THE HISTORY OF CALCULUS*
ARTHUR ROSENTHAL, Purdue University

Everyone knows that Newton and Leibniz are the founders of Calculus.
Some may think it suffices to know just this one fact. But it is worthwhile, in-
deed, to go into more details and to study the history of the development of
Calculus, in particular, up to the time of Newton and Leibniz.

In our courses on Calculus we usually begin with differentiation and then
come later to integration. This is entirely justified, since differentiation is simpler
and easier than integration. On the other hand, the historical development
starts with integration; computing areas, volumes, or lengths of arcs were the
first problems occurring in the history of Calculus. Such problems were dis-
cussed by ancient Greek mathematicians, especially by Archimedes, whose out-
standing and penetrating achievements mark the peak of all ancient mathe-
matics and also the very beginning of the theory of integration. The method ap-
plied by Archimedes for his proofs was the so-called method of exhaustion, that
is, in the case of plane areas, the method of inscribed and circumscribed polygons
with an increasing number of edges. This method was first rigorously applied, in
the form of a double reductio ad absurdum, by the great Greek mathematician
Eudoxus at the beginning of the fourth century B.C. He first proved the facts,
previously stated by Democritus, that the volume of a pyramid equals one
third of the corresponding prism and the volume of a cone equals one third of the
corresponding cylinder. The same method was also used by Euclid and then with
the greatest success by Archimedes (third century B.C.). It is well known that
Archimedes was the first to determine the area and the length of the circle, that
is, to give suitable approximate values of w, and moreover to determine the
volume and the area of the surface of the sphere and of cylinders and cones.
But he went far beyond this [1]; he found the areas of ellipses, of parabolic
segments, and also of sectors of a spiral, the volumes of segments of the solids of
revolution of the second degree, the centroids of segments of a parabola, of a
cone, of a segment of the sphere, of right segments of a paraboloid of revolution
and of a spheroid. These were amazing achievements, indeed. Archimedes
proved his results in the classical manner, by the method of exhaustion. Some-
times the type of approximation is just the same as we would use. For instance,
in order to obtain the volume of a solid of revolution of the second degree,
Archimedes approximates the volume by a sum of cylindrical slabs. But the
direct evaluation of the limit of such sums was cumbersome. Hence we may ask:
what wds the method used by Archimedes for finding his results?

There is an indication of his method in the beginning of his book on the
quadrature of the parabola. But a full explanation of his procedure was given
by him in a work rediscovered as late as 1906. It is his Method Concerning
Mechanical Theorems, dedicated to Eratosthenes, known as Archimedes’ Method

* Based on two addresses given at the Mathematics Club of Purdue University, June 2, 1949,
and at the meeting of the Indiana Academy of Science, Crawfordsville, Ind., November 4, 1949.
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or &podos [2]. This manuscript was found in Istanbul as a so-called palimpsest.
That is to say, in the 10th century A.D. the manuscript of the Method was
written on this parchment; later, in the 13th century, since nobody there was
interested in it any longer or could even understand it, the Method was washed
off and a religious text of the orthodox church, a so-called euchologion, was
written on the parchment. Fortunately most of the Archimedean text could be
restored.

The method of Archimedes may be called a mechanical infinitesimal method.
We must remember that Archimedes was also the founder of statics, and of
hydrostatics too. Now his method of integration consists in an application of
the principle of the lever to elementary parts of the figure. As an example, we
shall see how Archimedes determines the area of a segment of a parabola; this
indeed is the first example given in his &podos.

