manuscript on quadratures, written before he left
Paris in 1676, but which was never printed by him. The more important parts
of it were embodied in articles published later in the Acta Eruditorum.

In the study of Cartesian geometry the attention of Leibniz was drawn
early to the direct and inverse problems of tangents. The direct problem
had been solved by Descartes for the simplest curves only; while the inverse
had completely transcended the power of his analysis. Leibniz investigated
both problems for any curve; he constructed what he called the triangulum
characteristicum—an infinitely small triangle between the infinitely small part
of the curve coinciding with the tangent, and the diverences of the ordinates
and abscissas. A curve is here considered to be a polygon. The triangulum
characteristicum is similar to the triangle formed by the tangent, the ordinate
of the point of contact, and the sub-tangent, as well as to that between the
ordinate, normal, and sub-normal. It was first employed by Barrow in England,
but appears to have been re-invented by Leibniz. From it Leibniz observed
the connection existing between the direct and inverse problems of tangents.
He saw also that the latter could be carried back to the quadrature of curves.
All these results are contained in a manuscript of Leibniz, written in 1673.
One mode used by him in evecting quadratures was as follows: The rectangle
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formed by a sub-tangent p and an element a (i.e. infinitely small part of the
abscissa) is equal to the rectangle formed by the ordinate y and the element l
of that ordinate; or in symbols, pa “ yl. But the summation of these rectangles
from zero on gives a right triangle equal to half the square of the ordinate.
Thus, using Cavalieri’s notation, he gets

omn. pa “ omn. yl “
y2

2
(omn. meaning omnia, all).

But y “ omn. l; hence

omn.omn. l
l
a
“

omn. l2

2a
.

This equation is especially interesting, since it is here that Leibniz first
introduces a new notation. He says: “It will be useful to write

ş

for omn., as
ş

l
for omn. l, that is, the sum of the l’s”; he then writes the equation thus:—

ş

l2

2a
“

ż

ş

l̄
l
a

.

From this he deduced the simplest integrals, such as
ż

x “
x2

2
,

ż

px` yq “
ż

x`
ż

y.

Since the symbol of summation
ş

raises the dimensions, he concluded that the
opposite calculus, or that of diverences d, would lower them. Thus, if

ş

l “ ya,
then l “

ya
d

. The symbol d was at first placed by Leibniz in the denominator,
because the lowering of the power of a term was brought about in ordinary
calculation by division. The manuscript giving the above is dated October 29th,
1675. This, then, was the memorable day on which the notation of the new
calculus came to be,—a notation which contributed enormously to the rapid
growth and perfect development of the calculus.

Leibniz proceeded to apply his new calculus to the solution of certain
problems then grouped together under the name of the Inverse Problems of
Tangents. He found the cubical parabola to be the solution to the following:
To find the curve in which the sub-normal is reciprocally proportional to the
ordinate. The correctness of his solution was tested by him by applying to
the result Sluze’s method of tangents and reasoning backwards to the original
supposition. In the solution of the third problem he changes his notation
from

x
d

to the now usual notation dx. It is worthy of remark that in these
investigations, Leibniz nowhere explains the significance of dx and dy, except
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at one place in a marginal note: “Idem est dx et
x
d

, id est, diverentia inter
duas x proximas.” Nor does he use the term differential, but always difference.
Not till ten years later, in the Acta Eruditorum, did he give further explanations
of these symbols. What he aimed at principally was to determine the change
an expression undergoes when the symbol

ş

or d is placed before it. It may
be a consolation to students wrestling with the elements of the diverential
calculus to know that it required Leibniz considerable thought and attention

to determine whether dx dy is the same as dpxyq, and
dx
dy

the same as d
x
y

. After

considering these questions at the close of one of his manuscripts, he concluded
that the expressions were not the same, though he could not give the true value
for each. Ten days later, in a manuscript dated November 21, 1675, he found the
equation y dx “ d xy´ x dy, giving an expression for dpxyq, which he observed
to be true for all curves. He succeeded also in eliminating dx from a diverential
equation, so that it contained only dy, and thereby led to the solution of the
problem under consideration. “Behold, a most elegant way by which the
problems of the inverse methods of tangents are solved, or at least are reduced
to quadratures!” Thus he saw clearly that the inverse problems of tangents
could be solved by quadratures, or, in other words, by the integral calculus. In
course of a half-year he discovered that the direct problem of tangents, too,
yielded to the power of his new calculus, and that thereby a more general
solution than that of Descartes could be obtained. He succeeded in solving all
the special problems of this kind, which had been left unsolved by Descartes.
Of these we mention only the celebrated problem proposed to Descartes by
De Beaune, viz. to find the curve whose ordinate is to its sub-tangent as a given
line is to that part of the ordinate which lies between the curve and a line drawn
from the vertex of the curve at a given inclination to the axis.

Such was, in brief, the progress in the evolution of the new calculus made
by Leibniz during his stay in Paris. Before his departure, in October, 1676, he
found himself in possession of the most elementary rules and formulæ of the
infinitesimal calculus.

From Paris, Leibniz returned to Hanover by way of London and Amsterdam.
In London he met Collins, who showed him a part of his scientific correspon-
dence. Of this we shall speak later. In Amsterdam he discussed mathematics
with Sluze, and became satisfied that his own method of constructing tangents
not only accomplished all that Sluze’s did, but even more, since it could be
extended to three variables, by which tangent planes to surfaces could be found;
and especially, since neither irrationals nor fractions prevented the immediate
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application of his method.
In a paper of July 11, 1677, Leibniz gave correct rules for the diverentiation

of sums, products, quotients, powers, and roots. He had given the diverentials
of a few negative and fractional powers, as early as November, 1676, but had
made some mistakes. For d

?
x he had given the erroneous value

1
?

x
, and in

another place the value ´ 1
2 x´ 1

2 ; for d
1
x3 occurs in one place the wrong value,

´
2
x2 , while a few lines lower is given ´

3
x4 , its correct value.

In 1682 was founded in Berlin the Acta Eruditorum, a journal usually known
by the name of Leipzig Acts. It was a partial imitation of the French Journal des
Savans (founded in 1665), and the literary and scientific review published in
Germany. Leibniz was a frequent contributor. Tschirnhaus, who had studied
mathematics in Paris with Leibniz, and who was familiar with the new analysis
of Leibniz, published in the Acta Eruditorum a paper on quadratures, which
consists principally of subject-matter communicated by Leibniz to Tschirnhaus
during a controversy which they had had on this subject. Fearing that
Tschirnhaus might claim as his own and publish the notation and rules of the
diverential calculus, Leibniz decided, at last, to make public the fruits of his
inventions. In 1684, or nine years after the new calculus first dawned upon the
mind of Leibniz, and nineteen years after Newton first worked at fluxions, and
three years before the publication of Newton’s Principia, Leibniz published, in
the Leipzig Acts, his first paper on the diverential calculus. He was unwilling
to give to the world all his treasures, but chose those parts of his work which
were most abstruse and least perspicuous. This epoch-making paper of only
six pages bears the title: “Nova methodus pro maximis et minimis, itemque
tangentibus, quæ nec fractas nec irrationales quantitates moratur, et singulare
pro illis calculi genus.” The rules of calculation are briefly stated without
proof, and the meaning of dx and dy is not made clear. It has been inferred
from this that Leibniz himself had no definite and settled ideas on this subject.
Are dy and dx finite or infinitesimal quantities? At first they appear, indeed,
to have been taken as finite, when he says: “We now call any line selected at
random dx, then we designate the line which is to dx as y is to the sub-tangent,
by dy, which is the diverence of y.” Leibniz then ascertains, by his calculus, in
what way a ray of light passing through two diverently refracting media, can
travel easiest from one point to another; and then closes his article by giving
his solution, in a few words, of De Beaune’s problem. Two years later (1686)
Leibniz published in the Acta Eruditorum a paper containing the rudiments of
the integral calculus. The quantities dx and dy are there treated as infinitely
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small. He showed that by the use of his notation, the properties of curves could
be fully expressed by equations. Thus the equation

y “
?

2x´ x2 `

ż

dx
?

2x´ x2

characterises the cycloid.
The great invention of Leibniz, now made public by his articles in the Leipzig

Acts, made little impression upon the mass of mathematicians. In Germany
no one comprehended the new calculus except Tschirnhaus, who remained
indiverent to it. The author’s statements were too short and succinct to make
the calculus generally understood. The first to recognise its importance and
to take up the study of it were two foreigners,—the Scotchman John Craig,
and the Swiss James Bernoulli. The latter wrote Leibniz a letter in 1687,
wishing to be initiated into the mysteries of the new analysis. Leibniz was
then travelling abroad, so that this letter remained unanswered till 1690.
James Bernoulli succeeded, meanwhile, by close application, in uncovering the
secrets of the diverential calculus without assistance. He and his brother John
proved to be mathematicians of exceptional power. They applied themselves
to the new science with a success and to an extent which made Leibniz
declare that it was as much theirs as his. Leibniz carried on an extensive
correspondence with them, as well as with other mathematicians. In a letter to
John Bernoulli he suggests, among other things, that the integral calculus be
improved by reducing integrals back to certain fundamental irreducible forms.
The integration of logarithmic expressions was then studied. The writings
of Leibniz contain many innovations, and anticipations of since prominent
methods. Thus he made use of variable parameters, laid the foundation of
analysis in situ, introduced the first notion of determinants in his evort to
simplify the expression arising in the elimination of the unknown quantities
from a set of linear equations. He resorted to the device of breaking up certain
fractions into the sum of other fractions for the purpose of easier integration;
he explicitly assumed the principle of continuity; he gave the first instance of a
“singular solution,” and laid the foundation to the theory of envelopes in two
papers, one of which contains for the first time the terms co-ordinate and axes of
co-ordinates. He wrote on osculating curves, but his paper contained the error
(pointed out by John Bernoulli, but not admitted by him) that an osculating
circle will necessarily cut a curve in four consecutive points. Well known is his
theorem on the nth diverential coeHcient of the product of two functions of
a variable. Of his many papers on mechanics, some are valuable, while others
contain grave errors.
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Before tracing the further development of the calculus we shall sketch the
history of that long and bitter controversy between English and Continental
mathematicians on the invention of the calculus. The question was, did Leibniz
invent it independently of Newton, or was he a plagiarist?

We must begin with the early correspondence between the parties appearing
in this dispute. Newton had begun using his notation of fluxions in 1666.
In 1669 Barrow sent Collins Newton’s tract, De Analysi per Equationes, etc.

The first visit of Leibniz to London extended from the 11th of January until
March, 1673. He was in the habit of committing to writing important scientific
communications received from others. In 1890 Gerhardt discovered in the
royal library at Hanover a sheet of manuscript with notes taken by Leibniz
during this journey. They are headed “Observata Philosophica in itinere
Anglicano sub initium anni 1673.” The sheet is divided by horizontal lines into
sections. The sections given to Chymica, Mechanica, Magnetica, Botanica,
Anatomica, Medica, Miscellanea, contain extensive memoranda, while those
devoted to mathematics have very few notes. Under Geometrica he says only
this: “Tangentes omnium figurarum. Figurarum geometricarum explicatio
per motum puncti in moto lati.” We suspect from this that Leibniz had read
Barrow’s lectures. Newton is referred to only under Optica. Evidently Leibniz
did not obtain a knowledge of fluxions during this visit to London, nor is it
claimed that he did by his opponents.

Various letters of Newton, Collins, and others, up to the beginning of 1676,
state that Newton invented a method by which tangents could be drawn
without the necessity of freeing their equations from irrational terms. Leibniz
announced in 1674 to Oldenburg, then secretary of the Royal Society, that he
possessed very general analytical methods, by which he had found theorems of
great importance on the quadrature of the circle by means of series. In answer,
Oldenburg stated Newton and James Gregory had also discovered methods
of quadratures, which extended to the circle. Leibniz desired to have these
methods communicated to him; and Newton, at the request of Oldenburg and
Collins, wrote to the former the celebrated letters of June 13 and October 24,
1676. The first contained the Binomial Theorem and a variety of other matters
relating to infinite series and quadratures; but nothing directly on the method
of fluxions. Leibniz in reply speaks in the highest terms of what Newton
had done, and requests further explanation. Newton in his second letter just
mentioned explains the way in which he found the Binomial Theorem, and
also communicates his method of fluxions and fluents in form of an anagram in
which all the letters in the sentence communicated were placed in alphabetical
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order. Thus Newton says that his method of drawing tangents was

6 a cc d æ 13 e ff 7 i 3 l 9 n 4 o 4 q rr 4 s 9 t 12 v x.

The sentence was, “Data æquatione quotcunque fluentes quantitates involvente
fluxiones invenire, et vice versa.” (“Having any given equation involving never
so many flowing quantities, to find the fluxions, and vice versa.”) Surely this
anagram avorded no hint. Leibniz wrote a reply to Collins, in which, without
any desire of concealment, he explained the principle, notation, and the use of
the diverential calculus.

The death of Oldenburg brought this correspondence to a close. Nothing
material happened till 1684, when Leibniz published his first paper on the
diverential calculus in the Leipzig Acts, so that while Newton’s claim to the
priority of invention must be admitted by all, it must also be granted that
Leibniz was the first to give the full benefit of the calculus to the world. Thus,
while Newton’s invention remained a secret, communicated only to a few
friends, the calculus of Leibniz was spreading over the Continent. No rivalry
or hostility existed, as yet, between the illustrious scientists. Newton expressed
a very favourable opinion of Leibniz’s inventions, known to him through the
above correspondence with Oldenburg, in the following celebrated scholium
(Principia, first edition, 1687, Book II., Prop. 7, scholium):—

“In letters which went between me and that most excellent geometer, G. G.
Leibniz, ten years ago, when I signified that I was in the knowledge of a
method of determining maxima and minima, of drawing tangents, and the
like, and when I concealed it in transposed letters involving this sentence (Data
æquatione, etc., above cited), that most distinguished man wrote back that
he had also fallen upon a method of the same kind, and communicated his
method, which hardly divered from mine, except in his forms of words and
symbols.”

As regards this passage, we shall see that Newton was afterwards weak
enough, as De Morgan says: “First, to deny the plain and obvious meaning,
and secondly, to omit it entirely from the third edition of the Principia.” On
the Continent, great progress was made in the calculus by Leibniz and his
coadjutors, the brothers James and John Bernoulli, and Marquis de l’Hospital.
In 1695 Wallis informed Newton by letter that “he had heard that his notions
of fluxions passed in Holland with great applause by the name of ‘Leibniz’s
Calculus Diverentialis.’ ” Accordingly Wallis stated in the preface to a volume
of his works that the calculus diverentialis was Newton’s method of fluxions
which had been communicated to Leibniz in the Oldenburg letters. A review
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of Wallis’ works, in the Leipzig Acts for 1696, reminded the reader of Newton’s
own admission in the scholium above cited.

For fifteen years Leibniz had enjoyed unchallenged the honour of being
the inventor of his calculus. But in 1699 Fato de Duillier, a Swiss, who had
settled in England, stated in a mathematical paper, presented to the Royal
Society, his conviction that Newton was the first inventor; adding that, whether
Leibniz, the second inventor, had borrowed anything from the other, he would
leave to the judgment of those who had seen the letters and manuscripts of
Newton. This was the first distinct insinuation of plagiarism. It would seem
that the English mathematicians had for some time been cherishing suspicions
unfavourable to Leibniz. A feeling had doubtless long prevailed that Leibniz,
during his second visit to London in 1676, had or might have seen among
the papers of Collins, Newton’s Analysis per æquationes, etc., which contained
applications of the fluxionary method, but no systematic development or
explanation of it. Leibniz certainly did see at least part of this tract. During
the week spent in London, he took note of whatever interested him among the
letters and papers of Collins. His memoranda discovered by Gerhardt in 1849
in the Hanover library fill two sheets. The one bearing on our question is
headed “Excerpta ex tractatu Newtoni Msc. de Analysi per æquationes numero
terminorum infinitas.” The notes are very brief, excepting those De Resolutione
æquationum affectarum, of which there is an almost complete copy. This part
was evidently new to him. If he examined Newton’s entire tract, the other
parts did not particularly impress him. From it he seems to have gained
nothing pertaining to the infinitesimal calculus. By the previous introduction
of his own algorithm he had made greater progress than by what came to his
knowledge in London. Nothing mathematical that he had received engaged his
thoughts in the immediate future, for on his way back to Holland he composed
a lengthy dialogue on mechanical subjects.

Duillier’s insinuations lighted up a flame of discord which a whole century
was hardly suHcient to extinguish. Leibniz, who had never contested the
priority of Newton’s discovery, and who appeared to be quite satisfied with
Newton’s admission in his scholium, now appears for the first time in the
controversy. He made an animated reply in the Leipzig Acts, and complained to
the Royal Society of the injustice done him.

Here the avair rested for some time. In the Quadrature of Curves, pub-
lished 1704, for the first time, a formal exposition of the method and notation
of fluxions was made public. In 1705 appeared an unfavourable review of
this in the Leipzig Acts, stating that Newton uses and always has used fluxions
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for the diverences of Leibniz. This was considered by Newton’s friends an
imputation of plagiarism on the part of their chief, but this interpretation
was always strenuously resisted by Leibniz. Keill, professor of astronomy at
Oxford, undertook with more zeal than judgment the defence of Newton. In a
paper inserted in the Philosophical Transactions of 1708, he claimed that Newton
was the first inventor of fluxions and “that the same calculus was afterward
published by Leibniz, the name and the mode of notation being changed.”
Leibniz complained to the secretary of the Royal Society of bad treatment
and requested the interference of that body to induce Keill to disavow the
intention of imputing fraud. Keill was not made to retract his accusation;
on the contrary, was authorised by Newton and the Royal Society to explain
and defend his statement. This he did in a long letter. Leibniz thereupon
complained that the charge was now more open than before, and appealed for
justice to the Royal Society and to Newton himself. The Royal Society, thus
appealed to as a judge, appointed a committee which collected and reported
upon a large mass of documents—mostly letters from and to Newton, Leibniz,
Wallis, Collins, etc. This report, called the Commercium Epistolicum, appeared
in the year 1712 and again in 1725, with a Recensio prefixed, and additional
notes by Keill. The final conclusion in the Commercium Epistolicum was that
Newton was the first inventor. But this was not to the point. The question was
not whether Newton was the first inventor, but whether Leibniz had stolen the
method. The committee had not formally ventured to assert their belief that
Leibniz was a plagiarist. Yet there runs throughout the document a desire of
proving Leibniz guilty of more than they meant positively to aHrm. Leibniz
protested only in private letters against the proceeding of the Royal Society,
declaring that he would not answer an argument so weak. John Bernoulli, in
a letter to Leibniz, which was published later in an anonymous tract, is as
decidedly unfair towards Newton as the friends of the latter had been towards
Leibniz. Keill replied, and then Newton and Leibniz appear as mutual accusers
in several letters addressed to third parties. In a letter to Conti, April 9,
1716, Leibniz again reminded Newton of the admission he had made in the
scholium, which he was now desirous of disavowing; Leibniz also states that
he always believed Newton, but that, seeing him connive at accusations which
he must have known to be false, it was natural that he (Leibniz) should begin
to doubt. Newton did not reply to this letter, but circulated some remarks
among his friends which he published immediately after hearing of the death
of Leibniz, November 14, 1716. This paper of Newton gives the following
explanation pertaining to the scholium in question: “He [Leibniz] pretends
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that in my book of principles I allowed him the invention of the calculus
diverentialis, independently of my own; and that to attribute this invention to
myself is contrary to my knowledge there avowed. But in the paragraph there
referred unto I do not find one word to this purpose.” In the third edition of
the Principia, 1726, Newton omitted the scholium and substituted in its place
another, in which the name of Leibniz does not appear.

National pride and party feeling long prevented the adoption of impartial
opinions in England, but now it is generally admitted by nearly all familiar
with the matter, that Leibniz really was an independent inventor. Perhaps the
most telling evidence to show that Leibniz was an independent inventor is
found in the study of his mathematical papers (collected and edited by C. I.
Gerhardt, in six volumes, Berlin, 1849–1860), which point out a gradual and
natural evolution of the rules of the calculus in his own mind. “There was
throughout the whole dispute,” says De Morgan, “a confusion between the
knowledge of fluxions or diverentials and that of a calculus of fluxions or
diverentials; that is, a digested method with general rules.”

This controversy is to be regretted on account of the long and bitter alienation
which itproducedbetweenEnglishandContinentalmathematicians. It stopped
almost completely all interchange of ideas on scientific subjects. The English
adhered closely to Newton’s methods and, until about 1820, remained, in most
cases, ignorant of the brilliant mathematical discoveries that were being made
on the Continent. The loss in point of scientific advantage was almost entirely
on the side of Britain. The only way in which this dispute may be said, in a
small measure, to have furthered the progress of mathematics, is through the
challenge problems by which each side attempted to annoy its adversaries.

The recurring practice of issuing challenge problems was inaugurated at this
time by Leibniz. They were, at first, not intended as defiances, but merely as
exercises in the new calculus. Such was the problem of the isochronous curve
(to find the curve along which a body falls with uniform velocity), proposed by
him to the Cartesians in 1687, and solved by James Bernoulli, himself, and John
Bernoulli. James Bernoulli proposed in the Leipzig Journal the question to find
the curve (the catenary) formed by a chain of uniform weight suspended freely
from its ends. It was resolved by Huygens, Leibniz, and himself. In 1697 John
Bernoulli challenged the best mathematicians in Europe to solve the diHcult
problem, to find the curve (the cycloid) along which a body falls from one
point to another in the shortest possible time. Leibniz solved it the day he
received it. Newton, de l’Hospital, and the two Bernoullis gave solutions.
Newton’s appeared anonymously in the Philosophical Transactions, but John
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Bernoulli recognised in it his powerful mind, “anquam,” he says, “ex ungue
leonem.” The problem of orthogonal trajectories (a system of curves described
by a known law being given, to describe a curve which shall cut them all at
right angles) had been long proposed in the Acta Eruditorum, but failed at first
to receive much attention. It was again proposed in 1716 by Leibniz, to feel the
pulse of the English mathematicians.

This may be considered as the first defiance problem professedly aimed at
the English. Newton solved it the same evening on which it was delivered
to him, although he was much fatigued by the day’s work at the mint. His
solution, as published, was a general plan of an investigation rather than an
actual solution, and was, on that account, criticised by Bernoulli as being of
no value. Brook Taylor undertook the defence of it, but ended by using very
reprehensible language. Bernoulli was not to be outdone in incivility, and made
a bitter reply. Not long afterwards Taylor sent an open defiance to Continental
mathematicians of a problem on the integration of a fluxion of complicated
form which was known to very few geometers in England and supposed to
be beyond the power of their adversaries. The selection was injudicious, for
Bernoulli had long before explained the method of this and similar integrations.
It served only to display the skill and augment the triumph of the followers of
Leibniz. The last and most unskilful challenge was by John Keill. The problem
was to find the path of a projectile in a medium which resists proportionally
to the square of the velocity. Without first making sure that he himself could
solve it, Keill boldly challenged Bernoulli to produce a solution. The latter
resolved the question in very short time, not only for a resistance proportional
to the square, but to any power of the velocity. Suspecting the weakness of the
adversary, he repeatedly overed to send his solution to a confidential person
in London, provided Keill would do the same. Keill never made a reply, and
Bernoulli abused him and cruelly exulted over him.

The explanations of the fundamental principles of the calculus, as given by
Newton and Leibniz, lacked clearness and rigour. For that reason it met with
opposition from several quarters. In 1694 Bernard Nieuwentyt of Holland
denied the existence of diverentials of higher orders and objected to the practice
of neglecting infinitely small quantities. These objections Leibniz was not able

to meet satisfactorily. In his reply he said the value of
dy
dx

in geometry could
be expressed as the ratio of finite quantities. In the interpretation of dx and dy
Leibniz vacillated. At one time they appear in his writings as finite lines; then
they are called infinitely small quantities, and again, quantitates inassignabiles,
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which spring from quantitates assignabiles by the law of continuity. In this last
presentation Leibniz approached nearest to Newton.

In England the principles of fluxions were boldly attacked by Bishop Berkeley,
the eminent metaphysician, who argued with great acuteness, contending,
among other things, that the fundamental idea of supposing a finite ratio to
exist between terms absolutely evanescent—“the ghosts of departed quantities,”
as he called them—was absurd and unintelligible. The reply made by Jurin
failed to remove all the objections. Berkeley was the first to point out what
was again shown later by Lazare Carnot, that correct answers were reached by
a “compensation of errors.” Berkeley’s attack was not devoid of good results,
for it was the immediate cause of the work on fluxions by Maclaurin. In
France Michel Rolle rejected the diverential calculus and had a controversy with
Varignon on the subject.

Among the most vigorous promoters of the calculus on the Continent were
the Bernoullis. They and Euler made Basel in Switzerland famous as the cradle
of great mathematicians. The family of Bernoullis furnished in course of a
century eight members who distinguished themselves in mathematics. We
subjoin the following genealogical table:—

Nicolaus Bernoulli, the Father
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

Jacob, 1654–1705 Nicolaus Johann, 1667–1748
| |

Nicolaus, 1687–1759 Nicolaus, 1695–1726
Daniel, 1700–1782
Johann, 1710–1790

hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

Daniel Johann, 1744–1807 Jacob, 1758–1789

Most celebrated were the two brothers Jacob (James) and Johann (John), and
Daniel, the son of John. James and John were staunch friends of Leibniz and
worked hand in hand with him. James Bernoulli (1654–1705) was born in
Basel. Becoming interested in the calculus, he mastered it without aid from a
teacher. From 1687 until his death he occupied the mathematical chair at the
University of Basel. He was the first to give a solution to Leibniz’s problem of
the isochronous curve. In his solution, published in the Acta Eruditorum, 1690,
we meet for the first time with the word integral. Leibniz had called the integral
calculus calculus summatorius, but in 1696 the term calculus integralis was agreed
upon between Leibniz and John Bernoulli. James proposed the problem of the
catenary, then proved the correctness of Leibniz’s construction of this curve,
and solved the more complicated problems, supposing the string to be (1) of
variable density, (2) extensible, (3) acted upon at each point by a force directed
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to a fixed centre. Of these problems he published answers without explanations,
while his brother John gave in addition their theory. He determined the shape
of the “elastic curve” formed by an elastic plate or rod fixed at one end
and bent by a weight applied to the other end; of the “lintearia,” a flexible
rectangular plate with two sides fixed horizontally at the same height, filled
with a liquid; of the “volaria,” a rectangular sail filled with wind. He studied
the loxodromic and logarithmic spirals, in the last of which he took particular
delight from its remarkable property of reproducing itself under a variety of
conditions. Following the example of Archimedes, he willed that the curve
be engraved upon his tomb-stone with the inscription “eadem mutata resurgo.”
In 1696 he proposed the famous problem of isoperimetrical figures, and in 1701
published his own solution. He wrote a work on Ars Conjectandi, which is
a development of the calculus of probabilities and contains the investigation
now called “Bernoulli’s theorem” and the so-called “numbers of Bernoulli,”

which are in fact (though not so considered by him) the coeHcients of
xn

n!
in

the expansion of pex ´ 1q´1. Of his collected works, in three volumes, one was
printed in 1713, the other two in 1744.

John Bernoulli (1667–1748) was initiated into mathematics by his brother.
He afterwards visited France, where he met Malebranche, Cassini, De Lahire,
Varignon, and de l’Hospital. For ten years he occupied the mathematical chair
at Gröningen and then succeeded his brother at Basel. He was one of the most
enthusiastic teachers and most successful original investigators of his time. He
was a member of almost every learned society in Europe. His controversies
were almost as numerous as his discoveries. He was ardent in his friendships,
but unfair, mean, and violent toward all who incurred his dislike—even his own
brother and son. He had a bitter dispute with James on the isoperimetrical
problem. James convicted him of several paralogisms. After his brother’s
death he attempted to substitute a disguised solution of the former for an
incorrect one of his own. John admired the merits of Leibniz and Euler, but
was blind to those of Newton. He immensely enriched the integral calculus
by his labours. Among his discoveries are the exponential calculus, the line of
swiftest descent, and its beautiful relation to the path described by a ray passing
through strata of variable density. He treated trigonometry by the analytical
method, studied caustic curves and trajectories. Several times he was given
prizes by the Academy of Science in Paris.

Of his sons, Nicholas and Daniel were appointed professors of mathematics
at the same time in the Academy of St. Petersburg. The former soon died in
the prime of life; the latter returned to Basel in 1733, where he assumed the
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chair of experimental philosophy. His first mathematical publication was the
solution of a diverential equation proposed by Riccati. He wrote a work on
hydrodynamics. His investigations on probability are remarkable for their
boldness and originality. He proposed the theory of moral expectation, which he
thought would give results more in accordance with our ordinary notions than
the theory of mathematical probability. His “moral expectation” has become
classic, but no one ever makes use of it. He applies the theory of probability to
insurance; to determine the mortality caused by small-pox at various stages of
life; to determine the number of survivors at a given age from a given number
of births; to determine how much inoculation lengthens the average duration
of life. He showed how the diverential calculus could be used in the theory of
probability. He and Euler enjoyed the honour of having gained or shared no
less than ten prizes from the Academy of Sciences in Paris.

Johann Bernoulli (born 1710) succeeded his father in the professorship of
mathematics at Basel. He captured three prizes (on the capstan, the propagation
of light, and the magnet) from the Academy of Sciences at Paris. Nicolaus
Bernoulli (born 1687) held for a time the mathematical chair at Padua which
Galileo had once filled. Johann Bernoulli (born 1744) at the age of nineteen
was appointed astronomer royal at Berlin, and afterwards director of the
mathematical department of the Academy. His brother Jacob took upon
himself the duties of the chair of experimental physics at Basel, previously
performed by his uncle Jacob, and later was appointed mathematical professor
in the Academy at St. Petersburg.

Brief mention will now be made of some other mathematicians belonging
to the period of Newton, Leibniz, and the elder Bernoullis.

Guillaume François Antoine l’Hospital (1661–1704), a pupil of John
Bernoulli, has already been mentioned as taking part in the challenges is-
sued by Leibniz and the Bernoullis. He helped powerfully in making the
calculus of Leibniz better known to the mass of mathematicians by the publi-
cation of a treatise thereon in 1696. This contains for the first time the method
of finding the limiting value of a fraction whose two terms tend toward zero at
the same time.

Another zealous French advocate of the calculus was Pierre Varignon
(1654–1722). Joseph Saurin (1659–1737) solved the delicate problem of how to
determine the tangents at the multiple points of algebraic curves. François
Nicole (1683–1758) in 1717 issued the first systematic treatise on finite diverences,
in which he finds the sums of a considerable number of interesting series.
He wrote also on roulettes, particularly spherical epicycloids, and their
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rectification. Also interested in finite diverences was Pierre Raymond
de Montmort (1678–1719). His chief writings, on the theory of probability,
served to stimulate his more distinguished successor, De Moivre. Jean Paul
de Gua (1713–1785) gave the demonstration of Descartes’ rule of signs, now
given in books. This skilful geometer wrote in 1740 a work on analytical
geometry, the object of which was to show that most investigations on curves
could be carried on with the analysis of Descartes quite as easily as with the
calculus. He shows how to find the tangents, asymptotes, and various singular
points of curves of all degrees, and proved by perspective that several of these
points can be at infinity. A mathematician who clung to the methods of the
ancients was Philippe de Lahire (1640–1718), a pupil of Desargues. His work on
conic sections is purely synthetic, but divers from ancient treatises in deducing
the properties of conics from those of the circle in the same manner as did
Desargues and Pascal. His innovations stand in close relation with modern
synthetic geometry. He wrote on roulettes, on graphical methods, epicycloids,
conchoids, and on magic squares. Michel Rolle (1652–1719) is the author of a
theorem named after him.

Of Italian mathematicians, Riccati and Fagnano must not remain unmen-
tioned. Jacopo Francesco, Count Riccati (1676–1754) is best known in
connection with his problem, called Riccati’s equation, published in the Acta
Eruditorum in 1724. He succeeded in integrating this diverential equation
for some special cases. A geometrician of remarkable power was Giulio
Carlo, Count de Fagnano (1682–1766). He discovered the following formula,

π “ 2i log
1´ i
1` i

, in which he anticipated Euler in the use of imaginary exponents

and logarithms. His studies on the rectification of the ellipse and hyperbola are
the starting-points of the theory of elliptic functions. He showed, for instance,
that two arcs of an ellipse can be found in an indefinite number of ways, whose
diverence is expressible by a right line.

In Germany the only noted contemporary of Leibniz is Ehrenfried Walter
Tschirnhausen (1651–1708), who discovered the caustic of reflection, experi-
mented on metallic reflectors and large burning-glasses, and gave us a method
of transforming equations named after him. Believing that the most simple
methods (like those of the ancients) are the most correct, he concluded that in
the researches relating to the properties of curves the calculus might as well be
dispensed with.

After the death of Leibniz there was in Germany not a single mathematician
of note. Christian Wolf (1679–1754), professor at Halle, was ambitious to
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figure as successor of Leibniz, but he “forced the ingenious ideas of Leibniz
into a pedantic scholasticism, and had the unenviable reputation of having
presented the elements of the arithmetic, algebra, and analysis developed since
the time of the Renaissance in the form of Euclid,—of course only in outward
form, for into the spirit of them he was quite unable to penetrate.”

The contemporaries and immediate successors of Newton in Great Britain
were men of no mean merit. We have reference to Cotes, Taylor, Maclaurin,
and De Moivre. We are told that at the death of Roger Cotes (1682–1716),
Newton exclaimed, “If Cotes had lived, we might have known something.” It
was at the request of Dr. Bentley that Cotes undertook the publication of the
second edition of Newton’s Principia. His mathematical papers were published
after his death by Robert Smith, his successor in the Plumbian professorship at
Trinity College. The title of the work, Harmonia Mensurarum, was suggested
by the following theorem contained in it: If on each radius vector, through a
fixed point O, there be taken a point R, such that the reciprocal of OR be the
arithmetic mean of the reciprocals of OR1, OR2, . . .ORn, then the locus of R
will be a straight line. In this work progress was made in the application of
logarithms and the properties of the circle to the calculus of fluents. To Cotes
we owe a theorem in trigonometry which depends on the forming of factors
of xn ´ 1. Chief among the admirers of Newton were Taylor and Maclaurin.
The quarrel between English and Continental mathematicians caused them to
work quite independently of their great contemporaries across the Channel.

Brook Taylor (1685–1731) was interested in many branches of learning, and
in the latter part of his life engaged mainly in religious and philosophic
speculations. His principal work, Methodus incrementorum directa et inversa,
London, 1715–1717, added a new branch to mathematics, now called “finite
diverences.” He made many important applications of it, particularly to the
study of the form of movement of vibrating strings, first reduced to mechanical
principles by him. This work contains also “Taylor’s theorem,” the importance
of which was not recognised by analysts for over fifty years, until Lagrange
pointed out its power. His proof of it does not consider the question of
convergency, and is quite worthless. The first rigorous proof was given a
century later by Cauchy. Taylor’s work contains the first correct explanation
of astronomical refraction. He wrote also a work on linear perspective, a
treatise which, like his other writings, suvers for want of fulness and clearness
of expression. At the age of twenty-three he gave a remarkable solution of the
problem of the centre of oscillation, published in 1714. His claim to priority
was unjustly disputed by John Bernoulli.
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Colin Maclaurin (1698–1746) was elected professor of mathematics at
Aberdeen at the age of nineteen by competitive examination, and in 1725
succeeded James Gregory at the University of Edinburgh. He enjoyed the
friendship of Newton, and, inspired by Newton’s discoveries, he published
in 1719 his Geometria Organica, containing a new and remarkable mode
of generating conics, known by his name. A second tract, De Linearum
geometricarum Proprietatibus, 1720, is remarkable for the elegance of its
demonstrations. It is based upon two theorems: the first is the theorem of
Cotes; the second is Maclaurin’s: If through any point O a line be drawn meeting
the curve in n points, and at these points tangents be drawn, and if any other line
through O cut the curve in R1, R2, etc., and the system of n tangents in r1, r2, etc.,
then

ř 1
OR

“
ř 1

Or
. This and Cotes’ theorem are generalisations of theorems

of Newton. Maclaurin uses these in his treatment of curves of the second
and third degree, culminating in the remarkable theorem that if a quadrangle
has its vertices and the two points of intersection of its opposite sides upon a
curve of the third degree, then the tangents drawn at two opposite vertices cut
each other on the curve. He deduced independently Pascal’s theorem on the
hexagram. The following is his extension of this theorem (Phil. Trans., 1735): If
a polygon move so that each of its sides passes through a fixed point, and if all
its summits except one describe curves of the degrees m, n, p, etc., respectively,
then the free summit moves on a curve of the degree 2mnp ¨ ¨ ¨ , which reduces
to mnp ¨ ¨ ¨ when the fixed points all lie on a straight line. Maclaurin wrote
on pedal curves. He is the author of an Algebra. The object of his treatise on
Fluxions was to found the doctrine of fluxions on geometric demonstrations
after the manner of the ancients, and thus, by rigorous exposition, answer
such attacks as Berkeley’s that the doctrine rested on false reasoning. The
Fluxions contained for the first time the correct way of distinguishing between
maxima and minima, and explained their use in the theory of multiple points.
“Maclaurin’s theorem” was previously given by James Stirling, and is but a
particular case of “Taylor’s theorem.” Appended to the treatise on Fluxions is
the solution of a number of beautiful geometric, mechanical, and astronomical
problems, in which he employs ancient methods with such consummate skill
as to induce Clairaut to abandon analytic methods and to attack the problem
of the figure of the earth by pure geometry. His solutions commanded the
liveliest admiration of Lagrange. Maclaurin investigated the attraction of the
ellipsoid of revolution, and showed that a homogeneous liquid mass revolving
uniformly around an axis under the action of gravity must assume the form
of an ellipsoid of revolution. Newton had given this theorem without proof.
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Notwithstanding the genius of Maclaurin, his influence on the progress of
mathematics in Great Britain was unfortunate; for, by his example, he induced
his countrymen to neglect analysis and to be indiverent to the wonderful
progress in the higher analysis made on the Continent.

It remains for us to speak of Abraham de Moivre (1667–1754), who was of
French descent, but was compelled to leave France at the age of eighteen, on
the Revocation of the Edict of Nantes. He settled in London, where he gave
lessons in mathematics. He lived to the advanced age of eighty-seven and sank
into a state of almost total lethargy. His subsistence was latterly dependent on
the solution of questions on games of chance and problems on probabilities,
which he was in the habit of giving at a tavern in St. Martin’s Lane. Shortly
before his death he declared that it was necessary for him to sleep ten or twenty
minutes longer every day. The day after he had reached the total of over
twenty-three hours, he slept exactly twenty-four hours and then passed away in
his sleep. De Moivre enjoyed the friendship of Newton and Halley. His power
as a mathematician lay in analytic rather than geometric investigation. He
revolutionised higher trigonometry by the discovery of the theorem known by
his name and by extending the theorems on the multiplication and division of
sectors from the circle to the hyperbola. His work on the theory of probability
surpasses anything done by any other mathematician except Laplace. His
principal contributions are his investigations respecting the Duration of Play,
his Theory of Recurring Series, and his extension of the value of Bernoulli’s
theorem by the aid of Stirling’s theorem. His chief works are the Doctrine of
Chances, 1716, the Miscellanea Analytica, 1730, and his papers in the Philosophical
Transactions.

EULER, LAGRANGE, AND LAPLACE.

During the epoch of ninety years from 1730 to 1820 the French and Swiss
cultivated mathematics with most brilliant success. No previous period had
shown such an array of illustrious names. At this time Switzerland had her
Euler; France, her Lagrange, Laplace, Legendre, and Monge. The mediocrity
of French mathematics which marked the time of Louis XIV. was now followed
by one of the very brightest periods of all history. England and Germany,
on the other hand, which during the unproductive period in France had their
Newton and Leibniz, could now boast of no great mathematician. France now
waved the mathematical sceptre. Mathematical studies among the English and
German people had sunk to the lowest ebb. Among them the direction of
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original research was ill-chosen. The former adhered with excessive partiality
to ancient geometrical methods; the latter produced the combinatorial school,
which brought forth nothing of value.

