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81:2 Cleve Moler and Jack Little

PROLOGUE
In his first job after grad school, in 1966, Cleve Moler was an Assistant Professor of Mathematics.
He taught calculus, numerical analysis, and linear algebra. For linear algebra, he followed the
traditional syllabus, which emphasized proofs of theorems about linear transforms in abstract
vector spaces. There was no time devoted to computers or applications of matrices. He vowed
never to follow the traditional syllabus again. He wanted to use matrix factorizations, like the
singular value decomposition, and emphasize applications, like principal component analysis. And
he wanted his students to use computers and modern software. He wanted a new course, matrix
analysis, to replace traditional linear algebra.

Contents

Abstract 1
Prologue 2
Contents 2
1 The Creation of MATLAB® 5
1.1 Mathematical Origins 6
1.2 EISPACK 6
1.3 LINPACK 6
1.4 Classic MATLAB 8
2 Key Features of Classic MATLAB 9
2.1 Backslash 10
2.2 Colon Operator 10
2.3 The why Command 11
2.4 Portable Character Set 12
2.5 Syntax Diagrams 13
2.6 User Function 13
2.7 Precursors 14
3 From Classic MATLAB to a Commercial Product 14
3.1 Developing MathWorks MATLAB 15
3.2 Functions 15
3.3 Dynamic Linking of Compiled Code 16
3.4 Language Changes and Extensions 17
3.5 New Functions 17
3.6 Toolboxes 18
3.7 Graphics 18
3.8 Flops Count 20
4 Evolution of MATLAB 22
4.1 Data Types 22
4.2 Sparse Matrices 25
4.3 Empty Matrices 27
4.4 Compiling MATLAB 28
4.5 The Pentium FDIV Bug 29
4.6 Cell Arrays 31
4.7 Structures 31
4.8 Numerical Methods 32
4.9 ODEs 32
4.10 Text 34

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 81. Publication date: June 2020.



A History of MATLAB 81:3

4.11 Evolution of the MathWorks Logo 35
5 Recent Developoments 36
5.1 LAPACK 36
5.2 FFTW 37
5.3 Desktop 38
5.4 Function Handles 38
5.5 Objects 39
5.6 Symbolic Math Toolbox™ 39
5.7 Making MATLAB More Accessible 39
5.8 Parallel Computing 40
5.9 GPUs 48
5.10 Strings 48
5.11 Execution Engine 49
5.12 Development Process 49
5.13 Toolboxes 50
5.14 Today’s why Command 50
6 Success 50
Epilogue 51
Acknowledgments 51
A Syntax Diagrams for Classic MATLAB 52
B Photo Gallery 58
References 63
Non-archival References 65

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 81. Publication date: June 2020.
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1965–1970 Series of papers in Numerische Mathematik that present matrix algorithms in Algol
1970 First Argonne proposal to NSF to explore high-quality numerical software
1971 Collected papers published as Handbook for Automatic Computation, Volume II
1971 First release of EISPACK

O
rig

in
s 1975 Second Argonne proposal to NSF to explore high-quality numerical software

1976 Second release of EISPACK
1976 Algorithms + Data Structures = Programs by Niklaus Wirth
1977 Computer Methods for Mathematical Computations by Forsythe, Malcolm, and Moler
1979 Publication of LINPACK Users’ Guide and of BLAS specification
1978 Cleve Moler creates first version of MATLAB in Fortran

Cl
as
si
c 1979 Moler teaches course in Numerical Analysis at Stanford, using Classic MATLAB

1980 “Design of an Interactive Matrix Calculator” (National Computer Conference)
1980 Jack Little begins using MATLAB for his consulting work in control systems
1981 Publication of the first MATLAB Users’ Guide
1983 Little suggests creating commercial product for IBM PC based on Classic MATLAB
1984 Little and Steve Bangert rewrite and enhance all of Classic MATLAB in C
1987 Built-in support for solving ordinary differential equations (ODEs)
1990 Moler, John Gilbert, and Rob Schreiber introduce sparse matrix data type

M
AT

LA
B 1996 Cell arrays, structures, dot notation, objects, multidimensional arrays

1999 Function handles
2004 Signed integer, unsigned integer, and logical data types
2008 Enhanced object-oriented programming
2015 New execution engine
2016 The string data type (an alternative to character vectors)
1984 Little, Moler, and Bangert form MathWorks in California
1984 PC-MATLAB debuts at the IEEE Conference on Decision and Control in Las Vegas
1986 Debut of Pro-MATLAB for Unix workstations
1987 Debut of MATLAB for the Apple Macintosh

M
at
hW

or
ks

1992 MathWorks has over 100 staff members
1994 MathWorks provides a software solution for the Pentium division bug
1995 MathWorks has over 200 staff members
1998 More than 1,000 people worldwide
2008 More than 2,000 people worldwide
2019 Over 5,000 people, 30% located outside the United States
1985 Control System Toolbox™
1987 Signal Processing Toolbox™
1988 Lennart Ljung, Linköping University, Sweden, writes System Identification Toolbox™

To
ol
bo
xe
s

1990 Carl de Boor, U. Wisconsin—Madison, writes Spline Toolbox™
1993 Image Processing Toolbox™
1993 Symbolic Math Toolbox™
2004 Parallel Computing Toolbox™
2010 GPU support added to Parallel Computing Toolbox
1994 Stephen C. Johnson writes the first compiler for MATLAB (up to 300× speedup)
2000 EISPACK and LINPACK replaced by LAPACK
2000 MATLAB Desktop user interface

En
vi
ro
nm

en
t

2001 MATLAB Central and MATLAB File Exchange at mathworks.com
2004 Publication of Numerical Computing with MATLAB, a textbook by Moler
2010 MATLAB Online and MATLAB Mobile
2016 MATLAB Live Editor user interface

Fig. 1. Major events in the development of MATLAB®.
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1 THE CREATION OF MATLAB®

The original goals of MATLAB are well expressed by the introduction to its original published
design description [Moler 1980; see also Moler 1982]:

MATLAB is an interactive computer program that serves as a convenient “laboratory” for
computations involving matrices. It provides easy access to matrix software developed by the
LINPACK and EISPACK projects [Dongarra et al. 1979; Garbow et al. 1977; Smith et al. 1974].
The capabilities range from standard tasks such as solving simultaneous linear equations
and inverting matrices, through symmetric and nonsymmetric eigenvalue problems, to fairly
sophisticated matrix tools such as the singular value decomposition.
It is expected that one of MATLAB’s primary uses will be in the classroom. It should be

useful in introductory courses in applied linear algebra, as well as more advanced courses in
numerical analysis, matrix theory, statistics, and applications of matrices to other disciplines.
In nonacademic settings, MATLAB can serve as a “desk calculator” for the quick solution of
small problems involving matrices.

The program iswritten in Fortran and is designed to be readily installed under any operating
system which permits interactive execution of Fortran programs. The resources required are
fairly modest. There are about 6000 lines of Fortran source code, including the LINPACK and
EISPACK subroutines used. With proper use of overlays, it is possible to run the system on a
minicomputer with only 32K bytes of memory.

The size of the matrices that can be handled in MATLAB depends on the amount of storage
that is set aside when the system is compiled on a particular machine. We have found that an
allocation of 4000 words for matrix elements is usually quite satisfactory. This provides room
for several 20 by 20 matrices, for example. One implementation on a virtual memory system
provides 50,000 elements. Since most of the algorithms used access memory in a sequential
fashion, the large amount of allocated storage causes no difficulties.
In some ways, MATLAB resembles SPEAKEASY [na Cohen 1973] and, to a lesser extent,

APL. All are interactive terminal languages that ordinarily accept single-line commands or
statements, process them immediately, and print the results. All have arrays or matrices as
principal data types. But for MATLAB, the matrix is the only data type (although scalars,
vectors, and text are special cases), the underlying system is portable and requires fewer
resources, and the supporting subroutines are more powerful and, in some cases, have better
numerical properties.

Together, LINPACK and EISPACK represent the state of the art in software for matrix com-
putation. EISPACK is a package of over 70 Fortran subroutines for various matrix eigenvalue
computations that are based for the most part on Algol procedures published by Wilkinson,
Reinsch, and their colleagues [Wilkinson and Reinsch 1971]. LINPACK is a package of 40
Fortran subroutines (in each of four data types) for solving and analyzing simultaneous linear
equations and related matrix problems. Since MATLAB is not primarily concerned with either
execution time efficiency or storage savings, it ignores most of the special matrix properties
that LINPACK and EISPACK subroutines use to advantage. Consequently, only 8 subroutines
from LINPACK and 5 from EISPACK are actually involved.
The most important way in which MATLAB differed from APL and SPEAKEASY was in porta-

bility: APL required special I/O equipment for its distinctive character set, and SPEAKEASY ran
only on IBM timesharing systems. Moler wanted to create a tool that could easily be compiled
and run on a large variety of computers and operating systems, so that it could be widely used by
students. Other important distinguishing features of MATLAB from the beginning were the use
of high-quality numerical algorithms, the ability to create plots interactively on the user terminal
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81:6 Cleve Moler and Jack Little

(some implementations of SPEAKEASY supported CalComp plotters, which produced high-quality
plots but only very slowly, so they hardly qualified as “interactive” in the usual sense), and the
backslash operator (see Section 2.1).

1.1 Mathematical Origins
For his entire career, Moler has taken great interest in systems of linear equations, which are
often represented in matrix form. After completing his doctorate at Stanford University in 1965,
Moler continued to work with his PhD thesis supervisor (and founder of the Stanford University
Computer Science Department) George Forsythe on improved computational methods for solving
systems of linear equations, and they wrote a book together [Forsythe and Moler 1967; see also
Moler 1967, Moler 1969, and na Moler 2013b].

The mathematical and computational basis for the first version of MATLAB begins with a series
of papers by J. H. Wilkinson and 18 of his colleagues published between 1965 and 1970 in the journal
Numerische Mathematik. The papers were collected in a volume edited byWilkinson and C. Reinsch,
Handbook for Automatic Computation, Volume II: Linear Algebra, published in 1971 [Wilkinson
and Reinsch 1971]. The papers present algorithms, implemented in Algol 60, for solving matrix
linear equation and eigenvalue problems. These were research papers presenting results about
numerical stability, details of implementation, and, in some cases, new methods. The importance of
using orthogonal transformations wherever possible was emphasized by Wilkinson and the other
authors. Part I of the Handbook, with 40 Algol procedures, is about the linear equation problem;
part II, with 43 procedures, is about the eigenvalue problem. A list of the individual procedures is
provided in [naMoler 2017].

1.2 EISPACK
In 1970, even before the Handbookwas published, a group at Argonne National Laboratory proposed
to the U.S. National Science Foundation (NSF) to “explore the methodology, costs, and resources
required to produce, test, and disseminate high-quality mathematical software and to test, certify,
disseminate, and support packages of mathematical software in certain problem areas.”

Every summer for 15 years,Wilkinson lectured in a short course at the University of Michigan and
then visited Argonne National Laboratory for a week or two (see Figure 2). The project developed
EISPACK (Matrix Eigensystem Package) by translating the Algol procedures for eigenvalue problems
from part II of the Handbook into Fortran and working extensively on testing and portability.