Let AB be the given segment of the parabola, let R be the midpoint of the
chord 4 B, and draw the diameter d (parallel to the axis) through R, intersecting
the arc AB in U (cf. Figure 1). We draw the tangent of the parabola at B and
the parallel to d through A. So we obtain AABC and wish to compare the area

F1G. 1

of the segment AB with the area of this triangle. Let T be the intersection of
the tangent BC with the diameter d. From an elementary property of the para-
bola we obtain: UT'= UR. Hence the line BU intersects AC in its midpoint O.
The centroid S of the AABC lies on OB with 0S=310B. Make OD=0OB. Now
through any point P of the arc 4 UB draw a parallel to the diameter, M NPQ.
Archimedes proves as a property of the parabola that MP:MQ=AM:AB,
hence MP:MQ=0ON:0B=0N:0D. Therefore MPXOD=MQXON. That is,
according to the principle of the lever: If DOB is considered to be the bar of a
balance with the fulcrum in O (cf. Figure 2), then the line-segment PM sus-
pended at D is in equilibrium with the line-segment MQ which remains, without
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any change, suspended at NV. Since this holds for every line parallel to 4, it
follows that the total segment 4B of the parabola suspended at D is in equilib-
rium with the A4 BC remaining unchanged or, what amounts to the same thing,
the segment 4B suspended at D is in equilibrium with the AA4BC suspended
at its centroid S. Therefore, since 0S= 310D, the segment AB= 1 AABC. More-
over, since RU= 1RT=1A4C, we have AABC=4AAUB, and hence also seg-
ment AUB=4% A4 UB.

Q
C 0 S N
D A B
M M

F1G. 2

By this ingenious method of statics, Archimedes found the final result. But
he did not regard such reasoning as a proof. Having thus obtained the result,
he was then able to give a rigorous formal proof by the method of exhaustion.

One should expect that the wonderful achievements of Archimedes would
have become a great stimulus to the further development of Greek mathe-
matics, similar to the great influence of Newton and Leibniz on the mathemati-
cal production of succeeding generations. But it is surprising that Archimedes
found almost no successors to continue his work. In this connection only one
of the subsequent mathematicians is to be mentioned, namely, Dionysodorus
who found the volume of the torus. Of course, one has to remember that at the
time of Archimedes there lived another outstanding Greek mathematician,
Apollonius, about 25 years younger than Archimedes. Apollonius, in a masterly
way, completed the Greek theory of conic sections. It is very strange, and I do
not understand the reason for it, that soon after Archimedes and Apollonius
Greek mathematics declined and that the later development essentially took a
different direction. Under the influence of the needs of astronomy, a new branch
of mathematics (the roots of which, however, go back also to Archimedes),
namely trigonometry, was established and furthermore, much later, the theory
of numbers was developed by the work of Diophantus. Original contributions in
the direction of Archimedes’ work were finally made by one of the latest Greek
mathematicians, Pappus (end of the third century A.D.) who stated the im-
portant general theorems named after him, in particular, the theorem that the
volume of a body of revolution equals the area of the revolving plane figure times
the length of the path of the centroid of this area.

When Teutonic tribes, still barbarian at that time, invaded the Roman
empire and conquered it, the interest in mathematics almost vanished there;
mathematics receded to the Orient, to Byzantium, where at least valuable manu-
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scripts were preserved, to Persia, and afterwards to the Arabian countries,
where—on the basis of Greek tradition—mathematics flourished in the period
about 800-1200 A.D. One of these mathematicians, the Mesopotamian Ibn Al
Haitham (about 1000 A.D.), was able to compute the volume of a solid that is
generated by rotation of a segment of a parabola about a line perpendicular to
its axis.

Under the influence of the Orient, interest in mathematics was slowly
awakened in Europe, in particular in the 12th and 13th centuries. As early as
the 16th century great discoveries in algebra were made by Italian mathema-
ticians, namely the solution of the algebraic equations of the third and fourth
degree. Simultaneously Archimedes’ works were studied and understood again.

Then about the beginning of the 17th century the further development of
the ideas of Archimedes starts. This was the same great period in which modern
science was first established by Galileo. The Flemish engineer Simon Stevin (as
early as 1586) and the Italian mathematician Luca Valerio (1604) were the first
ones who, by direct passage to the limit, tended to avoid the double reductio ad
absurdum of the method of exhaustion. Valerio showed directly that the areas
under certain curves can be approximated by sums of circumscribed and in-
scribed rectangles, whose difference can be made arbitrarily small.