The labours of Euler, Lagrange, and Laplace lay in higher analysis, and
this they developed to a wonderful degree. By them analysis came to be
completely severed from geometry. During the preceding period the evort of
mathematicians not only in England, but, to some extent, even on the continent,
had been directed toward the solution of problems clothed in geometric garb,
and the results of calculation were usually reduced to geometric form. A
change now took place. Euler brought about an emancipation of the analytical
calculus from geometry and established it as an independent science. Lagrange
and Laplace scrupulously adhered to this separation. Building on the broad
foundation laid for higher analysis and mechanics by Newton and Leibniz,
Euler, with matchless fertility of mind, erected an elaborate structure. There
are few great ideas pursued by succeeding analysts which were not suggested by
Euler, or of which he did not share the honour of invention. With, perhaps, less
exuberance of invention, but with more comprehensive genius and profounder
reasoning, Lagrange developed the infinitesimal calculus and put analytical
mechanics into the form in which we now know it. Laplace applied the calculus
and mechanics to the elaboration of the theory of universal gravitation, and
thus, largely extending and supplementing the labours of Newton, gave a full
analytical discussion of the solar system. He also wrote an epoch-marking
work on Probability. Among the analytical branches created during this period
are the calculus of Variations by Euler and Lagrange, Spherical Harmonics by
Laplace and Legendre, and Elliptic Integrals by Legendre.

Comparing the growth of analysis at this time with the growth during the
time of Gauss, Cauchy, and recent mathematicians, we observe an important
diverence. During the former period we witness mainly a development with
reference to form. Placing almost implicit confidence in results of calculation,
mathematicians did not always pause to discover rigorous proofs, and were
thus led to general propositions, some of which have since been found to be
true in only special cases. The Combinatorial School in Germany carried this
tendency to the greatest extreme; they worshipped formalism and paid no
attention to the actual contents of formulæ. But in recent times there has been
added to the dexterity in the formal treatment of problems, a much-needed
rigour of demonstration. A good example of this increased rigour is seen in
the present use of infinite series as compared to that of Euler, and of Lagrange
in his earlier works.
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The ostracism of geometry, brought about by the master-minds of this
period, could not last permanently. Indeed, a new geometric school sprang
into existence in France before the close of this period. Lagrange would not
permit a single diagram to appear in his Mécanique analytique, but thirteen years
before his death, Monge published his epoch-making Géometrie descriptive.

Leonhard Euler (1707–1783) was born in Basel. His father, a minister, gave
him his first instruction in mathematics and then sent him to the University of
Basel, where he became a favourite pupil of John Bernoulli. In his nineteenth
year he composed a dissertation on the masting of ships, which received the
second prize from the French Academy of Sciences. When John Bernoulli’s
two sons, Daniel and Nicolaus, went to Russia, they induced Catharine I., in
1727, to invite their friend Euler to St. Petersburg, where Daniel, in 1733, was
assigned to the chair of mathematics. In 1735 the solving of an astronomical
problem, proposed by the Academy, for which several eminent mathematicians
had demanded some months’ time, was achieved in three days by Euler with
aid of improved methods of his own. But the evort threw him into a fever and
deprived him of the use of his right eye. With still superior methods this same
problem was solved later by the illustrious Gauss in one hour! The despotism
of Anne I. caused the gentle Euler to shrink from public avairs and to devote
all his time to science. After his call to Berlin by Frederick the Great in 1747,
the queen of Prussia, who received him kindly, wondered how so distinguished
a scholar should be so timid and reticent. Euler naïvely replied, “Madam, it is
because I come from a country where, when one speaks, one is hanged.” In 1766
he with diHculty obtained permission to depart from Berlin to accept a call by
Catharine II. to St. Petersburg. Soon after his return to Russia he became blind,
but this did not stop his wonderful literary productiveness, which continued
for seventeen years, until the day of his death. He dictated to his servant his
Anleitung zur Algebra, 1770, which, though purely elementary, is meritorious as
one of the earliest attempts to put the fundamental processes on a sound basis.

Euler wrote an immense number of works, chief of which are the following:
Introductio in analysin infinitorum, 1748, a work that caused a revolution in
analytical mathematics, a subject which had hitherto never been presented
in so general and systematic manner; Institutiones calculi differentialis, 1755,
and Institutiones calculi integralis, 1768–1770, which were the most complete
and accurate works on the calculus of that time, and contained not only a
full summary of everything then known on this subject, but also the Beta
and Gamma Functions and other original investigations; Methodus inveniendi
lineas curvas maximi minimive proprietate gaudentes, 1744, which, displaying an
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amount of mathematical genius seldom rivalled, contained his researches on
the calculus of variations (a subject afterwards improved by Lagrange), to the
invention of which Euler was led by the study of isoperimetrical curves, the
brachistochrone in a resisting medium, and the theory of geodesics (subjects
which had previously engaged the attention of the elder Bernoullis and others);
the Theoria motuum planetarum et cometarum, 1744, Theoria motus lunæ, 1753,
Theoria motuum lunæ, 1772, are his chief works on astronomy; Ses lettres à une
princesse d’Allemagne sur quelques sujets de Physique et de Philosophie, 1770, was a
work which enjoyed great popularity.

We proceed to mention the principal innovations and inventions of Euler. He
treated trigonometry as a branch of analysis, introduced (simultaneously with
Thomas Simpson in England) the now current abbreviations for trigonometric
functions, and simplified formulæ by the simple expedient of designating the
angles of a triangle by A, B, C, and the opposite sides by a, b, c, respectively.
He pointed out the relation between trigonometric and exponential functions.
In a paper of 1737 we first meet the symbol π to denote 3.14159 . . .. Euler laid
down the rules for the transformation of co-ordinates in space, gave a methodic
analytic treatment of plane curves and of surfaces of the second order. He was
the first to discuss the equation of the second degree in three variables, and to
classify the surfaces represented by it. By criteria analogous to those used in
the classification of conics he obtained five species. He devised a method of
solving biquadratic equations by assuming x “

?
p `

?
q `

?
r, with the hope

that it would lead him to a general solution of algebraic equations. The method
of elimination by solving a series of linear equations (invented independently
by Bézout) and the method of elimination by symmetric functions, are due to
him. Far reaching are Euler’s researches on logarithms. Leibniz and John
Bernoulli once argued the question whether a negative number has a logarithm.
Bernoulli claimed that since p´aq2 “ p`aq2, we have logp´aq2 “ logp`aq2 and
2 logp´aq “ 2 logp`aq, and finally logp´aq “ logp`aq. Euler proved that a has
really an infinite number of logarithms, all of which are imaginary when a is
negative, and all except one when a is positive. He then explained how logp´aq2

might equal logp`aq2, and yet logp´aq not equal logp`aq.
The subject of infinite series received new life from him. To his researches on

series we owe the creation of the theory of definite integrals by the development
of the so-called Eulerian integrals. He warns his readers occasionally against
the use of divergent series, but is nevertheless very careless himself. The rigid
treatment to which infinite series are subjected now was then undreamed of.
No clear notions existed as to what constitutes a convergent series. Neither
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Leibniz nor Jacob and John Bernoulli had entertained any serious doubt of the
correctness of the expression 1

2 “ 1´ 1` 1´ 1`¨ ¨ ¨ . Guido Grandi went so far as
to conclude from this that 1

2 “ 0`0`0`¨ ¨ ¨ . In the treatment of series Leibniz
advanced a metaphysical method of proof which held sway over the minds of
the elder Bernoullis, and even of Euler. The tendency of that reasoning was to
justify results which seem to us now highly absurd. The looseness of treatment
can best be seen from examples. The very paper in which Euler cautions against
divergent series contains the proof that

¨ ¨ ¨
1

n2 `
1
n
` 1` n` n2 ` ¨ ¨ ¨ “ 0 as follows:

n` n2 ` ¨ ¨ ¨ “
n

1´ n
, 1`

1
n
`

1
n2 ` ¨ ¨ ¨ “

n
n´ 1

;

these added give zero. Euler has no hesitation to write 1 ´ 3 ` 5 ´ 7 ` ¨ ¨ ¨ “
0, and no one objected to such results excepting Nicolaus Bernoulli, the
nephew of John and Jacob. Strange to say, Euler finally succeeded in
converting Nicolaus Bernoulli to his own erroneous views. At the present
time it is diHcult to believe that Euler should have confidently written
sin ϕ´ 2 sin 2ϕ` 3 sin 3ϕ´ 4 sin 4ϕ` ¨ ¨ ¨ “ 0, but such examples avord striking
illustrations of the want of scientific basis of certain parts of analysis at
that time. Euler’s proof of the binomial formula for negative and fractional
exponents, which has been reproduced in elementary text-books of even recent
years, is faulty. A remarkable development, due to Euler, is what he named the
hypergeometric series, the summation of which he observed to be dependent
upon the integration of a linear diverential equation of the second order, but it
remained for Gauss to point out that for special values of its letters, this series
represented nearly all functions then known.

Euler developed the calculus of finite diverences in the first chapters of
his Institutiones calculi differentialis, and then deduced the diverential calculus
from it. He established a theorem on homogeneous functions, known by his
name, and contributed largely to the theory of diverential equations, a subject
which had received the attention of Newton, Leibniz, and the Bernoullis, but
was still undeveloped. Clairaut, Fontaine, and Euler about the same time
observed criteria of integrability, but Euler in addition showed how to employ
them to determine integrating factors. The principles on which the criteria
rested involved some degree of obscurity. The celebrated addition-theorem for
elliptic integrals was first established by Euler. He invented a new algorithm for
continued fractions, which he employed in the solution of the indeterminate
equation ax` by “ c. We now know that substantially the same solution of this
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equation was given 1000 years earlier, by the Hindoos. By giving the factors
of the number 22n

` 1 when n “ 5, he pointed out that this expression did not
always represent primes, as was supposed by Fermat. He first supplied the
proof to “Fermat’s theorem,” and to a second theorem of Fermat, which states
that every prime of the form 4n ` 1 is expressible as the sum of two squares
in one and only one way. A third theorem of Fermat, that xn ` yn “ zn, has
no integral solution for values of n greater than 2, was proved by Euler to
be correct when n “ 3. Euler discovered four theorems which taken together
make out the great law of quadratic reciprocity, a law independently discovered
by Legendre. Euler enunciated and proved a well-known theorem, giving the
relation between the number of vertices, faces, and edges of certain polyhedra,
which, however, appears to have been known to Descartes. The powers of Euler
were directed also towards the fascinating subject of the theory of probability,
in which he solved some diHcult problems.

Of no little importance are Euler’s labours in analytical mechanics. Says
Whewell: “The person who did most to give to analysis the generality and
symmetry which are now its pride, was also the person who made mechanics
analytical; I mean Euler.” He worked out the theory of the rotation of a
body around a fixed point, established the general equations of motion of a
free body, and the general equation of hydrodynamics. He solved an immense
number and variety of mechanical problems, which arose in his mind on all
occasions. Thus, on reading Virgil’s lines, “The anchor drops, the rushing keel
is staid,” he could not help inquiring what would be the ship’s motion in such
a case. About the same time as Daniel Bernoulli he published the Principle of
the Conservation of Areas and defended the principle of “least action,” advanced
by Maupertius. He wrote also on tides and on sound.

Astronomy owes to Euler the method of the variation of arbitrary constants.
By it he attacked the problem of perturbations, explaining, in case of two
planets, the secular variations of eccentricities, nodes, etc. He was one of
the first to take up with success the theory of the moon’s motion by giving
approximate solutions to the “problem of three bodies.” He laid a sound basis
for the calculation of tables of the moon. These researches on the moon’s
motion, which captured two prizes, were carried on while he was blind, with
the assistance of his sons and two of his pupils.

Most of his memoirs are contained in the transactions of the Academy of
Sciences at St. Petersburg, and in those of the Academy at Berlin. From 1728 to
1783 a large portion of the Petropolitan transactions were filled by his writings.
He had engaged to furnish the Petersburg Academy with memoirs in suHcient
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number to enrich its acts for twenty years—a promise more than fulfilled, for
down to 1818 the volumes usually contained one or more papers of his. It has
been said that an edition of Euler’s complete works would fill 16, 000 quarto
pages. His mode of working was, first to concentrate his powers upon a special
problem, then to solve separately all problems growing out of the first. No
one excelled him in dexterity of accommodating methods to special problems.
It is easy to see that mathematicians could not long continue in Euler’s habit
of writing and publishing. The material would soon grow to such enormous
proportions as to be unmanageable. We are not surprised to see almost the
opposite in Lagrange, his great successor. The great Frenchman delighted in
the general and abstract, rather than, like Euler, in the special and concrete.
His writings are condensed and give in a nutshell what Euler narrates at great
length.

Jean-le-Rond D’Alembert (1717–1783) was exposed, when an infant, by his
mother in a market by the church of St. Jean-le-Rond, near the Nôtre-Dame
in Paris, from which he derived his Christian name. He was brought up by
the wife of a poor glazier. It is said that when he began to show signs of
great talent, his mother sent for him, but received the reply, “You are only
my step-mother; the glazier’s wife is my mother.” His father provided him
with a yearly income. D’Alembert entered upon the study of law, but such
was his love for mathematics, that law was soon abandoned. At the age of
twenty-four his reputation as a mathematician secured for him admission to
the Academy of Sciences. In 1743 appeared his Traité de dynamique, founded
upon the important general principle bearing his name: The impressed forces
are equivalent to the evective forces. D’Alembert’s principle seems to have been
recognised before him by Fontaine, and in some measure by John Bernoulli and
Newton. D’Alembert gave it a clear mathematical form and made numerous
applications of it. It enabled the laws of motion and the reasonings depending
on them to be represented in the most general form, in analytical language.
D’Alembert applied it in 1744 in a treatise on the equilibrium and motion
of fluids, in 1746 to a treatise on the general causes of winds, which obtained
a prize from the Berlin Academy. In both these treatises, as also in one of
1747, discussing the famous problem of vibrating chords, he was led to partial
diverential equations. He was a leader among the pioneers in the study of such

equations. To the equation
B2y
Bt2 “ a2 B

2y
Bx2 , arising in the problem of vibrating

chords, he gave as the general solution,

y “ f px` atq ` ϕpx´ atq,
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and showed that there is only one arbitrary function, if y be supposed to vanish
for x “ 0 and x “ l. Daniel Bernoulli, starting with a particular integral
given by Brook Taylor, showed that this diverential equation is satisfied by the
trigonometric series

y “ α sin
πx
l
¨ cos

πt
l
` β sin

2πx
l
¨ cos

2πt
l
` ¨ ¨ ¨ ,

and claimed this expression to be the most general solution. Euler denied its
generality, on the ground that, if true, the doubtful conclusion would follow
that the above series represents any arbitrary function of a variable. These
doubts were dispelled by Fourier. Lagrange proceeded to find the sum of the
above series, but D’Alembert rightly objected to his process, on the ground
that it involved divergent series.

A most beautiful result reached by D’Alembert, with aid of his principle,
was the complete solution of the problem of the precession of the equinoxes,
which had baIed the talents of the best minds. He sent to the French Academy
in 1747, on the same day with Clairaut, a solution of the problem of three
bodies. This had become a question of universal interest to mathematicians,
in which each vied to outdo all others. The problem of two bodies, requiring
the determination of their motion when they attract each other with forces
inversely proportional to the square of the distance between them, had been
completely solved by Newton. The “problem of three bodies” asks for the
motion of three bodies attracting each other according to the law of gravitation.
Thus far, the complete solution of this has transcended the power of analysis.
The general diverential equations of motion were stated by Laplace, but the
diHculty arises in their integration. The “solutions” hitherto given are merely
convenient methods of approximation in special cases when one body is the
sun, disturbing the motion of the moon around the earth, or where a planet
moves under the influence of the sun and another planet.

In the discussion of the meaning of negative quantities, of the fundamental
processes of the calculus, and of the theory of probability, D’Alembert paid
some attention to the philosophy of mathematics. His criticisms were not
always happy. In 1754 he was made permanent secretary of the French Academy.
During the last years of his life he was mainly occupied with the great French
encyclopædia, which was begun by Diderot and himself. D’Alembert declined,
in 1762, an invitation of Catharine II. to undertake the education of her son.
Frederick the Great pressed him to go to Berlin. He made a visit, but declined
a permanent residence there.
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Alexis Claude Clairaut (1713–1765) was a youthful prodigy. He read
l’Hospital’s works on the infinitesimal calculus and on conic sections at the age
of ten. In 1731 was published his Recherches sur les courbes à double courbure, which
he had ready for the press when he was sixteen. It was a work of remarkable
elegance and secured his admission to the Academy of Sciences when still under
legal age. In 1731 he gave a proof of the theorem enunciated by Newton, that
every cubic is a projection of one of five divergent parabolas. Clairaut formed
the acquaintance of Maupertius, whom he accompanied on an expedition to
Lapland to measure the length of a degree of the meridian. At that time the
shape of the earth was a subject of serious disagreement. Newton and Huygens
had concluded from theory that the earth was flattened at the poles. About 1713
Dominico Cassini measured an arc extending from Dunkirk to Perpignan and
arrived at the startling result that the earth is elongated at the poles. To decide
between the conflicting opinions, measurements were renewed. Maupertius
earned by his work in Lapland the title of “earth flattener” by disproving
the Cassinian tenet that the earth was elongated at the poles, and showing
that Newton was right. On his return, in 1743, Clairaut published a work,
Théorie de la figure de la Terre, which was based on the results of Maclaurin
on homogeneous ellipsoids. It contains a remarkable theorem, named after
Clairaut, that the sum of the fractions expressing the ellipticity and the increase
of gravity at the pole is equal to 2 1

2 times the fraction expressing the centrifugal
force at the equator, the unit of force being represented by the force of gravity
at the equator. This theorem is independent of any hypothesis with respect
to the law of densities of the successive strata of the earth. It embodies most
of Clairaut’s researches. Todhunter says that “in the figure of the earth no
other person has accomplished so much as Clairaut, and the subject remains at
present substantially as he left it, though the form is diverent. The splendid
analysis which Laplace supplied, adorned but did not really alter the theory
which started from the creative hands of Clairaut.”

In 1752 he gained a prize of the St. Petersburg Academy for his paper on
Théorie de la Lune, in which for the first time modern analysis is applied to
lunar motion. This contained the explanation of the motion of the lunar
apsides. This motion, left unexplained by Newton, seemed to him at first
inexplicable by Newton’s law, and he was on the point of advancing a new
hypothesis regarding gravitation, when, taking the precaution to carry his
calculation to a higher degree of approximation, he reached results agreeing
with observation. The motion of the moon was studied about the same time
by Euler and D’Alembert. Clairaut predicted that “Halley’s Comet,” then
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expected to return, would arrive at its nearest point to the sun on April 13,
1759, a date which turned out to be one month too late. He was the first
to detect singular solutions in diverential equations of the first order but of
higher degree than the first.

In their scientific labours there was between Clairaut and D’Alembert great
rivalry, often far from friendly. The growing ambition of Clairaut to shine in
society, where he was a great favourite, hindered his scientific work in the latter
part of his life.

Johann Heinrich Lambert (1728–1777), born at Mühlhausen in Alsace, was
the son of a poor tailor. While working at his father’s trade, he acquired through
his own unaided evorts a knowledge of elementary mathematics. At the age
of thirty he became tutor in a Swiss family and secured leisure to continue his
studies. In his travels with his pupils through Europe he became acquainted
with the leading mathematicians. In 1764 he settled in Berlin, where he became
member of the Academy, and enjoyed the society of Euler and Lagrange. He
received a small pension, and later became editor of the Berlin Ephemeris. His
many-sided scholarship reminds one of Leibniz. In his Cosmological Letters he
made some remarkable prophecies regarding the stellar system. In mathematics
he made several discoveries which were extended and overshadowed by his
great contemporaries. His first research on pure mathematics developed in an
infinite series the root x of the equation xm ` px “ q. Since each equation of
the form axr ` bxs “ d can be reduced to xm ` px “ q in two ways, one or
the other of the two resulting series was always found to be convergent, and
to give a value of x. Lambert’s results stimulated Euler, who extended the
method to an equation of four terms, and particularly Lagrange, who found
that a function of a root of a ´ x ` ϕpxq “ 0 can be expressed by the series
bearing his name. In 1761 Lambert communicated to the Berlin Academy a
memoir, in which he proves that π is irrational. This proof is given in Note IV.
of Legendre’s Géometrie, where it is extended to π2. To the genius of Lambert
we owe the introduction into trigonometry of hyperbolic functions, which he
designated by sinh x, cosh x, etc. His Freye Perspective, 1759 and 1773, contains
researches on descriptive geometry, and entitle him to the honour of being the
forerunner of Monge. In his evort to simplify the calculation of cometary
orbits, he was led geometrically to some remarkable theorems on conics, for
instance this: “If in two ellipses having a common major axis we take two such
arcs that their chords are equal, and that also the sums of the radii vectores,
drawn respectively from the foci to the extremities of these arcs, are equal to
each other, then the sectors formed in each ellipse by the arc and the two radii
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vectores are to each other as the square roots of the parameters of the ellipses.”
John Landen (1719–1790) was an English mathematician whose writings

served as the starting-point of investigations by Euler, Lagrange, and Legendre.
Landen’s capital discovery, contained in a memoir of 1755, was that every arc
of the hyperbola is immediately rectified by means of two arcs of an ellipse. In
his “residual analysis” he attempted to obviate the metaphysical diHculties of
fluxions by adopting a purely algebraic method. Lagrange’s Calcul des Fonctions
is based upon this idea. Landen showed how the algebraic expression for the
roots of a cubic equation could be derived by application of the diverential and
integral calculus. Most of the time of this suggestive writer was spent in the
pursuits of active life.

Étienne Bézout (1730–1783) was a French writer of popular mathematical
school-books. In his Théorie générale des Équations Algébriques, 1779, he gave
the method of elimination by linear equations (invented also by Euler). This
method was first published by him in a memoir of 1764, in which he uses
determinants, without, however, entering upon their theory. A beautiful
theorem as to the degree of the resultant goes by his name.

Louis Arbogaste (1759–1803) of Alsace was professor of mathematics at
Strasburg. His chief work, the Calcul des Dérivations, 1800, gives the method
known by his name, by which the successive coeHcients of a development are
derived from one another when the expression is complicated. De Morgan has
pointed out that the true nature of derivation is diverentiation accompanied
by integration. In this book for the first time are the symbols of operation
separated from those of quantity. The notation Dxy for dy{dx is due to him.

Maria Gaetana Agnesi (1718–1799) of Milan, distinguished as a linguist,
mathematician, and philosopher, filled the mathematical chair at the University
of Bologna during her father’s sickness. In 1748 she published her Instituzioni
Analitiche, which was translated into English in 1801. The “witch of Agnesi”
or “versiera” is a plane curve containing a straight line, x “ 0, and a cubic
´y

c

¯2
` 1 “

c
x

.

Joseph Louis Lagrange (1736–1813), one of the greatest mathematicians of all
times, was born at Turin and died at Paris. He was of French extraction. His
father, who had charge of the Sardinian military chest, was once wealthy, but
lost all he had in speculation. Lagrange considered this loss his good fortune,
for otherwise he might not have made mathematics the pursuit of his life.
While at the college in Turin his genius did not at once take its true bent. Cicero
and Virgil at first attracted him more than Archimedes and Newton. He soon
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came to admire the geometry of the ancients, but the perusal of a tract of Halley
roused his enthusiasm for the analytical method, in the development of which
he was destined to reap undying glory. He now applied himself to mathematics,
and in his seventeenth year he became professor of mathematics in the royal
military academy at Turin. Without assistance or guidance he entered upon
a course of study which in two years placed him on a level with the greatest
of his contemporaries. With aid of his pupils he established a society which
subsequently developed into the Turin Academy. In the first five volumes of
its transactions appear most of his earlier papers. At the age of nineteen he
communicated to Euler a general method of dealing with “isoperimetrical
problems,” known now as the Calculus of Variations. This commanded Euler’s
lively admiration, and he courteously withheld for a time from publication
some researches of his own on this subject, so that the youthful Lagrange
might complete his investigations and claim the invention. Lagrange did quite
as much as Euler towards the creation of the Calculus of Variations. As it
came from Euler it lacked an analytic foundation, and this Lagrange supplied.
He separated the principles of this calculus from geometric considerations by
which his predecessor had derived them. Euler had assumed as fixed the limits
of the integral, i.e. the extremities of the curve to be determined, but Lagrange
removed this restriction and allowed all co-ordinates of the curve to vary at
the same time. Euler introduced in 1766 the name “calculus of variations,” and
did much to improve this science along the lines marked out by Lagrange.

Another subject engaging the attention of Lagrange at Turin was the
propagation of sound. In his papers on this subject in the Miscellanea
Taurinensia, the young mathematician appears as the critic of Newton, and the
arbiter between Euler and D’Alembert. By considering only the particles which
are in a straight line, he reduced the problem to the same partial diverential
equation that represents the motions of vibrating strings. The general integral
of this was found by D’Alembert to contain two arbitrary functions, and
the question now came to be discussed whether an arbitrary function may
be discontinuous. D’Alembert maintained the negative against Euler, Daniel
Bernoulli, and finally Lagrange,—arguing that in order to determine the
position of a point of the chord at a time t, the initial position of the chord
must be continuous. Lagrange settled the question in the aHrmative.

By constant application during nine years, Lagrange, at the age of twenty-six,
stood at the summit of European fame. But his intense studies had seriously
weakened a constitution never robust, and though his physicians induced him
to take rest and exercise, his nervous system never fully recovered its tone, and
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he was thenceforth subject to fits of melancholy.
In 1764 the French Academy proposed as the subject of a prize the theory

of the libration of the moon. It demanded an explanation, on the principle of
universal gravitation, why the moon always turns, with but slight variations,
the same face to the earth. Lagrange secured the prize. This success
encouraged the Academy to propose as a prize the theory of the four satellites
of Jupiter,—a problem of six bodies, more diHcult than the one of three bodies
previously solved by Clairaut, D’Alembert, and Euler. Lagrange overcame the
diHculties, but the shortness of time did not permit him to exhaust the subject.
Twenty-four years afterwards it was completed by Laplace. Later astronomical
investigations of Lagrange are on cometary perturbations (1778 and 1783), on
Kepler’s problem, and on a new method of solving the problem of three bodies.

Being anxious to make the personal acquaintance of leading mathematicians,
Lagrange visited Paris, where he enjoyed the stimulating delight of conversing
with Clairaut, D’Alembert, Condorcet, the Abbé Marie, and others. He
had planned a visit to London, but he fell dangerously ill after a dinner in
Paris, and was compelled to return to Turin. In 1766 Euler left Berlin for
St. Petersburg, and he pointed out Lagrange as the only man capable of filling
the place. D’Alembert recommended him at the same time. Frederick the
Great thereupon sent a message to Turin, expressing the wish of “the greatest
king of Europe” to have “the greatest mathematician” at his court. Lagrange
went to Berlin, and staid there twenty years. Finding all his colleagues married,
and being assured by their wives that the marital state alone is happy, he
married. The union was not a happy one. His wife soon died. Frederick
the Great held him in high esteem, and frequently conversed with him on the
advantages of perfect regularity of life. This led Lagrange to cultivate regular
habits. He worked no longer each day than experience taught him he could
without breaking down. His papers were carefully thought out before he began
writing, and when he wrote he did so without a single correction.

During the twenty years in Berlin he crowded the transactions of the Berlin
Academy with memoirs, and wrote also the epoch-making work called the
Mécanique Analytique. He enriched algebra by researches on the solution of
equations. There are two methods of solving directly algebraic equations,—that
of substitution and that of combination. The former method was developed
by Ferrari, Vieta, Tchirnhausen, Euler, Bézout, and Lagrange; the latter by
Vandermonde and Lagrange. In the method of substitution the original
forms are so transformed that the determination of the roots is made to
depend upon simpler functions (resolvents). In the method of combination
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auxiliary quantities are substituted for certain simple combinations (“types”)
of the unknown roots of the equation, and auxiliary equations (resolvents) are
obtained for these quantities with aid of the coeHcients of the given equation.
Lagrange traced all known algebraic solutions of equations to the uniform
principle consisting in the formation and solution of equations of lower degree
whose roots are linear functions of the required roots, and of the roots of
unity. He showed that the quintic cannot be reduced in this way, its resolvent
being of the sixth degree. His researches on the theory of equations were
continued after he left Berlin. In the Résolution des équations numériques (1798)
he gave a method of approximating to the real roots of numerical equations by
continued fractions. Among other things, it contains also a proof that every
equation must have a root,—a theorem which appears before this to have been
considered self-evident. Other proofs of this were given by Argand, Gauss,
and Cauchy. In a note to the above work Lagrange uses Fermat’s theorem and
certain suggestions of Gauss in evecting a complete algebraic solution of any
binomial equation.

While in Berlin Lagrange published several papers on the theory of numbers.
In 1769 he gave a solution in integers of indeterminate equations of the second
degree, which resembles the Hindoo cyclic method; he was the first to prove,
in 1771, “Wilson’s theorem,” enunciated by an Englishman, John Wilson, and
first published by Waring in his Meditationes Algebraicæ; he investigated in 1775
under what conditions ˘2 and ˘5 (´1 and ˘3 having been discussed by Euler)
are quadratic residues, or non-residues of odd prime numbers, q; he proved in
1770 Méziriac’s theorem that every integer is equal to the sum of four, or a less
number, of squares. He proved Fermat’s theorem on xn ` yn “ zn, for the case
n “ 4, also Fermat’s theorem that, if a2 ` b2 “ c2, then ab is not a square.

In his memoir on Pyramids, 1773, Lagrange made considerable use of
determinants of the third order, and demonstrated that the square of a
determinant is itself a determinant. He never, however, dealt explicitly and
directly with determinants; he simply obtained accidentally identities which
are now recognised as relations between determinants.

Lagrange wrote much on diverential equations. Though the subject of
contemplation by the greatest mathematicians (Euler, D’Alembert, Clairaut,
Lagrange, Laplace), yet more than other branches of mathematics did they
resist the systematic application of fixed methods and principles. Lagrange
established criteria for singular solutions (Calcul des Fonctions, Lessons 14–17),
which are, however, erroneous. He was the first to point out the geometrical
significance of such solutions. He generalised Euler’s researches on total
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diverential equations of two variables, and of the ninth order; he gave a
solution of partial diverential equations of the first order (Berlin Memoirs,
1772 and 1774), and spoke of their singular solutions, extending their solution
in Memoirs of 1779 and 1785 to equations of any number of variables. The
discussion on partial diverential equations of the second order, carried on by
D’Alembert, Euler, and Lagrange, has already been referred to in our account
of D’Alembert.

While in Berlin, Lagrange wrote the “Mécanique Analytique,” the greatest of
his works (Paris, 1788). From the principle of virtual velocities he deduced, with
aid of the calculus of variations, the whole system of mechanics so elegantly
and harmoniously that it may fitly be called, in Sir William Rowan Hamilton’s
words, “a kind of scientific poem.” It is a most consummate example of analytic
generality. Geometrical figures are nowhere allowed. “On ne trouvera point
de figures dans cet ouvrage” (Preface). The two divisions of mechanics—statics
and dynamics—are in the first four sections of each carried out analogously,
and each is prefaced by a historic sketch of principles. Lagrange formulated
the principle of least action. In their original form, the equations of motion
involve the co-ordinates x, y, z, of the diverent particles m or dm of the system.
But x, y, z, are in general not independent, and Lagrange introduced in place
of them any variables ξ, ψ, ϕ, whatever, determining the position of the point
at the time. These may be taken to be independent. The equations of motion
may now assume the form

d
dt

dT
dξ1

´
dT
dξ
` Ξ “ 0;

or when Ξ, Ψ, Φ, . . . are the partial diverential coeHcients with respect to ξ, ψ,
ϕ, . . . of one and the same function V , then the form

d
dt

dT
dξ1

´
dT
dξ
`

dV
dξ

“ 0.

The latter is par excellence the Lagrangian form of the equations of motion.
With Lagrange originated the remark that mechanics may be regarded as a
geometry of four dimensions. To him falls the honour of the introduction
of the potential into dynamics. Lagrange was anxious to have his Mécanique
Analytique published in Paris. The work was ready for print in 1786, but not
till 1788 could he find a publisher, and then only with the condition that after
a few years he would purchase all the unsold copies. The work was edited by
Legendre.
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After the death of Frederick the Great, men of science were no longer
respected in Germany, and Lagrange accepted an invitation of Louis XVI. to
migrate to Paris. The French queen treated him with regard, and lodging
was procured for him in the Louvre. But he was seized with a long attack
of melancholy which destroyed his taste for mathematics. For two years his
printed copy of the Mécanique, fresh from the press,—the work of a quarter of
a century,—lay unopened on his desk. Through Lavoisier he became interested
in chemistry, which he found “as easy as algebra.” The disastrous crisis of the
French Revolution aroused him again to activity. About this time the young
and accomplished daughter of the astronomer Lemonnier took compassion on
the sad, lonely Lagrange, and insisted upon marrying him. Her devotion to
him constituted the one tie to life which at the approach of death he found it
hard to break.

He was made one of the commissioners to establish weights and measures
having units founded on nature. Lagrange strongly favoured the decimal
subdivision, the general idea of which was obtained from a work of Thomas
Williams, London, 1788. Such was the moderation of Lagrange’s character,
and such the universal respect for him, that he was retained as president of
the commission on weights and measures even after it had been purified by the
Jacobins by striking out the names of Lavoisier, Laplace, and others. Lagrange
took alarm at the fate of Lavoisier, and planned to return to Berlin, but at the
establishment of the École Normale in 1795 in Paris, he was induced to accept a
professorship. Scarcely had he time to elucidate the foundations of arithmetic
and algebra to young pupils, when the school was closed. His additions to
the algebra of Euler were prepared at this time. In 1797 the École Polytechnique
was founded, with Lagrange as one of the professors. The earliest triumph of
this institution was the restoration of Lagrange to analysis. His mathematical
activity burst out anew. He brought forth the Théorie des fonctions analytiques
(1797), Leçons sur le calcul des fonctions, a treatise on the same lines as the
preceding (1801), and the Résolution des équations numériques (1798). In 1810 he
began a thorough revision of his Mécanique analytique, but he died before its
completion.

The Théorie des fonctions, the germ of which is found in a memoir of his of
1772, aimed to place the principles of the calculus upon a sound foundation by
relieving the mind of the diHcult conception of a limit or infinitesimal. John
Landen’s residual calculus, professing a similar object, was unknown to him.
Lagrange attempted to prove Taylor’s theorem (the power of which he was the
first to point out) by simple algebra, and then to develop the entire calculus
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from that theorem. The principles of the calculus were in his day involved in
philosophic diHculties of a serious nature. The infinitesimals of Leibniz had no
satisfactory metaphysical basis. In the diverential calculus of Euler they were
treated as absolute zeros. In Newton’s limiting ratio, the magnitudes of which
it is the ratio cannot be found, for at the moment when they should be caught
and equated, there is neither arc nor chord. The chord and arc were not taken
by Newton as equal before vanishing, nor after vanishing, but when they vanish.
“That method,” said Lagrange, “has the great inconvenience of considering
quantities in the state in which they cease, so to speak, to be quantities; for
though we can always well conceive the ratios of two quantities, as long as they
remain finite, that ratio overs to the mind no clear and precise idea, as soon
as its terms become both nothing at the same time.” D’Alembert’s method
of limits was much the same as the method of prime and ultimate ratios.
D’Alembert taught that a variable actually reached its limit. When Lagrange
endeavoured to free the calculus of its metaphysical diHculties, by resorting to
common algebra, he avoided the whirlpool of Charybdis only to suver wreck
against the rocks of Scylla. The algebra of his day, as handed down to him by
Euler, was founded on a false view of infinity. No correct theory of infinite
series had then been established. Lagrange proposed to define the diverential
coeHcient of f pxq with respect to x as the coeHcient of h in the expansion
of f px ` hq by Taylor’s theorem, and thus to avoid all reference to limits.
But he used infinite series without ascertaining that they were convergent,
and his proof that f px ` hq can always be expanded in a series of ascending
powers of h, labours under serious defects. Though Lagrange’s method of
developing the calculus was at first greatly applauded, its defects were fatal,
and to-day his “method of derivatives,” as it was called, has been generally
abandoned. He introduced a notation of his own, but it was inconvenient, and
was abandoned by him in the second edition of his Mécanique, in which he used
infinitesimals. The primary object of the Théorie des fonctions was not attained,
but its secondary results were far-reaching. It was a purely abstract mode of
regarding functions, apart from geometrical or mechanical considerations. In
the further development of higher analysis a function became the leading idea,
and Lagrange’s work may be regarded as the starting-point of the theory of
functions as developed by Cauchy, Riemann, Weierstrass, and others.

In the treatment of infinite series Lagrange displayed in his earlier writings
that laxity common to all mathematicians of his time, excepting Nicolaus
Bernoulli II. and D’Alembert. But his later articles mark the beginning of a
period of greater rigour. Thus, in the Calcul de fonctions he gives his theorem on
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the limits of Taylor’s theorem. Lagrange’s mathematical researches extended
to subjects which have not been mentioned here—such as probabilities, finite
diverences, ascending continued fractions, elliptic integrals. Everywhere his
wonderful powers of generalisation and abstraction are made manifest. In that
respect he stood without a peer, but his great contemporary, Laplace, surpassed
him in practical sagacity. Lagrange was content to leave the application of his
general results to others, and some of the most important researches of Laplace
(particularly those on the velocity of sound and on the secular acceleration of
the moon) are implicitly contained in Lagrange’s works.

Lagrange was an extremely modest man, eager to avoid controversy, and
even timid in conversation. He spoke in tones of doubt, and his first words
generally were, “Je ne sais pas.” He would never allow his portrait to be taken,
and the only ones that were secured were sketched without his knowledge by
persons attending the meetings of the Institute.

Pierre Simon Laplace (1749–1827) was born at Beaumont-en-Auge in Nor-
mandy. Very little is known of his early life. When at the height of his fame
he was loath to speak of his boyhood, spent in poverty. His father was a
small farmer. Some rich neighbours who recognised the boy’s talent assisted
him in securing an education. As an extern he attended the military school in
Beaumont, where at an early age he became teacher of mathematics. At eighteen
he went to Paris, armed with letters of recommendation to D’Alembert, who
was then at the height of his fame. The letters remained unnoticed, but young
Laplace, undaunted, wrote the great geometer a letter on the principles of
mechanics, which brought the following enthusiastic response: “You needed
no introduction; you have recommended yourself; my support is your due.”
D’Alembert secured him a position at the École Militaire of Paris as professor
of mathematics. His future was now assured, and he entered upon those
profound researches which brought him the title of “the Newton of France.”
With wonderful mastery of analysis, Laplace attacked the pending problems
in the application of the law of gravitation to celestial motions. During
the succeeding fifteen years appeared most of his original contributions to
astronomy. His career was one of almost uninterrupted prosperity. In 1784
he succeeded Bézout as examiner to the royal artillery, and the following year
he became member of the Academy of Sciences. He was made president of
the Bureau of Longitude; he aided in the introduction of the decimal system,
and taught, with Lagrange, mathematics in the École Normale. When, during
the Revolution, there arose a cry for the reform of everything, even of the
calendar, Laplace suggested the adoption of an era beginning with the year 1250,
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when, according to his calculation, the major axis of the earth’s orbit had been
perpendicular to the equinoctial line. The year was to begin with the vernal
equinox, and the zero meridian was to be located east of Paris by 185.30 degrees
of the centesimal division of the quadrant, for by this meridian the beginning
of his proposed era fell at midnight. But the revolutionists rejected this scheme,
and made the start of the new era coincide with the beginning of the glorious
French Republic.