In 1971, the first release of the collection was sent to about two dozen universities and national
laboratories where individuals had shown an interest in the project and agreed to test the software
[Smith et al. 1974]. By 1976 a second release was ready for public distribution [Garbow et al. 1977].
In addition to subroutines derived from part II of the Handbook, the second release included the
SVD algorithm from part I and the new QZ algorithm for the generalized eigenvalue problem
involving two matrices.

For more on EISPACK see [naMoler 2018a].

1.3 LINPACK
In 1975, as EISPACK was nearing completion, Jack Dongarra, Pete Stewart, Jim Bunch, and Cleve
Moler (see Figure 3) proposed to the NSF another research project investigating methods for the
development of mathematical software. A byproduct would be the software itself, dubbed LINPACK
for Linear Equation Package [Dongarra et al. 1979]. The project was also centered at Argonne. The
three participants from universities worked at their home institutions during the academic year
and all four got together at Argonne in the summer.
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Fig. 2. J. H. Wilkinson describing a matrix algorithm to an audience at Argonne in the early 1970s. (Source:
Argonne National Laboratory.)

LINPACK development originated in Fortran; it did not involve translation from Algol. The
package contained 44 subroutines in each of four precisions, REAL, DOUBLE, COMPLEX and
COMPLEX*16. Fortran at the time was notorious for unstructured, unreadable, “spaghetti” code.
The authors adopted a disciplined programming style and expected people as well as machines to
read the codes. The scope of loops and if-then-else constructions were carefully shown by indenting.
Go-to’s and statement numbers were used only to exit blocks and handle possibly empty loops.
All the inner loops are done by calls to the BLAS, the Basic Linear Algebra Subprograms,

developed concurrently by Chuck Lawson and colleagues at Caltech’s Jet Propulsion Laboratory
[Lawson et al. 1979]. On systems that did not have optimizing Fortran compilers, the BLAS could
be implemented efficiently in machine language. On vector machines, like the CRAY-1, the loop
is a single vector instruction. The two most important subprograms are the inner product of two
vectors, DDOT, and vector plus scalar times vector, DAXPY. All the algorithms are column oriented
to conform to Fortran storage and thereby provide locality of memory access. [Moler 1972]
In a sense, the LINPACK and EISPACK projects were failures. The investigators had proposed

research projects to the NSF to “explore the methodology, costs, and resources required to produce,
test, and disseminate high-quality mathematical software.” They never wrote a report or paper
addressing those objectives. They only produced software [Boyle et al. 1972].

For a summary of the contents of LINPACK, see [na Moler 2018b].
Today, LINPACK is better known as a benchmark than as a matrix software library. For more on

the LINPACK Benchmark, see [naMoler 2013e].
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81:8 Cleve Moler and Jack Little

Fig. 3. The authors of LINPACK: Jack Dongarra, Cleve Moler, Pete Stewart, and Jim Bunch in 1978. (Source:
Cleve Moler.)

1.4 Classic MATLAB
In the 1970s and early 1980s, while he was working on the LINPACK and EISPACK projects, Moler
was a Professor of Mathematics and then of Computer Science at the University of New Mexico in
Albuquerque. He was teaching courses in linear algebra and numerical analysis. He wanted his
students to have easy access to LINPACK and EISPACK functions without writing Fortran programs.
By “easy access” he meant avoiding the remote batch processing and the repeated edit-compile-
link-load-execute process that were ordinarily required on the campus central mainframe computer.
This meant the program had to be an interactive interpreter, operating in the time-sharing systems
that were becoming available.
So, Moler studied Niklaus Wirth’s book Algorithms + Data Structures = Programs [Wirth 1976]

and learned how to parse programming languages. Wirth calls his example language PL/0. It was a
pedagogical subset of Wirth’s Pascal, which, in turn, was his response to Algol. Quoting Wirth, “In
the realm of data types, however, PL/0 adheres to the demand of simplicity without compromise:
integers are its only data type.”
Following Wirth’s approach, Moler wrote the first MATLAB—the name was an acronym for

Matrix Laboratory—in Fortran, as a dialect of PL/0 with matrix as the only data type. The project
was just a hobby, a new aspect of programming for him to learn and something for his students to
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A History of MATLAB 81:9

Fig. 4. The start-up screen for the May 12, 1981, version of MATLAB.

use. There was never any formal outside support and certainly no business plan. MathWorks was
several years in the future.
Only about a dozen subroutines from LINPACK and EISPACK were needed because everything

was a complex matrix. The output routine would not print the imaginary parts of the entries if
every entry in a matrix had a zero imaginary part. A vector was a matrix with a single column or
row. A scalar was a 1-by-1 matrix. A text string was just one way to write a row vector of numeric
character codes.
This first MATLAB was not a programming language; it was just a simple interactive matrix

calculator. There were no user-defined functions, no toolboxes, no graphics. And no ODEs or FFTs.
The snapshot of the start-up screen shown in Figure 4 lists all the functions and reserved words.
There are only 71 of them. If you wanted to add another function, you could request the source
code from Moler, write a Fortran subroutine, add your new name to the parse table, and recompile
MATLAB.

The complete 1981 Users’ Guide to this “Classic MATLAB” [naMoler 1981] is reproduced in [na
Moler 2018g].

*

2 KEY FEATURES OF CLASSIC MATLAB
Classic MATLAB may have been a simple matrix calculator, but it contained several commands
and operators that are still in use today. In particular, the backslash operator ’\’ (for solving a
set of linear equations) and the colon operator ’:’ (for computing a vector of integers or reals in
arithmetic sequence) have proved useful in many other fields as MATLAB has expanded beyond
numerical linear algebra.
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2.1 Backslash
The most important task in matrix computation is solving a system of simultaneous linear equations:

𝐴𝑥 = 𝑏

Here 𝐴 is a square matrix, 𝑏 is a column vector and the desired solution 𝑥 is another column vector.
If you disregard considerations of computational efficiency and accuracy, the traditional notation
for the solution involves the matrix inverse, 𝐴−1:

𝑥 = 𝐴−1𝑏

But it is both more efficient and, in the presence of roundoff error introduced by finite precision
arithmetic, more accurate to solve the system directly without computing the inverse. (Consider
the scalar case. Solve 7𝑥 = 21. The answer 𝑥 = 3 is obtained by dividing both sides of the equation
by 7, not by using 7−1 = .142857 . . . to multiply both sides.) So, the mathematically taboo notion of
matrix left division is introduced and the backslash character denotes the solution obtained by the
Gaussian elimination process.

x = A\b

The solution to the similar equation that relates row vectors
𝑥𝐴 = 𝑏

is obtained by using matrix right division, expressed (naturally enough) in MATLAB by a forward
slash:

x = b/A

It was fortunate that, thanks to Bob Bemer, all the character sets used at the time had both forward
slash and backslash characters [na Bemer 2000; naMoler 2013a].

APL and SPEAKEASY both had operators for matrix right division, whose syntax mirrors that of
conventional division of floating-point numbers, with the dividend on the left and the divisor on
the right. It so happens, however, that historically mathematicians who work with sets of linear
equations expressed in matrix form have for many decades preferred to work with column vectors
and equations of the form 𝐴𝑥 = 𝑏 rather than row vectors and equations of the form 𝑥𝐴 = 𝑏;
therefore, in practice it is typically much more convenient to work with matrix left division ‘\’
than with matrix right division ‘/’. (It is possible to use matrix right division, in any language that
provides it, to solve the equation 𝐴𝑥 = 𝑏, but only by transposing both arguments and result: in
MATLAB this would be x = (b’/A’)’. This is needlessly clumsy.)

Today, the matrix assignment statement
x = A\b;

has come to represent MATLAB. T-shirts with just this statement are very popular—MathWorks
has given them away at conferences. (See Figure 5.)

2.2 Colon Operator
The colon character takes on an important role in MATLAB:

a:d:b is the row vector [𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, . . . , 𝑎 + 𝑛𝑑] where 𝑛 = floor ((𝑏 − 𝑎)/𝑑).
If d = 1, it may be omitted:

a:b is the row vector [𝑎, 𝑎 + 1, 𝑎 + 2, . . . , 𝑎 + 𝑛] where 𝑛 = floor (𝑏 − 𝑎).
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Fig. 5. The iconic MATLAB backslash operation is featured on this popular T-shirt. (Source: Patsy Moler.)

Here are some examples:
• 1:10 is a row vector containing the integers from 1 to 10.
• 0:0.1:10 is the row vector of length 101, [0, 0.1, 0.2, . . . , 9.8, 9.9, 10.0].
• ’A’:’Z’ is the character string made from the 26 uppercase letters.
• A(i:m,j:n) is a submatrix of A.
• for k = 1:n

<statements>
end
executes the statements n times.

The colon by itself as an abbreviation for 1:end was added later.
• A(:,3) is the third column of A.
• A(:) is all of the elements of the matrix A, strung out in one tall column.

2.3 The why Command
Since Classic MATLAB already had what, while and who, Moler added why, which simply returned
a random response from a fixed list. It has proved to be very popular. Examples of why:

WHY NOT?

and
INSUFFICIENT DATA TO ANSWER.
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internal primary alternate
code character character name
0–9 0–9 0–9 digits
10–35 A–Z a–z letters
36 blank
37 ( ( lparen
38 ) ) rparen
39 ; ; semi
40 : | colon
41 + + plus
42 - - minus
43 * * star
44 / / slash
45 \ $ backslash
46 = = equal
47 . . dot
48 , , comma
49 ’ " quote
50 < [ less
51 > ] great

Fig. 6. Table of characters codes used internally by Classic MATLAB.

2.4 Portable Character Set
Classic MATLAB had a fairly conventional notation for text strings, similar to that used in Pascal
[Jensen and Wirth 1974] and in Fortran 77. But Classic MATLAB did not have a separate “string”
data type.

'abcxyz'

ANS =

10 11 12 33 34 35

A text string was just one way to notate a row vector (that is, a 1-by-𝑛 matrix), with each character
encoded in a nonnegative integer in a portable “MATLAB character set” of 52 character codes used
internally within MATLAB.

' < > ( ) = . , ; \ / '

ANS =

COLUMNS 1 THRU 12
36 50 36 51 36 37 36 38 36 48 36 37

COLUMNS 13 THRU 21
36 48 36 39 36 45 36 44 36

The disp function could be used to display the characters encoded by such a matrix as output on
the terminal.
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MATLAB maintained this character set as a table with two columns (see Figure 6) that could be
modified by the user. Each column has 52 entries; entry 𝑘 was a machine-specific (or operating-
system-specific) character code corresponding to MATLAB internal code 𝑘 . This table was used to
translate between keyboard characters and MATLAB internal codes.
On input, either of two machine characters could be mapped to the same MATLAB internal

code; this allowed lowercase letters to be treated as if they were uppercase, and also allowed
programmers to use square brackets (on keyboards that had those characters) rather than angle
brackets. Moreover, the function char took an integer 𝑘 as an argument and then read a character 𝑐
(one keypress) directly from the keyboard; it then stored 𝑐 into entry 𝑘 of the first column if 𝑘 ≥ 0,
or into entry −𝑘 of the second column if 𝑘 < 0. In this way a programmer running MATLAB on a
system with an unusual keyboard could customize the table for the keyboard, an important aspect
of the portability of MATLAB.

On output, straightforward indexing of the table was used to convert internal codes to machine
characters. For most purposes the first column was used (and this is why, for example, variables
names typed in lowercase are printed in uppercase), but the second column was sometimes used (for
example to generate lowercase file names on operating systems for which that was the appropriate
convention).