Then, in particular, we have to mention the great German astronomer
Johannes Kepler who, in 1615, published a book, Nova stereometria doliorum
vinariorum, on determining the volumes of wine-casks. Somewhat earlier there
had been a year of plenty and there was need of barrels for storing the great
supply of wine; moreover, Kepler was puzzled by the rules which dealers applied
to estimate the approximate contents of a barrel. So he discussed in a popular
manner the volumes of various casks and, in particular, asked which cask has
the most economic shape. He found that the Austrian barrel was the most eco-
nomic one. Kepler used the results and methods of Archimedes, but also dis-
cussed quite a few new cases. Because of his popular purpose he replaced the
rigorous proofs of Archimedes by an intuitive infinitesimal reasoning, in this
way stressing the essential points.

Another mathematician of that time had a great influence on further prog-
ress; this was the Italian Bonaventura Cavalieri who published in 1635 an im-
portant book on the so-called indivisibles, entitled Geometria indivisibilibus
continuorum nova quadam ratione promota. Indivisibles mean elements of a given
dimension which by their motion generate figures of the next higher dimension.
Thus a moving point generates a line, a moving line (parallel to a fixed line)
generates a plane figure, a moving plane figure (parallel to a fixed plane) gener-
ates a solid. Cavalieri speaks, for instance, about “all lines of a plane figure”
(“omnes lineae figurae’’). Well known is Cavalieri’s principle: Two solids (lying
between two parallel planes) have the same volume if they intersect each inter-
mediate parallel plane in two equal areas. Cavalieri’s views, influenced by late
medieval speculations, have somewhat of the spirit of Archimedes’ Method,
which, however, was not known at that time.
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In connection with Cavalieri we must mention also the Swiss Paul Guldin
who, besides criticizing Cavalieri, rediscovered Pappus’ theorems on bodies of
revolution, the Flemish mathematician Gregorius a St. Vincentio who was the
first to observe (1647) that the area between a hyperbola and an asymptote be-
haves like a logarithm, and also the Italian mathematician and physicist
Evangelista Torricelli [3] and the French mathematician Gil Persone de Rober-
val [4]. The important achievements of these last two men will be discussed
presently.

About this time another outstanding event occurred in mathematics, the in-
vention of Analytic Geometry by Descartes (1637) and, simultaneously and in-
dependently, by Fermat; this invention, of course, had great influence on the
development of Calculus. Both Descartes and, in particular, Fermat also made
valuable direct contributions to Calculus.

René Descartes, in his Géométrie, gave a method of finding the tangents, or
rather the normals, to algebraic curves. He draws a circle with center on the
x-axis, which cuts the given curve in two points. If these two points coincide, he
obtains the normal. Hence the question is reduced to determining double roots
of an algebraic equation. Somewhat later, in a letter, Descartes remarked that,
instead of circles, intersecting straight lines could also be used for the same
purpose.

Fermat’s achievements in Calculus were even more important. In fact, he
was the greatest mathematician of the first part of the 17th century, not only
in general but particularly in the domain of Calculus. Pierre Fermat was a
jurist, a councillor of the parliament at Toulouse in southern France. This posi-
tion left him enough time for intensive mathematical activity. His outstanding
work in the theory of numbers is well known. Now, what was k¢s method of
finding tangents? His procedure was first applied by him to the particular case
of determining maxima and minima [5(a)]. He found this method as early as
in 1629, communicated it to Descartes in 1638, and had it published in 1642.
In order to find the maximum or minimum of an expression, one replaces the
unknown 4 by 4 +E,* and both expressions obtained in this manner are con-
sidered approximately equal. One must cancel on both sides all that is possible to
cancel. In this way only terms containing E are left. Now divide by E and then
drop all terms still containing E. There remains an equation giving that value
of A which yields the desired maximum or minimum. That means, if we write
F(A) for the given expression, we have to determine 4 from the equation

[F(A + E) — F(A):|
E E=0

This is just our usual method. Of course, the condition is only necessary, but
not sufficient for the extreme, and the statement of Fermat yields the result
only for polynomials F.