Laplace was justly admired throughout Europe as a most sagacious and
profound scientist, but, unhappily for his reputation, he strove not only after
greatness in science, but also after political honours. The political career of
this eminent scientist was stained by servility and suppleness. After the 18th
of Brumaire, the day when Napoleon was made emperor, Laplace’s ardour for
republican principles suddenly gave way to a great devotion to the emperor.
Napoleon rewarded this devotion by giving him the post of minister of the
interior, but dismissed him after six months for incapacity. Said Napoleon,
“Laplace ne saisissait aucune question sous son véritable point de vue; il
cherchait des subtilités partout, n’avait que des idées problematiques, et portait
enfin l’esprit des infiniment petits jusque dans l’administration.” Desirous to
retain his allegiance, Napoleon elevated him to the Senate and bestowed various
other honours upon him. Nevertheless, he cheerfully gave his voice in 1814
to the dethronement of his patron and hastened to tender his services to the
Bourbons, thereby earning the title of marquis. This pettiness of his character
is seen in his writings. The first edition of the Système du monde was dedicated
to the Council of Five Hundred. To the third volume of the Mécanique Céleste is
prefixed a note that of all the truths contained in the book, that most precious
to the author was the declaration he thus made of gratitude and devotion to
the peace-maker of Europe. After this outburst of avection, we are surprised
to find in the editions of the Théorie analytique des probabilités, which appeared
after the Restoration, that the original dedication to the emperor is suppressed.

Though supple and servile in politics, it must be said that in religion
and science Laplace never misrepresented or concealed his own convictions
however distasteful they might be to others. In mathematics and astronomy his
genius shines with a lustre excelled by few. Three great works did he give to the
scientific world,—the Mécanique Céleste, the Exposition du système du monde, and
the Théorie analytique des probabilités. Besides these he contributed important
memoirs to the French Academy.

We first pass in brief review his astronomical researches. In 1773 he brought
out a paper in which he proved that the mean motions or mean distances
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of planets are invariable or merely subject to small periodic changes. This
was the first and most important step in establishing the stability of the solar
system. To Newton and also to Euler it had seemed doubtful whether forces
so numerous, so variable in position, so diverent in intensity, as those in the
solar system, could be capable of maintaining permanently a condition of
equilibrium. Newton was of the opinion that a powerful hand must intervene
from time to time to repair the derangements occasioned by the mutual action
of the diverent bodies. This paper was the beginning of a series of profound
researches by Lagrange and Laplace on the limits of variation of the various
elements of planetary orbits, in which the two great mathematicians alternately
surpassed and supplemented each other. Laplace’s first paper really grew out
of researches on the theory of Jupiter and Saturn. The behaviour of these
planets had been studied by Euler and Lagrange without receiving satisfactory
explanation. Observation revealed the existence of a steady acceleration of the
mean motions of our moon and of Jupiter and an equally strange diminution
of the mean motion of Saturn. It looked as though Saturn might eventually
leave the planetary system, while Jupiter would fall into the sun, and the moon
upon the earth. Laplace finally succeeded in showing, in a paper of 1784–1786,
that these variations (called the “great inequality”) belonged to the class of
ordinary periodic perturbations, depending upon the law of attraction. The
cause of so influential a perturbation was found in the commensurability of
the mean motion of the two planets.

In the study of the Jovian system, Laplace was enabled to determine the
masses of the moons. He also discovered certain very remarkable, simple
relations between the movements of those bodies, known as “Laws of Laplace.”
His theory of these bodies was completed in papers of 1788 and 1789. These,
as well as the other papers here mentioned, were published in the Mémoires
présentés par divers savans. The year 1787 was made memorable by Laplace’s
announcement that the lunar acceleration depended upon the secular changes
in the eccentricity of the earth’s orbit. This removed all doubt then existing
as to the stability of the solar system. The universal validity of the law of
gravitation to explain all motion in the solar system was established. That
system, as then known, was at last found to be a complete machine.

In 1796 Laplace published his Exposition du système du monde, a non-
mathematical popular treatise on astronomy, ending with a sketch of the
history of the science. In this work he enunciates for the first time his
celebrated nebular hypothesis. A similar theory had been previously proposed
by Kant in 1755, and by Swedenborg; but Laplace does not appear to have been
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aware of this.
Laplace conceived the idea of writing a work which should contain a complete

analytical solution of the mechanical problem presented by the solar system,
without deriving from observation any but indispensable data. The result was
the Mécanique Céleste, which is a systematic presentation embracing all the
discoveries of Newton, Clairaut, D’Alembert, Euler, Lagrange, and of Laplace
himself, on celestial mechanics. The first and second volumes of this work
were published in 1799; the third appeared in 1802, the fourth in 1805. Of the
fifth volume, Books XI. and XII. were published in 1823; Books XIII., XIV., XV.
in 1824, and Book XVI. in 1825. The first two volumes contain the general
theory of the motions and figure of celestial bodies. The third and fourth
volumes give special theories of celestial motions,—treating particularly of
motions of comets, of our moon, and of other satellites. The fifth volume
opens with a brief history of celestial mechanics, and then gives in appendices
the results of the author’s later researches. The Mécanique Céleste was such
a master-piece, and so complete, that Laplace’s successors have been able to
add comparatively little. The general part of the work was translated into
German by Joh. Karl Burkhardt, and appeared in Berlin, 1800–1802. Nathaniel
Bowditch brought out an edition in English, with an extensive commentary, in
Boston, 1829–1839. The Mécanique Céleste is not easy reading. The diHculties lie,
as a rule, not so much in the subject itself as in the want of verbal explanation.
A complicated chain of reasoning receives often no explanation whatever. Biot,
who assisted Laplace in revising the work for the press, tells that he once asked
Laplace some explanation of a passage in the book which had been written
not long before, and that Laplace spent an hour endeavouring to recover the
reasoning which had been carelessly suppressed with the remark, “Il est facile
de voir.” Notwithstanding the important researches in the work, which are
due to Laplace himself, it naturally contains a great deal that is drawn from his
predecessors. It is, in fact, the organised result of a century of patient toil. But
Laplace frequently neglects to properly acknowledge the source from which he
draws, and lets the reader infer that theorems and formulæ due to a predecessor
are really his own.

We are told that when Laplace presented Napoleon with a copy of the
Mécanique Céleste, the latter made the remark, “M. Laplace, they tell me you
have written this large book on the system of the universe, and have never even
mentioned its Creator.” Laplace is said to have replied bluntly, “Je n’avais pas
besoin de cette hypothèse-la.” This assertion, taken literally, is impious, but
may it not have been intended to convey a meaning somewhat diverent from
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its literal one? Newton was not able to explain by his law of gravitation all
questions arising in the mechanics of the heavens. Thus, being unable to show
that the solar system was stable, and suspecting in fact that it was unstable,
Newton expressed the opinion that the special intervention, from time to time,
of a powerful hand was necessary to preserve order. Now Laplace was able to
prove by the law of gravitation that the solar system is stable, and in that sense
may be said to have felt no necessity for reference to the Almighty.

We now proceed to researches which belong more properly to pure mathe-
matics. Of these the most conspicuous are on the theory of probability. Laplace
has done more towards advancing this subject than any one other investigator.
He published a series of papers, the main results of which were collected in
his Théorie analytique des probabilités, 1812. The third edition (1820) consists of
an introduction and two books. The introduction was published separately
under the title, Essai philosophique sur les probabilités, and is an admirable and
masterly exposition without the aid of analytical formulæ of the principles and
applications of the science. The first book contains the theory of generating
functions, which are applied, in the second book, to the theory of probability.
Laplace gives in his work on probability his method of approximation to the
values of definite integrals. The solution of linear diverential equations was
reduced by him to definite integrals. One of the most important parts of the
work is the application of probability to the method of least squares, which is
shown to give the most probable as well as the most convenient results.

The first printed statement of the principle of least squares was made in
1806 by Legendre, without demonstration. Gauss had used it still earlier, but
did not publish it until 1809. The first deduction of the law of probability of
error that appeared in print was given in 1808 by Robert Adrain in the Analyst,
a journal published by himself in Philadelphia. Proofs of this law have since
been given by Gauss, Ivory, Herschel, Hagen, and others; but all proofs contain
some point of diHculty. Laplace’s proof is perhaps the most satisfactory.

Laplace’s work on probability is very diHcult reading, particularly the part
on the method of least squares. The analytical processes are by no means clearly
established or free from error. “No one was more sure of giving the result of
analytical processes correctly, and no one ever took so little care to point out
the various small considerations on which correctness depends” (De Morgan).

Of Laplace’s papers on the attraction of ellipsoids, the most important
is the one published in 1785, and to a great extent reprinted in the third
volume of the Mécanique Céleste. It gives an exhaustive treatment of the general
problem of attraction of any ellipsoid upon a particle situated outside or
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upon its surface. Spherical harmonics, or the so-called “Laplace’s coeHcients,”
constitute a powerful analytic engine in the theory of attraction, in electricity,
and magnetism. The theory of spherical harmonics for two dimensions had
been previously given by Legendre. Laplace failed to make due acknowledgment
of this, and there existed, in consequence, between the two great men, “a feeling
more than coldness.” The potential function, V , is much used by Laplace, and is

shown by him to satisfy the partial diverential equation
B2V
Bx2 `

B2V
By2 `

B2V
Bz2 “ 0.

This is known as Laplace’s equation, and was first given by him in the more
complicated form which it assumes in polar co-ordinates. The notion of
potential was, however, not introduced into analysis by Laplace. The honour
of that achievement belongs to Lagrange.

Among the minor discoveries of Laplace are his method of solving equations
of the second, third, and fourth degrees, his memoir on singular solutions of
diverential equations, his researches in finite diverences and in determinants,
the establishment of the expansion theorem in determinants which had been
previously given by Vandermonde for a special case, the determination of the
complete integral of the linear diverential equation of the second order. In
the Mécanique Céleste he made a generalisation of Lagrange’s theorem on the
development of functions in series known as Laplace’s theorem.

Laplace’s investigations in physics were quite extensive. We mention here
his correction of Newton’s formula on the velocity of sound in gases by taking
into account the changes of elasticity due to the heat of compression and
cold of rarefaction; his researches on the theory of tides; his mathematical
theory of capillarity; his explanation of astronomical refraction; his formulæ
for measuring heights by the barometer.

Laplace’s writings stand out in bold contrast to those of Lagrange in their
lack of elegance and symmetry. Laplace looked upon mathematics as the tool
for the solution of physical problems. The true result being once reached, he
spent little time in explaining the various steps of his analysis, or in polishing
his work. The last years of his life were spent mostly at Arcueil in peaceful
retirement on a country-place, where he pursued his studies with his usual
vigour until his death. He was a great admirer of Euler, and would often say,
“Lisez Euler, lisez Euler, c’est notre maître à tous.”

Abnit-Théophile Vandermonde (1735–1796) studied music during his youth
in Paris and advocated the theory that all art rested upon one general law,
through which any one could become a composer with the aid of mathematics.
He was the first to give a connected and logical exposition of the theory of
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determinants, and may, therefore, almost be regarded as the founder of that
theory. He and Lagrange originated the method of combinations in solving
equations.

Adrien Marie Legendre (1752–1833) was educated at the Collège Mazarin
in Paris, where he began the study of mathematics under Abbé Marie. His
mathematical genius secured for him the position of professor of mathematics
at the military school of Paris. While there he prepared an essay on the curve
described by projectiles thrown into resisting media (ballistic curve), which
captured a prize overed by the Royal Academy of Berlin. In 1780 he resigned
his position in order to reserve more time for the study of higher mathematics.
He was then made member of several public commissions. In 1795 he was
elected professor at the Normal School and later was appointed to some minor
government positions. Owing to his timidity and to Laplace’s unfriendliness
toward him, but few important public oHces commensurate with his ability
were tendered to him.

As an analyst, second only to Laplace and Lagrange, Legendre enriched
mathematics by important contributions, mainly on elliptic integrals, theory
of numbers, attraction of ellipsoids, and least squares. The most important
of Legendre’s works is his Fonctions elliptiques, issued in two volumes in 1825
and 1826. He took up the subject where Euler, Landen, and Lagrange had left it,
and for forty years was the only one to cultivate this new branch of analysis, until
at last Jacobi and Abel stepped in with admirable new discoveries. Legendre
imparted to the subject that connection and arrangement which belongs to an
independent science. Starting with an integral depending upon the square root
of a polynomial of the fourth degree in x, he showed that such integrals can be
brought back to three canonical forms, designated by Fpϕq, Epϕq, and Πpϕq, the
radical being expressed in the form ∆pϕq “

a

1´ k2 sin2
ϕ. He also undertook

the prodigious task of calculating tables of arcs of the ellipse for diverent
degrees of amplitude and eccentricity, which supply the means of integrating a
large number of diverentials.

An earlier publication which contained part of his researches on elliptic
functions was his Calcul intégral in three volumes (1811, 1816, 1817), in which
he treats also at length of the two classes of definite integrals named by him
Eulerian. He tabulated the values of log Γppq for values of p between 1 and 2.

One of the earliest subjects of research was the attraction of spheroids, which
suggested to Legendre the function Pn, named after him. His memoir was
presented to the Academy of Sciences in 1783. The researches of Maclaurin
and Lagrange suppose the point attracted by a spheroid to be at the surface
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or within the spheroid, but Legendre showed that in order to determine the
attraction of a spheroid on any external point it suHces to cause the surface
of another spheroid described upon the same foci to pass through that point.
Other memoirs on ellipsoids appeared later.

The two household gods to which Legendre sacrificed with ever-renewed
pleasure in the silence of his closet were the elliptic functions and the theory
of numbers. His researches on the latter subject, together with the numerous
scattered fragments on the theory of numbers due to his predecessors in this
line, were arranged as far as possible into a systematic whole, and published
in two large quarto volumes, entitled Théorie des nombres, 1830. Before the
publication of this work Legendre had issued at divers times preliminary
articles. Its crowning pinnacle is the theorem of quadratic reciprocity,
previously indistinctly given by Euler without proof, but for the first time
clearly enunciated and partly proved by Legendre.

While acting as one of the commissioners to connect Greenwich and Paris
geodetically, Legendre calculated all the triangles in France. This furnished the
occasion of establishing formulæ and theorems on geodesics, on the treatment
of the spherical triangle as if it were a plane triangle, by applying certain
corrections to the angles, and on the method of least squares, published for the
first time by him without demonstration in 1806.

Legendre wrote an Éléments de Géométrie, 1794, which enjoyed great pop-
ularity, being generally adopted on the Continent and in the United States
as a substitute for Euclid. This great modern rival of Euclid passed through
numerous editions; the later ones containing the elements of trigonometry and
a proof of the irrationality of π and π2. Much attention was given by Legendre
to the subject of parallel lines. In the earlier editions of the Éléments, he made
direct appeal to the senses for the correctness of the “parallel-axiom.” He then
attempted to demonstrate that “axiom,” but his proofs did not satisfy even
himself. In Vol. XII. of the Memoirs of the Institute is a paper by Legendre,
containing his last attempt at a solution of the problem. Assuming space to be
infinite, he proved satisfactorily that it is impossible for the sum of the three
angles of a triangle to exceed two right angles; and that if there be any triangle
the sum of whose angles is two right angles, then the same must be true of all
triangles. But in the next step, to show that this sum cannot be less than two
right angles, his demonstration necessarily failed. If it could be granted that
the sum of the three angles is always equal to two right angles, then the theory
of parallels could be strictly deduced.

Joseph Fourier (1768–1830) was born at Auxerre, in central France. He
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became an orphan in his eighth year. Through the influence of friends he
was admitted into the military school in his native place, then conducted
by the Benedictines of the Convent of St. Mark. He there prosecuted his
studies, particularly mathematics, with surprising success. He wished to enter
the artillery, but, being of low birth (the son of a tailor), his application was
answered thus: “Fourier, not being noble, could not enter the artillery, although
he were a second Newton.” He was soon appointed to the mathematical chair
in the military school. At the age of twenty-one he went to Paris to read before
the Academy of Sciences a memoir on the resolution of numerical equations,
which was an improvement on Newton’s method of approximation. This
investigation of his early youth he never lost sight of. He lectured upon it in
the Polytechnic School; he developed it on the banks of the Nile; it constituted
a part of a work entitled Analyse des equationes determines (1831), which was in
press when death overtook him. This work contained “Fourier’s theorem” on
the number of real roots between two chosen limits. Budan had published
this result as early as 1807, but there is evidence to show that Fourier had
established it before Budan’s publication. These brilliant results were eclipsed
by the theorem of Sturm, published in 1835.

Fourier took a prominent part at his home in promoting the Revolution.
Under the French Revolution the arts and sciences seemed for a time to
flourish. The reformation of the weights and measures was planned with
grandeur of conception. The Normal School was created in 1795, of which
Fourier became at first pupil, then lecturer. His brilliant success secured him
a chair in the Polytechnic School, the duties of which he afterwards quitted,
along with Monge and Berthollet, to accompany Napoleon on his campaign
to Egypt. Napoleon founded the Institute of Egypt, of which Fourier became
secretary. In Egypt he engaged not only in scientific work, but discharged
important political functions. After his return to France he held for fourteen
years the prefecture of Grenoble. During this period he carried on his
elaborate investigations on the propagation of heat in solid bodies, published
in 1822 in his work entitled La Theorie Analytique de la Chaleur. This work
marks an epoch in the history of mathematical physics. “Fourier’s series”
constitutes its gem. By this research a long controversy was brought to a
close, and the fact established that any arbitrary function can be represented
by a trigonometric series. The first announcement of this great discovery was
made by Fourier in 1807, before the French Academy. The trigonometric series
n“8
ř

n“0
pan sin nx` bn cos nxq represents the function ϕpxq for every value of x, if
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the coeHcients an “
1
π

ż π

´π

ϕpxq sin nx dx, and bn be equal to a similar integral.

The weak point in Fourier’s analysis lies in his failure to prove generally that
the trigonometric series actually converges to the value of the function. In
1827 Fourier succeeded Laplace as president of the council of the Polytechnic
School.

Before proceeding to the origin of modern geometry we shall speak briefly
of the introduction of higher analysis into Great Britain. This took place
during the first quarter of this century. The British began to deplore the
very small progress that science was making in England as compared with
its racing progress on the Continent. In 1813 the “Analytical Society” was
formed at Cambridge. This was a small club established by George Peacock,
John Herschel, Charles Babbage, and a few other Cambridge students, to
promote, as it was humorously expressed, the principles of pure “D-ism,” that
is, the Leibnizian notation in the calculus against those of “dot-age,” or of the
Newtonian notation. This struggle ended in the introduction into Cambridge

of the notation
dy
dx

, to the exclusion of the fluxional notation 9y. This was a
great step in advance, not on account of any great superiority of the Leibnizian
over the Newtonian notation, but because the adoption of the former opened
up to English students the vast storehouses of continental discoveries. Sir
William Thomson, Tait, and some other modern writers find it frequently
convenient to use both notations. Herschel, Peacock, and Babbage translated,
in 1816, from the French, Lacroix’s treatise on the diverential and integral
calculus, and added in 1820 two volumes of examples. Lacroix’s was one of
the best and most extensive works on the calculus of that time. Of the three
founders of the “Analytical Society,” Peacock afterwards did most work in
pure mathematics. Babbage became famous for his invention of a calculating
engine superior to Pascal’s. It was never finished, owing to a misunderstanding
with the government, and a consequent failure to secure funds. John Herschel,
the eminent astronomer, displayed his mastery over higher analysis in memoirs
communicated to the Royal Society on new applications of mathematical
analysis, and in articles contributed to cyclopædias on light, on meteorology,
and on the history of mathematics.

George Peacock (1791–1858) was educated at Trinity College, Cambridge,
became Lowndean professor there, and later, dean of Ely. His chief publications
are his Algebra, 1830 and 1842, and his Report on Recent Progress in Analysis, which
was the first of several valuable summaries of scientific progress printed in the
volumes of the British Association. He was one of the first to study seriously the
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fundamental principles of algebra, and to fully recognise its purely symbolic
character. He advances, though somewhat imperfectly, the “principle of the
permanence of equivalent forms.” It assumes that the rules applying to the
symbols of arithmetical algebra apply also in symbolical algebra. About this
time D. F. Gregory wrote a paper “on the real nature of symbolical algebra,”
which brought out clearly the commutative and distributive laws. These laws
had been noticed years before by the inventors of symbolic methods in the
calculus. It was Servois who introduced the names commutative and distributive
in 1813. Peacock’s investigations on the foundation of algebra were considerably
advanced by De Morgan and Hankel.

James Ivory (1765–1842) was a Scotch mathematician who for twelve years,
beginning in 1804, held the mathematical chair in the Royal Military College at
Marlow (now at Sandhurst). He was essentially a self-trained mathematician,
and almost the only one in Great Britain previous to the organisation of
the Analytical Society who was well versed in continental mathematics. Of
importance is his memoir (Phil. Trans., 1809) in which the problem of the
attraction of a homogeneous ellipsoid upon an external point is reduced to the
simpler problem of the attraction of a related ellipsoid upon a corresponding
point interior to it. This is known as “Ivory’s theorem.” He criticised with
undue severity Laplace’s solution of the method of least squares, and gave three
proofs of the principle without recourse to probability; but they are far from
being satisfactory.

The Origin of Modern Geometry.

By the researches of Descartes and the invention of the calculus, the analytical
treatment of geometry was brought into great prominence for over a century.
Notwithstanding the evorts to revive synthetic methods made by Desargues,
Pascal, De Lahire, Newton, and Maclaurin, the analytical method retained
almost undisputed supremacy. It was reserved for the genius of Monge to bring
synthetic geometry in the foreground, and to open up new avenues of progress.
His Géométrie descriptive marks the beginning of a wonderful development of
modern geometry.

Of the two leadingproblemsofdescriptivegeometry, theone—torepresentby
drawings geometrical magnitudes—was brought to a high degree of perfection
before the time of Monge; the other—to solve problems on figures in space by
constructions in a plane—had received considerable attention before his time.
His most noteworthy predecessor in descriptive geometry was the Frenchman
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Frézier (1682–1773). But it remained for Monge to create descriptive geometry
as a distinct branch of science by imparting to it geometric generality and
elegance. All problems previously treated in a special and uncertain manner
were referred back to a few general principles. He introduced the line of
intersection of the horizontal and the vertical plane as the axis of projection.
By revolving one plane into the other around this axis or ground-line, many
advantages were gained.

Gaspard Monge (1746–1818) was born at Beaune. The construction of a
plan of his native town brought the boy under the notice of a colonel of
engineers, who procured for him an appointment in the college of engineers
at Mézières. Being of low birth, he could not receive a commission in the
army, but he was permitted to enter the annex of the school, where surveying
and drawing were taught. Observing that all the operations connected with
the construction of plans of fortification were conducted by long arithmetical
processes, he substituted a geometrical method, which the commandant at first
refused even to look at, so short was the time in which it could be practised;
when once examined, it was received with avidity. Monge developed these
methods further and thus created his descriptive geometry. Owing to the
rivalry between the French military schools of that time, he was not permitted
to divulge his new methods to any one outside of this institution. In 1768 he
was made professor of mathematics at Mézières. In 1780, when conversing with
two of his pupils, S. F. Lacroix and Gayvernon in Paris, he was obliged to say,
“All that I have here done by calculation, I could have done with the ruler and
compass, but I am not allowed to reveal these secrets to you.” But Lacroix
set himself to examine what the secret could be, discovered the processes, and
published them in 1795. The method was published by Monge himself in the
same year, first in the form in which the short-hand writers took down his
lessons given at the Normal School, where he had been elected professor, and
then again, in revised form, in the Journal des écoles normales. The next edition
occurred in 1798–1799. After an ephemeral existence of only four months the
Normal School was closed in 1795. In the same year the Polytechnic School was
opened, in the establishing of which Monge took active part. He taught there
descriptive geometry until his departure from France to accompany Napoleon
on the Egyptian campaign. He was the first president of the Institute of Egypt.
Monge was a zealous partisan of Napoleon and was, for that reason, deprived
of all his honours by Louis XVIII. This and the destruction of the Polytechnic
School preyed heavily upon his mind. He did not long survive this insult.

Monge’snumerouspaperswerebynomeansconfinedtodescriptivegeometry.
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His analytical discoveries are hardly less remarkable. He introduced into
analytic geometry the methodic use of the equation of a line. He made
important contributions to surfaces of the second degree (previously studied
by Wren and Euler) and discovered between the theory of surfaces and the
integration of partial diverential equations, a hidden relation which threw
new light upon both subjects. He gave the diverential of curves of curvature,
established a general theory of curvature, and applied it to the ellipsoid. He
found that the validity of solutions was not impaired when imaginaries are
involved among subsidiary quantities. Monge published the following books:
Statics, 1786; Applications de l’algèbre à la géométrie, 1805; Application de l’analyse
à la géométrie. The last two contain most of his miscellaneous papers.

Monge was an inspiring teacher, and he gathered around him a large circle
of pupils, among which were Dupin, Servois, Brianchon, Hachette, Biot, and
Poncelet.

Charles Dupin (1784–1873), for many years professor of mechanics in the
Conservatoire des Arts et Métiers in Paris, published in 1813 an important
work on Développements de géométrie, in which is introduced the conception of
conjugate tangents of a point of a surface, and of the indicatrix. It contains also
the theorem known as “Dupin’s theorem.” Surfaces of the second degree and
descriptive geometry were successfully studied by Jean Nicolas Pierre Hachette
(1769–1834), who became professor of descriptive geometry at the Polytechnic
School after the departure of Monge for Rome and Egypt. In 1822 he published
his Traité de géométrie descriptive.

Descriptive geometry, which arose, as we have seen, in technical schools
in France, was transferred to Germany at the foundation of technical schools
there. G. Schreiber, professor in Karlsruhe, was the first to spread Monge’s
geometry in Germany by the publication of a work thereon in 1828–1829. In
the United States descriptive geometry was introduced in 1816 at the Military
Academy in West Point by Claude Crozet, once a pupil at the Polytechnic
School in Paris. Crozet wrote the first English work on the subject.

Lazare Nicholas Marguerite Carnot (1753–1823) was born at Nolay in
Burgundy, and educated in his native province. He entered the army, but
continued his mathematical studies, and wrote in 1784 a work on machines,
containing the earliest proof that kinetic energy is lost in collisions of bodies.
With the advent of the Revolution he threw himself into politics, and when
coalesced Europe, in 1793, launched against France a million soldiers, the
gigantic task of organising fourteen armies to meet the enemy was achieved
by him. He was banished in 1796 for opposing Napoleon’s coup d’état. The
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refugee went to Geneva, where he issued, in 1797, a work still frequently quoted,
entitled, Réflexions sur la Métaphysique du Calcul Infinitésimal. He declared
himself as an “irreconcilable enemy of kings.” After the Russian campaign he
overed to fight for France, though not for the empire. On the restoration he
was exiled. He died in Magdeburg. His Géométrie de position, 1803, and his
Essay on Transversals, 1806, are important contributions to modern geometry.
While Monge revelled mainly in three-dimensional geometry, Carnot confined
himself to that of two. By his evort to explain the meaning of the negative
sign in geometry he established a “geometry of position,” which, however, is
diverent from the “Geometrie der Lage” of to-day. He invented a class of
general theorems on projective properties of figures, which have since been
pushed to great extent by Poncelet, Chasles, and others.

Jean Victor Poncelet (1788–1867), a native of Metz, took part in the Russian
campaign, was abandoned as dead on the bloody field of Krasnoi, and
taken prisoner to Saratov. Deprived there of all books, and reduced to the
remembrance of what he had learned at the Lyceum at Metz and the Polytechnic
School, where he had studied with predilection the works of Monge, Carnot,
and Brianchon, he began to study mathematics from its elements. He entered
upon original researches which afterwards made him illustrious. While in
prison he did for mathematics what Bunyan did for literature,—produced a
much-read work, which has remained of great value down to the present time.
He returned to France in 1814, and in 1822 published the work in question,
entitled, Traité des Propriétés projectives des figures. In it he investigated the
properties of figures which remain unaltered by projection of the figures.
The projection is not evected here by parallel rays of prescribed direction,
as with Monge, but by central projection. Thus perspective projection, used
before him by Desargues, Pascal, Newton, and Lambert, was elevated by him
into a fruitful geometric method. In the same way he elaborated some ideas
of De Lahire, Servois, and Gergonne into a regular method—the method of
“reciprocal polars.” To him we owe the Law of Duality as a consequence of
reciprocal polars. As an independent principle it is due to Gergonne. Poncelet
wrote much on applied mechanics. In 1838 the Faculty of Sciences was enlarged
by his election to the chair of mechanics.

While in France the school of Monge was creating modern geometry, evorts
were made in England to revive Greek geometry by Robert Simson (1687–
1768) and Matthew Stewart (1717–1785). Stewart was a pupil of Simson and
Maclaurin, and succeeded the latter in the chair at Edinburgh. During the
eighteenth century he and Maclaurin were the only prominent mathematicians
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in Great Britain. His genius was ill-directed by the fashion then prevalent in
England to ignore higher analysis. In his Four Tracts, Physical and Mathematical,
1761, he applied geometry to the solution of diHcult astronomical problems,
which on the Continent were approached analytically with greater success. He
published, in 1746, General Theorems, and in 1763, his Propositiones geometricæ
more veterum demonstratæ. The former work contains sixty-nine theorems, of
which only five are accompanied by demonstrations. It gives many interesting
new results on the circle and the straight line. Stewart extended some theorems
on transversals due to Giovanni Ceva (1648–1737), an Italian, who published in
1678 at Mediolani a work containing the theorem now known by his name.



RECENT TIMES.

Never more zealously and successfully has mathematics been cultivated than
in this century. Nor has progress, as in previous periods, been confined to one
or two countries. While the French and Swiss, who alone during the preceding
epoch carried the torch of progress, have continued to develop mathematics
with great success, from other countries whole armies of enthusiastic workers
have wheeled into the front rank. Germany awoke from her lethargy by
bringing forward Gauss, Jacobi, Dirichlet, and hosts of more recent men; Great
Britain produced her De Morgan, Boole, Hamilton, besides champions who
are still living; Russia entered the arena with her Lobatchewsky; Norway with
Abel; Italy with Cremona; Hungary with her two Bolyais; the United States
with Benjamin Peirce.

The productiveness of modern writers has been enormous. “It is diHcult,”
says Professor Cayley, “to give an idea of the vast extent of modern mathematics.
This word ‘extent’ is not the right one: I mean extent crowded with beautiful
detail,—not an extent of mere uniformity such as an objectless plain, but of a
tract of beautiful country seen at first in the distance, but which will bear to
be rambled through and studied in every detail of hillside and valley, stream,
rock, wood, and flower.” It is pleasant to the mathematician to think that in
his, as in no other science, the achievements of every age remain possessions
forever; new discoveries seldom disprove older tenets; seldom is anything lost
or wasted.

If it be asked wherein the utility of some modern extensions of mathematics
lies, it must be acknowledged that it is at present diHcult to see how they are
ever to become applicable to questions of common life or physical science.
But our inability to do this should not be urged as an argument against the
pursuit of such studies. In the first place, we know neither the day nor the
hour when these abstract developments will find application in the mechanic
arts, in physical science, or in other branches of mathematics. For example, the
whole subject of graphical statics, so useful to the practical engineer, was made
to rest upon von Staudt’s Geometrie der Lage; Hamilton’s “principle of varying
action” has its use in astronomy; complex quantities, general integrals, and
general theorems in integration over advantages in the study of electricity and
magnetism. “The utility of such researches,” says Spottiswoode, “can in no case
be discounted, or even imagined beforehand. Who, for instance, would have
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supposed that the calculus of forms or the theory of substitutions would have
thrown much light upon ordinary equations; or that Abelian functions and
hyperelliptic transcendents would have told us anything about the properties
of curves; or that the calculus of operations would have helped us in any way
towards the figure of the earth?” A second reason in favour of the pursuit of
advanced mathematics, even when there is no promise of practical application,
is this, that mathematics, like poetry and music, deserves cultivation for its
own sake.

The great characteristic of modern mathematics is its generalising tendency.
Nowadays little weight is given to isolated theorems, “except as avording hints
of an unsuspected new sphere of thought, like meteorites detached from some
undiscovered planetary orb of speculation.” In mathematics, as in all true
sciences, no subject is considered in itself alone, but always as related to, or an
outgrowth of, other things. The development of the notion of continuity plays
a leading part in modern research. In geometry the principle of continuity, the
idea of correspondence, and the theory of projection constitute the fundamental
modern notions. Continuity asserts itself in a most striking way in relation
to the circular points at infinity in a plane. In algebra the modern idea finds
expression in the theory of linear transformations and invariants, and in the
recognition of the value of homogeneity and symmetry.

SYNTHETIC GEOMETRY.

The conflict between geometry and analysis which arose near the close of the
last century and the beginning of the present has now come to an end. Neither
side has come out victorious. The greatest strength is found to lie, not in the
suppression of either, but in the friendly rivalry between the two, and in the
stimulating influence of the one upon the other. Lagrange prided himself that
in his Mécanique Analytique he had succeeded in avoiding all figures; but since
his time mechanics has received much help from geometry.

Modern synthetic geometry was created by several investigators about the
same time. It seemed to be the outgrowth of a desire for general methods
which should serve as threads of Ariadne to guide the student through the
labyrinth of theorems, corollaries, porisms, and problems. Synthetic geometry
was first cultivated by Monge, Carnot, and Poncelet in France; it then bore rich
fruits at the hands of Möbius and Steiner in Germany and Switzerland, and was
finally developed to still higher perfection by Chasles in France, von Staudt in
Germany, and Cremona in Italy.
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Augustus Ferdinand Möbius (1790–1868) was a native of Schulpforta in
Prussia. He studied at Göttingen under Gauss, also at Leipzig and Halle. In
Leipzig he became, in 1815, privat-docent, the next year extraordinary professor
of astronomy, and in 1844 ordinary professor. This position he held till his
death. The most important of his researches are on geometry. They appeared
in Crelle’s Journal, and in his celebrated work entitled Der Barycentrische Calcul,
Leipzig, 1827. As the name indicates, this calculus is based upon properties of
the centre of gravity. Thus, that the point S is the centre of gravity of weights
a, b, c, d placed at the points A, B, C, D respectively, is expressed by the equation

pa` b ` c ` dqS “ aA` bB ` cC ` dD.

His calculus is the beginning of a quadruple algebra, and contains the germs
of Grassmann’s marvellous system. In designating segments of lines we find
throughout this work for the first time consistency in the distinction of positive
and negative by the order of letters AB, BA. Similarly for triangles and
tetrahedra. The remark that it is always possible to give three points A, B, C
such weights α, β, γ that any fourth point M in their plane will become a centre
of mass, led Möbius to a new system of co-ordinates in which the position
of a point was indicated by an equation, and that of a line by co-ordinates.
By this algorithm he found by algebra many geometric theorems expressing
mainly invariantal properties,—for example, the theorems on the anharmonic
relation. Möbius wrote also on statics and astronomy. He generalised spherical
trigonometry by letting the sides or angles of triangles exceed 180˝.

Jacob Steiner (1796–1863), “the greatest geometrician since the time of
Euclid,” was born in Utzendorf in the Canton of Bern. He did not learn
to write till he was fourteen. At eighteen he became a pupil of Pestalozzi.
Later he studied at Heidelberg and Berlin. When Crelle started, in 1826, the
celebrated mathematical journal bearing his name, Steiner and Abel became
leading contributors. In 1832 Steiner published his Systematische Entwickelung
der Abhängigkeit geometrischer Gestalten von einander, “in which is uncovered
the organism by which the most diverse phenomena (Erscheinungen) in the
world of space are united to each other.” Through the influence of Jacobi and
others, the chair of geometry was founded for him at Berlin in 1834. This
position he occupied until his death, which occurred after years of bad health.
In his Systematische Entwickelungen, for the first time, is the principle of duality
introduced at the outset. This book and von Staudt’s lay the foundation on
which synthetic geometry in its present form rests. Not only did he fairly
complete the theory of curves and surfaces of the second degree, but he made
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great advances in the theory of those of higher degrees. In his hands synthetic
geometry made prodigious progress. New discoveries followed each other so
rapidly that he often did not take time to record their demonstrations. In
an article in Crelle’s Journal on Allgemeine Eigenschaften Algebraischer Curven
he gives without proof theorems which were declared by Hesse to be “like
Fermat’s theorems, riddles to the present and future generations.” Analytical
proofs of some of them have been given since by others, but Cremona finally
proved them all by a synthetic method. Steiner discovered synthetically the
two prominent properties of a surface of the third order; viz. that it contains
twenty-seven straight lines and a pentahedron which has the double points
for its vertices and the lines of the Hessian of the given surface for its edges.
The first property was discovered analytically somewhat earlier in England by
Cayley and Salmon, and the second by Sylvester. Steiner’s work on this subject
was the starting-point of important researches by H. Schröter, F. August,
L. Cremona, and R. Sturm. Steiner made investigations by synthetic methods
on maxima and minima, and arrived at the solution of problems which at that
time altogether surpassed the analytic power of the calculus of variations. He
generalised the hexagrammum mysticum and also Malfatti’s problem. Malfatti,
in 1803, proposed the problem, to cut three cylindrical holes out of a three-sided
prism in such a way that the cylinders and the prism have the same altitude and
that the volume of the cylinders be a maximum. This problem was reduced to
another, now generally known as Malfatti’s problem: to inscribe three circles
in a triangle that each circle will be tangent to two sides of a triangle and to
the other two circles. Malfatti gave an analytical solution, but Steiner gave
without proof a construction, remarked that there were thirty-two solutions,
generalised the problem by replacing the three lines by three circles, and solved
the analogous problem for three dimensions. This general problem was solved
analytically by C. H. Schellbach (1809–1892) and Cayley, and by Clebsch with
the aid of the addition theorem of elliptic functions.

Steiner’s researches are confined to synthetic geometry. He hated analysis as
thoroughly as Lagrange disliked geometry. Steiner’s Gesammelte Werke were
published in Berlin in 1881 and 1882.

Michel Chasles (1793–1880) was born at Epernon, entered the Polytechnic
School of Paris in 1812, engaged afterwards in business, which he later gave
up that he might devote all his time to scientific pursuits. In 1841 he
became professor of geodesy and mechanics at the Polytechnic School; later,
“Professeur de Géométrie supérieure à la Faculté des Sciences de Paris.” He
was a voluminous writer on geometrical subjects. In 1837 he published his
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admirable Aperçu historique sur l’origine et le développement des méthodes en
géométrie, containing a history of geometry and, as an appendix, a treatise “sur
deux principes généraux de la Science.” The Aperçu historique is still a standard
historical work; the appendix contains the general theory of Homography
(Collineation) and of duality (Reciprocity). The name duality is due to
Joseph Diaz Gergonne (1771–1859). Chasles introduced the term anharmonic
ratio, corresponding to the German Doppelverhältniss and to Clivord’s cross-
ratio. Chasles and Steiner elaborated independently the modern synthetic or
projective geometry. Numerous original memoirs of Chasles were published
later in the Journal de l’École Polytechnique. He gave a reduction of cubics,
diverent from Newton’s in this, that the five curves from which all others
can be projected are symmetrical with respect to a centre. In 1864 he began
the publication, in the Comptes rendus, of articles in which he solves by his
“method of characteristics” and the “principle of correspondence” an immense
number of problems. He determined, for instance, the number of intersections
of two curves in a plane. The method of characteristics contains the basis of
enumerative geometry. The application of the principle of correspondence was
extended by Cayley, A. Brill, H. G. Zeuthen, H. A. Schwarz, G. H. Halphen
(1844–1889), and others. The full value of these principles of Chasles was
not brought out until the appearance, in 1879, of the Kalkül der Abzählenden
Geometrie by Hermann Schubert of Hamburg. This work contains a masterly
discussion of the problem of enumerative geometry, viz. to determine how
many geometric figures of given definition satisfy a suHcient number of
conditions. Schubert extended his enumerative geometry to n-dimensional
space.

To Chasles we owe the introduction into projective geometry of non-
projective properties of figures by means of the infinitely distant imaginary
sphero-circle. Remarkable is his complete solution, in 1846, by synthetic
geometry, of the diHcult question of the attraction of an ellipsoid on an
external point. This was accomplished analytically by Poisson in 1835. The
labours of Chasles and Steiner raised synthetic geometry to an honoured and
respected position by the side of analysis.