The internal character code was chosen so that the digits have consecutive codes and the letters
have consecutive codes (at least one common machine character set of the day, EBCDIC, did
not have that property). This is why the MATLAB expression ’A’:’Z’ always produced a row
vector of length 26, containing all the letters in order and no other characters—another important
contribution to portability.

2.5 Syntax Diagrams
The formal definition of the language, and a kind of flow chart for the parser-interpreter, was
provided by 11 syntax diagrams. They defined these eleven syntactic categories: line, statement,
clause, expression, term, factor, number, integer, name, command, and text.

Briefly, the recursive core of the language was:

• An expression is terms separated by + and - signs.
• A term is factors separated by *, / and \ signs.
• A factor is a number, a name, or an expression in parentheses ( ).

In the 1970s, Fortran programs could not be recursive. All that meant in practice was that a
subroutine could not call itself. So, in the original MATLAB program, EXPR called TERM, TERM
called FACTOR, and FACTOR would call EXPR if it encountered a parenthesis. It was necessary to
have two arrays, one to manage a stack of subroutine calls, and one to manage the matrices in the
workspace.

The complete syntax diagrams, as they appeared in the original line-printer User’s Guide, are
presented in Appendix A, with commentary.

2.6 User Function
Classic MATLAB allowed for exactly one external user-defined function, named USER. The user
had to write this function in Fortran using a prescribed declaration:

SUBROUTINE USER(A,M,N,S,T)
REAL or DOUBLE PRECISION A(M,N),S,T

This interface allowed MATLAB code to call the USER function with one matrix of any shape and
zero, one, or two scalar arguments, and one matrix would be returned. After the external Fortran
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Fig. 7. Jack Little, founder and CEO of MathWorks, in 2000. (Source: MathWorks.)

subroutine had been written, it had to be compiled and linked to the MATLAB object code within
the local operating system before running the MATLAB interpreter.

2.7 Precursors
The most important software precursors to Classic MATLAB were Algol 60 and Fortran II. Algol
provided the formal structure and, through Wirth’s Pascal and PL/0, the parsing techniques [na
Moler 2015]. Fortran, at the time, was well established as the language for scientific computing.
LINPACK and EISPACK were written in Fortran. Other numerical software collections, such as
IMSL and NAG, were also written in Fortran.
Today, some question why MATLAB indexing is 1-based and not 0-based. It is because both

Algol and Fortran are 1-based, as is linear algebra itself.

3 FROM CLASSIC MATLAB TO A COMMERCIAL PRODUCT
Moler spent the 1978–79 academic year at Stanford, as a Visiting Professor of Computer Science.
During the Winter quarter (January through March 1979) he taught the graduate course Advanced
Topics in Numerical Analysis (CS238b) and introduced the class to his simple matrix calculator
[Trefethen 2000, page xiii]; Some of the students were studying subjects like control theory and
signal processing, which he knew nothing about. Matrices were central to the mathematics in these
subjects, though, and MATLAB was immediately useful to these students.

Jack Little (see Figure 7) had been in the graduate engineering program at Stanford. A friend of
his who took the course showed him MATLAB, and he immediately adopted it for his own work in
control systems.
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3.1 Developing MathWorks MATLAB
In 1983 Little suggested the creation of a commercial product for the IBM PC based on MATLAB.
Moler thought that was a good idea but didn’t join Little initially. The IBM PC had been introduced
only two years earlier and was barely powerful enough to run something like MATLAB, but Little
anticipated its evolution. It included a socket for the Intel 8087 chip, which performed floating
point calculations in hardware, which was essential for MATLAB. He left his job, bought a Compaq
PC clone at Sears, moved into the hills behind Stanford, and, with Moler’s encouragement, spent a
year and a half creating a new and extended version of MATLAB. The machine had only 256kB of
memory and no hard disc; Jack had to swap 5-1/4 inch floppies to compile programs. Little replaced
all Moler’s Fortran, including the routines from EISPACK and LINPACK, with new code written in
C. A friend, Steve Bangert, joined the project and worked on the new MATLAB in his spare time.
Little and Bangert lived several miles apart on the San Francisco Peninsula. They would meet

regularly in a parking lot half-way between their homes and exchange floppy discs with their latest
versions of the emerging software. Steve wrote the parser and interpreter, while Jack wrote the
math libraries, including translations from Fortran into C of about a dozen routines from LINPACK
and Classic MATLAB. Jack also wrote the first Control System Toolbox.
Little, Bangert, and Moler incorporated MathWorks in California on Friday, December 7, 1984.

This was Jack Little’s business plan, dated March 11, 1983 [naMoler 2006]:
This brief note describes a technical software product line. The market for this product
line is the scientific and technical communities. A combination of events suggests that
the timely development and introduction of this product line will be highly successful.
The product will be unique and revolutionary. Combining the technology of 1) mice
and windows, 2) matrix and APL environments, and 3) direct manipulation, will do for
engineers what Lotus 1-2-3 has done for the business world. A product for the UNIX
environment, the software is assured the largest target machine base. The product has
bright prospects for longevity. The kernel forms the basis for many vertical product
lines. There is no approach more likely to capture the engineering market.

PC-MATLAB made its debut the next week at the 23rd IEEE Conference on Decision and Control
in Las Vegas. The first sale, early in 1985, was to Nick Trefethen of the Massachusetts Institute of
Technology (now of Oxford University) [Trefethen 2000, page xiii], who eventually wrote the book
Spectral Methods in MATLAB and has recently been involved in the creation and development of
the MATLAB-based Chebfun software project [Trefethen 2007, 2015; Moler 2015].

While rewriting the entire code base for Classic MATLAB from Fortran into C, Little and Bangert
made many important modifications and improvements to create a new and extended version; we
will refer to this version and its immediate successors asMathWorks MATLAB. The most significant
innovations were in functions, toolboxes, and graphics. The complete contents of version 1.3 of
PC-MATLAB is available at [naMoler 2018e].
PC-MATLAB was soon followed by Pro-MATLAB on Unix workstations in 1986. At one time

there were at least half a dozen manufacturers of these systems. The most important was Sun
Microsystems. The following year, MATLAB became available on Apple Macintosh.

3.2 Functions
In the mid-1980s, there was a variety of operating systems available on PCs, Macs, and Unix
workstations, but they all had some sort of hierarchical file system. The MATLAB function naming
mechanism uses this underlying computer file system.
PC-MATLAB was made extensible by scripts and functions. (This facility replaced the single

USER function of Classic MATLAB—see Section 2.6.) A script or function is a body of MATLAB
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code stored in a file with the extension “.m”. (At the time such files were referred to as “M-files,” but
that terminology has fallen out of use today.) If the file content begins with the keyword function,
then it is a function; otherwise it is a script. The name of the file, minus the .m, is the name of the
script or function. For example, a file named hello.m containing the single line

disp('Hello World')

is a MATLAB script. Typing the file name without the .m extension at the command prompt,
hello

produces the traditional greeting
Hello World

Functions usually have input and output arguments. Here is a simple example that uses a vector
outer product to generate the multiplication table familiar to all elementary school students.

function T = mults(n)
j = 1:n;
T = j'*j;

end

(Note that each of the two statements in this function ends with a semicolon, which indicates that
the computed value should not be printed.)

The following statement produces a 5-by-5 multiplication table:
T = mults(5)

T =
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

Input arguments to MATLAB functions are "passed by value," meaning that functions behave as
if their input arguments are copied from the caller. This leads to a simple, straightforward mental
model of function behavior. For memory efficiency, though, MATLAB also implements a "copy on
write" behavior, in which memory copies are deferred and often never actually made. For example,
because this function never changes its "copies" of the input arguments A and B, no actual memory
copy is made when the function is invoked.

function C = commutator(A,B)
C = A*B - B*A;

end

Functions defined by MATLAB code, like built-in functions, may return more than one value.
When calling a function that returns more than one value, the user can use a statement to assign
the multiple values to multiple variables.

3.3 Dynamic Linking of Compiled Code
PC-MATLAB introduced an external interface to allow Fortran and C programs to be written,
compiled, and then dynamically loaded into MATLAB and executed. Each external such function
resided in a separate file called a “mexfile” (nowadays the term is usually written “MEX file”).
The interface included a set of library functions and associated header files that allowed Fortran
and C programs to determine the dimensions of an array argument, find the real and imaginary
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parts, construct result arrays, and so on. A typical mexfile contains “wrapper” code that reads the
MATLAB data structures, finds their pieces, and assembles the MATLAB result(s), along with one
or more core functions that do the desired computation, often reused with little change from an
existing Fortran or C application. [Johnson and Moler 1994, pages 120–121]
Mexfiles worked like MATLAB code files: if a file named xxx.mex is on the search path of the

interpreter, it is taken to be the definition of the function xxx. (Actually, the precise suffix was and
is dependent on the architecture and operating system; for example, for a Sun 4 workstation, the
suffix mex4 was used.) If both a MATLAB code file and an appropriate mexfile are both present, the
mexfile is used rather than the MATLAB file. (This fact would become especially important when
the first MATLAB compiler was constructed—see Section 4.4.) [Johnson and Moler 1994, pages 121]

3.4 Language Changes and Extensions
PC-MATLAB abandoned the use of the MATLAB internal character codes and committed to the
use of ASCII as a character set. As a result, square brackets ‘[ ]’ were always used rather than
angle brackets ‘< >’ to delimit lists that produce matrices. Another consequence is that names
became case-sensitive (uppercase and lowercase letters were distinguished in names, rather than
converting lowercase to uppercase on input); however, a function casesen was introduced to allow
the user to “turn off” case sensitivity. The “official spellings” of built-in functions and commands
became lowercase.
In PC-MATLAB, names were no longer limited to four significant characters. The names of

certain functions such as diary, print, rcond, roots, round, and schur were now officially five
characters long.

The syntax >expression< for performing “macro replacement” (see Appendix A) was eliminated,
and its functionality was replaced by the function eval.
The operator ‘**’ used in Classic MATLAB for exponentiation (matrix power) was replaced in

PC-MATLAB by ‘^’, and a corresponding operator ‘.^’ was introduced to represent elementwise
exponentiation.
The Kronecker tensor product and division operators ‘.*.’ and ‘.\.’ and ‘./.’ were removed

(but the Kronecker tensor product function kron was retained).
In Classic MATLAB, the apostrophe ‘’’ was used to indicate (complex conjugate) matrix transpo-

sition. PC-MATLAB introduced the use of ‘.’’ to indicate matrix transposition without taking the
complex conjugate.
PC-MATLAB introduced the the use of ‘~’ as a prefix “logical NOT” operator, and replaced ‘<>’

with ‘~=’ as the “not equal” comparison operator.
PC-MATLAB introduced several new “permanent variables”: inf and nan (to support IEEE 754

arithmetic), pi (a useful constant indeed), and nargin and nargout, to allow a user-written function
to determine how many arguments it had been passed and how many results were expected.
PC-MATLAB added a flag to each matrix to indicate whether it should be regarded as a string

for output purposes, and a function setstr to enable the user to so flag a matrix. (This was the
first “baby step” toward having more than one type in the language.)
PC-MATLAB introduced a break statement to exit from a loop (as in C) and an elseif clause

for use in multi-way if constructions.
PC-MATLAB allowed the condition in a while, if, or elseif clause to be any expression, not

just a single comparison operation.