* Fermat always used the letter 4 for the variable and the letter E for its increment.
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Fermat [5(a)] gave at the same time a general method for finding the
tangent, in the form of determining the subtangent. Let PT (with T lying on the
the x-axis) be the tangent line of the given curve € at the point P (cf. Figure 3),
let P, be a point of € in the neighborhood of P, let Q and Q, be the projections

T
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on the x-axis of P and P, respectively, and let T; be the point on the tangent
line whose projection on the x-axis is Qi. In order to find the subtangent
A(=TQ), whose increment QQ, is again designated by E, Fermat uses the simi-
larity of the triangles TQP and T'Q1T: and replaces T; approximately by P,.
Then he obtains approximately: 4:QP= E:(Q.P,—QP), that is, in our usual
notation if we write the equation of the curve € in the form y= F(x),

A:F(x) = E:(F(x + E) — F(%));
F(zx + E) — F(z)

hence 4=

Now again one divides the denominator by E and afterwards sets E=0.

It should be mentioned here that at this time an entirely different method
of constructing tangents of curves, using the parallelogram of velocities, was
invented also by Roberval and Torricelli, independently of each other; both of
them published it in 1644. On the other hand, somewhat later (before 1659) two
Netherlanders Johannes Hudde, for many years mayor of Amsterdam, and
René Francois de Sluse advanced along the road opened up by Descartes and
Fermat, giving quite explicit formal rules for finding extremes and subtangents
of algebraic curves.

But let us return to Fermat. He had great success also in the theory of inte-
gration. He was the first who, by 1636 or earlier, had found and proved the
power formula of integration for positive integral exponents 7, i.e. a geometrical
statement equivalent to the formula which we now write as

This content downloaded from 128.103.149.52 on Tue, 15 Jul 2014 07:32:09 AM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

1951] THE HISTORY OF CALCULUS 81

a an+1
f xrdx = .
0 n + 1

Roberval also, at the suggestion of Fermat, then found and proved the same
theorem. Afterwards Cavalieri discovered it independently,* and he was the
first to publish it (1639, 1647); but he proved it explicitly only for the first few
cases, including »=4, while, as he stated, the general proof which he published
was communicated to him by a French mathematician Beaugrand, who quite
probably had obtained it from Fermat. At that time Fermat, and then also
Torricelli, had already generalized this power formula to rational exponents
n(# —1). Fermat determined areas under curves which he called “general pa-
rabolas” and “general hyperbolas,” that is, curves

y™ = ¢x", which, in our notation, leads to cf xn mdx,
0

and

+o0
y = ﬁ; which, in our notation, leads to cf x—i (m > 1).
It is remarkable that Fermat in this work does not use subdivisions into equal
parts, but subdivisions according to a geometric progression. Other areas were
reduced by him to areas under such general parabolas and hyperbolas.

Fermat did interesting work also on the rectification of curves, in a memoir
published 1660 [5(b) ], where he approximated the arc by segments of tangents,
thus using a saw-like figure. At that time various mathematicians obtained
rectifications of curves which are now considered classical. In 1645, Torricelli
had rectified the logarithmic spiral. The semicubical parabola was rectified inde-
pendently by the Englishman William Neil (1657), by the Hollander Hendrik
van Heuraet, and by Fermat. The rectification of the cycloid was first achieved
by the English mathematician and great architect Christopher Wren (1658), and
then by Fermat and Roberval, after they had heard of his result. It is note-
worthy that Fermat, Neil, van Heuraet, and also Wallis and Huygens, reduced
rectifications of curves to the determination of areas of other curves.

Reviewing the achievements of Fermat we see that he was aware of the rela-
tion among various problems in differential calculus, and similarly for various
problems about definite integrals. But he had not observed the general relation
between differentiation and integration.