Karl Georg Christian von Staudt (1798–1867) was born in Rothenburg on
the Tauber, and, at his death, was professor in Erlangen. His great works
are the Geometrie der Lage, Nürnberg, 1847, and his Beiträge zur Geometrie
der Lage, 1856–1860. The author cut loose from algebraic formulæ and from
metrical relations, particularly the anharmonic ratio of Steiner and Chasles,
and then created a geometry of position, which is a complete science in itself,
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independent of all measurements. He shows that projective properties of
figures have no dependence whatever on measurements, and can be established
without any mention of them. In his theory of what he calls “Würfe,” he
even gives a geometrical definition of a number in its relation to geometry as
determining the position of a point. The Beiträge contains the first complete and
general theory of imaginary points, lines, and planes in projective geometry.
Representation of an imaginary point is sought in the combination of an
involution with a determinate direction, both on the real line through the
point. While purely projective, von Staudt’s method is intimately related to the
problem of representing by actual points and lines the imaginaries of analytical
geometry. This was systematically undertaken by C. F. Maximilien Marie, who
worked, however, on entirely diverent lines. An independent attempt has been
made recently (1893) by F. H. Loud of Colorado College. Von Staudt’s geometry
of position was for a long time disregarded, mainly, no doubt, because his
book is extremely condensed. An impulse to the study of this subject was given
by Culmann, who rests his graphical statics upon the work of von Staudt. An
interpreter of von Staudt was at last found in Theodor Reye of Strassburg, who
wrote a Geometrie der Lage in 1868.

Synthetic geometry has been studied with much success by Luigi Cremona,
professor in the University of Rome. In his Introduzione ad una teoria geometrica
delle curve piane he developed by a uniform method many new results and
proved synthetically all important results reached before that time by analysis.
His writings have been translated into German by M. Curtze, professor at the
gymnasium in Thorn. The theory of the transformation of curves and of the
correspondence of points on curves was extended by him to three dimensions.
Ruled surfaces, surfaces of the second order, space-curves of the third order,
and the general theory of surfaces have received much attention at his hands.

Karl Culmann, professor at the Polytechnicum in Zürich, published an
epoch-making work on Die graphische Statik, Zürich, 1864, which has rendered
graphical statics a great rival of analytical statics. Before Culmann, B. E.
Cousinery had turned his attention to the graphical calculus, but he made
use of perspective, and not of modern geometry. Culmann is the first to
undertake to present the graphical calculus as a symmetrical whole, holding
the same relation to the new geometry that analytical mechanics does to higher
analysis. He makes use of the polar theory of reciprocal figures as expressing
the relation between the force and the funicular polygons. He deduces this
relation without leaving the plane of the two figures. But if the polygons be
regarded as projections of lines in space, these lines may be treated as reciprocal
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elements of a “Nullsystem.” This was done by Clerk Maxwell in 1864, and
elaborated further by Cremona. The graphical calculus has been applied by
O. Mohr of Dresden to the elastic line for continuous spans. Henry T. Eddy,
of the Rose Polytechnic Institute, gives graphical solutions of problems on the
maximum stresses in bridges under concentrated loads, with aid of what he
calls “reaction polygons.” A standard work, La Statique graphique, 1874, was
issued by Maurice Levy of Paris.

Descriptive geometry (reduced to a science by Monge in France, and
elaborated further by his successors, Hachette, Dupin, Olivier, J. de la Gournerie)
was soon studied also in other countries. The French directed their attention
mainly to the theory of surfaces and their curvature; the Germans and Swiss,
through Schreiber, Pohlke, Schlessinger, and particularly Fiedler, interwove
projective and descriptive geometry. Bellavitis in Italy worked along the same
line. The theory of shades and shadows was first investigated by the French
writers just quoted, and in Germany treated most exhaustively by Burmester.

During the present century very remarkable generalisations have been made,
which reach to the very root of two of the oldest branches of mathematics,—
elementary algebra and geometry. In algebra the laws of operation have been
extended; in geometry the axioms have been searched to the bottom, and the
conclusion has been reached that the space defined by Euclid’s axioms is not the
only possible non-contradictory space. Euclid proved (I. 27) that “if a straight
line falling on two other straight lines make the alternate angles equal to one
another, the two straight lines shall be parallel to one another.” Being unable to
prove that in every other case the two lines are not parallel, he assumed this to
be true in what is generally called the 12th “axiom,” by some the 11th “axiom.”
But this so-called axiom is far from axiomatic. After centuries of desperate but
fruitless attempts to prove Euclid’s assumption, the bold idea dawned upon the
minds of several mathematicians that a geometry might be built up without
assuming the parallel-axiom. While Legendre still endeavoured to establish the
axiom by rigid proof, Lobatchewsky brought out a publication which assumed
the contradictory of that axiom, and which was the first of a series of articles
destined to clear up obscurities in the fundamental concepts, and to greatly
extend the field of geometry.

Nicholaus Ivanovitch Lobatchewsky (1793–1856) was born at Makarief, in
Nischni-Nowgorod, Russia, studied at Kasan, and from 1827 to 1846 was
professor and rector of the University of Kasan. His views on the foundation
of geometry were first made public in a discourse before the physical and
mathematical faculty at Kasan, and first printed in the Kasan Messenger for
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1829, and then in the Gelehrte Schriften der Universität Kasan, 1836–1838, under
the title, “New Elements of Geometry, with a complete theory of Parallels.”
Being in the Russian language, the work remained unknown to foreigners, but
even at home it attracted no notice. In 1840 he published a brief statement of
his researches in Berlin. Lobatchewsky constructed an “imaginary geometry,”
as he called it, which has been described by Clivord as “quite simple, merely
Euclid without the vicious assumption.” A remarkable part of this geometry
is this, that through a point an indefinite number of lines can be drawn in a
plane, none of which cut a given line in the same plane. A similar system of
geometry was deduced independently by the Bolyais in Hungary, who called it
“absolute geometry.”

Wolfgang Bolyai de Bolya (1775–1856) was born in Szekler-Land, Transylva-
nia. After studying at Jena, he went to Göttingen, where he became intimate
with Gauss, then nineteen years old. Gauss used to say that Bolyai was the
only man who fully understood his views on the metaphysics of mathematics.
Bolyai became professor at the Reformed College of Maros-Vásárhely, where
for forty-seven years he had for his pupils most of the present professors of
Transylvania. The first publications of this remarkable genius were dramas and
poetry. Clad in old-time planter’s garb, he was truly original in his private life
as well as in his mode of thinking. He was extremely modest. No monument,
said he, should stand over his grave, only an apple-tree, in memory of the three
apples; the two of Eve and Paris, which made hell out of earth, and that of
Newton, which elevated the earth again into the circle of heavenly bodies. His
son, Johann Bolyai (1802–1860), was educated for the army, and distinguished
himself as a profound mathematician, an impassioned violin-player, and an
expert fencer. He once accepted the challenge of thirteen oHcers on condition
that after each duel he might play a piece on his violin, and he vanquished them
all.

The chief mathematical work of Wolfgang Bolyai appeared in two vol-
umes, 1832–1833, entitled Tentamen juventutem studiosam in elementa matheseos
puræ. . . introducendi. It is followed by an appendix composed by his son
Johann on The Science Absolute of Space. Its twenty-six pages make the name
of Johann Bolyai immortal. He published nothing else, but he left behind
one thousand pages of manuscript which have never been read by a competent
mathematician! His father seems to have been the only person in Hungary
who really appreciated the merits of his son’s work. For thirty-five years
this appendix, as also Lobatchewsky’s researches, remained in almost entire
oblivion. Finally Richard Baltzer of the University of Giessen, in 1867, called
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attention to the wonderful researches. Johann Bolyai’s Science Absolute of Space
and Lobatchewsky’s Geometrical Researches on the Theory of Parallels (1840) were
rendered easily accessible to American readers by translations into English
made in 1891 by George Bruce Halsted of the University of Texas.

The Russian and Hungarian mathematicians were not the only ones to whom
pangeometry suggested itself. A copy of the Tentamen reached Gauss, the
elder Bolyai’s former room-mate at Göttingen, and this Nestor of German
mathematicians was surprised to discover in it worked out what he himself
had begun long before, only to leave it after him in his papers. As early
as 1792 he had started on researches of that character. His letters show that
in 1799 he was trying to prove a priori the reality of Euclid’s system; but
some time within the next thirty years he arrived at the conclusion reached
by Lobatchewsky and Bolyai. In 1829 he wrote to Bessel, stating that his
“conviction that we cannot found geometry completely a priori has become,
if possible, still firmer,” and that “if number is merely a product of our mind,
space has also a reality beyond our mind of which we cannot fully foreordain
the laws a priori.” The term non-Euclidean geometry is due to Gauss. It has
recently been brought to notice that Geronimo Saccheri, a Jesuit father of Milan,
in 1733 anticipated Lobatchewsky’s doctrine of the parallel angle. Moreover,
G. B. Halsted has pointed out that in 1766 Lambert wrote a paper “Zur
Theorie der Parallellinien,” published in the Leipziger Magazin für reine und
angewandte Mathematik, 1786, in which: (1) The failure of the parallel-axiom in
surface-spherics gives a geometry with angle-sum ą 2 right angles; (2) In order
to make intuitive a geometry with angle-sum ă 2 right angles we need the aid
of an “imaginary sphere” (pseudo-sphere); (3) In a space with the angle-sum
divering from 2 right angles, there is an absolute measure (Bolyai’s natural unit
for length).

In 1854, nearly twenty years later, Gauss heard from his pupil, Riemann, a
marvellous dissertation carrying the discussion one step further by developing
the notion of n-ply extended magnitude, and the measure-relations of which
a manifoldness of n dimensions is capable, on the assumption that every line
may be measured by every other. Riemann applied his ideas to space. He taught
us to distinguish between “unboundedness” and “infinite extent.” According
to him we have in our mind a more general notion of space, i.e. a notion of
non-Euclidean space; but we learn by experience that our physical space is, if not
exactly, at least to high degree of approximation, Euclidean space. Riemann’s
profound dissertation was not published until 1867, when it appeared in the
Göttingen Abhandlungen. Before this the idea of n-dimensions had suggested
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itself under various aspects to Lagrange, Plücker, and H. Grassmann. About
the same time with Riemann’s paper, others were published from the pens
of Helmholtz and Beltrami. These contributed powerfully to the victory of
logic over excessive empiricism. This period marks the beginning of lively
discussions upon this subject. Some writers—Bellavitis, for example—were able
to see in non-Euclidean geometry and n-dimensional space nothing but huge
caricatures, or diseased outgrowths of mathematics. Helmholtz’s article was
entitled Thatsachen, welche der Geometrie zu Grunde liegen, 1868, and contained
many of the ideas of Riemann. Helmholtz popularised the subject in lectures,
and in articles for various magazines.

Eugenio Beltrami, born at Cremona, Italy, in 1835, and now professor
at Rome, wrote the classical paper Saggio di interpretazione della geometria
non-euclidea (Giorn. di Matem., 6), which is analytical (and, like several other
papers, should be mentioned elsewhere were we to adhere to a strict separation
between synthesis and analysis). He reached the brilliant and surprising
conclusion that the theorems of non-Euclidean geometry find their realisation
upon surfaces of constant negative curvature. He studied, also, surfaces of
constant positive curvature, and ended with the interesting theorem that the
space of constant positive curvature is contained in the space of constant
negative curvature. These researches of Beltrami, Helmholtz, and Riemann
culminated in the conclusion that on surfaces of constant curvature we may
have three geometries,—the non-Euclidean on a surface of constant negative
curvature, the spherical on a surface of constant positive curvature, and the
Euclidean geometry on a surface of zero curvature. The three geometries
do not contradict each other, but are members of a system,—a geometrical
trinity. The ideas of hyperspace were brilliantly expounded and popularised in
England by Clivord.

William Kingdon Clifford (1845–1879) was born at Exeter, educated at
Trinity College, Cambridge, and from 1871 until his death professor of
applied mathematics in University College, London. His premature death left
incomplete several brilliant researches which he had entered upon. Among
these are his paper On Classification of Loci and his Theory of Graphs. He
wrote articles On the Canonical Form and Dissection of a Riemann’s Surface, on
Biquaternions, and an incomplete work on the Elements of Dynamic. The theory
of polars of curves and surfaces was generalised by him and by Reye. His
classification of loci, 1878, being a general study of curves, was an introduction
to the study of n-dimensional space in a direction mainly projective. This
study has been continued since chiefly by G. Veronese of Padua, C. Segre of
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Turin, E. Bertini, F. Aschieri, P. Del Pezzo of Naples.
Beltrami’s researches on non-Euclidean geometry were followed, in 1871, by

important investigations of Felix Klein, resting upon Cayley’s Sixth Memoir
on Quantics, 1859. The question whether it is not possible to so express the
metrical properties of figures that they will not vary by projection (or linear
transformation) had been solved for special projections by Chasles, Poncelet,
and E. Laguerre (1834–1886) of Paris, but it remained for Cayley to give a
general solution by defining the distance between two points as an arbitrary
constant multiplied by the logarithm of the anharmonic ratio in which the
line joining the two points is divided by the fundamental quadric. Enlarging
upon this notion, Klein showed the independence of projective geometry from
the parallel-axiom, and by properly choosing the law of the measurement
of distance deduced from projective geometry the spherical, Euclidean, and
pseudospherical geometries, named by him respectively the elliptic, parabolic,
and hyperbolic geometries. This suggestive investigation was followed up
by numerous writers, particularly by G. Battaglini of Naples, E. d’Ovidio of
Turin, R. de Paolis of Pisa, F. Aschieri, A. Cayley, F. Lindemann of Munich,
E. Schering of Göttingen, W. Story of Clark University, H. Stahl of Tübingen,
A. Voss of Würzburg, Homersham Cox, A. Buchheim. The geometry of n
dimensions was studied along a line mainly metrical by a host of writers, among
whom may be mentioned Simon Newcomb of the Johns Hopkins University,
L. Schläfli of Bern, W. I. Stringham of the University of California, W. Killing
of Münster, T. Craig of the Johns Hopkins, R. Lipschitz of Bonn. R. S. Heath
and Killing investigated the kinematics and mechanics of such a space. Regular
solids in n-dimensional space were studied by Stringham, Ellery W. Davis of
the University of Nebraska, R. Hoppe of Berlin, and others. Stringham gave
pictures of projections upon our space of regular solids in four dimensions, and
Schlegel at Hagen constructed models of such projections. These are among
the most curious of a series of models published by L. Brill in Darmstadt. It has
been pointed out that if a fourth dimension existed, certain motions could take
place which we hold to be impossible. Thus Newcomb showed the possibility
of turning a closed material shell inside out by simple flexure without either
stretching or tearing; Klein pointed out that knots could not be tied; Veronese
showed that a body could be removed from a closed room without breaking
the walls; C. S. Peirce proved that a body in four-fold space either rotates about
two axes at once, or cannot rotate without losing one of its dimensions.
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ANALYTIC GEOMETRY.

In the preceding chapter we endeavoured to give a flash-light view of the
rapid advance of synthetic geometry. In connection with hyperspace we
also mentioned analytical treatises. Modern synthetic and modern analytical
geometry have much in common, and may be grouped together under the
common name “projective geometry.” Each has advantages over the other.
The continual direct viewing of figures as existing in space adds exceptional
charm to the study of the former, but the latter has the advantage in this,
that a well-established routine in a certain degree may outrun thought itself,
and thereby aid original research. While in Germany Steiner and von Staudt
developed synthetic geometry, Plücker laid the foundation of modern analytic
geometry.

Julius Plücker (1801–1868) was born at Elberfeld, in Prussia. After studying at
Bonn, Berlin, and Heidelberg, he spent a short time in Paris attending lectures
of Monge and his pupils. Between 1826 and 1836 he held positions successively
at Bonn, Berlin, and Halle. He then became professor of physics at Bonn.
Until 1846 his original researches were on geometry. In 1828 and in 1831 he
published his Analytisch-Geometrische Entwicklungen in two volumes. Therein
he adopted the abbreviated notation (used before him in a more restricted
way by Bobillier), and avoided the tedious process of algebraic elimination by
a geometric consideration. In the second volume the principle of duality is
formulated analytically. With him duality and homogeneity found expression
already in his system of co-ordinates. The homogenous or tri-linear system
used by him is much the same as the co-ordinates of Möbius. In the identity of
analytical operation and geometric construction Plücker looked for the source
of his proofs. The System der Analytischen Geometrie, 1835, contains a complete
classification of plane curves of the third order, based on the nature of the
points at infinity. The Theorie der Algebraischen Curven, 1839, contains, besides
an enumeration of curves of the fourth order, the analytic relations between
the ordinary singularities of plane curves known as “Plücker’s equations,” by
which he was able to explain “Poncelet’s paradox.” The discovery of these
relations is, says Cayley, “the most important one beyond all comparison in
the entire subject of modern geometry.” But in Germany Plücker’s researches
met with no favour. His method was declared to be unproductive as compared
with the synthetic method of Steiner and Poncelet! His relations with Jacobi
were not altogether friendly. Steiner once declared that he would stop writing
for Crelle’s Journal if Plücker continued to contribute to it. The result was
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that many of Plücker’s researches were published in foreign journals, and that
his work came to be better known in France and England than in his native
country. The charge was also brought against Plücker that, though occupying
the chair of physics, he was no physicist. This induced him to relinquish
mathematics, and for nearly twenty years to devote his energies to physics.
Important discoveries on Fresnel’s wave-surface, magnetism, spectrum-analysis
were made by him. But towards the close of his life he returned to his first
love,—mathematics,—and enriched it with new discoveries. By considering
space as made up of lines he created a “new geometry of space.” Regarding
a right line as a curve involving four arbitrary parameters, one has the whole
system of lines in space. By connecting them by a single relation, he got
a “complex” of lines; by connecting them with a twofold relation, he got a
“congruency” of lines. His first researches on this subject were laid before
the Royal Society in 1865. His further investigations thereon appeared in 1868
in a posthumous work entitled Neue Geometrie des Raumes gegründet auf die
Betrachtung der geraden Linie als Raumelement, edited by Felix Klein. Plücker’s
analysis lacks the elegance found in Lagrange, Jacobi, Hesse, and Clebsch. For
many years he had not kept up with the progress of geometry, so that many
investigations in his last work had already received more general treatment
on the part of others. The work contained, nevertheless, much that was fresh
and original. The theory of complexes of the second degree, left unfinished by
Plücker, was continued by Felix Klein, who greatly extended and supplemented
the ideas of his master.

Ludwig Otto Hesse (1811–1874) was born at Königsberg, and studied at the
university of his native place under Bessel, Jacobi, Richelot, and F. Neumann.
Having taken the doctor’s degree in 1840, he became docent at Königsberg,
and in 1845 extraordinary professor there. Among his pupils at that time were
Durège, Carl Neumann, Clebsch, Kirchhov. The Königsberg period was one of
great activity for Hesse. Every new discovery increased his zeal for still greater
achievement. His earliest researches were on surfaces of the second order, and
were partly synthetic. He solved the problem to construct any tenth point of
such a surface when nine points are given. The analogous problem for a conic
had been solved by Pascal by means of the hexagram. A diHcult problem
confronting mathematicians of this time was that of elimination. Plücker had
seen that the main advantage of his special method in analytic geometry lay
in the avoidance of algebraic elimination. Hesse, however, showed how by
determinants to make algebraic elimination easy. In his earlier results he was
anticipated by Sylvester, who published his dialytic method of elimination in
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1840. These advances in algebra Hesse applied to the analytic study of curves
of the third order. By linear substitutions, he reduced a form of the third
degree in three variables to one of only four terms, and was led to an important
determinant involving the second diverential coeHcient of a form of the third
degree, called the “Hessian.” The “Hessian” plays a leading part in the theory of
invariants, a subject first studied by Cayley. Hesse showed that his determinant
gives for every curve another curve, such that the double points of the first are
points on the second, or “Hessian.” Similarly for surfaces (Crelle, 1844). Many
of the most important theorems on curves of the third order are due to Hesse.
He determined the curve of the 14th order, which passes through the 56 points
of contact of the 28 bi-tangents of a curve of the fourth order. His great memoir
on this subject (Crelle, 1855) was published at the same time as was a paper by
Steiner treating of the same subject.

Hesse’s income at Königsberg had not kept pace with his growing reputation.
Hardly was he able to support himself and family. In 1855 he accepted a more
lucrative position at Halle, and in 1856 one at Heidelberg. Here he remained
until 1868, when he accepted a position at a technic school in Munich. At
Heidelberg he revised and enlarged upon his previous researches, and published
in 1861 his Vorlesungen über die Analytische Geometrie des Raumes, insbesondere
über Flächen 2. Ordnung. More elementary works soon followed. While in
Heidelberg he elaborated a principle, his “Uebertragungsprincip.” According
to this, there corresponds to every point in a plane a pair of points in a line,
and the projective geometry of the plane can be carried back to the geometry
of points in a line.

The researches of Plücker and Hesse were continued in England by Cayley,
Salmon, and Sylvester. It may be premised here that among the early writers
on analytical geometry in England was James Booth (1806–1878), whose chief
results are embodied in his Treatise on Some New Geometrical Methods; and James
MacCullagh (1809–1846), who was professor of natural philosophy at Dublin,
and made some valuable discoveries on the theory of quadrics. The influence
of these men on the progress of geometry was insignificant, for the interchange
of scientific results between diverent nations was not so complete at that time
as might have been desired. In further illustration of this, we mention that
Chasles in France elaborated subjects which had previously been disposed of
by Steiner in Germany, and Steiner published researches which had been given
by Cayley, Sylvester, and Salmon nearly five years earlier. Cayley and Salmon in
1849 determined the straight lines in a cubic surface, and studied its principal
properties, while Sylvester in 1851 discovered the pentahedron of such a surface.
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Cayley extended Plücker’s equations to curves of higher singularities. Cayley’s
own investigations, and those of M. Nöther of Erlangen, G. H. Halphen (1844–
1889) of the Polytechnic School in Paris, De La Gournerie of Paris, A. Brill
of Tübingen, lead to the conclusion that each higher singularity of a curve is
equivalent to a certain number of simple singularities,—the node, the ordinary
cusp, the double tangent, and the inflection. Sylvester studied the “twisted
Cartesian,” a curve of the fourth order. Salmon helped powerfully towards
the spreading of a knowledge of the new algebraic and geometric methods
by the publication of an excellent series of text-books (Conic Sections, Modern
Higher Algebra, Higher Plane Curves, Geometry of Three Dimensions), which have
been placed within easy reach of German readers by a free translation, with
additions, made by Wilhelm Fiedler of the Polytechnicum in Zürich. The next
great worker in the field of analytic geometry was Clebsch.

Rudolf Friedrich Alfred Clebsch (1833–1872) was born at Königsberg
in Prussia, studied at the university of that place under Hesse, Richelot,
F. Neumann. From 1858 to 1863 he held the chair of theoretical mechanics at the
Polytechnicum in Carlsruhe. The study of Salmon’s works led him into algebra
and geometry. In 1863 he accepted a position at the University of Giessen, where
he worked in conjunction with Paul Gordan (now of Erlangen). In 1868 Clebsch
went to Göttingen, and remained there until his death. He worked successively
at the following subjects: Mathematical physics, the calculus of variations and
partial diverential equations of the first order, the general theory of curves and
surfaces, Abelian functions and their use in geometry, the theory of invariants,
and “Flächenabbildung.” He proved theorems on the pentahedron enunciated
by Sylvester and Steiner; he made systematic use of “deficiency” (Geschlecht) as
a fundamental principle in the classification of algebraic curves. The notion of
deficiency was known before him to Abel and Riemann. At the beginning of
his career, Clebsch had shown how elliptic functions could be advantageously
applied to Malfatti’s problem. The idea involved therein, viz. the use of higher
transcendentals in the study of geometry, led him to his greatest discoveries.
Not only did he apply Abelian functions to geometry, but conversely, he drew
geometry into the service of Abelian functions.

Clebsch made liberal use of determinants. His study of curves and surfaces
began with the determination of the points of contact of lines which meet a
surface in four consecutive points. Salmon had proved that these points lie on
the intersection of the surface with a derived surface of the degree 11n´ 24, but
his solution was given in inconvenient form. Clebsch’s investigation thereon is
a most beautiful piece of analysis.
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The representation of one surface upon another (Flächenabbildung), so that
they have a p1, 1q correspondence, was thoroughly studied for the first time
by Clebsch. The representation of a sphere on a plane is an old problem
which drew the attention of Ptolemæus, Gerard Mercator, Lambert, Gauss,
Lagrange. Its importance in the construction of maps is obvious. Gauss was
the first to represent a surface upon another with a view of more easily arriving
at its properties. Plücker, Chasles, Cayley, thus represented on a plane the
geometry of quadric surfaces; Clebsch and Cremona, that of cubic surfaces.
Other surfaces have been studied in the same way by recent writers, particularly
M. Nöther of Erlangen, Armenante, Felix Klein, Korndörfer, Caporali, H. G.
Zeuthen of Copenhagen. A fundamental question which has as yet received
only a partial answer is this: What surfaces can be represented by a p1, 1q
correspondence upon a given surface? This and the analogous question for
curves was studied by Clebsch. Higher correspondences between surfaces have
been investigated by Cayley and Nöther. The theory of surfaces has been
studied also by Joseph Alfred Serret (1819–1885), professor at the Sorbonne
in Paris, Jean Gaston Darboux of Paris, John Casey of Dublin (died 1891),
W. R. W. Roberts of Dublin, H. Schröter (1829–1892) of Breslau. Surfaces of the
fourth order were investigated by Kummer, and Fresnel’s wave-surface, studied
by Hamilton, is a particular case of Kummer’s quartic surface, with sixteen
canonical points and sixteen singular tangent planes.

The infinitesimal calculus was first applied to the determination of the
measure of curvature of surfaces by Lagrange, Euler, and Meusnier (1754–1793)
of Paris. Then followed the researches of Monge and Dupin, but they were
eclipsed by the work of Gauss, who disposed of this diHcult subject in a
way that opened new vistas to geometricians. His treatment is embodied in
the Disquisitiones generales circa superficies curvas (1827) and Untersuchungen über
gegenstände der höheren Geodäsie of 1843 and 1846. He defined the measure of
curvature at a point to be the reciprocal of the product of the two principal
radii of curvature at that point. From this flows the theorem of Johann August
Grunert (1797–1872; professor in Greifswald), that the arithmetical mean of
the radii of curvature of all normal sections through a point is the radius of a
sphere which has the same measure of curvature as has the surface at that point.
Gauss’s deduction of the formula of curvature was simplified through the use
of determinants by Heinrich Richard Baltzer (1818–1887) of Giessen. Gauss
obtained an interesting theorem that if one surface be developed (abgewickelt)
upon another, the measure of curvature remains unaltered at each point. The
question whether two surfaces having the same curvature in corresponding
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points can be unwound, one upon the other, was answered by F. Minding
in the aHrmative only when the curvature is constant. The case of variable
curvature is diHcult, and was studied by Minding, J. Liouville (1806–1882) of
the Polytechnic School in Paris, Ossian Bonnet of Paris (died 1892). Gauss’s
measure of curvature, expressed as a function of curvilinear co-ordinates, gave
an impetus to the study of diverential-invariants, or diverential-parameters,
which have been investigated by Jacobi, C. Neumann, Sir James Cockle,
Halphen, and elaborated into a general theory by Beltrami, S. Lie, and others.
Beltrami showed also the connection between the measure of curvature and
the geometric axioms.

Various researches have been brought under the head of “analysis situs.” The
subject was first investigated by Leibniz, and was later treated by Gauss, whose
theory of knots (Verschlingungen) has been employed recently by J. B. Listing,
O. Simony, F. Dingeldey, and others in their “topologic studies.” Tait was led
to the study of knots by Sir William Thomson’s theory of vortex atoms. In the
hands of Riemann the analysis situs had for its object the determination of what
remains unchanged under transformations brought about by a combination of
infinitesimal distortions. In continuation of his work, Walter Dyck of Munich
wrote on the analysis situs of three-dimensional spaces.

Of geometrical text-books not yet mentioned, reference should be made to
Alfred Clebsch’s Vorlesungen über Geometrie, edited by Ferdinand Lindemann,
now of Munich; Frost’s Solid Geometry; Durège’s Ebene Curven dritter Ordnung.

ALGEBRA.

The progress of algebra in recent times may be considered under three
principal heads: the study of fundamental laws and the birth of new algebras,
the growth of the theory of equations, and the development of what is called
modern higher algebra.

We have already spoken of George Peacock and D. F. Gregory in connection
with the fundamental laws of algebra. Much was done in this line by De Morgan.

Augustus De Morgan (1806–1871) was born at Madura (Madras), and
educated at Trinity College, Cambridge. His scruples about the doctrines of
the established church prevented him from proceeding to the M.A. degree,
and from sitting for a fellowship. In 1828 he became professor at the newly
established University of London, and taught there until 1867, except for
five years, from 1831–1835. De Morgan was a unique, manly character, and
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pre-eminent as a teacher. The value of his original work lies not so much
in increasing our stock of mathematical knowledge as in putting it all upon
a thoroughly logical basis. He felt keenly the lack of close reasoning in
mathematics as he received it. He said once: “We know that mathematicians
care no more for logic than logicians for mathematics. The two eyes of exact
science are mathematics and logic: the mathematical sect puts out the logical
eye, the logical sect puts out the mathematical eye; each believing that it can see
better with one eye than with two.” De Morgan saw with both eyes. He analysed
logic mathematically, and studied the logical analysis of the laws, symbols, and
operations of mathematics; he wrote a Formal Logic as well as a Double Algebra,
and corresponded both with Sir William Hamilton, the metaphysician, and Sir
William Rowan Hamilton, the mathematician. Few contemporaries were as
profoundly read in the history of mathematics as was De Morgan. No subject
was too insignificant to receive his attention. The authorship of “Cocker’s
Arithmetic” and the work of circle-squarers was investigated as minutely as
was the history of the invention of the calculus. Numerous articles of his lie
scattered in the volumes of the Penny and English Cyclopædias. His Differential
Calculus, 1842, is still a standard work, and contains much that is original
with the author. For the Encyclopædia Metropolitana he wrote on the calculus
of functions (giving principles of symbolic reasoning) and on the theory of
probability. Celebrated is his Budget of Paradoxes, 1872. He published memoirs
“On the Foundation of Algebra” (Trans. of Cam. Phil. Soc., 1841, 1842, 1844,
and 1847).

In Germany symbolical algebra was studied by Martin Ohm, who wrote a
System der Mathematik in 1822. The ideas of Peacock and De Morgan recognise
the possibility of algebras which diver from ordinary algebra. Such algebras
were indeed not slow in forthcoming, but, like non-Euclidean geometry,
some of them were slow in finding recognition. This is true of Grassmann’s,
Bellavitis’s, and Peirce’s discoveries, but Hamilton’s quaternions met with
immediate appreciation in England. These algebras over a geometrical
interpretation of imaginaries. During the times of Descartes, Newton, and
Euler, we have seen the negative and the imaginary,

?
´1, accepted as numbers,

but the latter was still regarded as an algebraic fiction. The first to give it a
geometric picture, analogous to the geometric interpretation of the negative,
was H. Kühn, a teacher in Danzig, in a publication of 1750–1751. He represented
a
?
´1 by a line perpendicular to the line a, and equal to a in length, and

construed
?
´1 as the mean proportional between `1 and ´1. This same idea

was developed further, so as to give a geometric interpretation of a`
?
´b, by
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Jean-Robert Argand (1768–?) of Geneva, in a remarkable Essai (1806). The
writings of Kühn and Argand were little noticed, and it remained for Gauss
to break down the last opposition to the imaginary. He introduced i as an
independent unit co-ordinate to 1, and a ` ib as a “complex number.” The
connection between complex numbers and points on a plane, though artificial,
constituted a powerful aid in the further study of symbolic algebra. The
mind required a visual representation to aid it. The notion of what we now
call vectors was growing upon mathematicians, and the geometric addition of
vectors in space was discovered independently by Hamilton, Grassmann, and
others, about the same time.

William Rowan Hamilton (1805–1865) was born of Scotch parents in Dublin.
His early education, carried on at home, was mainly in languages. At the age of
thirteen he is said to have been familiar with as many languages as he had lived
years. About this time he came across a copy of Newton’s Universal Arithmetic.
After reading that, he took up successively analytical geometry, the calculus,
Newton’s Principia, Laplace’s Mécanique Céleste. At the age of eighteen he
published a paper correcting a mistake in Laplace’s work. In 1824 he entered
Trinity College, Dublin, and in 1827, while he was still an undergraduate, he
was appointed to the chair of astronomy. His early papers were on optics.
In 1832 he predicted conical refraction, a discovery by aid of mathematics
which ranks with the discovery of Neptune by Le Verrier and Adams. Then
followed papers on the Principle of Varying Action (1827) and a general method
of dynamics (1834–1835). He wrote also on the solution of equations of the
fifth degree, the hodograph, fluctuating functions, the numerical solution of
diverential equations.

The capital discovery of Hamilton is his quaternions, in which his study of
algebra culminated. In 1835 he published in the Transactions of the Royal Irish
Academy his Theory of Algebraic Couples. He regarded algebra “as being no
mere art, nor language, nor primarily a science of quantity, but rather as the
science of order of progression.” Time appeared to him as the picture of such
a progression. Hence his definition of algebra as “the science of pure time.”
It was the subject of years’ meditation for him to determine what he should
regard as the product of each pair of a system of perpendicular directed lines.
At last, on the 16th of October, 1843, while walking with his wife one evening,
along the Royal Canal in Dublin, the discovery of quaternions flashed upon
him, and he then engraved with his knife on a stone in Brougham Bridge
the fundamental formula i2 “ j2 “ k2 “ ijk “ ´1. At the general meeting
of the Irish Academy, a month later, he made the first communication on
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quaternions. An account of the discovery was given the following year in
the Philosophical Magazine. Hamilton displayed wonderful fertility in their
development. His Lectures on Quaternions, delivered in Dublin, were printed
in 1852. His Elements of Quaternions appeared in 1866. Quaternions were
greatly admired in England from the start, but on the Continent they received
less attention. P. G. Tait’s Elementary Treatise helped powerfully to spread
a knowledge of them in England. Cayley, Clivord, and Tait advanced the
subject somewhat by original contributions. But there has been little progress
in recent years, except that made by Sylvester in the solution of quaternion
equations, nor has the application of quaternions to physics been as extended
as was predicted. The change in notation made in France by Hoüel and by
Laisant has been considered in England as a wrong step, but the true cause for
the lack of progress is perhaps more deep-seated. There is indeed great doubt
as to whether the quaternionic product can claim a necessary and fundamental
place in a system of vector analysis. Physicists claim that there is a loss of
naturalness in taking the square of a vector to be negative. In order to meet
more adequately their wants, J. W. Gibbs of Yale University and A. Macfarlane
of the University of Texas, have each suggested an algebra of vectors with a new
notation. Each gives a definition of his own for the product of two vectors, but
in such a way that the square of a vector is positive. A third system of vector
analysis has been used by Oliver Heaviside in his electrical researches.

Hermann Grassmann (1809–1877) was born at Stettin, attended a gymnasium
at his native place (where his father was teacher of mathematics and physics),
and studied theology in Berlin for three years. In 1834 he succeeded Steiner
as teacher of mathematics in an industrial school in Berlin, but returned to
Stettin in 1836 to assume the duties of teacher of mathematics, the sciences, and
of religion in a school there. Up to this time his knowledge of mathematics
was pretty much confined to what he had learned from his father, who had
written two books on “Raumlehre” and “Grössenlehre.” But now he made his
acquaintance with the works of Lacroix, Lagrange, and Laplace. He noticed
that Laplace’s results could be reached in a shorter way by some new ideas
advanced in his father’s books, and he proceeded to elaborate this abridged
method, and to apply it in the study of tides. He was thus led to a new geometric
analysis. In 1840 he had made considerable progress in its development, but a
new book of Schleiermacher drew him again to theology. In 1842 he resumed
mathematical research, and becoming thoroughly convinced of the importance
of his new analysis, decided to devote himself to it. It now became his ambition
to secure a mathematical chair at a university, but in this he never succeeded. In
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1844 appeared his great classical work, the Lineale Ausdehnungslehre, which was
full of new and strange matter, and so general, abstract, and out of fashion in its
mode of exposition, that it could hardly have had less influence on European
mathematics during its first twenty years, had it been published in China. Gauss,
Grunert, and Möbius glanced over it, praised it, but complained of the strange
terminology and its “philosophische Allgemeinheit.” Eight years afterwards,
Bretschneider of Gotha was said to be the only man who had read it through.
An article in Crelle’s Journal, in which Grassmann eclipsed the geometers of
that time by constructing, with aid of his method, geometrically any algebraic
curve, remained again unnoticed. Need we marvel if Grassmann turned his
attention to other subjects,—to Schleiermacher’s philosophy, to politics, to
philology? Still, articles by him continued to appear in Crelle’s Journal, and
in 1862 came out the second part of his Ausdehnungslehre. It was intended to
show better than the first part the broad scope of the Ausdehnungslehre, by
considering not only geometric applications, but by treating also of algebraic
functions, infinite series, and the diverential and integral calculus. But the
second part was no more appreciated than the first. At the age of fifty-three,
this wonderful man, with heavy heart, gave up mathematics, and directed his
energies to the study of Sanskrit, achieving in philology results which were
better appreciated, and which vie in splendour with those in mathematics.

Common to the Ausdehnungslehre and to quaternions are geometric addi-
tion, the function of two vectors represented in quaternions by Sαβ and V αβ,
and the linear vector functions. The quaternion is peculiar to Hamilton, while
with Grassmann we find in addition to the algebra of vectors a geometrical
algebra of wide application, and resembling Möbius’s Barycentrische Calcul, in
which the point is the fundamental element. Grassmann developed the idea of
the “external product,” the “internal product,” and the “open product.” The
last we now call a matrix. His Ausdehnungslehre has very great extension,
having no limitation to any particular number of dimensions. Only in recent
years has the wonderful richness of his discoveries begun to be appreciated. A
second edition of the Ausdehnungslehre of 1844 was printed in 1877. C. S. Peirce
gave a representation of Grassmann’s system in the logical notation, and E. W.
Hyde of the University of Cincinnati wrote the first text-book on Grassmann’s
calculus in the English language.

Discoveries of less value, which in part covered those of Grassmann
and Hamilton, were made by Saint-Venant (1797–1886), who described the
multiplication of vectors, and the addition of vectors and oriented areas;
by Cauchy, whose “clefs algébriques” were units subject to combinatorial
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multiplication, and were applied by the author to the theory of elimination
in the same way as had been done earlier by Grassmann; by Justus Bellavitis
(1803–1880), who published in 1835 and 1837 in the Annali delle Scienze his
calculus of æquipollences. Bellavitis, for many years professor at Padua, was a
self-taught mathematician of much power, who in his thirty-eighth year laid
down a city oHce in his native place, Bassano, that he might give his time to
science.

The first impression of Grassmann’s ideas is marked in the writings of
Hermann Hankel (1839–1873), who published in 1867 his Vorlesungen über die
Complexen Zahlen. Hankel, then docent in Leipzig, had been in correspondence
with Grassmann. The “alternate numbers” of Hankel are subject to his law of
combinatorialmultiplication. Inconsidering the foundationsofalgebraHankel
aHrms the principle of the permanence of formal laws previously enunciated
incompletely by Peacock. Hankel was a close student of mathematical history,
and left behind an unfinished work thereon. Before his death he was professor
at Tübingen. His Complexen Zahlen was at first little read, and we must
turn to Victor Schlegel of Hagen as the successful interpreter of Grassmann.
Schlegel was at one time a young colleague of Grassmann at the Marienstifts-
Gymnasium in Stettin. Encouraged by Clebsch, Schlegel wrote a System der
Raumlehre which explained the essential conceptions and operations of the
Ausdehnungslehre.