3.5 New Functions
Here is a brief summary of most of the new functions introduced into PC-MATLAB as of version 1.3
[naMoler 2018e] as compared to the Classic MATLAB of 1981 [naMoler 2018e]:
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• Elementary math functions: fix (round towards zero), rem (remainder), sign (signum func-
tion), tan (tangent), asin (arcsine), acos (arccosine), atan2 (four quadrant arctangent), log10
(logarithm base 10), bessel (Bessel functions)

• Attributes and array manipulation: max (maximum value in vector), min (minimum value
in vector), cumsum (cumulative sum of elements in vector), cumprod (cumulative product of
elements in vector), mean (mean value in a vector), median (median value in a vector), std
(standard deviation in a vector), length (length of a vector), sort (sorting), find (find array
indices of logical values), hist (histograms)

• Array building functions: invhilb (generate inverse Hilbert matrix), zeros (generate an
array of all zeros)

• Matrix functions: expm (matrix exponential), logm (matrix logarithm), sqrtm (matrix square
root), funm (arbitrary matrix functions)

• Polynomials: polyval (evaluate polynomial)
• Signal processing: filter (digital filter), fft (fast Fourier transform), ifft (inverse fast
Fourier transform), conv (convolution)

• Plotting (augmenting the plot function already in Classic MATLAB): shg (show graph-
ics screen), cla (clear current axes), clg (clear graphics screen), loglog (loglog X-Y plot),
semilogx (semi-log X-Y plot), semilogy (semi-log X-Y plot), polar (polar plot), mesh (3-
dimensional mesh surface), title (plot title), xlabel (x-axis label), ylabel (y-axis label),
grid (draw grid lines), axis (manual axis scaling), disp (compact matrix display)

• "System" operations: eval (interpret text in a variable), setstr (set flag indicating matrix
is a string), exist (check if a variable or function exists), demo (run demonstrations), pack
(memory garbage collection and compaction)

3.6 Toolboxes
The support in MATLAB for user-defined functions, either as MATLAB code or Fortran and
C code in mexfiles, added to emerging operating systems support for hierarchical file systems,
made it possible to organize MATLAB into toolboxes, collections of functions devoted to particular
applications. This provided a form of language extensibility that proved to be crucial to the evolution
of MATLAB. The first toolbox, named simply MATLAB Toolbox, implemented all the mathematical
and general-purpose functions that were not built into the interpreter.
Little was a controls and signals engineer. So, he wrote the first version of Control System

Toolbox, which was released in 1985. And, together with Loren Shure, MathWorks’ third employee,
he wrote the first version of Signal Processing Toolbox in 1987.

Two external academic authors, experts in their fields, wrote early toolboxes. Professor Lennart
Ljung, of the Linköping Institute of Technology in Sweden, wrote System Identification Toolbox in
1988 [Ljung 2014; na Ljung 2012b; na Ljung 2012a] to accompany his widely used textbook on
the subject [Ljung 1987]. Professor Carl de Boor, of the University of Wisconsin—Madison, wrote
Spline Toolbox in 1990 [de Boor 2004]—its successor is today’s Curve Fitting Toolbox—to be used
with his authoritative book on B-splines [De Boor 1978].

3.7 Graphics
Technical computer graphics have been an essential part of MATLAB since the first MathWorks
version. Many users come to MATLAB just for its plotting capabilities. Their data comes from
physical experiments or computation with other software. MATLAB produces plots suitable for a
report or technical paper.

Operations on arrays proved to be convenient for memory-mapped graphics. The array data type
proved to be natural for 2-D (X-Y) and 3-D (X-Y-Z) charting. But even the 1981 version of Classic
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Fig. 8. This portable machine-independent plot from Classic MATLAB was partly a joke, partly anticipation
of future graphics capabilities.

MATLAB had a rudimentary plot function that produced “ASCII plots” (see Figure 8). Today’s
MATLAB produces a more sophisticated plot for the same function (see Figure 9).

The textbookMatrices and MATLAB byMarvin Marcus, a professor at the University of California,
Santa Barbara was developed on a Macintosh-IIci and made use of early computer graphics [Marcus
1993]. Figure 10 shows the graph of the Julia set for the function 𝑓 (𝑧) = 𝑧2 + 𝑐 with 𝑐 = 0.1 + 0.8𝑖
as plotted by MATLAB on that Macintosh IIci. Much more detail is visible in a plot produced by
MATLAB today (see Figure 11).

Let’s look at three more examples. Notice that none of them has anything to do with numerical
linear algebra, but they all rely on vector notation and array operations.

The following code produces the plot shown in Figure 12:
x = -pi:pi/1024:pi;
y = tan(sin(x))-sin(tan(x));
plot(x,y)
xlabel('x')
title('tan(sin(x)) - sin(tan(x))')

The following code produces the plot shown in Figure 13:
X = (-3:1/8:3)*ones(49,1);
Y = X';
Z = 3*(1-X).^2.*exp(-(X.^2) - (Y+1).^2) ...

- 10*(X/5 - X.^3 - Y.^5).*exp(-X.^2-Y.^2) ...
- 1/3*exp(-(X+1).^2 - Y.^2);

mesh(X,Y,Z)
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Fig. 9. A plot for the same function, produced by contemporary MATLAB.

From Control System Toolbox, a Bode diagram shows the frequency response of a dynamic
system (see Figure 14).
In 1988, Moler characterized MATLAB as not only a “matrix laboratory” but also as a “mathe-

matical visualization laboratory” [Moler 1988].

3.8 Flops Count
The Classic MATLAB interpreter counted every floating point operation (“flop”) performed, and
reported the count if a statement is terminated with an extra comma. This feature was carried
forward into MathWorks MATLAB, but is not available in today’s MATLAB, where the inner
loops of matrix and other computations must be as efficient as possible. Figure 15 presents a
demonstration (in a 1984 version of MATLAB) of the fact that inverting an 𝑛-by-𝑛 matrix requires
slightly more than 𝑛3 floating-point ops.

The flops counts were also made accessible to the user through a built-in variable flop, a 1-by-2
matrix whose first entry is the number of flops performed by the immediately previous input, and
whose second entry is the (inclusive) cumulative sum of the values taken on by the first element. In
later versions of MATLAB, a new function flops was introduced to return and reset flop counts.

Support for tracking and reporting flop counts was eliminated when the routines that had been
adapted from EISPACK and LINPACK (with extra coding to support both the FLOP variable and the
CHOP command) were replaced by LAPACK (see Section 5.1).
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Fig. 10. A plot of a Julia set produced with MATLAB in 1992 by Marvin Marcus [Marcus 1993] on an Apple
Macintosh IIci. (Source: Prentice Hall.)

Fig. 11. A plot of the same Julia set produced by contemporary MATLAB.
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Fig. 12. A two-dimensional plot produced by contemporary MATLAB.

4 EVOLUTION OF MATLAB
While preserving its roots in matrix mathematics, MATLAB has continued to evolve to meet the
changing needs of engineers and scientists. Here are some of the key developments [na Moler
2018c; na Moler 2018d].

4.1 Data Types
By 1992 MathWorks had over 100 staff members and by 1995, over 200. About half of them had
degrees in science and engineering and worked on the development of MATLAB and its various
toolboxes. As a group, they represented a large and experienced collection ofMATLAB programmers.
Suggestions for enhancements to the language often come from these users within the company
itself.

MATLABwas being used for the design andmodeling of embedded systems, which are controllers
with specific real-time functions within larger electrical or mechanical systems. Such controllers
often have only single precision floating point or fixed-point arithmetic. The designers of embedded
systems desired the ability develop their algorithms using the native arithmetic of the target
processors. This motivated the introduction of several new data types into MATLAB, but without
the use of actual type declarations.
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Fig. 13. A three-dimensional plot produced by contemporary MATLAB.

For many years MATLAB had only one numeric data type, IEEE standard 754 double precision
floating point, stored in the 64-bit format.

format long
phi = (1 + sqrt(5))/2

phi =
1.618033988749895

Support for numeric data types other than double was gradually added to MATLAB between
1996 and 2004. Requiring only 32 bits of storage, single precision floating point cuts memory
requirements for large arrays in half. It may or may not be faster.
MATLAB does not have declarations, so single precision variables are obtained from double

precision ones by an executable conversion function.
p = single(phi)

p =
single
1.6180340
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Fig. 14. A Bode plot from Control Systems Toolbox shows the magnitude and phase shift of the frequency
response of a system.

Unsigned integer types uint8 and uint16 were initially used just for storage of images; no
arithmetic was required.

In 2004 MATLAB 7 introduced full arithmetic support for single precision, four unsigned integer
data types (uint8, uint16, uint32, and uint64) and four signed integer data types (int8, int16, int32,
and int64). MATLAB 7 also introduced the new logical type.

q = uint16(1000*phi)
r = int8(-10*phi)
s = logical(phi)

q =
uint16
1618

r =
int8
-16

s =
logical
1
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Flops count

The classic MATLAB interpreter counted every floating point operation, and reported the count if a statement is terminated with an
extra comma. This feature is not available in today's MATLAB where the inner loops of matrix and other computations must be as
efficient as possible. Here is a demonstration of the fact that inverting an n-by-n matrix requires slightly more than n^3 floating-point
ops.

Published with MATLAB® R2019b

Fig. 15. Demonstration of the use of an extra comma to print the flops count in Classic MATLAB.

Let’s see how much storage is required for these variables:
Name Size Bytes Class
p 1x1 4 single
phi 1x1 8 double
q 1x1 2 uint16
r 1x1 1 int8
s 1x1 1 logical

4.2 Sparse Matrices
In the folklore of matrix computation, it is said that J. H. Wilkinson defined a sparse matrix as any
matrix with enough zeros that it pays to take advantage of them. (He may well have said exactly
this to his students, but it ought to be compared with this passage he wrote in the Handbook for
Automatic Computation:

iv) The matrix may be sparse, either with the non-zero elements concentrated on a narrow
band centered on the diagonal or alternatively they may be distributed in a less systematic
manner. We shall refer to such a matrix as dense if the percentage of zero elements or its
distribution is such as to make it uneconomic to take advantage of their presence.

[Wilkinson and Reinsch 1971, page 191].)
Iain Duff is a British mathematician and computer scientist known for his work on algorithms

and software for sparse matrix computation. In 1990, he visited Stanford and gave a talk in the
numerical analysis seminar. Moler attended the talk. So did John Gilbert, who was then at Xerox
Palo Alto Research Center, and Rob Schreiber, from Hewlett Packard Research. They went to lunch
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at Stanford’s Tresidder Union and there Gilbert, Schreiber and Moler decided it was about time for
MATLAB to support sparse matrices.

MATLAB 4 introduced sparse matrices in 1992 [Gilbert et al. 1992]. A number of design options
and design principles were explored. It was important to draw a clear distinction between the value
of a matrix and any specific representation that might be used for that matrix [Gilbert et al. 1992,
page 4]:

We wish to emphasize the distinction between a matrix and what we call its storage class. A
given matrix can conceivably be stored in many different ways—fixed point or floating point,
by rows or by columns, real or complex, full or sparse—but all the different ways represent
the same matrix. We now have two matrix storage classes in MATLAB, full and sparse.