Another famous French mathematician of that time was Blaise Pascal (a
younger friend of Fermat and Roberval), who may be considered a master of
integration. Roberval was the first to integrate certain trigonometric functions.
Pascal was able to integrate more such trigonometric functions as well as some
algebraic functions. As an important means for some of his results Pascal used

* Much later, Blaise Pascal (1654) and Wallis (1656) rediscovered it also.
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relations between integrals obtained by interchanging the order of integration in
double integrals. Of course, he did this in a geometric form. That is to say,
certain volumes were found by means of intersections parallel to one plane and
also by intersections parallel to another plane. Since the volume is always the
same, Pascal thus obtained a relation between two different integrals, which
may be considered to be a kind of integration by parts.

At about the same time important contributions were made by the English
mathematician John Wallis, whose book Arithmetica infinitorum of 1656 was
written in contrast to the geometric work of most of his predecessors. He
stressed the notion of the limit. On the other hand, he was very audacious with
regard to generalizations and interpolations, but his strong power of intuition
kept him on the right track. For instance, he stated the general power formula of
integration for any real exponent n(# —1).

The notion of limit was carefully considered at that time by the Italian
Pietro Mengoli in his book Geometria speciosa (1659) [6(a)]. In particular, by
modifying the procedure of Luca Valerio (see above), he gave in a precise way a
representation of the area under certain special curves as limits of sums of
rectangles [6(b)]. Later the same method was also employed by Newton [11,
book 1, lemma 2].

One should now mention two other mathematicians who, like Wallis and
Mengoli, were contemporary with Newton and Leibniz, but began their work
earlier, so that they too are to be considered, at least partially, as predecessors
of Newton and Leibniz. One of these men is the great Dutch physicist and
mathematician Christiaan Huygens who, among other important results, in-
troduced the notion of evolutes and involutes. It is remarkable that Huygens
used to great extent the classical methods of Archimedes, and only for differenti-
ation employed Fermat’s method.

The second of these two mathematicians is the Scotsman James Gregory,
who like Torricelli and Pascal died in the prime of life, when only 37 vears old,
and whose genius has found its full recognition only recently [7, 8]. He did
excellent work in integration; for instance, in 1668 he published such a difficult
result as the following (written in modern notation):

a
f sec xdx = — log (sec ¢ — tan a)
0

and other trigonometric integrals. Moreover, for example, he obtained Newton’s
interpolation formula, independently of Newton. But perhaps the most im-
portant achievements of Gregory belong to the theory of series.

The first great result in the theory of series is due to the German mathema-
tician Nicolaus Mercator (1668), who found the logarithmic series. For this
purpose, Mercator used term by term integration of a geometric series. This
method was independently discovered, but not published, by Newton. Subse-
quent contributions were made by William Lord Brouncker, the first president
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of the Royal Society in London. Then the most outstanding results concerning
infinite series were obtained by Newton and Gregory, who worked essentially
independent of each other, though Gregory was influenced by the knowledge of
some of Newton's statements, but not of his methods. Both discovered the bi-
nomial series and also many series for trigonometric and inverse trigonometric
functions. In particular, Gregory found the series for arctan x; a special case of
it is the series #/4=1—%+31—%+ - - -, which was later found independently
by Leibniz. Gregory obtained some more complicated series, e.g., for tan x,
sec x, log sec x, using processes of differentiation for determining the coefficients
of these series, thus anticipating Brook Taylor by more than forty years. This
fact has recently been demonstrated by H. W. Turnbull who studied and inter-
preted notes in Gregory’s handwriting (¢f. [7], pp. 168-176, 350-359). It is ob-
vious that many of the contributions to the theory of series were closely con-
nected with the growth of Calculus.