Multiple algebra was powerfully advanced by Peirce, whose theory is not
geometrical, as are those of Hamilton and Grassmann. Benjamin Peirce
(1809–1880) was born at Salem, Mass., and graduated at Harvard College,
having as undergraduate carried the study of mathematics far beyond the
limits of the college course. When Bowditch was preparing his translation
and commentary of the Mécanique Céleste, young Peirce helped in reading the
proof-sheets. He was made professor at Harvard in 1833, a position which
he retained until his death. For some years he was in charge of the Nautical
Almanac and superintendent of the United States Coast Survey. He published a
series of college text-books on mathematics, an Analytical Mechanics, 1855, and
calculated, together with Sears C. Walker of Washington, the orbit of Neptune.
Profound are his researches on Linear Associative Algebra. The first of several
papers thereon was read at the first meeting of the American Association for
the Advancement of Science in 1864. Lithographed copies of a memoir were
distributed among friends in 1870, but so small seemed to be the interest taken
in this subject that the memoir was not printed until 1881 (Am. Jour. Math.,
Vol. IV., No. 2). Peirce works out the multiplication tables, first of single
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algebras, then of double algebras, and so on up to sextuple, making in all
162 algebras, which he shows to be possible on the consideration of symbols
A, B, etc., which are linear functions of a determinate number of letters or units
i, j, k, l, etc., with coeHcients which are ordinary analytical magnitudes, real
or imaginary,—the letters i, j, etc., being such that every binary combination
i2, ij, ji, etc., is equal to a linear function of the letters, but under the restriction
of satisfying the associative law. Charles S. Peirce, a son of Benjamin Peirce,
and one of the foremost writers on mathematical logic, showed that these
algebras were all defective forms of quadrate algebras which he had previously
discovered by logical analysis, and for which he had devised a simple notation.
Of these quadrate algebras quaternions is a simple example; nonions is another.
C. S. Peirce showed that of all linear associative algebras there are only three
in which division is unambiguous. These are ordinary single algebra, ordinary
double algebra, and quaternions, from which the imaginary scalar is excluded.
He showed that his father’s algebras are operational and matricular. Lectures
on multiple algebra were delivered by J. J. Sylvester at the Johns Hopkins
University, and published in various journals. They treat largely of the algebra
of matrices. The theory of matrices was developed as early as 1858 by Cayley in
an important memoir which, in the opinion of Sylvester, ushered in the reign
of Algebra the Second. Clivord, Sylvester, H. Taber, C. H. Chapman, carried
the investigations much further. The originator of matrices is really Hamilton,
but his theory, published in his Lectures on Quaternions, is less general than that
of Cayley. The latter makes no reference to Hamilton.

The theory of determinants was studied by Hoëné Wronski in Italy and
J. Binet in France; but they were forestalled by the great master of this subject,
Cauchy. In a paper (Jour. de l’ecole Polyt., IX., 16) Cauchy developed several
general theorems. He introduced the name determinant, a term previously
used by Gauss in the functions considered by him. In 1826 Jacobi began
using this calculus, and he gave brilliant proof of its power. In 1841 he wrote
extended memoirs on determinants in Crelle’s Journal, which rendered the
theory easily accessible. In England the study of linear transformations of
quantics gave a powerful impulse. Cayley developed skew-determinants and
PfaHans, and introduced the use of determinant brackets, or the familiar pair
of upright lines. More recent researches on determinants appertain to special
forms. “Continuants” are due to Sylvester; “alternants,” originated by Cauchy,
have been developed by Jacobi, N. Trudi, H. Nägelbach, and G. Garbieri;
“axisymmetric determinants,” first used by Jacobi, have been studied by V. A.
Lebesgue, Sylvester, and Hesse; “circulants” are due to E. Catalan of Liège,
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W. Spottiswoode (1825–1883), J. W. L. Glaisher, and R. F. Scott; for “centro-
symmetric determinants” we are indebted to G. Zehfuss. E. B. Christovel of
Strassburg and G. Frobenius discovered the properties of “Wronskians,” first
used by Wronski. V. Nachreiner and S. Günther, both of Munich, pointed out
relations between determinants and continued fractions; Scott uses Hankel’s
alternate numbers in his treatise. Text-books on determinants were written
by Spottiswoode (1851), Brioschi (1854), Baltzer (1857), Günther (1875), Dostor
(1877), Scott (1880), Muir (1882), Hanus (1886).

Modern higher algebra is especially occupied with the theory of linear
transformations. Its development is mainly the work of Cayley and Sylvester.

Arthur Cayley, born at Richmond, in Surrey, in 1821, was educated at
Trinity College, Cambridge. He came out Senior Wrangler in 1842. He then
devoted some years to the study and practice of law. On the foundation of
the Sadlerian professorship at Cambridge, he accepted the over of that chair,
thus giving up a profession promising wealth for a very modest provision, but
which would enable him to give all his time to mathematics. Cayley began his
mathematical publications in the Cambridge Mathematical Journal while he was
still an undergraduate. Some of his most brilliant discoveries were made during
the time of his legal practice. There is hardly any subject in pure mathematics
which the genius of Cayley has not enriched, but most important is his creation
of a new branch of analysis by his theory of invariants. Germs of the principle
of invariants are found in the writings of Lagrange, Gauss, and particularly
of Boole, who showed, in 1841, that invariance is a property of discriminants
generally, and who applied it to the theory of orthogonal substitution. Cayley
set himself the problem to determine a priori what functions of the coeHcients
of a given equation possess this property of invariance, and found, to begin
with, in 1845, that the so-called “hyper-determinants” possessed it. Boole made
a number of additional discoveries. Then Sylvester began his papers in the
Cambridge and Dublin Mathematical Journal on the Calculus of Forms. After
this, discoveries followed in rapid succession. At that time Cayley and Sylvester
were both residents of London, and they stimulated each other by frequent
oral communications. It has often been diHcult to determine how much really
belongs to each.

James Joseph Sylvester was born in London in 1814, and educated at St. Johns
College, Cambridge. He came out Second Wrangler in 1837. His Jewish origin
incapacitated him from taking a degree. In 1846 he became a student at the
Inner Temple, and was called to the bar in 1850. He became professor of
natural philosophy at University College, London; then, successively, professor
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of mathematics at the University of Virginia, at the Royal Military Academy
in Woolwich, at the Johns Hopkins University in Baltimore, and is, since 1883,
professor of geometry at Oxford. His first printed paper was on Fresnel’s
optic theory, 1837. Then followed his researches on invariants, the theory
of equations, theory of partitions, multiple algebra, the theory of numbers,
and other subjects mentioned elsewhere. About 1874 he took part in the
development of the geometrical theory of link-work movements, originated by
the beautiful discovery of A. Peaucellier, Capitaine du Génie à Nice (published
in Nouvelles Annales, 1864 and 1873), and made the subject of close study by
A. B. Kempe. To Sylvester is ascribed the general statement of the theory
of contravariants, the discovery of the partial diverential equations satisfied
by the invariants and covariants of binary quantics, and the subject of mixed
concomitants. In the American Journal of Mathematics are memoirs on binary
and ternary quantics, elaborated partly with aid of F. Franklin, now professor
at the Johns Hopkins University. At Oxford, Sylvester has opened up a new
subject, the theory of reciprocants, treating of the functions of a dependent
variable y and the functions of its diverential coeHcients in regard to x, which
remain unaltered by the interchange of x and y. This theory is more general
than one on diverential invariants by Halphen (1878), and has been developed
further by J. Hammond of Oxford, McMahon of Woolwich, A. R. Forsyth of
Cambridge, and others. Sylvester playfully lays claim to the appellation of the
Mathematical Adam, for the many names he has introduced into mathematics.
Thus the terms invariant, discriminant, Hessian, Jacobian, are his.

The great theory of invariants, developed in England mainly by Cayley
and Sylvester, came to be studied earnestly in Germany, France, and Italy.
One of the earliest in the field was Siegfried Heinrich Aronhold (1819–1884),
who demonstrated the existence of invariants, S and T , of the ternary cubic.
Hermite discovered evectants and the theorem of reciprocity named after him.
Paul Gordan showed, with the aid of symbolic methods, that the number of
distinct forms for a binary quantic is finite. Clebsch proved this to be true for
quantics with any number of variables. A very much simpler proof of this was
given in 1891, by David Hilbert of Königsberg. In Italy, F. Brioschi of Milan
and Faà de Bruno (1825–1888) contributed to the theory of invariants, the latter
writing a text-book on binary forms, which ranks by the side of Salmon’s
treatise and those of Clebsch and Gordan. Among other writers on invariants
are E. B. Christovel, Wilhelm Fiedler, P. A. McMahon, J. W. L. Glaisher of
Cambridge, Emory McClintock of New York. McMahon discovered that the
theory of semi-invariants is a part of that of symmetric functions. The modern
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higher algebra has reached out and indissolubly connected itself with several
other branches of mathematics—geometry, calculus of variations, mechanics.
Clebsch extended the theory of binary forms to ternary, and applied the results
to geometry. Clebsch, Klein, Weierstrass, Burckhardt, and Bianchi have used
the theory of invariants in hyperelliptic and Abelian functions.

In the theory of equations Lagrange, Argand, and Gauss furnished proof to
the important theorem that every algebraic equation has a real or a complex
root. Abel proved rigorously that the general algebraic equation of the fifth or
of higher degrees cannot be solved by radicals (Crelle, I., 1826). A modification
of Abel’s proof was given by Wantzel. Before Abel, an Italian physician,
Paolo Ruffini (1765–1822), had printed proofs of the insolvability, which were
criticised by his countryman Malfatti. Though inconclusive, RuHni’s papers
are remarkable as containing anticipations of Cauchy’s theory of groups. A
transcendental solution of the quintic involving elliptic integrals was given by
Hermite (Compt. Rend., 1858, 1865, 1866). After Hermite’s first publication,
Kronecker, in 1858, in a letter to Hermite, gave a second solution in which was
obtained a simple resolvent of the sixth degree. Jerrard, in his Mathematical
Researches (1832–1835), reduced the quintic to the trinomial form by an extension
of the method of Tschirnhausen. This important reduction had been evected
as early as 1786 by E. S. Bring, a Swede, and brought out in a publication of
the University of Lund. Jerrard, like Tschirnhausen, believed that his method
furnished a general algebraic solution of equations of any degree. In 1836
William R. Hamilton made a report on the validity of Jerrard’s method, and
showed that by his process the quintic could be transformed to any one of
the four trinomial forms. Hamilton defined the limits of its applicability
to higher equations. Sylvester investigated this question, What is the lowest
degree an equation can have in order that it may admit of being deprived of
i consecutive terms by aid of equations not higher than ith degree. He carried
the investigation as far as i “ 8, and was led to a series of numbers which
he named “Hamilton’s numbers.” A transformation of equal importance to
Jerrard’s is that of Sylvester, who expressed the quintic as the sum of three
fifth-powers. The covariants and invariants of higher equations have been
studied much in recent years.

Abel’s proof that higher equations cannot always be solved algebraically led
to the inquiry as to what equations of a given degree can be solved by radicals.
Such equations are the ones discussed by Gauss in considering the division
of the circle. Abel advanced one step further by proving that an irreducible
equation can always be solved in radicals, if, of two of its roots, the one can
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be expressed rationally in terms of the other, provided that the degree of the
equation is prime; if it is not prime, then the solution depends upon that of
equations of lower degree. Through geometrical considerations, Hesse came
upon algebraically solvable equations of the ninth degree, not included in the
previous groups. The subject was powerfully advanced in Paris by the youthful
Evariste Galois (born, 1811; killed in a duel, 1832), who introduced the notion
of a group of substitutions. To him are due also some valuable results in
relation to another set of equations, presenting themselves in the theory of
elliptic functions, viz. the modular equations. Galois’s labours gave birth to
the important theory of substitutions, which has been greatly advanced by
C. Jordan of Paris, J. A. Serret (1819–1885) of the Sorbonne in Paris, L. Kronecker
(1823–1891) of Berlin, Klein of Göttingen, M. Nöther of Erlangen, C. Hermite
of Paris, A. Capelli of Naples, L. Sylow of Friedrichshald, E. Netto of Giessen.
Netto’s book, the Substitutionstheorie, has been translated into English by F. N.
Cole of the University of Michigan, who contributed to the theory. A simple
group of 504 substitutions of nine letters, discovered by Cole, has been shown by
E. H. Moore of the University of Chicago to belong to a doubly-infinite system
of simple groups. The theory of substitutions has important applications in the
theory of diverential equations. Kronecker published, in 1882, his Grundzüge
einer Arithmetischen Theorie der Algebraischen Grössen.

Since Fourier and Budan, the solution of numerical equations has been
advanced by W. G. Horner of Bath, who gave an improved method of
approximation (Philosophical Transactions, 1819). Jacques Charles François
Sturm (1803–1855), a native of Geneva, Switzerland, and the successor of
Poisson in the chair of mechanics at the Sorbonne, published in 1829 his
celebrated theorem determining the number and situation of roots of an
equation comprised between given limits. Sturm tells us that his theorem
stared him in the face in the midst of some mechanical investigations connected
with the motion of a compound pendulum. This theorem, and Horner’s
method, over together sure and ready means of finding the real roots of a
numerical equation.

The symmetric functions of the sums of powers of the roots of an equation,
studied by Newton and Waring, was considered more recently by Gauss,
Cayley, Sylvester, Brioschi. Cayley gives rules for the “weight” and “order” of
symmetric functions.

The theory of elimination was greatly advanced by Sylvester, Cayley, Salmon,
Jacobi, Hesse, Cauchy, Brioschi, and Gordan. Sylvester gave the dialytic method
(Philosophical Magazine, 1840), and in 1852 established a theorem relating to the
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expression of an eliminant as a determinant. Cayley made a new statement of
Bézout’s method of elimination and established a general theory of elimination
(1852).

ANALYSIS.

Under this head we find it convenient to consider the subjects of the
diverential and integral calculus, the calculus of variations, infinite series,
probability, and diverential equations. Prominent in the development of these
subjects was Cauchy.

Augustin-Louis Cauchy (1789–1857) was born in Paris, and received his
early education from his father. Lagrange and Laplace, with whom the father
came in frequent contact, foretold the future greatness of the young boy. At
the École Centrale du Panthéon he excelled in ancient classical studies. In 1805
he entered the Polytechnic School, and two years later the École des Ponts
et Chaussées. Cauchy left for Cherbourg in 1810, in the capacity of engineer.
Laplace’s Mécanique Céleste and Lagrange’s Fonctions Analytiques were among
his book companions there. Considerations of health induced him to return
to Paris after three years. Yielding to the persuasions of Lagrange and Laplace,
he renounced engineering in favour of pure science. We find him next holding
a professorship at the Polytechnic School. On the expulsion of Charles X., and
the accession to the throne of Louis Philippe in 1830, Cauchy, being exceedingly
conscientious, found himself unable to take the oath demanded of him. Being,
in consequence, deprived of his positions, he went into voluntary exile. At
Fribourg in Switzerland, Cauchy resumed his studies, and in 1831 was induced
by the king of Piedmont to accept the chair of mathematical physics, especially
created for him at the university of Turin. In 1833 he obeyed the call of his
exiled king, Charles X., to undertake the education of a grandson, the Duke of
Bordeaux. This gave Cauchy an opportunity to visit various parts of Europe,
and to learn how extensively his works were being read. Charles X. bestowed
upon him the title of Baron. On his return to Paris in 1838, a chair in the
College de France was overed to him, but the oath demanded of him prevented
his acceptance. He was nominated member of the Bureau of Longitude, but
declared ineligible by the ruling power. During the political events of 1848 the
oath was suspended, and Cauchy at last became professor at the Polytechnic
School. On the establishment of the second empire, the oath was re-instated,
but Cauchy and Arago were exempt from it. Cauchy was a man of great piety,
and in two of his publications staunchly defended the Jesuits.
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Cauchy was a prolific and profound mathematician. By a prompt publication
of his results, and the preparation of standard text-books, he exercised a more
immediate and beneficial influence upon the great mass of mathematicians than
any contemporary writer. He was one of the leaders in infusing rigour into
analysis. His researches extended over the field of series, of imaginaries, theory
of numbers, diverential equations, theory of substitutions, theory of functions,
determinants, mathematical astronomy, light, elasticity, etc.,—covering pretty
much the whole realm of mathematics, pure and applied.

Encouraged by Laplace and Poisson, Cauchy published in 1821 his Cours
d’Analyse de l’École Royale Polytechnique, a work of great merit. Had it been
studied more diligently by writers of text-books in England and the United
States, many a lax and loose method of analysis hardly as yet eradicated from
elementary text-books would have been discarded over half a century ago.
Cauchy was the first to publish a rigorous proof of Taylor’s theorem. He
greatly improved the exposition of fundamental principles of the diverential
calculus by his mode of considering limits and his new theory on the continuity
of functions. The method of Cauchy and Duhamel was accepted with favour
by Hoüel and others. In England special attention to the clear exposition of
fundamental principles was given by De Morgan. Recent American treatises on
the calculus introduce time as an independent variable, and the allied notions of
velocity and acceleration—thus virtually returning to the method of fluxions.

Cauchy made some researches on the calculus of variations. This subject is
now in its essential principles the same as when it came from the hands of
Lagrange. Recent studies pertain to the variation of a double integral when
the limits are also variable, and to variations of multiple integrals in general.
Memoirs were published by Gauss in 1829, Poisson in 1831, and Ostrogradsky
of St. Petersburg in 1834, without, however, determining in a general manner
the number and form of the equations which must subsist at the limits in case
of a double or triple integral. In 1837 Jacobi published a memoir, showing that
the diHcult integrations demanded by the discussion of the second variation,
by which the existence of a maximum or minimum can be ascertained, are
included in the integrations of the first variation, and thus are superfluous. This
important theorem, presented with great brevity by Jacobi, was elucidated and
extended by V. A. Lebesgue, C. E. Delaunay, Eisenlohr, S. Spitzer, Hesse, and
Clebsch. An important memoir by Sarrus on the question of determining the
limiting equations which must be combined with the indefinite equations in
order to determine completely the maxima and minima of multiple integrals,
was awarded a prize by the French Academy in 1845, honourable mention being
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made of a paper by Delaunay. Sarrus’s method was simplified by Cauchy. In
1852 G. Mainardi attempted to exhibit a new method of discriminating maxima
and minima, and extended Jacobi’s theorem to double integrals. Mainardi
and F. Brioschi showed the value of determinants in exhibiting the terms of
the second variation. In 1861 Isaac Todhunter (1820–1884) of St. John’s College,
Cambridge, published his valuable work on the History of the Progress of the
Calculus of Variations, which contains researches of his own. In 1866 he
published a most important research, developing the theory of discontinuous
solutions (discussed in particular cases by Legendre), and doing for this subject
what Sarrus had done for multiple integrals.

The following are the more important authors of systematic treatises on
the calculus of variations, and the dates of publication: Robert Woodhouse,
Fellow of Caius College, Cambridge, 1810; Richard Abbatt in London, 1837;
John Hewitt Jellett (1817–1888), once Provost of Trinity College, Dublin, 1850;
G. W. Strauch in Zürich, 1849; Moigno and Lindelöf, 1861; Lewis Buvett Carll
of Flushing in New York, 1881.

The lectures on definite integrals, delivered by Dirichlet in 1858, have been
elaborated into a standard work by G. F. Meyer. The subject has been treated
most exhaustively by D. Bierens de Haan of Leiden in his Exposé de la théorie des
intégrals définies, Amsterdam, 1862.

The history of infinite series illustrates vividly the salient feature of the
new era which analysis entered upon during the first quarter of this century.
Newton and Leibniz felt the necessity of inquiring into the convergence of
infinite series, but they had no proper criteria, excepting the test advanced
by Leibniz for alternating series. By Euler and his contemporaries the formal
treatment of series was greatly extended, while the necessity for determining the
convergence was generally lost sight of. Euler reached some very pretty results
on infinite series, now well known, and also some very absurd results, now quite
forgotten. The faults of his time found their culmination in the Combinatorial
School in Germany, which has now passed into deserved oblivion. At the
beginning of the period now under consideration, the doubtful, or plainly
absurd, results obtained from infinite series stimulated profounder inquiries
into the validity of operations with them. Their actual contents came to be
the primary, form a secondary, consideration. The first important and strictly
rigorous investigation of series was made by Gauss in connection with the
hypergeometric series. The criterion developed by him settles the question of
convergence in every case which it is intended to cover, and thus bears the stamp
of generality so characteristic of Gauss’s writings. Owing to the strangeness of
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treatment and unusual rigour, Gauss’s paper excited little interest among the
mathematicians of that time.

More fortunate in reaching the public was Cauchy, whose Analyse Algébrique
of 1821 contains a rigorous treatment of series. All series whose sum does not
approach a fixed limit as the number of terms increases indefinitely are called
divergent. Like Gauss, he institutes comparisons with geometric series, and
finds that series with positive terms are convergent or not, according as the
nth root of the nth term, or the ratio of the pn ` 1qth term and the nth term,
is ultimately less or greater than unity. To reach some of the cases where these
expressions become ultimately unity and fail, Cauchy established two other
tests. He showed that series with negative terms converge when the absolute
values of the terms converge, and then deduces Leibniz’s test for alternating
series. The product of two convergent series was not found to be necessarily
convergent. Cauchy’s theorem that the product of two absolutely convergent
series converges to the product of the sums of the two series was shown half
a century later by F. Mertens of Graz to be still true if, of the two convergent
series to be multiplied together, only one is absolutely convergent.

The most outspoken critic of the old methods in series was Abel. His letter
to his friend Holmboe (1826) contains severe criticisms. It is very interesting
reading, even to modern students. In his demonstration of the binomial
theorem he established the theorem that if two series and their product series
are all convergent, then the product series will converge towards the product
of the sums of the two given series. This remarkable result would dispose of
the whole problem of multiplication of series if we had a universal practical
criterion of convergency for semi-convergent series. Since we do not possess
such a criterion, theorems have been recently established by A. Pringsheim of
Munich and A. Voss of Würzburg which remove in certain cases the necessity
of applying tests of convergency to the product series by the application of
tests to easier related expressions. Pringsheim reaches the following interesting
conclusions: The product of two semi-convergent series can never converge
absolutely, but a semi-convergent series, or even a divergent series, multiplied
by an absolutely convergent series, may yield an absolutely convergent product.

The researches of Abel and Cauchy caused a considerable stir. We are told
that after a scientific meeting in which Cauchy had presented his first researches
on series, Laplace hastened home and remained there in seclusion until he had
examined the series in his Mécanique Céleste. Luckily, every one was found to
be convergent! We must not conclude, however, that the new ideas at once
displaced the old. On the contrary, the new views were generally accepted
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only after a severe and long struggle. As late as 1844 De Morgan began a
paper on “divergent series” in this style: “I believe it will be generally admitted
that the heading of this paper describes the only subject yet remaining, of an
elementary character, on which a serious schism exists among mathematicians
as to the absolute correctness or incorrectness of results.”

First in time in the evolution of more delicate criteria of convergence and
divergence come the researches of Josef Ludwig Raabe (Crelle, Vol. IX.); then
follow those of De Morgan as given in his calculus. De Morgan established the
logarithmic criteria which were discovered in part independently by J. Bertrand.
The forms of these criteria, as given by Bertrand and by Ossian Bonnet, are
more convenient than De Morgan’s. It appears from Abel’s posthumous papers
that he had anticipated the above-named writers in establishing logarithmic
criteria. It was the opinion of Bonnet that the logarithmic criteria never fail; but
Du Bois-Reymond and Pringsheim have each discovered series demonstrably
convergent in which these criteria fail to determine the convergence. The
criteria thus far alluded to have been called by Pringsheim special criteria,
because they all depend upon a comparison of the nth term of the series
with special functions an, nx, nplog nqx, etc. Among the first to suggest general
criteria, and to consider the subject from a still wider point of view, culminating
in a regular mathematical theory, was Kummer. He established a theorem
yielding a test consisting of two parts, the first part of which was afterwards
found to be superfluous. The study of general criteria was continued by
U. Dini of Pisa, Paul Du Bois-Reymond, G. Kohn of Minden, and Pringsheim.
Du Bois-Reymond divides criteria into two classes: criteria of the first kind and
criteria of the second kind, according as the general nth term, or the ratio of
the pn ` 1qth term and the nth term, is made the basis of research. Kummer’s
is a criterion of the second kind. A criterion of the first kind, analogous to
this, was invented by Pringsheim. From the general criteria established by
Du Bois-Reymond and Pringsheim respectively, all the special criteria can be
derived. The theory of Pringsheim is very complete, and overs, in addition to
the criteria of the first kind and second kind, entirely new criteria of a third
kind, and also generalised criteria of the second kind, which apply, however,
only to series with never increasing terms. Those of the third kind rest mainly
on the consideration of the limit of the diverence either of consecutive terms
or of their reciprocals. In the generalised criteria of the second kind he does
not consider the ratio of two consecutive terms, but the ratio of any two terms
however far apart, and deduces, among others, two criteria previously given by
Kohn and Ermakov respectively.
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DiHcult questions arose in the study of Fourier’s series. Cauchy was the
first who felt the necessity of inquiring into its convergence. But his mode
of proceeding was found by Dirichlet to be unsatisfactory. Dirichlet made
the first thorough researches on this subject (Crelle, Vol. IV.). They culminate
in the result that whenever the function does not become infinite, does not
have an infinite number of discontinuities, and does not possess an infinite
number of maxima and minima, then Fourier’s series converges toward the
value of that function at all places, except points of discontinuity, and there
it converges toward the mean of the two boundary values. Schläfli of Bern
and Du Bois-Reymond expressed doubts as to the correctness of the mean
value, which were, however, not well founded. Dirichlet’s conditions are
suHcient, but not necessary. Lipschitz, of Bonn, proved that Fourier’s series
still represents the function when the number of discontinuities is infinite, and
established a condition on which it represents a function having an infinite
number of maxima and minima. Dirichlet’s belief that all continuous functions
can be represented by Fourier’s series at all points was shared by Riemann and
H. Hankel, but was proved to be false by Du Bois-Reymond and H. A. Schwarz.

Riemann inquired what properties a function must have, so that there may
be a trigonometric series which, whenever it is convergent, converges toward
the value of the function. He found necessary and suHcient conditions for
this. They do not decide, however, whether such a series actually represents the
function or not. Riemann rejected Cauchy’s definition of a definite integral on
account of its arbitrariness, gave a new definition, and then inquired when a
function has an integral. His researches brought to light the fact that continuous
functions need not always have a diverential coeHcient. But this property,
which was shown by Weierstrass to belong to large classes of functions, was
not found necessarily to exclude them from being represented by Fourier’s
series. Doubts on some of the conclusions about Fourier’s series were thrown
by the observation, made by Weierstrass, that the integral of an infinite series
can be shown to be equal to the sum of the integrals of the separate terms only
when the series converges uniformly within the region in question. The subject
of uniform convergence was investigated by Philipp Ludwig Seidel (1848) and
G. G. Stokes (1847), and has assumed great importance in Weierstrass’ theory of
functions. It became necessary to prove that a trigonometric series representing
a continuous function converges uniformly. This was done by Heinrich Eduard
Heine (1821–1881), of Halle. Later researches on Fourier’s series were made by
G. Cantor and Du Bois-Reymond.



ANALYSIS. 233

As compared with the vast development of other mathematical branches,
the theory of probability has made very insignificant progress since the time
of Laplace. Improvements and simplifications in the mode of exposition have
been made by A. De Morgan, G. Boole, A. Meyer (edited by E. Czuber),
J. Bertrand. Cournot’s and Westergaard’s treatment of insurance and the
theory of life-tables are classical. Applications of the calculus to statistics have
been made by L. A. J. Quetelet (1796–1874), director of the observatory at
Brussels; by Lexis; Harald Westergaard, of Copenhagen; and Düsing.

Worthy of note is the rejection of inverse probability by the best authorities
of our time. This branch of probability had been worked out by Thomas Bayes
(died 1761) and by Laplace (Bk. II., Ch. VI. of his Théorie Analytique). By it
some logicians have explained induction. For example, if a man, who has never
heard of the tides, were to go to the shore of the Atlantic Ocean and witness on
m successive days the rise of the sea, then, says Quetelet, he would be entitled

to conclude that there was a probability equal to
m` 1
m` 2

that the sea would rise

next day. Putting m “ 0, it is seen that this view rests upon the unwarrantable
assumption that the probability of a totally unknown event is 1

2 , or that of
all theories proposed for investigation one-half are true. W. S. Jevons in his
Principles of Science founds induction upon the theory of inverse probability,
and F. Y. Edgeworth also accepts it in his Mathematical Psychics.

The only noteworthy recent addition to probability is the subject of “local
probability,” developed by several English and a few American and French
mathematicians. The earliest problem on this subject dates back to the time
of Buvon, the naturalist, who proposed the problem, solved by himself and
Laplace, to determine the probability that a short needle, thrown at random
upon a floor ruled with equidistant parallel lines, will fall on one of the lines.
Then came Sylvester’s four-point problem: to find the probability that four
points, taken at random within a given boundary, shall form a re-entrant
quadrilateral. Local probability has been studied in England by A. R. Clarke,
H. McColl, S. Watson, J. Wolstenholme, but with greatest success by M. W.
Crofton of the military school at Woolwich. It was pursued in America by E. B.
Seitz; in France by C. Jordan, E. Lemoine, E. Barbier, and others. Through
considerations of local probability, Crofton was led to the evaluation of certain
definite integrals.

The first full scientific treatment of diverential equations was given by
Lagrange and Laplace. This remark is especially true of partial diverential
equations. The latter were investigated in more recent time by Monge, Pfav,
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Jacobi, Émile Bour (1831–1866) of Paris, A. Weiler, Clebsch, A. N. Korkine of
St. Petersburg, G. Boole, A. Meyer, Cauchy, Serret, Sophus Lie, and others. In
1873 their researches, on partial diverential equations of the first order, were
presented in text-book form by Paul Mansion, of the University of Gand.
The keen researches of Johann Friedrich Pfaff (1795–1825) marked a decided
advance. He was an intimate friend of young Gauss at Göttingen. Afterwards
he was with the astronomer Bode. Later he became professor at Helmstädt,
then at Halle. By a peculiar method, Pfav found the general integration of
partial diverential equations of the first order for any number of variables.
Starting from the theory of ordinary diverential equations of the first order
in n variables, he gives first their general integration, and then considers the
integration of the partial diverential equations as a particular case of the
former, assuming, however, as known, the general integration of diverential
equations of any order between two variables. His researches led Jacobi to
introduce the name “PfaHan problem.” From the connection, observed by
Hamilton, between a system of ordinary diverential equations (in analytical
mechanics) and a partial diverential equation, Jacobi drew the conclusion that,
of the series of systems whose successive integration Pfav’s method demanded,
all but the first system were entirely superfluous. Clebsch considered Pfav’s
problem from a new point of view, and reduced it to systems of simultaneous
linear partial diverential equations, which can be established independently of
each other without any integration. Jacobi materially advanced the theory of
diverential equations of the first order. The problem to determine unknown
functions in such a way that an integral containing these functions and their
diverential coeHcients, in a prescribed manner, shall reach a maximum or
minimum value, demands, in the first place, the vanishing of the first variation
of the integral. This condition leads to diverential equations, the integration of
which determines the functions. To ascertain whether the value is a maximum
or a minimum, the second variation must be examined. This leads to new and
diHcult diverential equations, the integration of which, for the simpler cases,
was ingeniously deduced by Jacobi from the integration of the diverential
equations of the first variation. Jacobi’s solution was perfected by Hesse, while
Clebsch extended to the general case Jacobi’s results on the second variation.
Cauchy gave a method of solving partial diverential equations of the first order
having any number of variables, which was corrected and extended by Serret,
J. Bertrand, O. Bonnet in France, and Imschenetzky in Russia. Fundamental is
the proposition of Cauchy that every ordinary diverential equation admits in
the vicinity of any non-singular point of an integral, which is synectic within a
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certain circle of convergence, and is developable by Taylor’s theorem. Allied
to the point of view indicated by this theorem is that of Riemann, who regards
a function of a single variable as defined by the position and nature of its
singularities, and who has applied this conception to that linear diverential
equation of the second order, which is satisfied by the hypergeometric series.
This equation was studied also by Gauss and Kummer. Its general theory, when
no restriction is imposed upon the value of the variable, has been considered
by J. Tannery, of Paris, who employed Fuchs’ method of linear diverential
equations and found all of Kummer’s twenty-four integrals of this equation.
This study has been continued by Édouard Goursat of Paris.

A standard text-book on Differential Equations, including original matter on
integrating factors, singular solutions, and especially on symbolical methods,
was prepared in 1859 by George Boole (1815–1864), at one time professor
in Queen’s University, Cork, Ireland. He was a native of Lincoln, and a
self-educated mathematician of great power. His treatise on Finite Differences
(1860) and his Laws of Thought (1854) are works of high merit.

The fertility of the conceptions of Cauchy and Riemann with regard to
diverential equations is attested by the researches to which they have given rise
on the part of Lazarus Fuchs of Berlin (born 1835), Felix Klein of Göttingen
(born 1849), Henri Poincaré of Paris (born 1854), and others. The study
of linear diverential equations entered a new period with the publication of
Fuchs’ memoirs of 1866 and 1868. Before this, linear equations with constant
coeHcients were almost the only ones for which general methods of integration
were known. While the general theory of these equations has recently been
presented in a new light by Hermite, Darboux, and Jordan, Fuchs began the
study from the more general standpoint of the linear diverential equations
whose coeHcients are not constant. He directed his attention mainly to
those whose integrals are all regular. If the variable be made to describe all
possible paths enclosing one or more of the critical points of the equation, we
have a certain substitution corresponding to each of the paths; the aggregate
of all these substitutions being called a group. The forms of integrals of
such equations were examined by Fuchs and by G. Frobenius by independent
methods. Logarithms generally appear in the integrals of a group, and Fuchs
and Frobenius investigated the conditions under which no logarithms shall
appear. Through the study of groups the reducibility or irreducibility of linear
diverential equations has been examined by Frobenius and Leo Königsberger.
The subject of linear diverential equations, not all of whose integrals are
regular, has been attacked by G. Frobenius of Berlin, W. Thomé of Greifswald
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(born 1841), and Poincaré, but the resulting theory of irregular integrals is as
yet in very incomplete form.

The theory of invariants associated with linear diverential equations has
been developed by Halphen and by A. R. Forsyth.

The researches above referred to are closely connected with the theory of
functions and of groups. Endeavours have thus been made to determine the
nature of the function defined by a diverential equation from the diverential
equation itself, and not from any analytical expression of the function, obtained
first by solving the diverential equation. Instead of studying the properties
of the integrals of a diverential equation for all the values of the variable,
investigators at first contented themselves with the study of the properties in
the vicinity of a given point. The nature of the integrals at singular points and
at ordinary points is entirely diverent. Albert Briot (1817–1882) and Jean Claude
Bouquet (1819–1885), both of Paris, studied the case when, near a singular point,

the diverential equations take the form px ´ x0q
dy
dx
“

ż

pxyq. Fuchs gave the

development in series of the integrals for the particular case of linear equations.
Poincaré did the same for the case when the equations are not linear, as also for
partial diverential equations of the first order. The developments for ordinary
points were given by Cauchy and Madame Kowalevsky.

The attempt to express the integrals by developments that are always
convergent and not limited to particular points in a plane necessitates the
introduction of new transcendents, for the old functions permit the integration
of only a small number of diverential equations. Poincaré tried this plan
with linear equations, which were then the best known, having been studied
in the vicinity of given points by Fuchs, Thomé, Frobenius, Schwarz, Klein,
and Halphen. Confining himself to those with rational algebraical coeHcients,
Poincaré was able to integrate them by the use of functions named by him
Fuchsians. He divided these equations into “families.” If the integral of such an
equation be subjected to a certain transformation, the result will be the integral
of an equation belonging to the same family. The new transcendents have a
great analogy to elliptic functions; while the region of the latter may be divided
into parallelograms, each representing a group, the former may be divided
into curvilinear polygons, so that the knowledge of the function inside of one
polygon carries with it the knowledge of it inside the others. Thus Poincaré
arrives at what he calls Fuchsian groups. He found, moreover, that Fuchsian
functions can be expressed as the ratio of two transcendents (theta-fuchsians)
in the same way that elliptic functions can be. If, instead of linear substitutions



ANALYSIS. 237

with real coeHcients, as employed in the above groups, imaginary coeHcients
be used, then discontinuous groups are obtained, which he called Kleinians.
The extension to non-linear equations of the method thus applied to linear
equations has been begun by Fuchs and Poincaré.

We have seen that among the earliest of the several kinds of “groups” are the
finite discontinuous groups (groups in the theory of substitution), which since
the time of Galois have become the leading concept in the theory of algebraic
equations; that since 1876 Felix Klein, H. Poincaré, and others have applied the
theory of finite and infinite discontinuous groups to the theory of functions
and of diverential equations. The finite continuous groups were first made the
subject of general research in 1873 by Sophus Lie, now of Leipzig, and applied
by him to the integration of ordinary linear partial diverential equations.

Much interest attaches to the determination of those linear diverential
equations which can be integrated by simpler functions, such as algebraic,
elliptic, or Abelian. This has been studied by C. Jordan, P. Appel of Paris (born
1858), and Poincaré.

Themodeof integrationabovereferred to, whichmakesknowntheproperties
of equations from the standpoint of the theory of functions, does not suHce
in the application of diverential equations to questions of mechanics. If we
consider the function as defining a plane curve, then the general form of the
curve does not appear from the above mode of investigation. It is, however,
often desirable to construct the curves defined by diverential equations. Studies
having this end in view have been carried on by Briot and Bouquet, and by
Poincaré.

The subject of singular solutions of diverential equations has been materially
advanced since the time of Boole by G. Darboux and Cayley. The papers
prepared by these mathematicians point out a diHculty as yet unsurmounted:
whereas a singular solution, from the point of view of the integrated equation,
ought to be a phenomenon of universal, or at least of general occurrence, it is,
on the other hand, a very special and exceptional phenomenon from the point
of view of the diverential equation. A geometrical theory of singular solutions
resembling the one used by Cayley was previously employed by W. W. Johnson
of Annapolis.

An advanced Treatise on Linear Differential Equations (1889) was brought out
by Thomas Craig of the Johns Hopkins University. He chose the algebraic
method of presentation followed by Hermite and Poincaré, instead of the
geometric method preferred by Klein and Schwarz. A notable work, the Traité
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d’Analyse, is now being published by Émile Picard of Paris, the interest of which
is made to centre in the subject of diverential equations.

THEORY OF FUNCTIONS.

We begin our sketch of the vast progress in the theory of functions by
considering the special class called elliptic functions. These were richly
developed by Abel and Jacobi.

Niels Henrick Abel (1802–1829) was born at Findoë in Norway, and was
prepared for the university at the cathedral school in Christiania. He exhibited
no interest in mathematics until 1818, when B. Holmboe became lecturer there,
and aroused Abel’s interest by assigning original problems to the class. Like
Jacobi and many other young men who became eminent mathematicians, Abel
found the first exercise of his talent in the attempt to solve by algebra the
general equation of the fifth degree. In 1821 he entered the University in
Christiania. The works of Euler, Lagrange, and Legendre were closely studied
by him. The idea of the inversion of elliptic functions dates back to this
time. His extraordinary success in mathematical study led to the over of a
stipend by the government, that he might continue his studies in Germany and
France. Leaving Norway in 1825, Abel visited the astronomer, Schumacher,
in Hamburg, and spent six months in Berlin, where he became intimate with
August Leopold Crelle (1780–1855), and met Steiner. Encouraged by Abel
and Steiner, Crelle started his journal in 1826. Abel began to put some of
his work in shape for print. His proof of the impossibility of solving the
general equation of the fifth degree by radicals,—first printed in 1824 in a very
concise form, and diHcult of apprehension,—was elaborated in greater detail,
and published in the first volume. He entered also upon the subject of infinite
series (particularly the binomial theorem, of which he gave in Crelle’s Journal a
rigid general investigation), the study of functions, and of the integral calculus.
The obscurities everywhere encountered by him owing to the prevailing loose
methods of analysis he endeavoured to clear up. For a short time he left Berlin
for Freiberg, where he had fewer interruptions to work, and it was there that
he made researches on hyperelliptic and Abelian functions. In July, 1826, Abel
left Germany for Paris without having met Gauss! Abel had sent to Gauss
his proof of 1824 of the impossibility of solving equations of the fifth degree,
to which Gauss never paid any attention. This slight, and a haughtiness of
spirit which he associated with Gauss, prevented the genial Abel from going to
Göttingen. A similar feeling was entertained by him later against Cauchy. Abel
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remained ten months in Paris. He met there Dirichlet, Legendre, Cauchy, and
others; but was little appreciated. He had already published several important
memoirs in Crelle’s Journal, but by the French this new periodical was as yet
hardly known to exist, and Abel was too modest to speak of his own work.
Pecuniary embarrassments induced him to return home after a second short
stay in Berlin. At Christiania he for some time gave private lessons, and served
as docent. Crelle secured at last an appointment for him at Berlin; but the news
of it did not reach Norway until after the death of Abel at Froland.