Four important design principles emerged.
• The value of the result of an operation should not depend on the storage class of the operands,
although the storage class of the result may. [Gilbert et al. 1992, page 10]

• No sparse matrices should be created without some overt direction from the user. Thus, the
changes to MATLAB would not affect the user who has no need for sparsity. Operations on
full matrices continue to produce full matrices.

• Once initiated, sparsity propagates. Operations on sparse matrices produce sparse matrices.
And an operation on a mixture of sparse and full matrices produces a sparse result unless the
operator ordinarily destroys sparsity. [Gilbert et al. 1992, page 5]

• The computer time required for a sparse matrix operation should be proportional to the
number of arithmetic operations on nonzero quantities. [Gilbert et al. 1992, page 3]

(Some of these principles were rediscovered later in the design effort to add arithmetic support
for single precision and the integer types.)
Only the nonzero elements of sparse matrices are stored, along with row indices and pointers

to the starts of columns. The only change to the outward appearance of MATLAB was a pair of
functions, sparse and full, to allow the user to provide a matrix and obtain a copy that has the
specified storage class. Nearly all other operations apply equally to full or sparse matrices. The
sparse storage scheme represents a matrix in space proportional to the number of nonzero entries,
and most of the operations compute sparse results in time proportional to the number of arithmetic
operations on nonzero entries. In addition, sparse matrices are printed in a different format that
presents only the nonzero entries.

As an example, consider the classic finite difference approximation to the Laplacian differential
operator. The function numgrid numbers the points in a two-dimensional grid, in this case 𝑛-by-𝑛
points in the interior of a square.

n = 100;
S = numgrid('S',n+2);

The function delsq creates the five-point discrete Laplacian, stored as a sparse 𝑁 -by-𝑁 matrix,
where 𝑁 = 𝑛2. With five or fewer nonzeros per row, the total number of nonzeros is a little less
than 5𝑁 .

A = delsq(S);
nz = nnz(A)

nz =
49600
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For the sake of comparison, let’s create the full version of the matrix and check the amount of
storage required. Storage required for A is proportional to 𝑁 , while for F it is proportional to 𝑁 2.

F = full(A);

Name Size Bytes Class Attributes
A 10000x10000 873608 double sparse
F 10000x10000 800000000 double

Let’s time the solution to a boundary value problem. For the sparse matrix the time is 𝑂 (𝑁 2).
For 𝑛 = 100 and 𝑁 = 10000 it’s instantaneous.

b = ones(n^2,1);
tic
u = A\b;
toc

Elapsed time is 0.029500 seconds.

The full matrix time is 𝑂 (𝑁 3). It requires several seconds to compute the same solution.
tic
u = F\b;
toc

Elapsed time is 7.810682 seconds.

4.3 Empty Matrices
Classic MATLAB had only one empty matrix, having size 0 × 0 and written as <> (or as [], starting
with MathWorks MATLAB). But a more careful analysis by Carl de Boor [de Boor 1990] (which
in turn relied to some extent on similar work done for APL) persuaded us that MATLAB should
support empty matrices of all sizes, that is, of sizes 𝑛 × 0 and 0 × 𝑛 for any nonnegative 𝑛. (And
when arrays were introduced, empty arrays of all possible shapes were similarly supported.)

Empty matrices have some surprising, but logically consistent properties.
x = ones(4,0)

x =
4×0 empty double matrix

The inner product of an empty column vector and an empty row vector with the same length is
empty.

z = x'*x

z =
[]

The outer product of an empty column vector and an empty row vector with any length is a full
matrix of zeros. This is a consequence of the convention that an empty sum is zero.

y = ones(0,5)
A = x*y

y =
0×5 empty double matrix
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A =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

As de Boor observed, one use for empty matrices is to provide appropriate base cases (or
termination cases) for iterative or inductive matrix algorithms, so that the processing of such initial
or final cases does not require separate code.

4.4 Compiling MATLAB
In the early 1990s, Stephen C. “Steve” Johnson (also known for, among other things, his work on
yacc [na Johnson 1975], lint [na Johnson 1978], and the Portable C Compiler [Johnson 1978; na
Johnson 1979]) constructed the first compiler for MATLAB, which was described in a 1994 paper
[Johnson and Moler 1994] and released in 1995 [naMoler 2006].
Much of the infrastructure needed to interface the compiler to the MATLAB interpreter was

already in place: user-defined MATLAB functions were already stored in separate source-code
files (see Section 3.2) and there was already a facility for dynamically loading files of compiled
code called mexfiles (see Section 3.3). Moreover, if a source-code file and a compiled file for the
same function were already present, the MATLAB interpreter would use the compiled file. All a
MATLAB compiler needed to do was read a file of MATLAB code and produce a corresponding
compiled mexfile.
Many MATLAB functions already ran with acceptable speed in the interpreter because most

of their work was done by applying EISPACK and LINPACK matrix operations to large matrices.
But some codes required the use of scalar operations. For example, solving a tridiagonal system of
linear equations could be done using full-matrix operations, but the cost would be quadratic in the
size of the system, and the alternative of using loops in a user function written in the MATLAB
programming language would have a cost that is linear in the size of the system but multiplied by
a large constant factor related to the overhead of the interpreter in processing individual scalar
operations. The MATLAB compiler was able to improve the speed of such a tridiagonal solver by a
factor of 100 for a system of size 1000 (a diagonal of size 1000 and two diagonals of size 999), and
by a factor of almost 150 for a system of size 5000 [Johnson and Moler 1994].

The most important work of this first MATLAB compiler was type analysis: is any given use of a
variable, or any given computed quantity, always non-complex? Always integer? Always scalar
rather than a matrix? The compiler used def-use chains, knowledge about language constructs and
built-in functions, and a least-fixed-point type analysis to answer such questions. For example, the
compiler knows that the expression 1:n is always an array of integers, even if n is not an integer;
it follows that for a clause for i=1:n the variable i is always scalar and always takes on integer
values. Such information makes it much easier to compile expressions (and especially subscript
expressions) involving i; for example, computing i*i is much, much simpler when the compiler
knows that i is a scalar integer rather than a complex matrix. If i is scalar, then so is i*i, and
therefore a(i*i) is also scalar (though not necessarily an integer—it depends on what the type
of a). This is an example of bottom-up propagation of constraints. As an example of top-down
propagation, consider this code fragment:

function a=f(x)
...
y(3) = 4 + x;
...
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The input variable x might be a priori of any shape, but because the constant 3 is a scalar, y(3) is
necessarily scalar (bottom-up constraint), therefore 4 + x must be scalar (top-down), therefore x
must be scalar at that point of use (top-down).
This original MATLAB compiler iteratively applied both top-down constraints and bottom-up

constraints, as well as recursively analyzing multiple functions when appropriate. The compiler also
resolved overloaded functions when possible by examining the number and types of the arguments
and results of a function call.
The compiler did not have to compile every MATLAB function. If the type analysis of some

particular function proved to be too elusive to allow generation of efficient code, the MATLAB
source-code version of that function was still available to the calling program. It turns out that
many people were more interested in using this compiler to protect intellectual property than
expecting it to achieve faster execution.

4.5 The Pentium FDIV Bug
Steve Johnson recalls [Johnson 2020]:

When I was writing the compiler, I worked from [California] and flew to Boston roughly
once a month for several days. (It was an interesting time, since I was working half
time for MathWorks, and the other half time I was consulting for HP and writing the
modulo scheduling code for what later became the Itanium. Two very interesting and
successful projects, but very very different technically.)
I would share an office with Cleve when I was in Boston. One time, when I visited, the
FDIV bug had just broken open and Cleve’s phone would not stop ringing. I believe he
was interviewed by CNN at that time.

Indeed he was—and by the Associated Press [na Press 1994], the New York Times [Markoff 1994],
and many other news outlets.

Intel’s Pentium processor had included a brand-new implementation of the floating-point divide
instruction FDIV, which used a variation of the Sweeney-Robertson-Tocher (SRT) algorithm that
was subtle, clever, and fast because it relied on a hardware lookup table with 2048 entries, of
which only slightly over half were relevant because only a trapezoid-shaped subset of the 128 × 16
table could ever be accessed by the algorithm. Unfortunately, because of some mishap, five of
the 1066 relevant entries mistakenly held the value 0 rather than 2. Even more unfortunately,
these entries were accessed only in very rare cases and were missed by Intel’s randomized testing
process; furthermore, the bad entries could never be accessed during the first 8 steps of the division
algorithm, and so incorrect results differed only slightly from the true results: enough to matter in
high-precision calculations, but not enough to stand out unless you were looking for the problem
or otherwise being very careful.
But Prof. Thomas Nicely of Lynchburg College did notice, because he was running the same

algorithm (a calculation of the sum of the reciprocals of twin primes) on multiple computers, and
the results obtained on a Pentium-based system differed from the others. After spending some
months checking out other possible reasons for the discrepancy, he notified Intel on October 24,
1994, and send email to some other contacts on October 30. One of the recipients of Nicely’s memo
posted it on the CompuServe network. Alex Wolfe, a reporter for the EE Times, spotted the posting
and forwarded it to Terje Mathisen of Norsk Hydro in Norway. Within hours of receiving Wolfe’s
query, Mathisen confirmed Nicely’s example, wrote a short assembly language test program, and on
November 3 initiated a chain of Internet postings in newsgroup comp.sys.intel about the FDIV
bug. A day later, Andreas Kaiser in Germany posted a list of two dozen numbers whose reciprocals
are computed to only single precision accuracy on the Pentium. [naMoler 2013d]
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The story quickly made its way around the Internet and hit the press when a story by Wolfe
broke the news in Electronic Engineering Times on November 7.

Meanwhile, Tim Coe, a floating-point-unit (FPU) designer at Vitesse Semiconductor in southern
California, saw in Kaiser’s list of erroneous reciprocals clues to how other FPU designers had
tackled the same task of designing division circuitry. He correctly surmised that the Pentium’s
division instruction employed a radix-4 SRT algorithm, producing two bits of quotient per machine
cycle and thereby making the Pentium twice as fast at division as previous Intel chips running at
the same clock rate.
Coe created a model that explained all the errors Kaiser had reported in reciprocals. He also

realized that division operations involving numerators other than one potentially had even larger
relative errors. His model lead him to a pair of seven digit integers whose ratio 4195835/3145727
appeared to be an instance of the worst case error. He posted this example to comp.sys.intel on
November 14.

Now Moler had first learned of the FDIV bug a few days prior to Coe’s post, from another elec-
tronic mailing list about floating-point arithmetic maintained by David Hough. At that point Moler
began to follow comp.sys.intel. At first, he was curious but not alarmed. But Coe’s discovery,
together with a couple of customer calls to MathWorks tech support, raised his level of interest
considerably. On November 15, Moler posted to the newsgroups comp.soft-sys.matlab and
comp.sys.intel, summarizing what was known up to then, including Nicely’s example and Coe’s
example, and pointing out that the divisor in both cases was a little less than 3 times a power of 2.