From all that has been discussed so far we have seen that there certainly was
an extensive development of the theory of integration and differentiation in the
period immediately before Newton and Leibniz, and that many mathematicans
of various nations made great contributions. So we shall ask: What then was
missing at that time? One very important point still missing was the general
fact that differentiation and integration are inverse processes, that is, the so-
called fundamental theorem of integral calculus. It is true that a few mathema-
ticians had already come quite close to this knowledge. First in this connection
we must mention Torricelli. In manuscripts left at his death (1647) and pub-
lished as late as 1919 [cf. 3], he had obtained the distance s(f) of a moving point
by means of the quadrature of the velocity v(f), while by the construction of the
tangent of the curve s(¢) he could recover v(f). It is very doubtful, however,
whether he really conceived the significance of this relation. Secondly, as we
have already stated, some of the mathematicians of the time knew that the
rectification of one curve &; could be obtained by means of the area under
another curve @,. Fermat in his memoir [5(b)], published in 1660, found the
relation between the slopes of these two curves. Moreover, James Gregory, in
his book Geometriae pars universalis (1668), solved the following problem, which
is inverse to the rectification of €;, just mentioned: Given a certain curve @,
find another curve €, whose length equals the area under €. In the solution of
this problem Gregory used the quadrature of an auxiliary curve, which indeed
corresponds to obtaining the primitive function of a derivative by means of
integration [9]. In spite of this, one again may doubt whether, at that time, he
perceived in general that differentiation and integration are inverse operations.
The first who made this important discovery in full generality was Isaac Barrow,
the teacher of Newton at Cambridge University. Barrow first was professor of
Greek language at Cambridge, then he was professor of mathematics first in
London and then again at Cambridge. In 1669 he resigned his chair to his pupil
Newton, whose superior genius he had recognized. Barrow then devoted the rest
of his life to theology. His principal mathematical work was his Lectiones Geo-
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metricae, published in 1670, together with the second edition of his Lectiones
Opticae. These geometrical lectures [10] contained important systematic con-
tributions to the theory of differentiation and integration, almost all in purely
geometric form. Here, for the first time, the inverse character of differentiation
and integration was explicitly stated and proved.

At this remarkable point of the development of the theory we must again
ask the same question as above: What more remained to be done? The answer
is: What had to be created was just the Calculus, a general symbolic and system-
atic method of analytic operations, to be performed by strictly formal rules,
independent of the geometric meaning. Now it is just this Calculus which was
established by Newton and Leibniz, independent of each other and using differ-
ent types of symbolism. Newton's first discoveries were made about ten years
before those of Leibniz; on the other hand, Leibniz’ publications preceded those
of Newton, and—what is more important—Leibniz’ symbolism, the same as
that used by all mathematicians at present, is superior to that of Newton.

Isaac Newton, influenced by his teacher Barrow and also by the work of
Wallis, started his ‘“‘method of fluxions’’ in the years 1665-1666, his most crea-
tive period, at the age of 23 years. Some of his early manuscripts were known to
friends of his and indications of his method were contained in some of his letters.
He wrote his Methodus fluxionum et serierum infinitarum in 1670-1671; but it
was not published until 1736, nine years after his death. In his profound work
Philosophiae naturalis principia mathematica (1687) Newton avoided his method
of fluxions, except for a few indications [11, book 2, lemma 2], and presented his
great discoveries in the classical geometric form, though simplified by using the
notion of limits. The first publication of both the method and the notation of
Newton is found as late as 1693 in Wallis’ works, where Wallis included two of
Newton's letters to him. Newton himself then published an account of his
method, entitled Tractatus de quadratura curvarum,* as an appendix to his
Optics in 1704.

Newton, considering motions, took the time ¢ as the independent variable,
called the dependent variable x ‘‘fluent’” and its velocity ‘‘fluxion,’” and wrote %
for the fluxion, i.e. for the derivative with respect to ¢. The higher derivatives
were then designated by #, %, etc. For the increment of the independent variable
t Newton used the letter o and called %o (i.e., the differential of x) the ‘“‘moment”’
of x. In the case of the inverse process, that is, if the variable x is given as a
fluxion, he first designated the fluent (i.e., the antiderivative of x) by [] x or
[x], later by %, and used then for iterated integration ¥, %', etc. It has to be
stressed that Newton was the first to use systematically the results of differenti-
ation in order to obtain antiderivatives, and hence to evaluate integrals.