At nearly the same time with Abel, Jacobi published articles on elliptic
functions. Legendre’s favourite subject, so long neglected, was at last to be
enriched by some extraordinary discoveries. The advantage to be derived by
inverting the elliptic integral of the first kind and treating it as a function of
its amplitude (now called elliptic function) was recognised by Abel, and a few
months later also by Jacobi. A second fruitful idea, also arrived at independently
by both, is the introduction of imaginaries leading to the observation that the
new functions simulated at once trigonometric and exponential functions. For
it was shown that while trigonometric functions had only a real period, and
exponential only an imaginary, elliptic functions had both sorts of periods.
These two discoveries were the foundations upon which Abel and Jacobi, each
in his own way, erected beautiful new structures. Abel developed the curious
expressions representing elliptic functions by infinite series or quotients of
infinite products. Great as were the achievements of Abel in elliptic functions,
they were eclipsed by his researches on what are now called Abelian functions.
Abel’s theorem on these functions was given by him in several forms, the most
general of these being that in his Mémoire sur une propriété générale d’une classe
très-étendue de fonctions transcendentes (1826). The history of this memoir is
interesting. A few months after his arrival in Paris, Abel submitted it to the
French Academy. Cauchy and Legendre were appointed to examine it; but said
nothing about it until after Abel’s death. In a brief statement of the discoveries
in question, published by Abel in Crelle’s Journal, 1829, reference is made to
that memoir. This led Jacobi to inquire of Legendre what had become of it.
Legendre says that the manuscript was so badly written as to be illegible, and
that Abel was asked to hand in a better copy, which he neglected to do. The
memoir remained in Cauchy’s hands. It was not published until 1841. By a
singular mishap, the manuscript was lost before the proof-sheets were read.

In its form, the contents of the memoir belongs to the integral calculus.
Abelian integrals depend upon an irrational function y which is connected
with x by an algebraic equation Fpx, yq “ 0. Abel’s theorem asserts that a
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sum of such integrals can be expressed by a definite number p of similar
integrals, where p depends merely on the properties of the equation Fpx, yq “ 0.
It was shown later that p is the deficiency of the curve Fpx, yq “ 0. The
addition theorems of elliptic integrals are deducible from Abel’s theorem.
The hyperelliptic integrals introduced by Abel, and proved by him to possess
multiple periodicity, are special cases of Abelian integrals whenever p “ or ą 3.
The reduction of Abelian to elliptic integrals has been studied mainly by
Jacobi, Hermite, Königsberger, Brioschi, Goursat, E. Picard, and O. Bolza of
the University of Chicago.

Two editions of Abel’s works have been published: the first by Holmboe in
1839, and the second by Sylow and Lie in 1881.

Abel’s theorem was pronounced by Jacobi the greatest discovery of our
century on the integral calculus. The aged Legendre, who greatly admired
Abel’s genius, called it “monumentum aere perennius.” During the few years of
work allotted to the young Norwegian, he penetrated new fields of research,
the development of which has kept mathematicians busy for over half a century.

Some of the discoveries of Abel and Jacobi were anticipated by Gauss. In
the Disquisitiones Arithmeticæ he observed that the principles which he used
in the division of the circle were applicable to many other functions, besides
the circular, and particularly to the transcendents dependent on the integral
ż

dx
?

1´ x4 . From this Jacobi concluded that Gauss had thirty years earlier

considered the nature and properties of elliptic functions and had discovered
their double periodicity. The papers in the collected works of Gauss confirm
this conclusion.

Carl Gustav Jacob Jacobi (1804–1851) was born of Jewish parents at Potsdam.
Like many other mathematicians he was initiated into mathematics by reading
Euler. At the University of Berlin, where he pursued his mathematical studies
independently of the lecture courses, he took the degree of Ph.D. in 1825. After
giving lectures in Berlin for two years, he was elected extraordinary professor
at Königsberg, and two years later to the ordinary professorship there. After
the publication of his Fundamenta Nova he spent some time in travel, meeting
Gauss in Göttingen, and Legendre, Fourier, Poisson, in Paris. In 1842 he and
his colleague, Bessel, attended the meetings of the British Association, where
they made the acquaintance of English mathematicians.

His early researches were on Gauss’ approximation to the value of definite
integrals, partial diverential equations, Legendre’s coeHcients, and cubic
residues. He read Legendre’s Exercises, which give an account of elliptic
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integrals. When he returned the book to the library, he was depressed in
spirits and said that important books generally excited in him new ideas, but
that this time he had not been led to a single original thought. Though slow
at first, his ideas flowed all the richer afterwards. Many of his discoveries in
elliptic functions were made independently by Abel. Jacobi communicated
his first researches to Crelle’s Journal. In 1829, at the age of twenty-five,
he published his Fundamenta Nova Theoriæ Functionum Ellipticarum, which
contains in condensed form the main results in elliptic functions. This work
at once secured for him a wide reputation. He then made a closer study of
theta-functions and lectured to his pupils on a new theory of elliptic functions
based on the theta-functions. He developed a theory of transformation which
led him to a multitude of formulæ containing q, a transcendental function of
the modulus, defined by the equation q “ e´πk1

{k. He was also led by it to
consider the two new functions H and Θ, which taken each separately with two
diverent arguments are the four (single) theta-functions designated by the Θ1,
Θ2, Θ3, Θ4. In a short but very important memoir of 1832, he shows that for the
hyperelliptic integral of any class the direct functions to which Abel’s theorem
has reference are not functions of a single variable, such as the elliptic sn, cn, dn,
but functions of p variables. Thus in the case p “ 2, which Jacobi especially
considers, it is shown that Abel’s theorem has reference to two functions λpu, vq,
λ1pu, vq, each of two variables, and gives in evect an addition-theorem for the
expression of the functions λpu ` u1, v ` v1q, λ1pu ` u1, v ` v1q algebraically in
terms of the functions λpu, vq, λ1pu, vq, λpu1, v1q, λ1pu1, v1q. By the memoirs of
Abel and Jacobi it may be considered that the notion of the Abelian function of
p variables was established and the addition-theorem for these functions given.
Recent studies touching Abelian functions have been made by Weierstrass,
E. Picard, Madame Kowalevski, and Poincaré. Jacobi’s work on diverential
equations, determinants, dynamics, and the theory of numbers is mentioned
elsewhere.

In 1842 Jacobi visited Italy for a few months to recuperate his health. At this
time the Prussian government gave him a pension, and he moved to Berlin,
where the last years of his life were spent.

The researches on functions mentioned thus far have been greatly extended.
In 1858 Charles Hermite of Paris (born 1822), introduced in place of the variable
q of Jacobi a new variable ω connected with it by the equation q “ eiπω, so that
ω “ ik1{k, and was led to consider the functions ϕpωq, ψpωq, χpωq. Henry
Smith regarded a theta-function with the argument equal to zero, as a function
of ω. This he called an omega-function, while the three functions ϕpωq, ψpωq,



THEORY OF FUNCTIONS. 242

χpωq, are his modular functions. Researches on theta-functions with respect to
real and imaginary arguments have been made by Meissel of Kiel, J. Thomae
of Jena, Alfred Enneper of Göttingen (1830–1885). A general formula for the
product of two theta-functions was given in 1854 by H. Schröter of Breslau
(1829–1892). These functions have been studied also by Cauchy, Königsberger
of Heidelberg (born 1837), F. S. Richelot of Königsberg (1808–1875), Johann
Georg Rosenhain of Königsberg (1816–1887), L. Schläfli of Bern (born 1818).

Legendre’s method of reducing an elliptic diverential to its normal form
has called forth many investigations, most important of which are those of
Richelot and of Weierstrass of Berlin.

The algebraic transformations of elliptic functions involve a relation between
the old modulus and the new one which Jacobi expressed by a diverential
equation of the third order, and also by an algebraic equation, called by him
“modular equation.” The notion of modular equations was familiar to Abel,
but the development of this subject devolved upon later investigators. These
equations have become of importance in the theory of algebraic equations,
and have been studied by Sohnke, E. Mathieu, L. Königsberger, E. Betti of
Pisa (died 1892), C. Hermite of Paris, Joubert of Angers, Francesco Brioschi of
Milan, Schläfli, H. Schröter, M. Gudermann of Cleve, Gützlav.

Felix Klein of Göttingen has made an extensive study of modular functions,
dealing with a type of operations lying between the two extreme types, known
as the theory of substitutions and the theory of invariants and covariants.
Klein’s theory has been presented in book-form by his pupil, Robert Fricke.
The bolder features of it were first published in his Ikosaeder, 1884. His
researches embrace the theory of modular functions as a specific class of elliptic
functions, the statement of a more general problem as based on the doctrine of
groups of operations, and the further development of the subject in connection
with a class of Riemann’s surfaces.

The elliptic functions were expressed by Abel as quotients of doubly infinite
products. He did not, however, inquire rigorously into the convergency of the
products. In 1845 Cayley studied these products, and found for them a complete
theory, based in part upon geometrical interpretation, which he made the basis
of the whole theory of elliptic functions. Eisenstein discussed by purely
analytical methods the general doubly infinite product, and arrived at results
which have been greatly simplified in form by the theory of primary factors,
due to Weierstrass. A certain function involving a doubly infinite product has
been called by Weierstrass the sigma-function, and is the basis of his beautiful
theory of elliptic functions. The first systematic presentation of Weierstrass’
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theory of elliptic functions was published in 1886 by G. H. Halphen in his
Théorie des fonctions elliptiques et des leurs applications. Applications of these
functions have been given also by A. G. Greenhill. Generalisations analogous
to those of Weierstrass on elliptic functions have been made by Felix Klein on
hyperelliptic functions.

Standard works on elliptic functions have been published by Briot and
Bouquet (1859), by Königsberger, Cayley, Heinrich Durège of Prague (1821–1893),
and others.

Jacobi’s work on Abelian and theta-functions was greatly extended by Adolph
Göpel (1812–1847), professor in a gymnasium near Potsdam, and Johann Georg
Rosenhain of Königsberg (1816–1887). Göpel in his Theoriæ transcendentium
primi ordinis adumbratio levis (Crelle, 35, 1847) and Rosenhain in several memoirs
established each independently, on the analogy of the single theta-functions,
the functions of two variables, called double theta-functions, and worked out
in connection with them the theory of the Abelian functions of two variables.
The theta-relations established by Göpel and Rosenhain received for thirty
years no further development, notwithstanding the fact that the double theta
series came to be of increasing importance in analytical, geometrical, and
mechanical problems, and that Hermite and Königsberger had considered
the subject of transformation. Finally, the investigations of C. W. Borchardt
of Berlin (1817–1880), treating of the representation of Kummer’s surface by
Göpel’s biquadratic relation between four theta-functions of two variables, and
researches of H. H. Weber of Marburg, F. Prym of Würzburg, Adolf Krazer,
and Martin Krause of Dresden led to broader views. Researches on double
theta-functions, made by Cayley, were extended to quadruple theta-functions
by Thomas Craig of the Johns Hopkins University.

Starting with the integrals of the most general form and considering the
inverse functions corresponding to these integrals (the Abelian functions of
p variables), Riemann defined the theta-functions of p variables as the sum
of a p-tuply infinite series of exponentials, the general term depending on
p variables. Riemann shows that the Abelian functions are algebraically
connected with theta-functions of the proper arguments, and presents the
theory in the broadest form. He rests the theory of the multiple theta-
functions upon the general principles of the theory of functions of a complex
variable.

Through the researches of A. Brill of Tübingen, M. Nöther of Erlangen, and
Ferdinand Lindemann of Munich, made in connection with Riemann-Roch’s
theorem and the theory of residuation, there has grown out of the theory



THEORY OF FUNCTIONS. 244

of Abelian functions a theory of algebraic functions and point-groups on
algebraic curves.

Before proceeding to the general theory of functions, we make mention of
the “calculus of functions,” studied chiefly by C. Babbage, J. F. W. Herschel,
and De Morgan, which was not so much a theory of functions as a theory of
the solution of functional equations by means of known functions or symbols.

The history of the general theory of functions begins with the adoption
of new definitions of a function. With the Bernoullis and Leibniz, y was
called a function of x, if there existed an equation between these variables
which made it possible to calculate y for any given value of x lying anywhere
between ´8 and `8. The study of Fourier’s theory of heat led Dirichlet
to a new definition: y is called a function of x, if y possess one or more
definite values for each of certain values that x is assumed to take in an interval
x0 to x1. In functions thus defined, there need be no analytical connection
between y and x, and it becomes necessary to look for possible discontinuities.
A great revolution in the ideas of a function was brought about by Cauchy
when, in a function as defined by Dirichlet, he gave the variables imaginary
values, and when he extended the notion of a definite integral by letting the
variable pass from one limit to the other by a succession of imaginary values
along arbitrary paths. Cauchy established several fundamental theorems, and
gave the first great impulse to the study of the general theory of functions.
His researches were continued in France by Puiseux and Liouville. But more
profound investigations were made in Germany by Riemann.

Georg Friedrich Bernhard Riemann (1826–1866) was born at Breselenz
in Hanover. His father wished him to study theology, and he accordingly
entered upon philological and theological studies at Göttingen. He attended
also some lectures on mathematics. Such was his predilection for this science
that he abandoned theology. After studying for a time under Gauss and
Stern, he was drawn, in 1847, to Berlin by a galaxy of mathematicians, in
which shone Dirichlet, Jacobi, Steiner, and Eisenstein. Returning to Göttingen
in 1850, he studied physics under Weber, and obtained the doctorate the
following year. The thesis presented on that occasion, Grundlagen für eine
allgemeine Theorie der Funktionen einer veränderlichen complexen Grösse, excited
the admiration of Gauss to a very unusual degree, as did also Riemann’s trial
lecture, Ueber die Hypothesen welche der Geometrie zu Grunde liegen. Riemann’s
Habilitationsschrift was on the Representation of a Function by means of a
Trigonometric Series, in which he advanced materially beyond the position of
Dirichlet. Our hearts are drawn to this extraordinarily gifted but shy genius
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when we read of the timidity and nervousness displayed when he began to
lecture at Göttingen, and of his jubilation over the unexpectedly large audience
of eight students at his first lecture on diverential equations.

Later he lectured on Abelian functions to a class of three only,—Schering,
Bjerknes, and Dedekind. Gauss died in 1855, and was succeeded by Dirichlet. On
the death of the latter, in 1859, Riemann was made ordinary professor. In 1860
he visited Paris, where he made the acquaintance of French mathematicians.
The delicate state of his health induced him to go to Italy three times. He died
on his last trip at Selasca, and was buried at Biganzolo.

Like all of Riemann’s researches, those on functions were profound and
far-reaching. He laid the foundation for a general theory of functions of a
complex variable. The theory of potential, which up to that time had been used
only in mathematical physics, was applied by him in pure mathematics. He
accordingly based his theory of functions on the partial diverential equation,
B2u
Bx2 `

B2u
By2 “ ∆u “ 0, which must hold for the analytical function w “ u ` iv

of z “ x` iy. It had been proved by Dirichlet that (for a plane) there is always
one, and only one, function of x and y, which satisfies ∆u “ 0, and which,
together with its diverential quotients of the first two orders, is for all values
of x and y within a given area one-valued and continuous, and which has for
points on the boundary of the area arbitrarily given values. Riemann called
this “Dirichlet’s principle,” but the same theorem was stated by Green and
proved analytically by Sir William Thomson. It follows then that w is uniquely
determined for all points within a closed surface, if u is arbitrarily given for
all points on the curve, whilst v is given for one point within the curve. In
order to treat the more complicated case where w has n values for one value
of z, and to observe the conditions about continuity, Riemann invented the
celebrated surfaces, known as “Riemann’s surfaces,” consisting of n coincident
planes or sheets, such that the passage from one sheet to another is made at
the branch-points, and that the n sheets form together a multiply-connected
surface, which can be dissected by cross-cuts into a singly-connected surface.
The n-valued function w becomes thus a one-valued function. Aided by
researches of J. Lüroth of Freiburg and of Clebsch, W. K. Clivord brought
Riemann’s surface for algebraic functions to a canonical form, in which only
the two last of the n leaves are multiply-connected, and then transformed the
surface into the surface of a solid with p holes. A. Hurwitz of Zürich discussed
the question, how far a Riemann’s surface is determinate by the assignment of
its number of sheets, its branch-points and branch-lines.
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Riemann’s theory ascertains the criteria which will determine an analytical
function by aid of its discontinuities and boundary conditions, and thus defines
a function independently of a mathematical expression. In order to show that
two diverent expressions are identical, it is not necessary to transform one into
the other, but it is suHcient to prove the agreement to a far less extent, merely
in certain critical points.

Riemann’s theory, as based on Dirichlet’s principle (Thomson’s theorem),
is not free from objections. It has become evident that the existence of a
derived function is not a consequence of continuity, and that a function may be
integrable without being diverentiable. It is not known how far the methods
of the infinitesimal calculus and the calculus of variations (by which Dirichlet’s
principle is established) can be applied to an unknown analytical function
in its generality. Hence the use of these methods will endow the functions
with properties which themselves require proof. Objections of this kind to
Riemann’s theory have been raised by Kronecker, Weierstrass, and others, and
it has become doubtful whether his most important theorems are actually
proved. In consequence of this, attempts have been made to graft Riemann’s
speculations on the more strongly rooted methods of Weierstrass. The latter
developed a theory of functions by starting, not with the theory of potential,
but with analytical expressions and operations. Both applied their theories to
Abelian functions, but there Riemann’s work is more general.

The theory of functions of one complex variable has been studied since
Riemann’s time mainly by Karl Weierstrass of Berlin (born 1815), Gustaf
Mittag-Leffler of Stockholm (born 1846), and Poincaré of Paris. Of the three
classes of such functions (viz. functions uniform throughout, functions uniform
only in lacunary spaces, and non-uniform functions) Weierstrass showed that
those functions of the first class which can be developed according to ascending
powers of x into converging series, can be decomposed into a product of
an infinite number of primary factors. A primary factor of the species n is
the product

´

1´
x
a

¯

ePpxq, Ppxq being an entire polynomial of the nth degree.
A function of the species n is one, all the primary factors of which are of
species n. This classification gave rise to many interesting problems studied
also by Poincaré.

The first of the three classes of functions of a complex variable embraces,
among others, functions having an infinite number of singular points, but no
singular lines, and at the same time no isolated singular points. These are
Fuchsian functions, existing throughout the whole extent. Poincaré first gave
an example of such a function.
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Uniform functions of two variables, unaltered by certain linear substitutions,
called hyperfuchsian functions, have been studied by E. Picard of Paris, and by
Poincaré.

Functions of the second class, uniform only in lacunary spaces, were first
pointed out by Weierstrass. The Fuchsian and the Kleinian functions do not
generally exist, except in the interior of a circle or of a domain otherwise
bounded, and are therefore examples of functions of the second class. Poincaré
has shown how to generate functions of this class, and has studied them along
the lines marked out by Weierstrass. Important is his proof that there is no
way of generalising them so as to get rid of the lacunæ.

Non-uniform functions are much less developed than the preceding classes,
even though their properties in the vicinity of a given point have been diligently
studied, and though much light has been thrown on them by the use of
Riemann’s surfaces. With the view of reducing their study to that of uniform
transcendents, Poincaré proved that if y is any analytical non-uniform function
of x, one can always find a variable z, such that x and y are uniform functions
of z.

Weierstrass and Darboux have each given examples of continuous functions
having no derivatives. Formerly it had been generally assumed that every
function had a derivative. Ampère was the first who attempted to prove
analytically (1806) the existence of a derivative, but the demonstration is not
valid. In treating of discontinuous functions, Darboux established rigorously
the necessary and suHcient condition that a continuous or discontinuous
function be susceptible of integration. He gave fresh evidence of the care that
must be exercised in the use of series by giving an example of a series always
convergent and continuous, such that the series formed by the integrals of the
terms is always convergent, and yet does not represent the integral of the first
series.

The general theory of functions of two variables has been investigated to
some extent by Weierstrass and Poincaré.

H. A. Schwarz of Berlin (born 1845), a pupil of Weierstrass, has given
the conform representation (Abbildung) of various surfaces on a circle. In
transforming by aid of certain substitutions a polygon bounded by circular
arcs into another also bounded by circular arcs, he was led to a remarkable
diverential equation ψpu1, tq “ ψpu, tq, where ψpu, tq is the expression which
Cayley calls the “Schwarzian derivative,” and which led Sylvester to the theory
of reciprocants. Schwarz’s developments on minimum surfaces, his work on
hypergeometric series, his inquiries on the existence of solutions to important
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partial diverential equations under prescribed conditions, have secured a
prominent place in mathematical literature.

The modern theory of functions of one real variable was first worked
out by H. Hankel, Dedekind, G. Cantor, Dini, and Heine, and then carried
further, principally, by Weierstrass, Schwarz, Du Bois-Reymond, Thomae, and
Darboux. Hankel established the principle of the condensation of singularities;
Dedekind and Cantor gave definitions for irrational numbers; definite integrals
were studied by Thomae, Du Bois-Reymond, and Darboux along the lines
indicated by the definitions of such integrals given by Cauchy, Dirichlet, and
Riemann. Dini wrote a text-book on functions of a real variable (1878), which
was translated into German, with additions, by J. Lüroth and A. Schepp.
Important works on the theory of functions are the Cours de M. Hermite,
Tannery’s Théorie des Fonctions d’une variable seule, A Treatise on the Theory of
Functions by James Harkness and Frank Morley, and Theory of Functions of a
Complex Variable by A. R. Forsyth.

THEORY OF NUMBERS.

“Mathematics, the queen of the sciences, and arithmetic, the queen of
mathematics.” Such was the dictum of Gauss, who was destined to revolutionise
the theory of numbers. When asked who was the greatest mathematician in
Germany, Laplace answered, Pfav. When the questioner said he should have
thought Gauss was, Laplace replied, “Pfav is by far the greatest mathematician
in Germany; but Gauss is the greatest in all Europe.” Gauss is one of the three
greatest masters of modern analysis,—Lagrange, Laplace, Gauss. Of these three
contemporaries he was the youngest. While the first two belong to the period in
mathematical history preceding the one now under consideration, Gauss is the
one whose writings may truly be said to mark the beginning of our own epoch.
In him that abundant fertility of invention, displayed by mathematicians of the
preceding period, is combined with an absolute rigorousness in demonstration
which is too often wanting in their writings, and which the ancient Greeks
might have envied. Unlike Laplace, Gauss strove in his writings after perfection
of form. He rivals Lagrange in elegance, and surpasses this great Frenchman in
rigour. Wonderful was his richness of ideas; one thought followed another so
quickly that he had hardly time to write down even the most meagre outline.
At the age of twenty Gauss had overturned old theories and old methods in
all branches of higher mathematics; but little pains did he take to publish his
results, and thereby to establish his priority. He was the first to observe rigour
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in the treatment of infinite series, the first to fully recognise and emphasise the
importance, and to make systematic use of determinants and of imaginaries,
the first to arrive at the method of least squares, the first to observe the double
periodicity of elliptic functions. He invented the heliotrope and, together
with Weber, the bifilar magnetometer and the declination instrument. He
reconstructed the whole of magnetic science.

Carl Friedrich Gauss (1777–1855), the son of a bricklayer, was born at
Brunswick. He used to say, jokingly, that he could reckon before he could
talk. The marvellous aptitude for calculation of the young boy attracted
the attention of Bartels, afterwards professor of mathematics at Dorpat, who
brought him under the notice of Charles William, Duke of Brunswick. The
duke undertook to educate the boy, and sent him to the Collegium Carolinum.
His progress in languages there was quite equal to that in mathematics. In
1795 he went to Göttingen, as yet undecided whether to pursue philology or
mathematics. Abraham Gotthelf Kästner, then professor of mathematics there,
and now chiefly remembered for his Geschichte der Mathematik (1796), was not
an inspiring teacher. At the age of nineteen Gauss discovered a method of
inscribing in a circle a regular polygon of seventeen sides, and this success
encouraged him to pursue mathematics. He worked quite independently of
his teachers, and while a student at Göttingen made several of his greatest
discoveries. Higher arithmetic was his favourite study. Among his small
circle of intimate friends was Wolfgang Bolyai. After completing his course
he returned to Brunswick. In 1798 and 1799 he repaired to the university at
Helmstädt to consult the library, and there made the acquaintance of Pfav, a
mathematician of much power. In 1807 the Emperor of Russia overed Gauss
a chair in the Academy at St. Petersburg, but by the advice of the astronomer
Olbers, who desired to secure him as director of a proposed new observatory
at Göttingen, he declined the over, and accepted the place at Göttingen. Gauss
had a marked objection to a mathematical chair, and preferred the post of
astronomer, that he might give all his time to science. He spent his life in
Göttingen in the midst of continuous work. In 1828 he went to Berlin to attend
a meeting of scientists, but after this he never again left Göttingen, except in
1854, when a railroad was opened between Göttingen and Hanover. He had
a strong will, and his character showed a curious mixture of self-conscious
dignity and child-like simplicity. He was little communicative, and at times
morose.

A new epoch in the theory of numbers dates from the publication of his
Disquisitiones Arithmeticæ, Leipzig, 1801. The beginning of this work dates back
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as far as 1795. Some of its results had been previously given by Lagrange and
Euler, but were reached independently by Gauss, who had gone deeply into the
subject before he became acquainted with the writings of his great predecessors.
The Disquisitiones Arithmeticæ was already in print when Legendre’s Théorie des
Nombres appeared. The great law of quadratic reciprocity, given in the fourth
section of Gauss’ work, a law which involves the whole theory of quadratic
residues, was discovered by him by induction before he was eighteen, and was
proved by him one year later. Afterwards he learned that Euler had imperfectly
enunciated that theorem, and that Legendre had attempted to prove it, but
met with apparently insuperable diHculties. In the fifth section Gauss gave
a second proof of this “gem” of higher arithmetic. In 1808 followed a third
and fourth demonstration; in 1817, a fifth and sixth. No wonder that he
felt a personal attachment to this theorem. Proofs were given also by Jacobi,
Eisenstein, Liouville, Lebesgue, A. Genocchi, Kummer, M. A. Stern, Chr. Zeller,
Kronecker, Bouniakowsky, E. Schering, J. Petersen, Voigt, E. Busche, and Th.
Pepin. The solution of the problem of the representation of numbers by
binary quadratic forms is one of the great achievements of Gauss. He created a
new algorithm by introducing the theory of congruences. The fourth section
of the Disquisitiones Arithmeticæ, treating of congruences of the second degree,
and the fifth section, treating of quadratic forms, were, until the time of Jacobi,
passed over with universal neglect, but they have since been the starting-point
of a long series of important researches. The seventh or last section, developing
the theory of the division of the circle, was received from the start with
deserved enthusiasm, and has since been repeatedly elaborated for students. A
standard work on Kreistheilung was published in 1872 by Paul Bachmann, then
of Breslau. Gauss had planned an eighth section, which was omitted to lessen
the expense of publication. His papers on the theory of numbers were not all
included in his great treatise. Some of them were published for the first time
after his death in his collected works (1863–1871). He wrote two memoirs on
the theory of biquadratic residues (1825 and 1831), the second of which contains
a theorem of biquadratic reciprocity.

Gauss was led to astronomy by the discovery of the planet Ceres at Palermo
in 1801. His determination of the elements of its orbit with suHcient accuracy
to enable Olbers to re-discover it, made the name of Gauss generally known.
In 1809 he published the Theoria motus corporum coelestium, which contains a
discussion of the problems arising in the determination of the movements of
planets and comets from observations made on them under any circumstances.
In it are found four formulæ in spherical trigonometry, now usually called
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“Gauss’ Analogies,” but which were published somewhat earlier by Karl
Brandon Mollweide of Leipzig (1774–1825), and earlier still by Jean Baptiste
Joseph Delambre (1749–1822). Many years of hard work were spent in the
astronomical and magnetic observatory. He founded the German Magnetic
Union, with the object of securing continuous observations at fixed times.
He took part in geodetic observations, and in 1843 and 1846 wrote two
memoirs, Ueber Gegenstände der höheren Geodesie. He wrote on the attraction
of homogeneous ellipsoids, 1813. In a memoir on capillary attraction, 1833,
he solves a problem in the calculus of variations involving the variation of a
certain double integral, the limits of integration being also variable; it is the
earliest example of the solution of such a problem. He discussed the problem
of rays of light passing through a system of lenses.

Among Gauss’ pupils were Christian Heinrich Schumacher, Christian Ger-
ling, Friedrich Nicolai, August Ferdinand Möbius, Georg Wilhelm Struve,
Johann Frantz Encke.

Gauss’ researches on the theory of numbers were the starting-point for a
school of writers, among the earliest of whom was Jacobi. The latter contributed
to Crelle’s Journal an article on cubic residues, giving theorems without proofs.
After the publication of Gauss’ paper on biquadratic residues, giving the law of
biquadratic reciprocity, and his treatment of complex numbers, Jacobi found
a similar law for cubic residues. By the theory of elliptical functions, he was
led to beautiful theorems on the representation of numbers by 2, 4, 6, and 8
squares. Next come the researches of Dirichlet, the expounder of Gauss, and a
contributor of rich results of his own.

Peter Gustav Lejeune Dirichlet (1805–1859) was born in Düren, attended
the gymnasium in Bonn, and then the Jesuit gymnasium in Cologne. In 1822
he was attracted to Paris by the names of Laplace, Legendre, Fourier, Poisson,
Cauchy. The facilities for a mathematical education there were far better than
in Germany, where Gauss was the only great figure. He read in Paris Gauss’
Disquisitiones Arithmeticæ, a work which he never ceased to admire and study.
Much in it was simplified by Dirichlet, and thereby placed within easier reach of
mathematicians. His first memoir on the impossibility of certain indeterminate
equations of the fifth degree was presented to the French Academy in 1825. He
showed that Fermat’s equation, xn ` yn “ zn, cannot exist when n “ 5. Some
parts of the analysis are, however, Legendre’s. Euler and Lagrange had proved
this when n is 3 and 4, and Lamé proved it when n “ 7. Dirichlet’s acquaintance
with Fourier led him to investigate Fourier’s series. He became docent in
Breslau in 1827. In 1828 he accepted a position in Berlin, and finally succeeded
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Gauss at Göttingen in 1855. The general principles on which depends the
average number of classes of binary quadratic forms of positive and negative
determinant (a subject first investigated by Gauss) were given by Dirichlet
in a memoir, Ueber die Bestimmung der mittleren Werthe in der Zahlentheorie,
1849. More recently F. Mertens of Graz has determined the asymptotic
values of several numerical functions. Dirichlet gave some attention to prime
numbers. Gauss and Legendre had given expressions denoting approximately
the asymptotic value of the number of primes inferior to a given limit, but
it remained for Riemann in his memoir, Ueber die Anzahl der Primzahlen
unter einer gegebenen Grösse, 1859, to give an investigation of the asymptotic
frequency of primes which is rigorous. Approaching the problem from a
diverent direction, Patnutij Tchebycheff, formerly professor in the University of
St. Petersburg (born 1821), established, in a celebrated memoir, Sur les Nombres
Premiers, 1850, the existence of limits within which the sum of the logarithms
of the primes P, inferior to a given number x, must be comprised. This paper
depends on very elementary considerations, and, in that respect, contrasts
strongly with Riemann’s, which involves abstruse theorems of the integral
calculus. Poincaré’s papers, Sylvester’s contraction of Tchebychev’s limits,
with reference to the distribution of primes, and researches of J. Hadamard
(awarded the Grand prix of 1892), are among the latest researches in this line.
The enumeration of prime numbers has been undertaken at diverent times by
various mathematicians. In 1877 the British Association began the preparation
of factor-tables, under the direction of J. W. L. Glaisher. The printing, by the
Association, of tables for the sixth million marked the completion of tables,
to the preparation of which Germany, France, and England contributed, and
which enable us to resolve into prime factors every composite number less than
9, 000, 000.

Miscellaneous contributions to the theory of numbers were made by
Cauchy. He showed, for instance, how to find all the infinite solutions of a
homogeneous indeterminate equation of the second degree in three variables
when one solution is given. He established the theorem that if two congruences,
which have the same modulus, admit of a common solution, the modulus is a
divisor of their resultant. Joseph Liouville (1809–1882), professor at the Collège
de France, investigated mainly questions on the theory of quadratic forms of
two, and of a greater number of variables. Profound researches were instituted
by Ferdinand Gotthold Eisenstein (1823–1852), of Berlin. Ternary quadratic
forms had been studied somewhat by Gauss, but the extension from two to
three indeterminates was the work of Eisenstein who, in his memoir, Neue
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Theoreme der höheren Arithmetik, defined the ordinal and generic characters
of ternary quadratic forms of uneven determinant; and, in case of definite
forms, assigned the weight of any order or genus. But he did not publish
demonstrations of his results. In inspecting the theory of binary cubic forms,
he was led to the discovery of the first covariant ever considered in analysis.
He showed that the series of theorems, relating to the presentation of numbers
by sums of squares, ceases when the number of squares surpasses eight. Many
of the proofs omitted by Eisenstein were supplied by Henry Smith, who was
one of the few Englishmen who devoted themselves to the study of higher
arithmetic.

Henry John Stephen Smith (1826–1883) was born in London, and educated
at Rugby and at Balliol College, Oxford. Before 1847 he travelled much in
Europe for his health, and at one time attended lectures of Arago in Paris, but
after that year he was never absent from Oxford for a single term. In 1861 he was
elected Savilian professor of geometry. His first paper on the theory of numbers
appeared in 1855. The results of ten years’ study of everything published on the
theory of numbers are contained in his Reports which appeared in the British
Association volumes from 1859 to 1865. These reports are a model of clear and
precise exposition and perfection of form. They contain much original matter,
but the chief results of his own discoveries were printed in the Philosophical
Transactions for 1861 and 1867. They treat of linear indeterminate equations
and congruences, and of the orders and genera of ternary quadratic forms.
He established the principles on which the extension to the general case of n
indeterminates of quadratic forms depends. He contributed also two memoirs
to the Proceedings of the Royal Society of 1864 and 1868, in the second of which he
remarks that the theorems of Jacobi, Eisenstein, and Liouville, relating to the
representation of numbers by 4, 6, 8 squares, and other simple quadratic forms
are deducible by a uniform method from the principles indicated in his paper.
Theorems relating to the case of 5 squares were given by Eisenstein, but Smith
completed the enunciation of them, and added the corresponding theorems for
7 squares. The solution of the cases of 2, 4, 6 squares may be obtained by elliptic
functions, but when the number of squares is odd, it involves processes peculiar
to the theory of numbers. This class of theorems is limited to 8 squares, and
Smith completed the group. In ignorance of Smith’s investigations, the French
Academy overed a prize for the demonstration and completion of Eisenstein’s
theorems for 5 squares. This Smith had accomplished fifteen years earlier. He
sent in a dissertation in 1882, and next year, a month after his death, the prize
was awarded to him, another prize being also awarded to H. Minkowsky of
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Bonn. The theory of numbers led Smith to the study of elliptic functions. He
wrote also on modern geometry. His successor at Oxford was J. J. Sylvester.

Ernst Eduard Kummer (1810–1893), professor in the University of Berlin, is
closely identified with the theory of numbers. Dirichlet’s work on complex
numbers of the form a ` ib, introduced by Gauss, was extended by him, by
Eisenstein, and Dedekind. Instead of the equation x4 ´ 1 “ 0, the roots of
which yield Gauss’ units, Eisenstein used the equation x3 ´ 1 “ 0 and complex
numbers a ` bρ (ρ being a cube root of unity), the theory of which resembles
that of Gauss’ numbers. Kummer passed to the general case xn ´ 1 “ 0 and
got complex numbers of the form α “ a1A1 ` a2A2 ` a3A3 ` ¨ ¨ ¨ , where ai are
whole real numbers, and Ai roots of the above equation. Euclid’s theory of the
greatest common divisor is not applicable to such complex numbers, and their
prime factors cannot be defined in the same way as prime factors of common
integers are defined. In the evort to overcome this diHculty, Kummer was led
to introduce the conception of “ideal numbers.” These ideal numbers have
been applied by G. Zolotarev of St. Petersburg to the solution of a problem of
the integral calculus, left unfinished by Abel (Liouville’s Journal, Second Series,
1864, Vol. IX.). Julius Wilhelm Richard Dedekind of Braunschweig (born 1831)
has given in the second edition of Dirichlet’s Vorlesungen über Zahlentheorie a
new theory of complex numbers, in which he to some extent deviates from the
course of Kummer, and avoids the use of ideal numbers. Dedekind has taken
the roots of any irreducible equation with integral coeHcients as the units
for his complex numbers. Attracted by Kummer’s investigations, his pupil,
Leopold Kronecker (1823–1891) made researches which he applied to algebraic
equations.

On the other hand, evorts have been made to utilise in the theory of numbers
the results of the modern higher algebra. Following up researches of Hermite,
Paul Bachmann of Münster investigated the arithmetical formula which gives
the automorphics of a ternary quadratic form. The problem of the equivalence
of two positive or definite ternary quadratic forms was solved by L. Seeber;
and that of the arithmetical automorphics of such forms, by Eisenstein. The
more diHcult problem of the equivalence for indefinite ternary forms has been
investigated by Edward Selling of Würzburg. On quadratic forms of four or
more indeterminates little has yet been done. Hermite showed that the number
of non-equivalent classes of quadratic forms having integral coeHcients and
a given discriminant is finite, while Zolotarev and A. N. Korkine, both
of St. Petersburg, investigated the minima of positive quadratic forms. In
connection with binary quadratic forms, Smith established the theorem that if
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the joint invariant of two properly primitive forms vanishes, the determinant
of either of them is represented primitively by the duplicate of the other.

The interchange of theorems between arithmetic and algebra is displayed in
the recent researches of J. W. L. Glaisher of Trinity College (born 1848) and
Sylvester. Sylvester gave a Constructive Theory of Partitions, which received
additions from his pupils, F. Franklin and G. S. Ely.

The conception of “number” has been much extended in our time. With
the Greeks it included only the ordinary positive whole numbers; Diophantus
added rational fractions to the domain of numbers. Later negative numbers
and imaginaries came gradually to be recognised. Descartes fully grasped the
notion of the negative; Gauss, that of the imaginary. With Euclid, a ratio,
whether rational or irrational, was not a number. The recognition of ratios and
irrationals as numbers took place in the sixteenth century, and found expression
with Newton. By the ratio method, the continuity of the real number system
has been based on the continuity of space, but in recent time three theories of
irrationals have been advanced by Weierstrass, J. W. R. Dedekind, G. Cantor,
and Heine, which prove the continuity of numbers without borrowing it from
space. They are based on the definition of numbers by regular sequences, the
use of series and limits, and some new mathematical conceptions.

APPLIED MATHEMATICS.

Notwithstanding the beautiful developments of celestial mechanics reached
by Laplace at the close of the eighteenth century, there was made a discovery
on the first day of the present century which presented a problem seemingly
beyond the power of that analysis. We refer to the discovery of Ceres by Piazzi
in Italy, which became known in Germany just after the philosopher Hegel had
published a dissertation proving a priori that such a discovery could not be
made. From the positions of the planet observed by Piazzi its orbit could not
be satisfactorily calculated by the old methods, and it remained for the genius
of Gauss to devise a method of calculating elliptic orbits which was free from
the assumption of a small eccentricity and inclination. Gauss’ method was
developed further in his Theoria Motus. The new planet was re-discovered with
aid of Gauss’ data by Olbers, an astronomer who promoted science not only
by his own astronomical studies, but also by discerning and directing towards
astronomical pursuits the genius of Bessel.