On November 22, two engineers at the Jet Propulsion Laboratory suggested to their purchasing
department that the laboratory stop ordering computers with Pentium chips. Steve Young, a reporter
with CNN, heard about JPL’s decision, found Moler’s posting on the newsgroup, gave him a quick
phone call, then sent a video crew to MathWorks in Massachusetts and interviewed him over the
phone from California. That evening, CNN’s Moneyline show used Young’s news about JPL, and
his interview with Moler, to make the Pentium Division Bug mainstream news. Two days later—it
happened to be Thanksgiving—stories appeared in the New York Times, the Boston Globe [Zitner
1994], the San Jose Mercury News [Takahashi 1994], and others. Hundreds of articles appeared in
the next several weeks.
In the meantime, Moler had begun collaborating with Coe, Mathisen, Peter Tang of Argonne

National Laboratory, and several hardware and software engineers from Intel to develop, implement,
test, and prove the correctness of software to work around the FDIV bug (and related bugs in
the Pentium’s on-chip tangent, arctangent, and remainder instructions). [na Moler 2013d] By
December 5, they had developed a clever workaround: examine the four high-order bits of the
divisor’s fraction (the part of the significand that is represented explicitly); if they are 0001, 0100,
0111, 1010, or 1101, multiply both the dividend and divisor by 15/16 before performing the division
operation. In all five cases, the effect of this scaling by 15/16 is to move the divisor away from a
“risky” pattern to a “safe” pattern. In all cases the quotient of the scaled operands will be the same as
the correct quotient of the original operands. [naMoler 2016, file moler_5.txt: email message dated
Mon Dec 5 6:20:44 EST 1994] A few days later they refined this to scale the operands by 15/16 only
if the eight high-order bits of the divisor’s fraction are 00011111, 01001111, 01111111, 10101111,
or 11011111, thus greatly reducing the number of cases that would be scaled. This technique was
published to the newsgroups for all to use freely.
In the fall of 1994, MathWorks was still a small company with fewer than 250 employees. The

product name, MATLAB, was known to customers, but the company name, MathWorks, was not
widely known. On November 23, the company announced a version of MATLAB that could detect
and correct the division bug. The public relations firm issued a press release with the headline
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The MathWorks Develops Fix for the Intel Pentium(TM) Floating Point Error
On the next day—the day the story appeared in the New York Times and other major newspapers—
this PR message showed up in the fax machines of media outlets all over the country. It turned out
to be a very successful press release. [naMoler 2013c]
The “Pentium Aware” release of MATLAB, release 4.2c.2, was made available at no charge to

users of MATLAB for Windows on December 27. This version of MATLAB not only compensated
for the Pentium Division Bug but also by default printed a short report each time the bug was
encountered. It also offered options to suppress the messages, count the number of occurrences, or
suppress the corrections altogether. [naMoler 2016, file moler_7.txt: email message dated 27 Dec
1994 18:52:06 -0500]

4.6 Cell Arrays
By the mid-1990s, MATLAB users were going way beyond numerical computation and needed
more general data structures than the rectangular, homogeneous, numeric matrix. Cell arrays were
introduced in 1996. A cell array is an indexed, possibly inhomogeneous collection of MATLAB
quantities—arrays of various sizes and types, strings, other cell arrays. Cell arrays are created by
curly braces ‘{ }’.

c = {magic(3); uint8(1:10); 'hello world'}

c =
3×1 cell array
{3×3 double }
{1×10 uint8 }
{'hello world'}

Cell arrays can be indexed by both curly braces and smooth parentheses. With braces, c{k} is
the contents of the k-th cell. With parentheses, c(k) is a cell array containing the specified cells.
Think of a cell array as a collection of mailboxes. With parentheses, box(k) is the k-th mailbox.
With braces, box{k} is the mail in the k-th box.

M = c{1}
c2 = c(1)

M =
8 1 6
3 5 7
4 9 2

c2 =
1×1 cell array
{3×3 double}

4.7 Structures
Structures, and associated “dot notation”, as seen in C and Pascal, were also introduced in 1996.
The graphics system now uses this notation. For another example, let’s create a grade book for a
small class.

Math101.name = {'Alice Jones';'Bob Smith';'Charlie Brown'};
Math101.grade = {'A-'; 'B+'; 'C'};
Math101.year = [4; 2; 3]
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Math101 =
struct with fields:

name: {3×1 cell}
grade: {3×1 cell}
year: [3×1 double]

To call the roll, we need the list of names.
disp(Math101.name)

'Alice Jones'
'Bob Smith'
'Charlie Brown'

Changing Charlie’s grade to a ’W’ involves both structure and array notation.
Math101.grade(3) = {'W'};

disp(Math101.grade)
'A-'
'B+'
'W'

4.8 Numerical Methods
The textbook by Forsythe, Malcolm, and Moler [Forsythe et al. 1977] contains Fortran programs
for common numerical methods, including interpolation, zero and minimum finding, quadrature
and random number generation. Translating these programs into MATLAB provided the start of a
numerical methods library.

4.9 ODEs
The numerical solution of ordinary differential equations has been a vital part of MATLAB since
the first MathWorks MATLAB. [Shampine and Reichelt 1997]. ODEs are the heart of Simulink®,
MATLAB’s companion product.

The Van der Pol oscillator is a classical ODE example.
𝑑2𝑦

𝑑𝑥2
= 𝜇 (1 − 𝑦2)𝑑𝑦

𝑑𝑡
− 𝑦

The parameter 𝜇 is the strength of the damping term. When 𝜇 = 0, the harmonic oscillator results.
This MATLAB function expresses the oscillator as a pair of first order equations.

function dydx = vanderpol(t,y)
mu = 5;
dydx = [y(2); mu*(1-y(1)^2)*y(2)-y(1)];

end

In the following code, a string containing the name of this function is passed as the first argument
to a numerical ODE solver, ode23s. The code produces the plot shown in Figure 16:

tspan = [0 30];
y0 = [0 0.01]';
[t,y] = ode23s('vanderpol',tspan,y0);
plot(t,y(:,1),'ko-',t,y(:,2),'k-')
xlabel('t')
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Fig. 16. The Van der Pol oscillator is a classical ODE example.

The Van der Pol oscillator, with the parameter 𝜇 set to 5, is a mildly stiff differential equation. In
anticipation, the code uses the ode23s solver; the ‘s’ in the name indicates it is for stiff equations.
In the plot you can see some clustering of steps where the solution is varying rapidly. A nonstiff
solver would have taken many more steps.

A stiff ODE solver uses an implicit method requiring the solution of a set of simultaneous linear
equations at each step. The components of the iconic MATLAB backslash operator for solving a
linear system are quietly at work here.
In all, there are seven routines in the MATLAB ODE suite. [na Moler 2014f] Their names all

begin with “ode”; this is followed by two or three digits, and then perhaps one or two letters. The
digits indicate the order; roughly speaking, higher order routines work harder and deliver higher
accuracy per step. A suffix ‘s’ or ‘t’ or ‘tb’ designates a method for stiff equations. Here is the list
of the functions in the suite:

ode45 The first choice for most nonstiff problems
ode23 Less stringent accuracy requirements than ode45
ode113 More stringent accuracy requirements than ode45
ode15s The first choice for most stiff problems
ode23s Less stringent accuracy requirements than ode15s
ode23t Moderately stiff problems without numerical damping
ode23tb Less stringent accuracy requirements than ode15s
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The functions ode23 and ode45 are the principal MATLAB (and Simulink) tools for solving
nonstiff ordinary differential equations. Both are single-step ODE solvers; they are also known as
Runge-Kutta methods. Each step is almost independent of the previous steps, but two important
pieces of information are passed from one step to the next. The step size expected to achieve a
desired accuracy is passed from step to step. And, in a strategy known as FSAL (“First Same As
Last”), the final function value at the end of a successful step is used as the initial function value at
the following step.

The BS23 algorithm used by ode23 is due to Larry Shampine and Przemyslaw Bogacki [Bogacki
and Shampine 1989]. The “23” in the name indicates that two simultaneous single-step formulas,
one of second order and one of third order, are involved; the difference between the two formulas
provides an error estimate that is used to adjust the step size if necessary.

Before today’s version of ode45, there was an earlier one. In a 1969 NASA report, Erwin Fehlberg
introduced a so-called six-stage Runge-Kutta method that requires six function evaluations per
step [na Fehlberg 1969]. These function values can be combined with one set of coefficients to
produce a fifth-order accurate approximation and with another set of coefficients to produce an
independent fourth-order accurate approximation. Comparing these two approximations provides
an error estimate and resulting step size control.
In the early 1970’s, Shampine and his colleague H. A. (Buddy) Watts at Sandia Laboratories

published a Fortran code, RKF45 (Runge-Kutta-Fehlberg method with 4th and 5th order approxima-
tions), based on Fehlberg’s algorithm [na Shampine and Watts 1976]. In 1977, Forsythe, Malcolm,
and Moler used RKF45 as the ODE solver in their textbook Computer Methods for Mathematical
Computations [Forsythe et al. 1977]. Fortran source code for RKF45 is still available from netlib.

RKF45 became the basis for the first version of ode45 in MATLAB in the early 1980s and for
early versions of Simulink. The Felhberg (4,5) pair was used for almost fifteen years until Shampine
and Mark Reichelt modernized the suite [Shampine and Reichelt 1997]. Today’s implementation
of ode45 is based on an algorithm of Dormand and Prince [Dormand and Prince 1980; Shampine
1986]. It uses six stages, employs the FSAL strategy, provides fourth- and fifth-order formulas, and
has local extrapolation and a companion interpolant.
The anchor of the MATLAB differential equation suite is ode45. The MATLAB documentation

recommends ode45 as the first choice, and Simulink blocks set ode45 as the default solver. But ode23
has a certain simplicity, and frequently it is especially suitable for graphics. A quick comparison
of ode23 and ode45: ode23 is a three-stage, third-order, Runge-Kutta method. whereas ode45 is a
six-stage, fifth-order, Runge-Kutta method; ode45 does more work per step than ode23, but can
take much larger steps.
A key feature of the design of MATLAB’s ODE syntax is that it is possible to use all of the

ODE solvers in exactly the same way; despite that fact that different solvers may need additional
information as arguments, all seven functions have the same API, so it is just a matter of providing
appropriate values for the arguments (some of which may be ignored by some solvers). In particular,
there are flexible options for specifying where (within the domain) solution points are desired, and
interpolation is automatically performed if necessary to produce those solution points; this can be
especially important for producing good (smooth-looking) plots.

4.10 Text
MATLAB relies on the Unicode character set. Character vectors are delineated by single quotes.
The statement

h = 'hello world'
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produces

h =
'hello world'

disp(h)

'hello world'

d = uint8(h)

d =
1×11 uint8 row vector
104 101 108 108 111 32 119 111 114 108 100

Short character strings are often used as optional parameters to functions.

[U,S,V] = svd(A,'econ'); % Economy size, U is the same shape as A.

plot(x,y,'o-') % Plot lines with circles at the data points.

Multiple lines of text, or many words in an array, must be padded with blanks so that the character
array is rectangular. The char function provides this service. For example, here is a 3-by-7 array.

class = char('Alice','Bob','Charlie');

class =
3×7 char array
'Alice '
'Bob '
'Charlie'

Or, you could use a cell array.

class = {'Alice', 'Bob', 'Charlie'}'

class =
3×1 cell array
{'Alice' }
{'Bob' }
{'Charlie'}

Recently, a comprehensive string data type was introduced.(see Section 5.10).