Our notations, now used generally in Calculus, are due to Gottfried Wilhelm
Leibniz. He was a universal spirit, extremely versatile and interested in every
kind of knowledge and scholarship, perhaps most famous as a philosopher. He

* Most of it was already written in 1676.
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started as a jurist, was soon active in diplomacy, then became librarian and
historian at Hanover, and later (1700) founded the Berlin Academy of Sciences.
In mathematics, his first publication, as a graduate student, concerned combina-
tions and permutations; then he soon became interested in the theory of differ-
ences and in constructing a computing machine. At the suggestion of Huygens
(1673), Leibniz thoroughly studied the works of previous mathematicians on
integration and differentiation. In particular, he was much influenced by the
work of Pascal. The story of Leibniz’ own discoveries can be traced in all details,
since his manuscripts with his dated sketches were found at the Hanover library
(edited and published by C. I. Gerhardt in the middle of the 19th century)
[12, 13, 14, 14a]. Leibniz’ new notation was first introduced by him on October
29, 1675 [12, pp. 121-127]. On thisday, as on preceding days, Leibniz discussed
integrations using Cavalieri’s ‘‘omnes lineae.”’ Here he abbreviated ‘‘omnes’’ or
“omnia’ to ‘“‘omn.”” and applied quite a few formal operations to this symbol.
Thenheremarked: “It will be useful to write [ foromn., thus f/foromn./, thatis, the
sum of those I's.” Hence [ is derived from the first letter of the word summa.
Later in the same manuscript, he came to the “contrary calculus” and con-
tinued thus: “If [IMya’” (I is the equal sign of Leibniz), ‘‘then let us set
IMya/d. Certainly as [ will increase the dimensions, so d will diminish them. f,
however, designates a sum, d a difference.” Hence Leibniz first wrote the differ-
ential sign d into the denominator of the variable. But two or three weeks later
he writes dx, dy, dx/dy, and the integrals [ydy or [ydx. So he arrived at the
notation, now classical.

In 1684, Leibniz first published his differential calculus in a paper (issued in
the newly founded Acta Eruditorum) with the title Nova methodus pro maximss,
itemque tangentibus, - - - . Here he deals with differentials, and it is note-
worthy that he introduces dx as an arbitrary finite interval and then defines dy
by the proportion dy:dx=ordinate:subtangent. Then, in 1686, he published
also a paper containing his notation of the integral. (The word ‘“integral’’ was
introduced by Jakob Bernoulli, 1690.)

Later Leibniz was accused by friends and followers of Newton of having
plagiarized Newton’s ideas. This unfortunate and undignified controversy
started first in 1699 and became continuously more and more furious, so that
Leibniz’ last years were filled with bitterness. But considering Leibniz’ manu-
scripts, nobody can doubt at present that Newton and Leibniz founded their
Calculus independently.

The invention of Calculus stimulated an immense and energetic further de-
velopment. On the English side Taylor and Maclaurin, on the continent the
eminent Basel mathematicians, first the brothers Bernoulli, then the prodigious
Euler, and later the Frenchman D’Alembert and the Italian Lagrange con-
tributed greatly to this development. Moreover, other closely related parts of
mathematics soon originated in connection with the Calculus, e.g., the theory of
differential equations, the calculus of variations, differential geometry.

While Newton and Leibniz had rather reasonable (although not always con-
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sistent) ideas about the fundamentals of the new Calculus, the extremely rapid
further development caused the basic concepts to be neglected or to be treated
in a very unsatisfactory manner. In particular, Euler is an example of this
tendency. A few mathematicians, among them D’Alembert, stressed the neces-
sity of using the notion of the limit as foundation of the Calculus [15]. But it
was Cauchy in the beginning of the 19th century who, in such a way, developed
the Calculus systematically and consistently. So at last Cauchy and his many
successors gave a solid basis to the Calculus.
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