Friedrich Wilhelm Bessel (1784–1846) was a native of Minden in Westphalia.
Fondness for figures, and a distaste for Latin grammar led him to the choice
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of a mercantile career. In his fifteenth year he became an apprenticed clerk
in Bremen, and for nearly seven years he devoted his days to mastering
the details of his business, and part of his nights to study. Hoping some
day to become a supercargo on trading expeditions, he became interested
in observations at sea. With a sextant constructed by him and an ordinary
clock he determined the latitude of Bremen. His success in this inspired
him for astronomical study. One work after another was mastered by him,
unaided, during the hours snatched from sleep. From old observations he
calculated the orbit of Halley’s comet. Bessel introduced himself to Olbers,
and submitted to him the calculation, which Olbers immediately sent for
publication. Encouraged by Olbers, Bessel turned his back to the prospect of
aIuence, chose poverty and the stars, and became assistant in J. H. Schröter’s
observatory at Lilienthal. Four years later he was chosen to superintend
the construction of the new observatory at Königsberg. In the absence
of an adequate mathematical teaching force, Bessel was obliged to lecture
on mathematics to prepare students for astronomy. He was relieved of this
work in 1825 by the arrival of Jacobi. We shall not recount the labours by
which Bessel earned the title of founder of modern practical astronomy and
geodesy. As an observer he towered far above Gauss, but as a mathematician
he reverently bowed before the genius of his great contemporary. Of Bessel’s
papers, the one of greatest mathematical interest is an “Untersuchung des Theils
der planetarischen Störungen, welcher aus der Bewegung der Sonne ensteht” (1824),
in which he introduces a class of transcendental functions, Jnpxq, much used
in applied mathematics, and known as “Bessel’s functions.” He gave their
principal properties, and constructed tables for their evaluation. Recently it
has been observed that Bessel’s functions appear much earlier in mathematical
literature. Such functions of the zero order occur in papers of Daniel Bernoulli
(1732) and Euler on vibration of heavy strings suspended from one end. All of
Bessel’s functions of the first kind and of integral orders occur in a paper by
Euler (1764) on the vibration of a stretched elastic membrane. In 1878 Lord
Rayleigh proved that Bessel’s functions are merely particular cases of Laplace’s
functions. J. W. L. Glaisher illustrates by Bessel’s functions his assertion that
mathematical branches growing out of physical inquiries as a rule “lack the
easy flow or homogeneity of form which is characteristic of a mathematical
theory properly so called.” These functions have been studied by C. Th. Anger
of Danzig, O. Schlömilch of Dresden, R. Lipschitz of Bonn (born 1832), Carl
Neumann of Leipzig (born 1832), Eugen Lommel of Leipzig, I. Todhunter of
St. John’s College, Cambridge.
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Prominent among the successors of Laplace are the following: Siméon Denis
Poisson (1781–1840), who wrote in 1808 a classic Mémoire sur les inégalités séculaires
des moyens mouvements des planètes. Giovanni Antonio Amadeo Plana (1781–1864)
of Turin, a nephew of Lagrange, who published in 1811 a Memoria sulla teoria dell’
attrazione degli sferoidi ellitici, and contributed to the theory of the moon. Peter
Andreas Hansen (1795–1874) of Gotha, at one time a clockmaker in Tondern,
then Schumacher’s assistant at Altona, and finally director of the observatory
at Gotha, wrote on various astronomical subjects, but mainly on the lunar
theory, which he elaborated in his work Fundamenta nova investigationes orbitæ
veræ quam Luna perlustrat (1838), and in subsequent investigations embracing
extensive lunar tables. George Biddel Airy (1801–1892), royal astronomer at
Greenwich, published in 1826 his Mathematical Tracts on the Lunar and Planetary
Theories. These researches have since been greatly extended by him. August
Ferdinand Möbius (1790–1868) of Leipzig wrote, in 1842, Elemente der Mechanik
des Himmels. Urbain Jean Joseph Le Verrier (1811–1877) of Paris wrote the
Recherches Astronomiques, constituting in part a new elaboration of celestial
mechanics, and is famous for his theoretical discovery of Neptune. John Couch
Adams (1819–1892) of Cambridge divided with Le Verrier the honour of the
mathematical discovery of Neptune, and pointed out in 1853 that Laplace’s
explanation of the secular acceleration of the moon’s mean motion accounted
for only half the observed acceleration. Charles Eugène Delaunay (born 1816,
and drowned ov Cherbourg in 1872), professor of mechanics at the Sorbonne in
Paris, explained most of the remaining acceleration of the moon, unaccounted
for by Laplace’s theory as corrected by Adams, by tracing the evect of tidal
friction, a theory previously suggested independently by Kant, Robert Mayer,
and William Ferrel of Kentucky. George Howard Darwin of Cambridge
(born 1845) made some very remarkable investigations in 1879 on tidal friction,
which trace with great certainty the history of the moon from its origin. He
has since studied also the evects of tidal friction upon other bodies in the
solar system. Criticisms on some parts of his researches have been made by
James Nolan of Victoria. Simon Newcomb (born 1835), superintendent of the
Nautical Almanac at Washington, and professor of mathematics at the Johns
Hopkins University, investigated the errors in Hansen’s tables of the moon.
For the last twelve years the main work of the U. S. Nautical Almanac oHce
has been to collect and discuss data for new tables of the planets which will
supplant the tables of Le Verrier. G. W. Hill of that oHce has contributed
an elegant paper on certain possible abbreviations in the computation of the
long-period of the moon’s motion due to the direct action of the planets, and
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has made the most elaborate determination yet undertaken of the inequalities
of the moon’s motion due to the figure of the earth. He has also computed
certain lunar inequalities due to the action of Jupiter.

The mathematical discussion of Saturn’s rings was taken up first by Laplace,
who demonstrated that a homogeneous solid ring could not be in equilibrium,
and in 1851 by B. Peirce, who proved their non-solidity by showing that even an
irregular solid ring could not be in equilibrium about Saturn. The mechanism
of these rings was investigated by James Clerk Maxwell in an essay to which the
Adams prize was awarded. He concluded that they consisted of an aggregate
of unconnected particles.

The problem of three bodies has been treated in various ways since the
time of Lagrange, but no decided advance towards a more complete algebraic
solution has been made, and the problem stands substantially where it was
left by him. He had made a reduction in the diverential equations to the
seventh order. This was elegantly accomplished in a diverent way by Jacobi in
1843. R. Radau (Comptes Rendus, LXVII., 1868, p. 841) and Allégret (Journal de
Mathématiques, 1875, p. 277) showed that the reduction can be performed on the
equations in their original form. Noteworthy transformations and discussions
of the problem have been given by J. L. F. Bertrand, by Émile Bour (1831–1866)
of the Polytechnic School in Paris, by Mathieu, Hesse, J. A. Serret. H. Bruns
of Leipzig has shown that no advance in the problem of three or of n bodies
may be expected by algebraic integrals, and that we must look to the modern
theory of functions for a complete solution (Acta Math., XI., p. 43).

Among valuable text-books on mathematical astronomy rank the following
works: Manual of Spherical and Practical Astronomy by Chauvenet (1863), Practical
and Spherical Astronomy by Robert Main of Cambridge, Theoretical Astronomy
by James C. Watson of Ann Arbor (1868), Traité élémentaire de Mécanique Céleste
of H. Resal of the Polytechnic School in Paris, Cours d’Astronomie de l’École
Polytechnique by Faye, Traité de Mécanique Céleste by Tisserand, Lehrbuch der
Bahnbestimmung by T. Oppolzer, Mathematische Theorien der Planetenbewegung
by O. Dziobek, translated into English by M. W. Harrington and W. J. Hussey.

During the present century we have come to recognise the advantages
frequently arising from a geometrical treatment of mechanical problems.
To Poinsot, Chasles, and Möbius we owe the most important developments
made in geometrical mechanics. Louis Poinsot (1777–1859), a graduate of the
Polytechnic School in Paris, and for many years member of the superior council
of public instruction, published in 1804 his Éléments de Statique. This work is
remarkable not only as being the earliest introduction to synthetic mechanics,
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but also as containing for the first time the idea of couples, which was applied
by Poinsot in a publication of 1834 to the theory of rotation. A clear conception
of the nature of rotary motion was conveyed by Poinsot’s elegant geometrical
representation by means of an ellipsoid rolling on a certain fixed plane. This
construction was extended by Sylvester so as to measure the rate of rotation of
the ellipsoid on the plane.

A particular class of dynamical problems has recently been treated geo-
metrically by Sir Robert Stawell Ball, formerly astronomer royal of Ireland,
now Lowndean Professor of Astronomy and Geometry at Cambridge. His
method is given in a work entitled Theory of Screws, Dublin, 1876, and in
subsequent articles. Modern geometry is here drawn upon, as was done also
by Clivord in the related subject of Biquaternions. Arthur Buchheim of
Manchester (1859–1888), showed that Grassmann’s Ausdehnungslehre supplies
all the necessary materials for a simple calculus of screws in elliptic space.
Horace Lamb applied the theory of screws to the question of the steady motion
of any solid in a fluid.

Advances in theoretical mechanics, bearing on the integration and the
alteration in form of dynamical equations, were made since Lagrange by
Poisson, William Rowan Hamilton, Jacobi, Madame Kowalevski, and others.
Lagrange had established the “Lagrangian form” of the equations of motion.
He had given a theory of the variation of the arbitrary constants which, however,
turned out to be less fruitful in results than a theory advanced by Poisson.
Poisson’s theory of the variation of the arbitrary constants and the method
of integration thereby avorded marked the first onward step since Lagrange.
Then came the researches of Sir William Rowan Hamilton. His discovery that
the integration of the dynamic diverential equations is connected with the
integration of a certain partial diverential equation of the first order and second
degree, grew out of an attempt to deduce, by the undulatory theory, results
in geometrical optics previously based on the conceptions of the emission
theory. The Philosophical Transactions of 1833 and 1834 contain Hamilton’s
papers, in which appear the first applications to mechanics of the principle of
varying action and the characteristic function, established by him some years
previously. The object which Hamilton proposed to himself is indicated by the
title of his first paper, viz. the discovery of a function by means of which all
integral equations can be actually represented. The new form obtained by him
for the equation of motion is a result of no less importance than that which
was the professed object of the memoir. Hamilton’s method of integration
was freed by Jacobi of an unnecessary complication, and was then applied by
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him to the determination of a geodetic line on the general ellipsoid. With
aid of elliptic co-ordinates Jacobi integrated the partial diverential equation
and expressed the equation of the geodetic in form of a relation between two
Abelian integrals. Jacobi applied to diverential equations of dynamics the
theory of the ultimate multiplier. The diverential equations of dynamics are
only one of the classes of diverential equations considered by Jacobi. Dynamic
investigations along the lines of Lagrange, Hamilton, and Jacobi were made
by Liouville, A. Desboves, Serret, J. C. F. Sturm, Ostrogradsky, J. Bertrand,
Donkin, Brioschi, leading up to the development of the theory of a system of
canonical integrals.

An important addition to the theory of the motion of a solid body about
a fixed point was made by Madame Sophie de Kowalevski (1853–1891), who
discovered a new case in which the diverential equations of motion can be
integrated. By the use of theta-functions of two independent variables she
furnished a remarkable example of how the modern theory of functions may
become useful in mechanical problems. She was a native of Moscow, studied
under Weierstrass, obtained the doctor’s degree at Göttingen, and from 1884
until her death was professor of higher mathematics at the University of
Stockholm. The research above mentioned received the Bordin prize of the
French Academy in 1888, which was doubled on account of the exceptional
merit of the paper.

There are in vogue three forms for the expression of the kinetic energy of
a dynamical system: the Lagrangian, the Hamiltonian, and a modified form
of Lagrange’s equations in which certain velocities are omitted. The kinetic
energy is expressed in the first form as a homogeneous quadratic function of
the velocities, which are the time-variations of the co-ordinates of the system;
in the second form, as a homogeneous quadratic function of the momenta
of the system; the third form, elaborated recently by Edward John Routh of
Cambridge, in connection with his theory of “ignoration of co-ordinates,” and
by A. B. Basset, is of importance in hydrodynamical problems relating to the
motion of perforated solids in a liquid, and in other branches of physics.

In recent time great practical importance has come to be attached to
the principle of mechanical similitude. By it one can determine from the
performance of a model the action of the machine constructed on a larger scale.
The principle was first enunciated by Newton (Principia, Bk. II., Sec. VIII.,
Prop. 32), and was derived by Bertrand from the principle of virtual velocities.
A corollary to it, applied in ship-building, goes by the name of William
Froude’s law, but was enunciated also by Reech.
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The present problems of dynamics diver materially from those of the last
century. The explanation of the orbital and axial motions of the heavenly
bodies by the law of universal gravitation was the great problem solved by
Clairaut, Euler, D’Alembert, Lagrange, and Laplace. It did not involve the
consideration of frictional resistances. In the present time the aid of dynamics
has been invoked by the physical sciences. The problems there arising are often
complicated by the presence of friction. Unlike astronomical problems of a
century ago, they refer to phenomena of matter and motion that are usually
concealed from direct observation. The great pioneer in such problems is Lord
Kelvin. While yet an undergraduate at Cambridge, during holidays spent at
the seaside, he entered upon researches of this kind by working out the theory
of spinning tops, which previously had been only partially explained by Jellet
in his Treatise on the Theory of Friction (1872), and by Archibald Smith.

Among standard works on mechanics are Jacobi’s Vorlesungen über Dynamik,
edited by Clebsch, 1866; Kirchhoff’s Vorlesungen über mathematische Physik,
1876; BenjaminPeirce’sAnalytic Mechanics, 1855; Somoff’sTheoretische Mechanik,
1879; Tait and Steele’s Dynamics of a Particle, 1856; Minchin’s Treatise on Statics;
Routh’s Dynamics of a System of Rigid Bodies; Sturm’s Cours de Mécanique de
l’École Polytechnique.

The equations which constitute the foundation of the theory of fluid motion
were fully laid down at the time of Lagrange, but the solutions actually
worked out were few and mainly of the irrotational type. A powerful
method of attacking problems in fluid motion is that of images, introduced
in 1843 by George Gabriel Stokes of Pembroke College, Cambridge. It
received little attention until Sir William Thomson’s discovery of electrical
images, whereupon the theory was extended by Stokes, Hicks, and Lewis.
In 1849, Thomson gave the maximum and minimum theorem peculiar to
hydrodynamics, which was afterwards extended to dynamical problems in
general.

A new epoch in the progress of hydrodynamics was created, in 1856, by
Helmholtz, who worked out remarkable properties of rotational motion in
a homogeneous, incompressible fluid, devoid of viscosity. He showed that
the vortex filaments in such a medium may possess any number of knottings
and twistings, but are either endless or the ends are in the free surface of the
medium; they are indivisible. These results suggested to Sir William Thomson
the possibility of founding on them a new form of the atomic theory, according
to which every atom is a vortex ring in a non-frictional ether, and as such must
be absolutely permanent in substance and duration. The vortex-atom theory
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is discussed by J. J. Thomson of Cambridge (born 1856) in his classical treatise
on the Motion of Vortex Rings, to which the Adams Prize was awarded in 1882.
Papers on vortex motion have been published also by Horace Lamb, Thomas
Craig, Henry A. Rowland, and Charles Chree.

The subject of jets was investigated by Helmholtz, Kirchhov, Plateau, and
Rayleigh; the motion of fluids in a fluid by Stokes, Sir W. Thomson, Köpcke,
Greenhill, and Lamb; the theory of viscous fluids by Navier, Poisson, Saint-
Venant, Stokes, O. E. Meyer, Stefano, Maxwell, Lipschitz, Craig, Helmholtz,
and A. B. Basset. Viscous fluids present great diHculties, because the equations
of motion have not the same degree of certainty as in perfect fluids, on account
of a deficient theory of friction, and of the diHculty of connecting oblique
pressures on a small area with the diverentials of the velocities.

Waves in liquids have been a favourite subject with English mathematicians.
The early inquiries of Poisson and Cauchy were directed to the investigation of
waves produced by disturbing causes acting arbitrarily on a small portion of
the fluid. The velocity of the long wave was given approximately by Lagrange
in 1786 in case of a channel of rectangular cross-section, by Green in 1839 for a
channel of triangular section, and by P. Kelland for a channel of any uniform
section. Sir George B. Airy, in his treatise on Tides and Waves, discarded
mere approximations, and gave the exact equation on which the theory of the
long wave in a channel of uniform rectangular section depends. But he gave
no general solutions. J. McCowan of University College at Dundee discusses
this topic more fully, and arrives at exact and complete solutions for certain
cases. The most important application of the theory of the long wave is to the
explanation of tidal phenomena in rivers and estuaries.

The mathematical treatment of solitary waves was first taken up by S. Earn-
shaw in 1845, then by Stokes; but the first sound approximate theory was
given by J. Boussinesq in 1871, who obtained an equation for their form, and
a value for the velocity in agreement with experiment. Other methods of
approximation were given by Rayleigh and J. McCowan. In connection with
deep-water waves, Osborne Reynolds gave in 1877 the dynamical explanation
for the fact that a group of such waves advances with only half the rapidity of
the individual waves.

The solution of the problem of the general motion of an ellipsoid in a fluid is
due to the successive labours of Green (1833), Clebsch (1856), and Bjerknes (1873).
The free motion of a solid in a liquid has been investigated by W. Thomson,
Kirchhov, and Horace Lamb. By these labours, the motion of a single solid in
a fluid has come to be pretty well understood, but the case of two solids in a
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fluid is not developed so fully. The problem has been attacked by W. M. Hicks.
The determination of the period of oscillation of a rotating liquid spheroid

has important bearings on the question of the origin of the moon. G. H.
Darwin’s investigations thereon, viewed in the lightofRiemann’sandPoincaré’s
researches, seem to disprove Laplace’s hypothesis that the moon separated from
the earth as a ring, because the angular velocity was too great for stability;
Darwin finds no instability.

The explanation of the contracted vein has been a point of much controversy,
but has been put in a much better light by the application of the principle of
momentum, originated by Froude and Rayleigh. Rayleigh considered also the
reflection of waves, not at the surface of separation of two uniform media,
where the transition is abrupt, but at the confines of two media between which
the transition is gradual.

The first serious study of the circulation of winds on the earth’s surface
was instituted at the beginning of the second quarter of this century by
H. W. Dové, William C. Redfield, and James P. Espy, followed by researches
of W. Reid, Piddington, and Elias Loomis. But the deepest insight into the
wonderful correlations that exist among the varied motions of the atmosphere
was obtained by William Ferrel (1817–1891). He was born in Fulton County,
Pa., and brought up on a farm. Though in unfavourable surroundings, a
burning thirst for knowledge spurred the boy to the mastery of one branch
after another. He attended Marshall College, Pa., and graduated in 1844 from
Bethany College. While teaching school he became interested in meteorology
and in the subject of tides. In 1856 he wrote an article on “the winds and
currents of the ocean.” The following year he became connected with the
Nautical Almanac. A mathematical paper followed in 1858 on “the motion
of fluids and solids relative to the earth’s surface.” The subject was extended
afterwards so as to embrace the mathematical theory of cyclones, tornadoes,
water-spouts, etc. In 1885 appeared his Recent Advances in Meteorology. In the
opinion of a leading European meteorologist (Julius Hann of Vienna), Ferrel
has “contributed more to the advance of the physics of the atmosphere than
any other living physicist or meteorologist.”

Ferrel teaches that the air flows in great spirals toward the poles, both in
the upper strata of the atmosphere and on the earth’s surface beyond the
30th degree of latitude; while the return current blows at nearly right angles
to the above spirals, in the middle strata as well as on the earth’s surface, in
a zone comprised between the parallels 30˝ N. and 30˝ S. The idea of three
superposed currents blowing spirals was first advanced by James Thomson, but
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was published in very meagre abstract.
Ferrel’s views have given a strong impulse to theoretical research in America,

Austria, and Germany. Several objections raised against his argument have
been abandoned, or have been answered by W. M. Davis of Harvard. The
mathematical analysis of F. Waldo of Washington, and of others, has further
confirmed the accuracy of the theory. The transport of Krakatoa dust and
observations made on clouds point toward the existence of an upper east
current on the equator, and Pernter has mathematically deduced from Ferrel’s
theory the existence of such a current.

Another theory of the general circulation of the atmosphere was propounded
by Werner Siemens of Berlin, in which an attempt is made to apply thermody-
namics to aërial currents. Important new points of view have been introduced
recently by Helmholtz, who concludes that when two air currents blow one
above the other in diverent directions, a system of air waves must arise in
the same way as waves are formed on the sea. He and A. Oberbeck showed
that when the waves on the sea attain lengths of from 16 to 33 feet, the air
waves must attain lengths of from 10 to 20 miles, and proportional depths.
Superposed strata would thus mix more thoroughly, and their energy would
be partly dissipated. From hydrodynamical equations of rotation Helmholtz
established the reason why the observed velocity from equatorial regions is
much less in a latitude of, say, 20˝ or 30˝, than it would be were the movements
unchecked.

About 1860 acoustics began to be studied with renewed zeal. The mathemat-
ical theory of pipes and vibrating strings had been elaborated in the eighteenth
century by Daniel Bernoulli, D’Alembert, Euler, and Lagrange. In the first part
of the present century Laplace corrected Newton’s theory on the velocity of
sound in gases, Poisson gave a mathematical discussion of torsional vibrations;
Poisson, Sophie Germain, and Wheatstone studied Chladni’s figures; Thomas
Young and the brothers Weber developed the wave-theory of sound. Sir J. F. W.
Herschel wrote on the mathematical theory of sound for the Encyclopædia
Metropolitana, 1845. Epoch-making were Helmholtz’s experimental and math-
ematical researches. In his hands and Rayleigh’s, Fourier’s series received due
attention. Helmholtz gave the mathematical theory of beats, diverence tones,
and summation tones. Lord Rayleigh (John William Strutt) of Cambridge
(born 1842) made extensive mathematical researches in acoustics as a part of
the theory of vibration in general. Particular mention may be made of his
discussion of the disturbance produced by a spherical obstacle on the waves
of sound, and of phenomena, such as sensitive flames, connected with the



APPLIED MATHEMATICS. 265

instability of jets of fluid. In 1877 and 1878 he published in two volumes a
treatise on The Theory of Sound. Other mathematical researches on this subject
have been made in England by Donkin and Stokes.

The theory of elasticity belongs to this century. Before 1800 no attempt had
been made to form general equations for the motion or equilibrium of an elastic
solid. Particular problems had been solved by special hypotheses. Thus, James
Bernoulli considered elastic laminæ; Daniel Bernoulli and Euler investigated
vibrating rods; Lagrange and Euler, the equilibrium of springs and columns.
The earliest investigations of this century, by Thomas Young (“Young’s modulus
of elasticity”) in England, J. Binet in France, and G. A. A. Plana in Italy, were
chiefly occupied in extending and correcting the earlier labours. Between 1830
and 1840 the broad outline of the modern theory of elasticity was established.
This was accomplished almost exclusively by French writers,—Louis-Marie-
Henri Navier (1785–1836), Poisson, Cauchy, Mademoiselle Sophie Germain
(1776–1831), Félix Savart (1791–1841).

Siméon Denis Poisson (1781–1840) was born at Pithiviers. The boy was put
out to a nurse, and he used to tell that when his father (a common soldier)
came to see him one day, the nurse had gone out and left him suspended by a
thin cord to a nail in the wall in order to protect him from perishing under the
teeth of the carnivorous and unclean animals that roamed on the floor. Poisson
used to add that his gymnastic evorts when thus suspended caused him to
swing back and forth, and thus to gain an early familiarity with the pendulum,
the study of which occupied him much in his maturer life. His father destined
him for the medical profession, but so repugnant was this to him that he was
permitted to enter the Polytechnic School at the age of seventeen. His talents
excited the interest of Lagrange and Laplace. At eighteen he wrote a memoir
on finite diverences which was printed on the recommendation of Legendre.
He soon became a lecturer at the school, and continued through life to hold
various government scientific posts and professorships. He prepared some 400
publications, mainly on applied mathematics. His Traité de Mécanique, 2 vols.,
1811 and 1833, was long a standard work. He wrote on the mathematical theory
of heat, capillary action, probability of judgment, the mathematical theory
of electricity and magnetism, physical astronomy, the attraction of ellipsoids,
definite integrals, series, and the theory of elasticity. He was considered one of
the leading analysts of his time.

His work on elasticity is hardly excelled by that of Cauchy, and second
only to that of Saint-Venant. There is hardly a problem in elasticity to
which he has not contributed, while many of his inquiries were new. The
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equilibrium and motion of a circular plate was first successfully treated by
him. Instead of the definite integrals of earlier writers, he used preferably finite
summations. Poisson’s contour conditions for elastic plates were objected to
by Gustav Kirchhov of Berlin, who established new conditions. But Thomson
and Tait in their Treatise on Natural Philosophy have explained the discrepancy
between Poisson’s and Kirchhov’s boundary conditions, and established a
reconciliation between them.

Important contributions to the theory of elasticity were made by Cauchy.
To him we owe the origin of the theory of stress, and the transition from the
consideration of the force upon a molecule exerted by its neighbours to the
consideration of the stress upon a small plane at a point. He anticipated Green
and Stokes in giving the equations of isotropic elasticity with two constants.
The theory of elasticity was presented by Gabrio Piola of Italy according to
the principles of Lagrange’s Mécanique Analytique, but the superiority of this
method over that of Poisson and Cauchy is far from evident. The influence of
temperature on stress was first investigated experimentally by Wilhelm Weber
of Göttingen, and afterwards mathematically by Duhamel, who, assuming
Poisson’s theory of elasticity, examined the alterations of form which the
formulæ undergo when we allow for changes of temperature. Weber was also
the first to experiment on elastic after-strain. Other important experiments
were made by diverent scientists, which disclosed a wider range of phenomena,
and demanded a more comprehensive theory. Set was investigated by Gerstner
(1756–1832) and Eaton Hodgkinson, while the latter physicist in England and
Vicat (1786–1861) in France experimented extensively on absolute strength.
Vicat boldly attacked the mathematical theories of flexure because they failed
to consider shear and the time-element. As a result, a truer theory of flexure
was soon propounded by Saint-Venant. Poncelet advanced the theories of
resilience and cohesion.

GabrielLamé (1795–1870)wasbornatTours, andgraduatedat thePolytechnic
School. He was called to Russia with Clapeyron and others to superintend
the construction of bridges and roads. On his return, in 1832, he was elected
professor of physics at the Polytechnic School. Subsequently he held various
engineering posts and professorships in Paris. As engineer he took an active
part in the construction of the first railroads in France. Lamé devoted his
fine mathematical talents mainly to mathematical physics. In four works:
Leçons sur les fonctions inverses des transcendantes et les surfaces isothermes; Sur les
coordonnées curvilignes et leurs diverses applications; Sur la théorie analytique de
la chaleur; Sur la théorie mathématique de l’élasticité des corps solides (1852), and
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in various memoirs he displays fine analytical powers; but a certain want of
physical touch sometimes reduces the value of his contributions to elasticity
and other physical subjects. In considering the temperature in the interior
of an ellipsoid under certain conditions, he employed functions analogous
to Laplace’s functions, and known by the name of “Lamé’s functions.” A
problem in elasticity called by Lamé’s name, viz. to investigate the conditions
for equilibrium of a spherical elastic envelope subject to a given distribution
of load on the bounding spherical surfaces, and the determination of the
resulting shifts is the only completely general problem on elasticity which can
be said to be completely solved. He deserves much credit for his derivation and
transformation of the general elastic equations, and for his application of them
to double refraction. Rectangular and triangular membranes were shown by
him to be connected with questions in the theory of numbers. The field of
photo-elasticity was entered upon by Lamé, F. E. Neumann, Clerk Maxwell.
Stokes, Wertheim, R. Clausius, Jellett, threw new light upon the subject of
“rari-constancy” and “multi-constancy,” which has long divided elasticians
into two opposing factions. The uni-constant isotropy of Navier and Poisson
had been questioned by Cauchy, and was now severely criticised by Green and
Stokes.

Barré de Saint-Venant (1797–1886), ingénieur des ponts et chaussées, made
it his life-work to render the theory of elasticity of practical value. The
charge brought by practical engineers, like Vicat, against the theorists led
Saint-Venant to place the theory in its true place as a guide to the practical
man. Numerous errors committed by his predecessors were removed. He
corrected the theory of flexure by the consideration of slide, the theory of
elastic rods of double curvature by the introduction of the third moment, and
the theory of torsion by the discovery of the distortion of the primitively plane
section. His results on torsion abound in beautiful graphic illustrations. In
case of a rod, upon the side surfaces of which no forces act, he showed that the
problems of flexure and torsion can be solved, if the end-forces are distributed
over the end-surfaces by a definite law. Clebsch, in his Lehrbuch der Elasticität,
1862, showed that this problem is reversible to the case of side-forces without
end-forces. Clebsch extended the research to very thin rods and to very thin
plates. Saint-Venant considered problems arising in the scientific design of
built-up artillery, and his solution of them divers considerably from Lamé’s
solution, which was popularised by Rankine, and much used by gun-designers.
In Saint-Venant’s translation into French of Clebsch’s Elasticität, he develops
extensively a double-suHx notation for strain and stresses. Though often
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advantageous, this notation is cumbrous, and has not been generally adopted.
Karl Pearson, professor in University College, London, has recently examined
mathematically the permissible limits of the application of the ordinary theory
of flexure of a beam.

The mathematical theory of elasticity is still in an unsettled condition.
Not only are scientists still divided into two schools of “rari-constancy” and
“multi-constancy,” but diverence of opinion exists on other vital questions.
Among the numerous modern writers on elasticity may be mentioned Émile
Mathieu (1835–1891), professor at Besançon, Maurice Levy of Paris, Charles
Chree, superintendent of the Kew Observatory, A. B. Basset, Sir William
Thomson (Lord Kelvin) of Glasgow, J. Boussinesq of Paris, and others. Sir
William Thomson applied the laws of elasticity of solids to the investigation of
the earth’s elasticity, which is an important element in the theory of ocean-tides.
If the earth is a solid, then its elasticity co-operates with gravity in opposing
deformation due to the attraction of the sun and moon. Laplace had shown
how the earth would behave if it resisted deformation only by gravity. Lamé
had investigated how a solid sphere would change if its elasticity only came
into play. Sir William Thomson combined the two results, and compared
them with the actual deformation. Thomson, and afterwards G. H. Darwin,
computed that the resistance of the earth to tidal deformation is nearly as great
as though it were of steel. This conclusion has been confirmed recently by
Simon Newcomb, from the study of the observed periodic changes in latitude.
For an ideally rigid earth the period would be 360 days, but if as rigid as steel,
it would be 441, the observed period being 430 days.

Among text-books on elasticity may be mentioned the works of Lamé,
Clebsch, Winkler, Beer, Mathieu, W. J. Ibbetson, and F. Neumann, edited by
O. E. Meyer.

Riemann’s opinion that a science of physics only exists since the invention of
diverential equations finds corroboration even in this brief and fragmentary
outline of the progress of mathematical physics. The undulatory theory of
light, first advanced by Huygens, owes much to the power of mathematics:
by mathematical analysis its assumptions were worked out to their last
consequences. Thomas Young (1773–1829) was the first to explain the principle
of interference, both of light and sound, and the first to bring forward the
idea of transverse vibrations in light waves. Young’s explanations, not being
verified by him by extensive numerical calculations, attracted little notice, and
it was not until Augustin Fresnel (1788–1827) applied mathematical analysis
to a much greater extent than Young had done, that the undulatory theory
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began to carry conviction. Some of Fresnel’s mathematical assumptions were
not satisfactory; hence Laplace, Poisson, and others belonging to the strictly
mathematical school, at first disdained to consider the theory. By their
opposition Fresnel was spurred to greater exertion. Arago was the first great
convert made by Fresnel. When polarisation and double refraction were
explained by Young and Fresnel, then Laplace was at last won over. Poisson
drew from Fresnel’s formulæ the seemingly paradoxical deduction that a small
circular disc, illuminated by a luminous point, must cast a shadow with a
bright spot in the centre. But this was found to be in accordance with fact. The
theory was taken up by another great mathematician, Hamilton, who from his
formulæ predicted conical refraction, verified experimentally by Lloyd. These
predictions do not prove, however, that Fresnel’s formulæ are correct, for these
prophecies might have been made by other forms of the wave-theory. The
theory was placed on a sounder dynamical basis by the writings of Cauchy,
Biot, Green, C. Neumann, Kirchhov, McCullagh, Stokes, Saint-Venant, Sarrau,
Lorenz, and Sir William Thomson. In the wave-theory, as taught by Green
and others, the luminiferous ether was an incompressible elastic solid, for the
reason that fluids could not propagate transverse vibrations. But, according
to Green, such an elastic solid would transmit a longitudinal disturbance with
infinite velocity. Stokes remarked, however, that the ether might act like a fluid
in case of finite disturbances, and like an elastic solid in case of the infinitesimal
disturbances in light propagation.

Fresnel postulated the density of ether to be diverent in diverent media,
but the elasticity the same, while C. Neumann and McCullagh assume the
density uniform and the elasticity diverent in all substances. On the latter
assumption the direction of vibration lies in the plane of polarisation, and not
perpendicular to it, as in the theory of Fresnel.

While the above writers endeavoured to explain all optical properties of a
medium on the supposition that they arise entirely from diverence in rigidity
or density of the ether in the medium, there is another school advancing
theories in which the mutual action between the molecules of the body and
the ether is considered the main cause of refraction and dispersion. The chief
workers in this field are J. Boussinesq, W. Sellmeyer, Helmholtz, E. Lommel,
E. Ketteler, W. Voigt, and Sir William Thomson in his lectures delivered at
the Johns Hopkins University in 1884. Neither this nor the first-named school
succeeded in explaining all the phenomena. A third school was founded
by Maxwell. He proposed the electro-magnetic theory, which has received
extensive development recently. It will be mentioned again later. According to
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Maxwell’s theory, the direction of vibration does not lie exclusively in the plane
of polarisation, nor in a plane perpendicular to it, but something occurs in both
planes—a magnetic vibration in one, and an electric in the other. Fitzgerald
and Trouton in Dublin verified this conclusion of Maxwell by experiments on
electro-magnetic waves.

Of recent mathematical and experimental contributions to optics, mention
must be made of H. A. Rowland’s theory of concave gratings, and of A. A.
Michelson’s work on interference, and his application of interference methods
to astronomical measurements.

In electricity the mathematical theory and the measurements of Henry
Cavendish (1731–1810), and in magnetism the measurements of Charles Au-
gustin Coulomb (1736–1806), became the foundations for a system of mea-
surement. For electro-magnetism the same thing was done by Andrè Marie
Ampère (1775–1836). The first complete method of measurement was the
system of absolute measurements of terrestrial magnetism introduced by Gauss
and Wilhelm Weber (1804–1891) and afterwards extended by Wilhelm Weber
and F. Kohlrausch to electro-magnetism and electro-statics. In 1861 the British
Association and the Royal Society appointed a special commission with Sir
William Thomson at the head, to consider the unit of electrical resistance.
The commission recommended a unit in principle like W. Weber’s, but greater
than Weber’s by a factor of 107. The discussions and labours on this subject
continued for twenty years, until in 1881 a general agreement was reached at an
electrical congress in Paris.

A function of fundamental importance in the mathematical theories of
electricity and magnetism is the “potential.” It was first used by Lagrange in
the determination of gravitational attractions in 1773. Soon after, Laplace gave
the celebrated diverential equation,

B2V
Bx2 `

B2V
By2 `

B2V
Bz2 “ 0,

which was extended by Poisson by writing ´4πk in place of zero in the right-
hand member of the equation, so that it applies not only to a point external to
the attracting mass, but to any point whatever. The first to apply the potential
function to other than gravitation problems was George Green (1793–1841).
He introduced it into the mathematical theory of electricity and magnetism.
Green was a self-educated man who started out as a baker, and at his death
was fellow of Caius College, Cambridge. In 1828 he published by subscription
at Nottingham a paper entitled Essay on the application of mathematical analysis
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to the theory of electricity and magnetism. It escaped the notice even of English
mathematicians until 1846, when Sir William Thomson had it reprinted in
Crelle’s Journal, vols. xliv. and xlv. It contained what is now known as “Green’s
theorem” for the treatment of potential. Meanwhile all of Green’s general
theorems had been re-discovered by Sir William Thomson, Chasles, Sturm,
and Gauss. The term potential function is due to Green. Hamilton used the
word force-function, while Gauss, who about 1840 secured the general adoption
of the function, called it simply potential.

Large contributions to electricity and magnetism have been made by William
Thomson. He was born in 1824 at Belfast, Ireland, but is of Scotch descent. He
and his brother James studied in Glasgow. From there he entered Cambridge,
and was graduated as Second Wrangler in 1845. William Thomson, Sylvester,
Maxwell, Clivord, and J. J. Thomson are a group of great men who were
Second Wranglers at Cambridge. At the age of twenty-two W. Thomson
was elected professor of natural philosophy in the University of Glasgow, a
position which he has held ever since. For his brilliant mathematical and
physical achievements he was knighted, and in 1892 was made Lord Kelvin.
His researches on the theory of potential are epoch-making. What is called
“Dirichlet’s principle” was discovered by him in 1848, somewhat earlier than by
Dirichlet. We owe to Sir William Thomson new synthetical methods of great
elegance, viz. the theory of electric images and the method of electric inversion
founded thereon. By them he determined the distribution of electricity on a
bowl, a problem previously considered insolvable. The distribution of static
electricity on conductors had been studied before this mainly by Poisson and
Plana. In 1845 F. E. Neumann of Königsberg developed from the experimental
laws of Lenz the mathematical theory of magneto-electric induction. In
1855 W. Thomson predicted by mathematical analysis that the discharge of
a Leyden jar through a linear conductor would in certain cases consist of a
series of decaying oscillations. This was first established experimentally by
Joseph Henry of Washington. William Thomson worked out the electro-static
induction in submarine cables. The subject of the screening evect against
induction, due to sheets of diverent metals, was worked out mathematically
by Horace Lamb and also by Charles Niven. W. Weber’s chief researches
were on electro-dynamics. Helmholtz in 1851 gave the mathematical theory
of the course of induced currents in various cases. Gustav Robert Kirchhoff
(1824–1887) investigated the distribution of a current over a flat conductor, and
also the strength of current in each branch of a network of linear conductors.