4.11 Evolution of the MathWorks Logo
MathWorks is perhaps the only company in the world that has the solution to a partial differential
equation as its logo. The graphic has evolved over the years [na Moler 2014c; na Moler 2014e; na
Moler 2014d; naMoler 2014b; naMoler 2014a] from a two-dimensional contour plot—a versionFFa
of which appeared in Cleve Moler’s PhD dissertation [Moler 1965, Figure (8.15)]—to a black-and-
white three-dimensional surface plot, to the same three-dimensional plot with various color schemes
and lighting models (see Figure 17).
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Fig. 17. Evolution of the MathWorks logo from a 2-D contour plot to a 3-D surface plot with color and lighting.
(Source: MathWorks.)

5 RECENT DEVELOPOMENTS
5.1 LAPACK
In 2000, MathWorks returned to the Fortran world for numerical linear algebra library by adopting
LAPACK [Anderson et al. 1999] in MATLAB 6. This replaced the old collection of LINPACK and
EISPACK subroutines rewritten in C. Here is part of the commentary [naMoler 2000] on this major
transition:

MATLAB started its life in the late 1970s as an interactive calculator built on top of LINPACK
and EISPACK, which were then state-of-the-art Fortran subroutine libraries for matrix com-
putation. The mathematical core for all versions of MATLAB, up to version 5.3, has used
translations to C of about a dozen of the Fortran subroutines from LINPACK and EISPACK.

LAPACK is the modern replacement for LINPACK and EISPACK. It is a large, multi-author,
Fortran library for numerical linear algebra. A new version was released in July and is
available from NETLIB (www.netlib.org/lapack). LAPACK was originally intended for use on
supercomputers and other high-end machines. It uses block algorithms, which operate on
several columns of a matrix at a time. On machines with high-speed cache memory, these
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block operations can provide a significant speed advantage. LAPACK also provides a more
extensive set of capabilities than its predecessors do.

The speed of all these packages is closely related to the speed of the Basic Linear Algebra
Subroutines, or BLAS. EISPACK did not use any BLAS. LINPACK used Level 1 BLAS, which
operate on only one or two vectors, or columns of a matrix, at a time. Until now, MATLAB
has used carefully coded C and assembly language versions of these Level 1 BLAS. LAPACK’s
block algorithms also make use of Level 2 and Level 3 BLAS, which operate on larger portions
of entire matrices. The NETLIB distribution of LAPACK includes Reference BLAS written in
Fortran. But the authors intended that various hardware and operating system manufacturers
provide highly optimized, machine-specific, versions of the BLAS for their systems.
It is finally time to incorporate LAPACK into MATLAB. Almost all modern machines

have enough cache memory to profit from LAPACK’s design. Several key chip and computer
vendors now offer optimized Level 1, 2, and 3 BLAS. A new alternative to the vendor BLAS
is available from ATLAS, a research project at the University of Tennessee, where routines
optimized for any particular machine can be generated automatically from parameterized
code fragments.
The first MATLABs ran in the one-half megabyte memory available on the first PC, so

it was necessary to keep code size at a minimum. One general-purpose eigenvalue routine,
a single-shift complex QZ algorithm not in LINPACK or EISPACK, was developed for all
complex and generalized eigenvalue problems. The extensive list of functions now available
with LAPACK means that MATLAB’s space saving general-purpose codes can be replaced
by faster, more focused routines. There are now 16 different code paths underlying the eig
function, depending on whether there are one or two arguments, whether the arguments
are real or complex, whether the problem is symmetric and whether the eigenvectors are
requested.

. . .
Regrettably, one popular MATLAB feature must be a casualty with the introduction of

LAPACK. The flops function, which keeps a running count of the number of floating-point
operations, is no longer feasible. Most of the floating point operations are now done in
optimized BLAS that do not keep flop counts. However, with modern computer architectures,
floating-point operations are no longer the dominant factor in execution speed. Memory
references and cache usage are most important.

5.2 FFTW
With MATLAB 5.3 and a 266 MHz Pentium laptop, a one-million-point real FFT took about 6
seconds. In 2000, with new FFT code incorporated into MATLAB 6.0, the same computation took
about 1.2 seconds. The new code was based on FFTW, “the Fastest Fourier Transform in the West,”
developed by Matteo Frigo and Steven G. Johnson at the Massachusetts Institute of Technology
[Frigo 1999; Frigo and Johnson 1998]. Frigo and Johnson won the 1999 J. H. Wilkinson Numerical
Software Prize for their work.
The fft function in MATLAB 5 could use fast versions of FFT only when the length was a

product of small primes; otherwise a slow FFT (with running time quadratic in the length) had to
be used. The FFTW improvements allowed MATLAB 6 to use fast FFT algorithms for any length,
even a large prime number.

Measurements showed that when the length 𝑛 was a power of 2 less than or equal to 216 = 65536,
the fft times for MATLAB 5.3 and MATLAB 6.0 were nearly the same; but when 𝑛 was a power
of 2 greater than 216, MATLAB 6.0 was about twice as fast because it made more effective use of
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cache memory. When 𝑛 was not a prime and not a power of 2, MATLAB 6.0 was two to four times
faster than MATLAB 5.3. [na Moler and Eddins 2001]

5.3 Desktop
The MATLAB desktop was introduced in 2000 [naMoler 2018f]. Figure 18 shows the default layout
of the desktop as it looks today. Four panels are visible, the current folder viewer on the left, the
workspace viewer on the right, the editor/debugger in the top center, and the traditional command
window in the bottom center. A file viewer and a command history window are not in the default
layout but can be included in personalized layouts.
Any of the panels can be closed or undocked into a standalone window. When you have two

screens available, you can put the command window on one screen and the editor on the other.

5.4 Function Handles
MATLAB has several functions that take other functions as arguments. These are known as “function
functions”. For many years function arguments were specified by a string. The numerical solution
of the Van der Pol oscillator is an example mentioned eatlier. The function vanderpol.m defines
the differential equation as a 2-by-1 first order system.

function dydt = vanderpol(t,y)
dydt = [y(2); 5*(1-y(1)^2)*y(2)-y(1)];

end

The function name is then passed as a character string to the ODE solver ode45.
tspan = [0 150];
y0 = [1 0]';
[t,y] = ode45('vanderpol',tspan,y0);

It turns out that over half the time required by this computation is spent in repeatedly decoding
the string argument. Performance is improved with the introduction the function handle, which is
the function name preceded by the “at sign”, @vanderpol.

The “at sign” is also used to create a function handle that defines an anonymous function, which
is the MATLAB instantiation of Church’s lambda calculus. Ironically, anonymous functions are
often assigned to variables in practice, thereby negating the anonymity.

vdp = @(t,y) [y(2); 5*(1-y(1)^2)*y(2)-y(1)];

Let’s compare the times required in the Van der pol integration with character strings, function
handles and anonymous functions.

tic, [t,y] = ode45('vanderpol',tspan,y0); toc
Elapsed time is 0.200928 seconds.

tic, [t,y] = ode45(@vanderpol,tspan,y0); toc
Elapsed time is 0.076443 seconds.

tic, [t,y] = ode45(vdp,tspan,y0); toc
Elapsed time is 0.051992 seconds.

The times required for the latter two are comparable and are significantly faster than the first.
An anonymous function can be returned as the value of another anonymous function; what is

nowadays commonly called “lexical scoping” is properly observed so that the inner function can
refer to variables bound by the outer function. However, MATLAB syntax does not provide a way
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to compute a function and immediately apply it to arguments, so the following sort of expression
(which a LISP programmer might expect to work in MATLAB):

((@(x)(@(y)x+y))(3))(5)

is rejected as a syntax error. However, if the function handles are assigned to variables along the
way:

fx = @(x)(@(y)x+y); fy = fx(3); fy(5)

then the expected answer 8 is indeed produced; the function handle in fy “remembers” that the
variable x had the value 3.

An alternative is to use the feval function (for “function evaluation”):

fx = @(x)(@(y)x+y);
feval(feval(fx,3),5)

5.5 Objects
MATLAB has users with a broad spectrum of programming skills. At one end of the spectrum are
scientists and engineers who are casual programmers but who use MATLAB extensively for their
technical computing needs. For them, ease of programming is of primary importance. At the other
end of the spectrum are the professional programmers, including those who work at MathWorks.
They desire a rich, full featured, powerful programming language.

Responding primarily to internal demand, major enhancements to the MATLAB object-oriented
programming capabilities, with behaviors found in C++ and Java, were made in 2008. Creating
classes can simplify programming tasks that involve specialized data structures or large numbers
of functions. MATLAB classes support function and operator overloading, controlled access to
properties and methods, reference and value semantics, and events and listeners.

The MATLAB graphics system is one large, complex example of the object-oriented approach.

5.6 Symbolic Math Toolbox™
In the mathematical world, MATLAB is often compared to symbolic algebra systems, including
MACSYMA [Martin and Fateman 1971] and its descendants. The primary data structure in these
languages is some sort of symbolic expression. At the most basic level, these systems can do calculus.
They know that the derivative of cos𝑥 is − sin𝑥 . It is possible to do numeric computation like
MATLAB, but this is not their strength.

With MATLAB, symbolic manipulation is done by the optional add-on Symbolic Math Toolbox.
This toolbox is now at version 8.4. The command

methods sym

lists over 400 functions.
The toolbox provides functions for solving, plotting, and manipulating symbolic math equations.

The operations include differentiation, integration, simplification, transforms, and equation solving.
Computations can be performed either analytically or using variable-precision arithmetic.

5.7 Making MATLAB More Accessible
The first versions of MATLAB were simple terminal applications. Over time, separate windows
for graphics, editing, and other tools were added. These gradually made MATLAB easier to use,
especially for users without prior programming experience. Two features that have had the biggest
impact are the MATLAB Desktop described above and the Live Editor.
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Fig. 18. The appearance of the MATLAB desktop in 2019.

The MATLAB Live Editor notebook interface was introduced in 2016. MATLAB input, output
and graphics are combined in a single interactive document. The document may be exported to
HTML, PDF, or LATEX.
Figures 19–21 show an an extended example illustrating how the Live Editor typesets results

from Symbolic Math Toolbox.
The “magic squares” from recreational mathematics (𝑛-by-𝑛 matrices containing the integers

1 through 𝑛2 for which every column, every row, and the two major diagonals have the same
sum) have some interesting properties from a linear algebra point of view. It is for this reason
that even the very earliest design for MATLAB included a function to generate magic squares—
though the earliest documentation remarked only that the function magic produces “interesting
test matrices” [Moler 1980]. The 1981 manual further says, “Magic square. MAGIC(N) is an N by N
matrix constructed from the integers 1 through N**2 with equal row and column sums.”

Figures 22 and 23 show a demonstration using Classic MATLAB of various properties of a 4-by-4
magic square, including the fact that the sum of every row, column, and major diagonal is 34 and
the fact that it is a singular matrix (because its rank is 3, not 4). Figures 24 and 25 show a comparable
demonstration using today’s MATLAB Live Editor™.

5.8 Parallel Computing
Parallel Computing Toolbox™ (PCT) was introduced at the 2004 Supercomputing Conference. The
next year, at Supercomputing 2005, Bill Gates gave the keynote talk [Gates 2005], using MATLAB
to demonstrate Microsoft’s entry into High Performance Computing.