The entire subject of electro-magnetism was revolutionised by James Clerk
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Maxwell (1831–1879). He was born near Edinburgh, entered the University
of Edinburgh, and became a pupil of Kelland and Forbes. In 1850 he went
to Trinity College, Cambridge, and came out Second Wrangler, E. Routh
being Senior Wrangler. Maxwell then became lecturer at Cambridge, in 1856
professor at Aberdeen, and in 1860 professor at King’s College, London. In
1865 he retired to private life until 1871, when he became professor of physics
at Cambridge. Maxwell not only translated into mathematical language the
experimental results of Faraday, but established the electro-magnetic theory
of light, since verified experimentally by Hertz. His first researches thereon
were published in 1864. In 1871 appeared his great Treatise on Electricity and
Magnetism. He constructed the electro-magnetic theory from general equations,
which are established upon purely dynamical principles, and which determine
the state of the electric field. It is a mathematical discussion of the stresses
and strains in a dielectric medium subjected to electro-magnetic forces. The
electro-magnetic theory has received developments from Lord Rayleigh, J. J.
Thomson, H. A. Rowland, R. T. Glazebrook, H. Helmholtz, L. Boltzmann,
O. Heaviside, J. H. Poynting, and others. Hermann von Helmholtz turned his
attention to this part of the subject in 1871. He was born in 1821 at Potsdam,
studied at the University of Berlin, and published in 1847 his pamphlet Ueber
die Erhaltung der Kraft. He became teacher of anatomy in the Academy of Art
in Berlin. He was elected professor of physiology at Königsberg in 1849, at
Bonn in 1855, at Heidelberg in 1858. It was at Heidelberg that he produced
his work on Tonempfindung. In 1871 he accepted the chair of physics at the
University of Berlin. From this time on he has been engaged chiefly on
inquiries in electricity and hydrodynamics. Helmholtz aimed to determine in
what direction experiments should be made to decide between the theories
of W. Weber, F. E. Neumann, Riemann, and Clausius, who had attempted
to explain electro-dynamic phenomena by the assumption of forces acting
at a distance between two portions of the hypothetical electrical fluid,—the
intensity being dependent not only on the distance, but also on the velocity and
acceleration,—and the theory of Faraday and Maxwell, which discarded action
at a distance and assumed stresses and strains in the dielectric. His experiments
favoured the British theory. He wrote on abnormal dispersion, and created
analogies between electro-dynamics and hydrodynamics. Lord Rayleigh
compared electro-magnetic problems with their mechanical analogues, gave a
dynamical theory of divraction, and applied Laplace’s coeHcients to the theory
of radiation. Rowland made some emendations on Stokes’ paper on divraction
and considered the propagation of an arbitrary electro-magnetic disturbance
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and spherical waves of light. Electro-magnetic induction has been investigated
mathematically by Oliver Heaviside, and he showed that in a cable it is an
actual benefit. Heaviside and Poynting have reached remarkable mathematical
results in their interpretation and development of Maxwell’s theory. Most of
Heaviside’s papers have been published since 1882; they cover a wide field.

One part of the theory of capillary attraction, left defective by Laplace,
namely, the action of a solid upon a liquid, and the mutual action between two
liquids, was made dynamically perfect by Gauss. He stated the rule for angles
of contact between liquids and solids. A similar rule for liquids was established
by Ernst Franz Neumann. Chief among recent workers on the mathematical
theory of capillarity are Lord Rayleigh and E. Mathieu.

The great principle of the conservation of energy was established by Robert
Mayer (1814–1878), a physician in Heilbronn, and again independently by
Colding of Copenhagen, Joule, and Helmholtz. James Prescott Joule (1818–
1889) determined experimentally the mechanical equivalent of heat. Helmholtz
in 1847 applied the conceptions of the transformation and conservation of
energy to the various branches of physics, and thereby linked together many
well-known phenomena. These labours led to the abandonment of the
corpuscular theory of heat. The mathematical treatment of thermic problems
was demanded by practical considerations. Thermodynamics grew out of the
attempt to determine mathematically how much work can be gotten out of a
steam engine. Sadi-Carnot, an adherent of the corpuscular theory, gave the
first impulse to this. The principle known by his name was published in 1824.
Though the importance of his work was emphasised by B. P. E. Clapeyron,
it did not meet with general recognition until it was brought forward by
William Thomson. The latter pointed out the necessity of modifying Carnot’s
reasoning so as to bring it into accord with the new theory of heat. William
Thomson showed in 1848 that Carnot’s principle led to the conception of an
absolute scale of temperature. In 1849 he published “an account of Carnot’s
theory of the motive power of heat, with numerical results deduced from
Regnault’s experiments.” In February, 1850, Rudolph Clausius (1822–1888),
then in Zürich (afterwards professor in Bonn), communicated to the Berlin
Academy a paper on the same subject which contains the Protean second
law of thermodynamics. In the same month William John M. Rankine
(1820–1872), professor of engineering and mechanics at Glasgow, read before
the Royal Society of Edinburgh a paper in which he declares the nature of
heat to consist in the rotational motion of molecules, and arrives at some of
the results reached previously by Clausius. He does not mention the second
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law of thermodynamics, but in a subsequent paper he declares that it could be
derived from equations contained in his first paper. His proof of the second
law is not free from objections. In March, 1851, appeared a paper of William
Thomson which contained a perfectly rigorous proof of the second law. He
obtained it before he had seen the researches of Clausius. The statement of this
law, as given by Clausius, has been much criticised, particularly by Rankine,
Theodor Wand, P. G. Tait, and Tolver Preston. Repeated evorts to deduce it
from general mechanical principles have remained fruitless. The science of
thermodynamics was developed with great success by Thomson, Clausius, and
Rankine. As early as 1852 Thomson discovered the law of the dissipation of
energy, deduced at a later period also by Clausius. The latter designated the
non-transformable energy by the name entropy, and then stated that the entropy
of the universe tends toward a maximum. For entropy Rankine used the term
thermodynamic function. Thermodynamic investigations have been carried on
also by G. Ad. Hirn of Colmar, and Helmholtz (monocyclic and polycyclic
systems). Valuable graphic methods for the study of thermodynamic relations
were devised in 1873–1878 by J. Willard Gibbs of Yale College. Gibbs first gives
an account of the advantages of using various pairs of the five fundamental
thermodynamic quantities for graphical representation, then discusses the
entropy-temperature and entropy-volume diagrams, and the volume-energy-
entropy surface (described in Maxwell’s Theory of Heat). Gibbs formulated
the energy-entropy criterion of equilibrium and stability, and expressed it in a
form applicable to complicated problems of dissociation. Important works on
thermodynamics have been prepared by Clausius in 1875, by R. Rühlmann in
1875, and by Poincaré in 1892.

In the study of the law of dissipation of energy and the principle of least
action, mathematics and metaphysics met on common ground. The doctrine
of least action was first propounded by Maupertius in 1744. Two years later
he proclaimed it to be a universal law of nature, and the first scientific proof
of the existence of God. It was weakly supported by him, violently attacked
by König of Leipzig, and keenly defended by Euler. Lagrange’s conception
of the principle of least action became the mother of analytic mechanics, but
his statement of it was inaccurate, as has been remarked by Josef Bertrand in
the third edition of the Mécanique Analytique. The form of the principle of
least action, as it now exists, was given by Hamilton, and was extended to
electro-dynamics by F. E. Neumann, Clausius, Maxwell, and Helmholtz. To
subordinate the principle to all reversible processes, Helmholtz introduced
into it the conception of the “kinetic potential.” In this form the principle has
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universal validity.
An ovshoot of the mechanical theory of heat is the modern kinetic theory

of gases, developed mathematically by Clausius, Maxwell, Ludwig Boltzmann
of Munich, and others. The first suggestions of a kinetic theory of matter
go back as far as the time of the Greeks. The earliest work to be mentioned
here is that of Daniel Bernoulli, 1738. He attributed to gas-molecules great
velocity, explained the pressure of a gas by molecular bombardment, and
deduced Boyle’s law as a consequence of his assumptions. Over a century
later his ideas were taken up by Joule (in 1846), A. K. Krönig (in 1856), and
Clausius (in 1857). Joule dropped his speculations on this subject when he
began his experimental work on heat. Krönig explained by the kinetic theory
the fact determined experimentally by Joule that the internal energy of a gas
is not altered by expansion when no external work is done. Clausius took
an important step in supposing that molecules may have rotary motion, and
that atoms in a molecule may move relatively to each other. He assumed
that the force acting between molecules is a function of their distances, that
temperature depends solely upon the kinetic energy of molecular motions,
and that the number of molecules which at any moment are so near to each
other that they perceptibly influence each other is comparatively so small that
it may be neglected. He calculated the average velocities of molecules, and
explained evaporation. Objections to his theory, raised by Buy’s-Ballot and
by Jochmann, were satisfactorily answered by Clausius and Maxwell, except in
one case where an additional hypothesis had to be made. Maxwell proposed
to himself the problem to determine the average number of molecules, the
velocities of which lie between given limits. His expression therefor constitutes
the important law of distribution of velocities named after him. By this law
the distribution of molecules according to their velocities is determined by
the same formula (given in the theory of probability) as the distribution of
empirical observations according to the magnitude of their errors. The average
molecular velocity as deduced by Maxwell divers from that of Clausius by
a constant factor. Maxwell’s first deduction of this average from his law of
distribution was not rigorous. A sound derivation was given by O. E. Meyer
in 1866. Maxwell predicted that so long as Boyle’s law is true, the coeHcient
of viscosity and the coeHcient of thermal conductivity remain independent
of the pressure. His deduction that the coeHcient of viscosity should be
proportional to the square root of the absolute temperature appeared to be at
variance with results obtained from pendulum experiments. This induced him
to alter the very foundation of his kinetic theory of gases by assuming between



APPLIED MATHEMATICS. 276

the molecules a repelling force varying inversely as the fifth power of their
distances. The founders of the kinetic theory had assumed the molecules of a
gas to be hard elastic spheres; but Maxwell, in his second presentation of the
theory in 1866, went on the assumption that the molecules behave like centres
of forces. He demonstrated anew the law of distribution of velocities; but the
proof had a flaw in argument, pointed out by Boltzmann, and recognised by
Maxwell, who adopted a somewhat diverent form of the distributive function
in a paper of 1879, intended to explain mathematically the evects observed in
Crookes’ radiometer. Boltzmann gave a rigorous general proof of Maxwell’s
law of the distribution of velocities.

None of the fundamental assumptions in the kinetic theory of gases leads
by the laws of probability to results in very close agreement with observation.
Boltzmann tried to establish kinetic theories of gases by assuming the forces
between molecules to act according to diverent laws from those previously
assumed. Clausius, Maxwell, and their predecessors took the mutual action of
molecules in collision as repulsive, but Boltzmann assumed that they may be
attractive. Experiments of Joule and Lord Kelvin seem to support the latter
assumption.

Among the latest researches on the kinetic theory is Lord Kelvin’s disproof
of a general theorem of Maxwell and Boltzmann, asserting that the average
kinetic energy of two given portions of a system must be in the ratio of the
number of degrees of freedom of those portions.



ADDENDA.

. The new Akhmim papyrus, written in Greek, is probably the copy of an older papyrus,
antedating Heron’s works, and is the oldest extant text-book on practical Greek arithmetic. It
contains, besides arithmetical examples, a table for finding “unit-fractions,” identical in scope
with that of Ahmes, and, like Ahmes’s, without a clue as to its mode of construction. See
Biblioth. Math., 1893, p. 79–89. The papyrus is edited by J. Baillet (Mémoires publiés par les
membres de la mission archéologique française au Caire, T. IX., 1r fascicule, Paris, 1892, p. 1–88).

. Chasles’s or Simson’s definition of a Porism is preferable to Proclus’s, given in the text. See
Gow, p. 217–221.

. Nasir Eddin for the first time elaborated trigonometry independently of astronomy and to
such great perfection that, had his work been known, Europeans of the 15th century might have
spared their labours. See Biblioth. Math., 1893, p. 6.

. This law of sines was probably known before Gabir ben Aflah to Tabit ben Korra and others.
See Biblioth. Math., 1893, p. 7.

. Athelard was probably not the first to translate Euclid’s Elements from the Arabic. See
M. Cantor’s Vorlesungen, Vol. II., p. 91, 92.

. G. Eneström argues that Taylor and not Nicole is the real inventor of finite diverences. See
Biblioth. Math., 1893, p. 91.

. An earlier publication in which 3.14159 . . . is designated by π, is W. Jones’s Synopsis
palmariorum matheseos, London, 1706, p. 243, 263 et seq. See Biblioth. Math., 1894, p. 106.

. Before Gauss a theorem on convergence, usually attributed to Cauchy, was given by
Maclaurin (Fluxions, § 350). A rule of convergence was deduced also by Stirling. See Bull. N. Y.
Math. Soc., Vol. III., p. 186.

. The surface of a solid with p holes was considered before Clivord by Tonelli, and was
probably used by Riemann himself. See Math. Annalen, Vol. 45, p. 142.

. As early as 1835, Lobachevsky showed in a memoir the necessity of distinguishing between
continuity and diverentiability. See G. B. Halsted’s transl. of A. Vasiliev’s Address on Lobachevsky,
p. 23.

Recent deaths. Johann Rudolf Wolf, Dec. 6, 1893; Heinrich Hertz, Jan. 1, 1894; Eugène Catalan,
Feb. 14, 1894; Hermann von Helmholtz, Sept. 8, 1894; Arthur Cayley, Jan. 26, 1895.
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formerly Scholar of Hertford College, Oxford. Intended for use in the lower forms of
schools together with the ordinary text-books, so that the learner’s progress can from
time to time be tested. 60 cents.

SANDHURST MATHEMATICAL PAPERS for Admission into the Royal Military College,
for the Years 1881–1889. Edited by E. J. Brook-Smith, B.A., LL.M., St. John’s College,
Cambridge. 12mo. $1.00.

SMITH: Mathematical Examples. By R. Prowde Smith. $1.50.
WARD: Trigonometry, Examination Papers in. By G. H. Ward, M.A. 60 cents.

Key (for Tutors only). $1.25.
WRIGLEY: Collection of Examples and Problems in Arithmetic, Algebra, Geometry,

Logarithms, Trigonometry, Conic Sections, Mechanics, etc., with Answers and Occasional
Hints. By the Rev. A. Wrigley. Tenth Edition, Twentieth Thousand. 8vo. $2.00.

A Key or Companion to the above. Second Edition. $2.60.
WOLSTENHOLME: Works of Joseph Wolstenholme, D.Sc.

Mathematical Problems on Subjects Included in the First and Second Division of the
Schedule of Subjects for the Cambridge Mathematical Tripos Examination. New
Edition, Enlarged. 8vo. $4.50.

Seven-Figure Logarithms. Examples for Practice in the Use of. For Colleges and Schools.
8vo. $1.25.

WOOLWICH MATHEMATICAL PAPERS for Admission into the Royal Military Academy,
for the Years 1880–1888. Edited by E. J. Brook-Smith, B.A., LL.M., St. John’s College,
Cambridge; Instructor of Mathematics at Royal Military Academy, Woolwich. 12mo.
$1.75.

HIGHER PURE MATHEMATICS.
AIRY: Works by Sir G. B. Airy, K.C.B., formerly Astronomer-Royal.

Elementary Treatise on Partial Differential Equations. With Diagrams. Second Edition.
12mo. $1.50.

On the Algebraical and Numerical Theory of Errors of Observations and the Combination
of Observations. Second Edition, Revised. 12mo. $1.75.

BESANT: Notes on Roulettes and Glissettes. By W. H. Besant, D.Sc., F.R.S. Second Edition,
Enlarged. $1.25.

BOOLE: A Treatise on the Calculus of Finite Differences. By the late George Boole. Edited
by J. F. Moulton. Third Edition. 12mo. $2.60.
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CAYLEY: Elementary Treatise on Elliptic Functions. By Arthur Cayley, D.Sc., F.R.S. (New
Edition preparing.)

EDWARDS: Differential Calculus. With Applications and Numerous Examples. An
Elementary Treatise. By Joseph Edwards, M.A. 12mo. $2.75.

Differential Calculus for Beginners. 16mo. $1.10.
FERRERS: An Elementary Treatise on Spherical Harmonics and Subjects Connected with

Them. By Rev. N. M. Ferrers, D.D., F.R.S. 12mo. $1.90. (Out of print.)
A Treatise on Trilinear Co-ordinates. New Edition. $1.75.

FORSYTH: Works by Andrew Russell Forsyth, M.A.

A Treatise on Differential Equations. 8vo. $3.75.
Theory of Differential Equations. Part I. Exact Equations and Pfav’s Problems. 8vo. $3.75.
A Treatise on the Theory of Functions of a Complex Variable. Royal 8vo. $8.50.

FLEISCHER: A System of Volumetric Analysis. With Illustrations. $2.00.
FROST: An Elementary Treatise on Curve Tracing. By Percival Frost, M.A. 8vo. $3.00.
GREENHILL: Differential and Integral Calculus. With Applications. By Alfred George

Greenhill, M.A. 12mo. $2.00.
Application of Elliptic Functions. 8vo. $3.00.

HEMMING: An Elementary Treatise on the Differential and Integral Calculus. By G. W.

Hemming, M.A. 8vo. $2.50.
HUNTER (H. St. J.): Decimal Approximations. 18mo. 40 cents.

A Key to Dr. Todhunter’s Diverential Calculus. $2.60.
KELLAND and TAIT: Introduction to Quaternions. With Examples. By P. Kelland, M.A.,

and P. G. Tait, M.A. Second Edition. 12mo. $2.00.
KEMPE: How to Draw a Straight Line. A Lecture on Linkages. By A. B. Kempe, B.A. With

Illustrations. 12mo. 50 cents.
KNOX: Differential Calculus for Beginners. With Examples. By Alexander Knox, B.A.

16mo. 90 cents.
LOVE: Treatise on the Mathematical Theory of Elasticity. 8vo. Vol. I. $3.00. Vol. II. $3.00.
MESSENGER OF MATHEMATICS: Edited by J. W. L. Glaisher. Published Monthly.

35 cents each number.
MORLEY and HARKNESS: The Theory of Functions. By Frank Morley, M.A., Professor

of Mathematics, Haverford College, Pa., and James Harkness, M.A., Professor of
Mathematics, Bryn Mawr College, Pa. 8vo. $5.00.

MUIR: Works by Thomas Muir, Mathematical Master in the High School, Glasgow.
A Treatise on the Theory of Determinants. With Examples. 12mo. New Edition. $2.25.
The Theory of Determinants in the Historical Order of its Development. Part I.

Determinants in General. Leibnitz (1693) to Cayley (1841). 8vo. $2.50.
PRICE: Treatise on Infinitesimal Calculus. By Bartholomew Price, M.A., F.R.S., Professor of

Natural Philosophy, Oxford.
Vol. I. Differential Calculus. Second Edition. 8vo. $3.75.
Vol. II. Integral Calculus, Calculus of Variations, and Differential Equations. 8vo.

(Reprinting.)
Vol. III. Statics, including Attractions; Dynamics of a Material Particle. 8vo. $4.00.
Vol. IV. Dynamics of Material Systems. Together with a Chapter on Theoretical Dynamics,

by W. F. Donkin, M.A. 8vo. $4.50.
SCOTT: A Treatise on the Theory of Determinants and their Applications in Analysis and

Geometry. By Robert Scott, M.A. 8vo. $3.50.
SMALLEY: Facts and Formulæ in Pure Mathematics and Natural Philosophy. Containing

Facts, Formulæ, Symbols, and Definitions. By the late G. R. Smalley, B.A., F.R.A.S. New
Edition by J. M’Dowell, M.A., F.R.A.S. 16mo. 70 cents.

SMITH: Mathematical Papers of the late Rev. J. S. Smith, Savilian Professor of Geometry in
the University of Oxford, With Portrait and Memoir. 2 vols. 4to. (In Preparation.)

TAIT: An Elementary Treatise on Quaternions. By P. G. Tait, M.A., Professor of Natural
Philosophy in the University of Edinburgh. Third Edition, Much Enlarged. 8vo. $5.50.

TODHUNTER: Works by Isaac Todhunter, F.R.S.
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An Elementary Treatise on the Theory of Equations. 12mo. $1.80.
A Treatise on the Differential Calculus. 12mo. $2.60. Key. $2.60.
A Treatise on the Integral Calculus and its Applications. 12mo. $2.60. Key. $2.60.
An Elementary Treatise on Laplace’s Lamé’s and Bessel’s Functions. 12mo. $2.60. (Out of

print.)
WATSON and BURBURY: A Treatise on the Application of Generalized Co-ordinates to the

Kinetics of a Material System. By H. W. Watson and S. H. Burbury. 8vo. $1.50.
WELD: A Short Course in the Theory of Determinants. By Laenas Gifford Weld, B.S.,

M.A. $1.90.
WHITWORTH: Trilinear Co-ordinates, and other methods of Modern Analytical Geometry of

Two Dimensions. An Elementary Treatise. By W. Allen Whitworth, M.A. 8vo. $4.00.

MECHANICS.
ALDIS: Rigid Dynamics, An Introductory Treatise on. By W. Steadman Aldis, M.A. $1.00.
ALEXANDER and THOMPSON: Elementary Applied Mechanics. Part II. Transverse

Stress. $2.75.
BALL: Experimental Mechanics. A Course of Lectures delivered to the Royal College of

Science for Ireland. By Sir R. S. Ball, LL.D., F.R.S. Second Edition. With Illustrations.
12mo. $1.50.

BASSET: A Treatise on Hydrodynamics. 2 vols. 8vo. $9.00.
An Elementary Treatise on Hydrodynamics and Sound. 8vo. $3.00.
A Treatise on Physical Optics. 8vo. $6.00.

BAYNES: Lessons on Thermodynamics. By R. E. Baynes, M.A. 12mo. $1.90.
BESANT: A Treatise on Hydromechanics. Fifth Edition, Revised. Part I. Hydrostatics. 12mo.

$1.25.
A Treatise on Dynamics. $1.75.
Elementary Hydrostatics. 16mo. $1.00.
Solutions to the Examples. (In the Press.)

CLIFFORD: Works by W. Kingdon Clifford, F.R.S.
Elements of Dynamic. An Introduction to the Study of Motion and Rest in Solid and Fluid

Bodies.
Part I. Books I.–III. 12mo. $1.90.
Part II. Book IV. and Appendix. 12mo. $1.75.

COTTERILL: Applied Mechanics. An Elementary General Introduction to the Theory of
Structures and Machines. By James H. Cotterill, F.R.S. 8vo. $5.00.

COTTERILL and SLADE: Elementary Manual of Applied Mechanics. By Prof. J. H.

Cotterill, F.R.S., and J. H. Slade. 12mo. $1.25.
CREMONA (Luigi): Graphical Statics. Two Treatises on the Graphical Calculus and

Reciprocal Figures in Graphical Calculus. Authorized English Translation by T. Hudson

Beare. 8vo. $2.25.
GARNETT: Elementary Dynamics, A Treatise on. For the Use of Colleges and Schools. By

William Garnett, M.A., D.C.L. Fifth Edition, Revised. $1.50.
GOODWIN: Elementary Statics. By H. Goodwin, D.D., Bishop of Carlisle. Second Edition.

75 cents.
GREAVES. Works by John Greaves, M.A.

A Treatise on Elementary Statics. Second Edition, Revised. 12mo. $1.90.
Statics for Beginners. 16mo. 90 cents.
Treatise on Elementary Hydrostatics. 12mo. $1.10.

GREENHILL: Hydrostatics. By A. G. Greenhill. 12mo. $1.90.
GUILLEMIN (A.): The Applications of Physical Forces. Translated and Edited by J. Norman

Lockyer, F.R.S. With Colored Plates and Illustrations. Royal 8vo. $6.50.
HICKS: Elementary Dynamics of Particles and Solids. By W. M. Hicks. 12mo. $1.60.
HOROBIN: Elementary Mechanics. Stage I. By J. C. Horobin, B.A. With Numerous

Illustrations. 12mo. Cloth. 50 cents. Stages II. and III. (In Preparation.)
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Theoretical Mechanics. Division I. (In the Press.)
HOSKINS: The Elements of Graphic Statics. A Text-book for Students of Engineering. By

L. M. Hoskins, C.E., M.S. 8vo. $2.25.
JELLETT: A Treatise on the Theory of Friction. By John H. Jellett, B.D., late Provost of

Trinity College, Dublin. 8vo. $2.25.
JESSOP: The Elements of Applied Mathematics, including Kinetics, Statics, and Hydrostatics.

By C. M. Jessop. $1.25.
KENNEDY: The Mechanics of Machinery. By Alexander B. W. Kennedy, F.R.S. With

Illustrations. 12mo. $3.50.
LAMB: Hydrodynamics. A Treatise on the Mathematical Theory of Fluid Motion. By

H. Lamb. 8vo. $3.00.
LOCK: Works by the Rev. J. B. Lock, M.A.

Dynamics for Beginners. 16mo. $1.00.
Elementary Statics. 16mo. $1.10. Key. 12mo. $2.25.
Mechanics for Beginners. Part I. 90 cents. Mechanics of Solids.
Elementary Hydrostatics. (In Preparation.)
Mechanics of Solids. 16mo. (In the Press.)
Mechanics of Fluids. 16mo. (In the Press.)

LONEY: A Treatise on Elementary Dynamics. New and Enlarged Edition. By S. L. Loney,
M.A. 12mo. $1.90.

Solutions of the Examples contained in the Above. 12mo. $1.90.
The Elements of Statics and Dynamics.
Part I. Elements of Statics. $1.25.
Part II. Elements of Dynamics. $1.00.
Complete in one volume. 12mo. $1.90. Key. 12mo. $1.90.
Mechanics and Hydrostatics for Beginners. 16mo. $1.25.

MACGREGOR: An Elementary Treatise on Kinematics and Dynamics. By James Gordon

Macgregor, M.A., D.Sc., Munro Professor of Physics, Dalhousie College, Halifax. 12mo.
$2.60.

MINCHIN: Works by G. M. Minchin, M.A.

A Treatise on Statics. Third Edition, Corrected and Enlarged.
Vol. I. Equilibrium of Coplanar Forces. 8vo. $2.25.
Vol. II. Statics. 8vo. $4.00.
Uniplanar Kinematics of Solids and Fluids. 12mo. $1.90.
Hydrostatics and Elementary Hydrokinetics. $2.60.

PARKINSON (R. M.): Structural Mechanics. $1.10.
PARKINSON: A Treatise on Elementary Mechanics. For the use of the Junior Classes at

the University and the Higher Classes in Schools. With a collection of Examples by
S. Parkinson, F.R.S. Sixth Edition. 12mo. $2.25.

PIRIE: Lessons on Rigid Dynamics. By the Rev. G. Pirie, M.A. 12mo. $1.50.
RAWLINSON: Elementary Statics. By G. Rawlinson, M.A. Edited by E. Sturges. 8vo. $1.10.
ROUTH: Works by E. J. Routh, LL.D., F.R.S.

A Treatise on the Dynamics of a System of Rigid Bodies. With Examples. New Edition,
Revised and Enlarged. 8vo. In Two Parts.

Part I. Elementary. Fifth Edition, Revised and Enlarged. $3.75.
Part II. Advanced. $3.75.
Stability of a Given State of Motion, Particularly Steady Motion. 8vo. $2.25.
A Treatise on Analytical Statics. With Numerous Examples. Vol. I. 8vo. $3.75.

SANDERSON: Hydrostatics for Beginners. By F. W. Sanderson, M.A. 16mo. $1.10.
SELBY: Elementary Mechanics of Solids and Fluids. $1.90.
SYLLABUS OF ELEMENTARY DYNAMICS.

Part I. Linear Dynamics. With an Appendix on the Meanings of the Symbols in Physical
Equations. Prepared by the Association for the Improvement of Geometrical Teaching.
4to. 30 cents.
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TAIT and STEELE: A Treatise on Dynamics of a Particle. By Professor Tait, M.A., and W. J.

Steele. Sixth Edition, Revised. 12mo. $3.00.
TAYLOR: Resistance of Ships, and Screw Propulsion. By D. W. Taylor. $3.75.
TODHUNTER. Works by Isaac Todhunter, F.R.S.

Mechanics for Beginners. With Numerous Examples. New Edition. 18mo. $1.10. Key. $1.75.
A Treatise on Analytical Statics. Fifth Edition. Edited by Professor J. D. Everett, F.R.S.

12mo. $2.60.
WALTON: Mechanics, A Collection of Problems in Elementary. By W. Walton, M.A. Second

Edition. $1.50.
Problems in Theoretical Mechanics. Third Edition, Revised. With the addition of many

fresh Problems. By W. Walton, M.A. 8vo. $4.00.
WEISBACH and HERRMANN: The Mechanics of Hoisting Machinery, including Accumula-

tors, Excavators, and Pile-Drivers. A Text-Book for Technical Schools, and a Guide for
Practical Engineers. By Dr. Julius Weisbach and Professor Gustav Herrmann. Authorized
Translation from the Second German Edition. By Karl P. Dahlstrom, M.E., Instructor of
Mechanical Engineering in the Lehigh University. With 177 Illustrations. $3.75.

ZIWET: An Elementary Treatise on Theoretical Mechanics. In Three Parts: Kinematics,
Statics, and Dynamics. By Alexander Ziwet, University of Michigan.

Part I. $2.25. Part II. $2.25. Part III. (In Preparation.)

PHYSICS.
AIRY. Works by Sir G. B. Airy, K.C.B., formerly Astronomer-Royal.

On Sound and Atmospheric Vibrations. With the Mathematical Elements of Music.
Designed for the Use of Students in the University. Second Edition, Revised and Enlarged.
12mo. $2.50.

Gravitation. An Elementary Explanation of the Principal Perturbations in the Solar System.
New Edition. 12mo. $1.90.

ALDIS: Geometrical Optics. An Elementary Treatise. By W. Steadman Aldis, M.A. Third
Edition, Revised. 12mo. $1.00.

CLAUSIUS: Mechanical Theory of Heat. By R. Clausius. Translated by Walter R. Browne,
M.A. 12mo. $2.60.

DANIELL: A Text-Book of the Principles of Physics. By Alfred Daniell, D.Sc. Illustrated.
New Edition, Revised and Enlarged. 8vo. $3.50.

DAUBENY’S Introduction to the Atomic Theory. 16mo. $1.50.
DONKIN (W. F.): Acoustics. Second Edition. 12mo. $1.90.
EVERETT: Units and Physical Constants. By J. D. Everett, F.R.S., Professor of Natural

Philosophy, Queen’s College, Belfast. New Edition. 16mo. $1.25.
FERRERS: Spherical Harmonics and Subjects Connected with them. By Rev. N. M. Ferrers,

D.D., F.R.S. 12mo. $1.90.
FISHER: Physics of the Earth’s Crust. By Osmond Fisher. Second Edition, Enlarged. 8vo.

$3.50.
FOURIER: The Analytical Theory of Heat. By Joseph Fourier. Translated with Notes, by

A. Freeman, M.A. 8vo. $4.50.
GALLATLY: Physics, Examples in Elementary. Comprising Statics, Dynamics, Hydrostatics,

Heat, Light, Chemistry, and Electricity. With Examination Papers. By W. Gallatly, M.A.

$1.00.
GARNETT: Heat, An Elementary Treatise on. By W. Garnett, M.A., D.C.L. Fifth Edition,

Revised and Enlarged. $1.10.
GLAZEBROOK: Heat. By R. T. Glazebrook, M.A., F.R.S. $1.00.

Light. Cambridge Natural Science Manuals. $1.00.
HEATH: Treatise on Geometrical Optics. By R. S. Heath. 8vo. $3.50.

An Elementary Treatise on Geometrical Optics. By R. S. Heath. 12mo. $1.25.
HOGG’S (Jabez) Elements of Experimental and Natural Philosophy. With Index and

upwards of 400 Woodcuts. $1.50.
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IBBETSON: The Mathematical Theory of Perfectly Elastic Solids. With a Short Account of
Viscous Fluids. By W. J. Ibbetson, late Senior Scholar of Clare College, Cambridge. 8vo.
$5.00.

JELLETT (John H. B. D.): A Treatise on the Theory of Friction. 8vo. $2.25.
JONES: Examples in Physics. By D. E. Jones, B.Sc. 16mo. 90 cents.

Sound, Light, and Heat. An Elementary Text-book. By D. E. Jones, B.Sc., author of
“Examples in Physics,” etc. With Illustrations. 16mo. 70 cents.

Lessons in Heat and Light. 16mo. $1.00.
LOEWY. Works by B. Loewy, F.R.A.S.

Experimental Physics. Questions and Examples in Physics, Sound, Light, Heat, Electricity,
and Magnetism. 16mo. 50 cents.

A Graduated Course of Natural Science, Experimental and Theoretical, for Schools and
Colleges. Part I. First Year’s Course for Elementary Schools and the Junior Classes of
Technical Schools and Colleges. 16mo. 60 cents. Part II. 60 cents.

LOVE: Treatise on the Mathematical Theory of Elasticity. 8vo. Vol. I. $3.00. Vol. II. $3.00.
LUPTON: Numerical Tables and Constants in Elementary Science. By Sydney Lupton.

16mo. 70 cents.
MACFARLANE: Physical Arithmetic. By Alexander Macfarlane, Professor of Physics,

University of Texas. 12mo. $1.90.
MAXWELL: The Scientific Papers of James Clerk Maxwell, M.A., LL.D. B.Sc., etc., etc. Edited

by W. D. Niven, M.A., F.R.S. With Steel Portraits and Page Plates. 2 vols. 4to. $25.00.
McAULAY (A.): Utility of Quaternions in Physics. 8vo. $1.60.
MOLLOY: Gleanings in Science. A Series of Popular Lectures on Scientific Subjects. By the

Rev. Gerard Molloy, D.D., D.Sc. 8vo. $2.25.
NEWTON’S Principia. Edited by Professor Sir W. Thomson and Professor Blackburn. (Latin

Text.) 4to. $12.00.
This volume does not contain an English Translation.
First Book. Sections I., II., III. With Notes and Problems. By P. Frost, M.A. Third Edition.

8vo. $3.00.
The First Three Sections of Newton’s Principia, with an Appendix; and the Ninth and

Eleventh Sections. By J. H. Evans, M.A. The Fifth Edition, edited by P. T. Main. $1.00.
PARKER: A Treatise on Thermodynamics. By T. Parker, M.A., Fellow of St. John’s College,

Cambridge. $2.25.
PARKINSON: A Treatise on Optics. By S. Parkinson, D.D., F.R.S. Fourth Edition, Revised

and Enlarged. 12mo. $2.50.
PEARSON: A History of the Theory of Elasticity. By Isaac Todhunter. Edited by Professor

Karl Pearson. Vol. I. Galilei to Saint-Venant, 1639–1850. 8vo. $6.00. Vol. II. Saint-Venant
to Lord Kelvin (Sir William Thomson). In Two Parts. $7.50.

PERRY: An Elementary Treatise on Steam. By John Perry. With Woodcuts, Numerical
Examples, and Exercises. 18mo. $1.10.

PRESTON: The Theory of Light. By Thomas Preston. With Illustrations. 8vo. $3.25.
The Theory of Heat. By the same author. 8vo. $5.50.

RAYLEIGH: The Theory of Sound. By Lord Rayleigh, M.A., F.R.S. 8vo. New edition in two
volumes. (In the Press.)

Vol. I. $3.25. (Out of Print.)
Vol. II. $3.25.
Vol. III. (In the Press.)

SAINT-VENANT (Barri de): The Elastic Researches of. Edited for the Syndics of the
Cambridge University Press by Karl Pearson, M.A. 8vo. $2.75.

SHANN: An Elementary Treatise on Heat in Relation to Steam and the Steam-Engine. By
G. Shann, M.A. With Illustrations. 12mo. $1.10.

SHAW: Practical Work at the Cavendish Laboratory. Edited by W. N. Shaw.
Heat. 8vo. 90 cents.

SPOTTISWOODE: Polarization of Light. By W. Spottiswoode, LL.D. Illustrated. 12mo.
$1.25.
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STEWART. Works by Balfour Stewart, F.R.S.
Lessons in Elementary Physics. With Illustrations and colored Diagrams. 16mo. $1.10.
Questions on the Same for Schools. By T. H. Core. 40 cents.
A Treatise on Heat. With Numerous Woodcuts and Diagrams. Fourth Edition. 16mo. $1.90.

STEWART and GEE: Lessons on Elementary Practical Physics. By Balfour Stewart, M.A.,
LL.D., F.R.S., and W. W. Haldane Gee.

Vol. I. General Physical Processes. 12mo. $1.50.
Vol. II. Electricity and Magnetism. $2.25.
Vol. III. Optics, Heat, and Sound. (In the Press.)
Practical Physics for Schools and the Junior Students of Colleges.
Vol. I. Electricity and Magnetism. 16mo. 60 cents.
Vol. II. Optics, Heat, and Sound. (In the Press.)

STOKES. Works by George Gabriel Stokes, F.R.S.
On Light. Burnett Lectures. On the Nature of Light. On Light as a Means of Investigation.

On the Beneficial Evects of Light. 12mo. $2.00.
Mathematical and Physical Papers. 8vo.
Vol. I. $3.75. Vol. II. $3.75. Vol. III. (In the Press.)

STONE: Elementary Lessons on Sound. By W. H. Stone, M.B. With Illustrations. 16mo.
90 cents.

TAIT. Works by P. G. Tait, M.A., Sec. R.S.E.
Lectures on Some Recent Advances in Physical Science. With Illustrations. Third Edition,

Revised and Enlarged, with the Lecture on Force Delivered before the British Association.
12mo. $2.50.

Heat. With Numerous Illustrations. 12mo. $2.00.
Light. An Elementary Treatise. With Illustrations. 12mo. $2.00.
Properties of Matter. Second Edition, Enlarged. 12mo. $2.25.

TAYLOR: Sound and Music. An Elementary Treatise on the Physical Constitution of Musical
Sounds and Harmony. By Sedley Taylor, M.A. Illustrated. Second Edition. 12mo. $2.50.

THOMSON. Works of J. J. Thomson, Professor of Experimental Physics in the University of
Cambridge.

A Treatise on the Motion of Vortex Rings. An Essay. With Diagrams. 8vo. $1.75.
Application of Dynamics to Physics and Chemistry. 12mo. $1.90.

THOMSON. Works of Sir W. Thomson, F.R.S. Professor of Natural Philosophy in the
University of Glasgow.

Mathematical and Physical Papers.
Vol. I. 8vo. $5.00. Vol. II. 8vo. $4.50. Vol. III. 8vo. $5.50.
Popular Lectures and Addresses on Various Subjects in Physical Science.
Vol. I. Constitution of Matter. 12mo. $2.00.
Vol. II. Geology and General Physics. 12mo. $2.00.
Vol. III. Navigational Affairs. With Illustrations. 12mo. $2.00.
On Elasticity. 4to. $1.25.
On Heat. 4to. $1.25.

TODHUNTER: A History of the Theory of Elasticity. By Isaac Todhunter. Edited by
Professor Karl Pearson.

Vol. I. Galilei to Saint-Venant, 1639–1850. 8vo. $6.00.
Vol. II. Saint-Venant to Lord Kelvin (Sir William Thomson). In Two Parts. $7.50.

TURNER: A Collection of Examples on Heat and Electricity. By H. H. Turner, B.A. 12mo.
75 cents.

WALKER: The Theory and Use of a Physical Balance. By James Walker, M.A. With
Illustrations in Collotype and Photolithography. 8vo. 90 cents.

WATSON and BURBURY. Works by H. W. Watson, D.Sc., and S. H. Burbury, M.A.

A Treatise on the Application of Generalized Co-ordinates to the Kinetics of a Material
System. 8vo. $1.50.

WOOD: Light. By Sir H. Truman Wood. 16mo. 60 cents.
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WOOLCOMBE: Practical Work in Heat. For Use in Schools and Colleges. By W. G.

Woolcombe, M.A., B.Sc., Senior Science Master in King Edward’s High School,
Birmingham. Crown 8vo. pp. 61. $1.00.

WRIGHT: Light. A Course of Experimental Optics, Chiefly with the Lantern. By Lewis

Wright. With nearly 200 Illustrations. 12mo. $2.50.

ELECTRICITY AND MAGNETISM.
ALLSOP (F. C.): Practical Electric Light Fitting. 200 Illustrations. $1.50.
BENNETT: The Telephoning of Great Cities. Paper. 35 cents.
BLAKESLEY: Alternating Currents of Electricity. Third Edition, Enlarged. (In the Press.)
BONNEY (G. E.): Induction Coils. $1.00.

Electrical Experiments. A Manual of Instructive Amusement. With 144 Illustrations. 12mo.
75 cents.

BOTTONE (S. R.): Electricity and Magnetism. With 103 Illustrations. 16mo. 90 cents.
How to Manage the Dynamo. A Handbook for Ship Engineers, Electric Light Engineers,

etc. 16mo. 60 cents.
A Guide to Electric Lighting. By S. R. Bottone, author of “Electric Bells, and All About

them,” “Electromotors: How Made, and How Used,” etc. With Many Illustrations.
75 cents.

CAVENDISH: The Electrical Researches of the Honourable Henry Cavendish, F.R.S. Written
between 1771 and 1781. Edited from the original manuscripts of the late J. Clerk Maxwell,
F.R.S. 8vo. $5.00.

CUMMING: An Introduction to the Theory of Electricity. By Linnæus Cumming, M.A.
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