PCT supports coarse grained, distributedmemory parallelism by runningmanyMATLABworkers
on many machines in a cluster, or on many cores in a single machine. [Luszczek 2009]
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Fig. 19. Use of Symbolic Math Toolbox within MATLAB Live Editor (1 of 3).
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Fig. 20. Use of Symbolic Math Toolbox within MATLAB Live Editor (2 of 3).
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Fig. 21. Use of Symbolic Math Toolbox within MATLAB Live Editor (3 of 3).
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Fig. 22. Exploring simple properties of magic squares in Classic MATLAB (1 of 2).

By far the most popular feature of the PCT is the parallel for loop command, parfor. This
allows the creation of “embarrassingly parallel” jobs with many variations of a single program and
no communication between processes.

Parallel Computing Toolbox rests upon the implementation of theMPI (Message Passing Interface)
library [Gropp et al. 1998; Snir et al. 1998]. MATLAB provides message-passing functions that are
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Fig. 23. Exploring simple properties of magic squares in Classic MATLAB (2 of 2).

high-level abstractions of functions described in the MPI standard; these include point-to-point
communication, broadcast, barrier, and reduction operations. An important part of the design of
the Parallel Computing Toolbox is that messages may be used to transmit or exchange arbitrary
MATLAB data types, including numerical arrays of any precision, structure arrays, and cell arrays.
In the general case, a single MATLAB message becomes two MPI messages: a short header message
of known size that indicates the MATLAB data type and associated size information, followed
by a payload message. The size information in the first message allows the receiver to prepare a
buffer adequate to receive the payload. For certain small data sizes, the payload can be included in
the header message, eliminating the need for a separate payload message. For complicated data
types, the data array is serialized by the sender into a byte stream and then deserialized by the
receiver, but for MATLAB data types that can be mapped directly onto an MPI data type, the
serialization/deserialization process is skipped and the contents of the data array are sent directly.
[Sharma and Martin 2009]
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Fig. 24. Exploring simple properties of magic squares in today’s MATLAB Live Editor (1 of 2).
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Fig. 25. Exploring simple properties of magic squares in today’s MATLAB Live Editor (2 of 2).
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5.9 GPUs
Support for Graphics Processing Units was added to the Parallel Computing Toolbox in 2010. Eight
years later, in release R2018a, the gpuarray has grown to have 385 associated methods, including all
the familiar matrix computations, including the functions lu, eig, svd and mldivide (the backslash
operator).

5.10 Strings
In 2016, MathWorks began the process of providing more comprehensive support for text by
introducing the double quote character and the string array data structure. The statement

class = ["Alice", "Bob", "Charlie"]'

produces

class =
3×1 string array
"Alice"
"Bob"
"Charlie"

There are some very convenient functions for the new string data type.

proverb = "A rolling stone gathers momentum"
words = split(proverb)

proverb =
"A rolling stone gathers momentum"

words =
5×1 string array
"A"
"rolling"
"stone"
"gathers"
"momentum"

Addition of strings is concatenation.

and = " and ";
merge = class(1);
for k = 2:length(class)

merge = merge + and + class(k);
end
merge

merge =
"Alice and Bob and Charlie"

The regexp function provides the regular expression pattern matching seen in Unix and many
other programming languages.
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5.11 Execution Engine
Recent years have seen changes in how MATLAB code gets executed and corresponding improve-
ments in performance. The changes have been based on JIT, just-in-time, compilation of MATLAB
code into machine code.

The first MATLAB JIT compiler, in the early 2000s, compiled a complete function at a time, but
only when strict constraints were met, and only for a subset of the MATLAB language. As a result,
this first JIT compiler had a relatively small impact on overall MATLAB performance.

A new, trace-based JIT compiler was introduced in 2015. This compiler has completely replaced
the original interpreter. It is based on compiling traces, or particular code paths, with run-time
knowledge of the dynamic types of program variables. This new MATLAB execution engine caches
compiled traces for reuse and records fast-lookup links between them.
The new JIT compiler was built with evolution in mind. Several layers of compilation and

optimization have been created to support different classes of code:

• Long, straight-line code scripts. These are often executed just once, or only a few times per
session, and so compilation cost is not amortized by run-time savings.

• Fortran-like code, with tight loops containing simple matrix indexing and arithmetic.
• Library-rich technical computing, with vectorized code, complex array indexing, and many
calls to specialized functions.

The JIT compiler can now execute long code scripts quickly, using a lightweight analysis and
compilation strategy. It can link traces across loop boundaries, enabling a variety of loop optimiza-
tions for Fortran-like code. And, for the most rich and complex code, it can perform deep analysis
and optimizations, using multiple CPU cores and background threads so that code execution does
not have to wait for the analysis to be completed. Typical MATLAB workflows now execute twice
as fast, on average, as they did four years ago, with no code changes needed.

This multilayer JIT compilation strategy continues to be an area of development at MathWorks.

5.12 Development Process
In the early days of MathWorks, only a handful of people worked on the source code for MATLAB.
In principle any one could make a change to any part of the code. In practice people stuck to their
individual areas of expertise.

Today the development process is much more structured and professional. Formal proposals for
any changes or additions are reviewed by committees. Peer code reviews are required. Extensive
automated testing is done before any changes are accepted.
The development process is facilitated by two powerful, in-house systems. The bug tracking

system is named “Gecko”, after the bug-eating lizard. Gecko has evolved into a system for tracking
almost all the activities affecting software. The testing system is “Build and Test” or “BAT”. Each
developer has a personal copy of MATLAB, together with the software they working on, in a
“sandbox”. Any kind of change can be made in an individual sandbox. When something is ready to
be part of MATLAB, a job is submitted to BAT. It must pass a multi-stage series of test suites before
it is accepted into the next release.

MathWorks was one of the earliest innovators for continuous integration, even before that term
was widely adopted. MATLAB 4.0 took almost two years to port and release on all platforms. With
the new, multiplatform, continuous-integration system, MATLAB 5.0 was released on the PC, the
Mac, and a number of Unix platforms simultaneously. The entire product suite is relased twice a
year. Some large organizations may choose to install releases less often than twice a year.
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5.13 Toolboxes
Much of the power of today’s MATLAB derives from the toolboxes available for specialized
applications. In release 2018a there are 63 of them. Here are the categories.

Parallel Computing (2)
Math, Statistics, and Optimization (9)
Control Systems (8)
Signal Processing and Wireless Communications (11)
Image Processing and Computer Vision (6)
Test and Measurement (5)
Computational Finance (8)
Computational Biology (2)
Code Generation (7)
Application Deployment (3)
Database Access and Reporting (2)

5.14 Today’s why Command
The why command from Classic MATLAB has survived over 40 years of software refactoring,
upgrades, and releases, and is still popular. In addition to 10 fixed responses, it is now capable of
generating random, arbitrarily long, syntactically correct English sentences with nouns, verbs,
adjectives, and adverbs. One possibility:

why

Some old and nearly bald mathematician suggested it.

6 SUCCESS
MathWorks now employs over 5000 people (30% located outside the United States) and in 2018 had
over $1 billion in revenue (60% from outside the United States), with customers in 185 countries
and software installed at over 100,000 business, government, and university sites [na MathWorks,
Inc. 2019]. More than 6,500 colleges and universities around the world use MATLAB and Simulink
for teaching and research in a broad range of technical disciplines. There are more than 4 million
users of MATLAB worldwide, and more than 2000 MATLAB-based books in 27 languages.

Why has MATLAB been successful? There are several reasons.

Mathematics. Years ago, Georgia Tech’s Professor JimMcClellan said, “The reason MATLAB is
so good at signal processing is that it was not designed for signal processing. It was designed
to do mathematics.” The same could be said for dozens of fields other than signal processing.
Matrices and ordinary differential equations are the basis for much of today’s technical
computing.

Quality. MATLAB results are known for their precision and correctness.
Language. Fundamentally, MATLAB is a computer programming language for manipulating

arrays. The simplicity and power of array operations, subscript notation, and for loops have
proved to be useful far beyond numerical linear algebra.

Toolboxes. Much as MATLAB has done for linear algebra and mathematics, a wide range of
specialized libraries extend MATLAB to provide the fundamental tools in disciplines that rely
on mathematical algorithms, especially when linear algebra or array based. This includes
areas such as signal processing, control systems, image processing, statistics, optimization,
and machine learning.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 81. Publication date: June 2020.



A History of MATLAB 81:51

Graphics. Many people use MATLAB just for graphics. Line plots, bar plots, scatter plots, pie
charts, three dimensional graphs, movies—the list expands with every release. Production of
publication quality graphics has always been one of MATLAB’s strengths.

Interactivity. MATLAB was originally intended to give students a means of doing matrix
computation without the delays of batch processing and edit-compile-link-load-execute work
flow of Fortran or C. This was attractive in the early days of mainframe and time-sharing
and is also attractive today when everybody has their own personal computer.

Education. Students first encounter MATLAB in college and find it useful in industry after
graduation.

Documentation. Professionally written, carefully maintained, and backed by a powerful doc
information architecture and extensive usability testing.

Support. MathWorks provides professional support including regular semi-annual releases,
fast e-mail and telephone support, on-line and in-house training, consulting and a strong
user community.

The Web. The web site mathworks.com was among the first registered commercial internet
sites and the company provides many MATLAB workflows through the website. This includes
MATLAB Online, a code exchange, online training, and extensive video “how to” examples.

Perhaps one additional measure of the popular success of MATLAB is the recent publication of
the book MATLAB for Dummies [Sizemore and Mueller 2014].

EPILOGUE
Moler was never able to teach the matrix analysis course that first motivated all this. By the time
Classic MATLAB was ready for anybody else to use it, he was in a computer science department,
with other responsibilities.

ACKNOWLEDGMENTS
Thanks to Steve Eddins and Jonathan Foot from MathWorks and to Guy Steele and the HOPL
shepherding process for significant improvements to this paper.
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A SYNTAX DIAGRAMS FOR CLASSIC MATLAB
This appendix presents the syntax diagrams from the 1981 MATLAB Users’ Guide [na Moler 1981;
naMoler 2018g], with commentary on the syntax of the MATLAB programming language and some
remarks on changes introduced in 1981 relative to the 1980 design paper [Moler 1980]. (In some
cases, the commentary and remarks use today’s terminology rather than the precise terminology
that might have been used in 1981; the intent is to explain the meaning of the syntax diagrams
of 1981 to today’s audience.) The syntax diagrams are of the same form used by Niklaus Wirth in
documenting Pascal [Jensen and Wirth 1974] and PL/0 [Wirth 1976], as well as in the specification
of Fortran 77 [Engel 1976, Appendix F], but rendered as what we now call “ASCII art” figures.

line

|-----> statement >----|
| |
|-----> clause >-------|
| |

-------|-----> expr >---------|------>
| | | |
| |-----> command >------| |
| | | |
| |-> > >-> expr >-> < >-| |
| | | |
| |----------------------| |
| |
| |-< ; <-| |
|--------| |---------|

|-< , <-|

A command line can be any sequence of items, where each item is a statement, clause, expression,
command, or macro replacement (interpretation of an expression to produce a character vector,
followed by parsing and interpretation of that character vector as an item), and where adjacent
items are separated by either a comma or a semicolon. MATLAB normally prints the value computed
by each statement or top-level expression; a semicolon indicates that the value computed by the
preceding statement or expression should not be printed.

The 1980 design paper [Moler 1980] does not have the >expr< syntax for macro replacement.

statement

|-> name >--------------------------------|
| | |
| | |--> : >---| |
| | | | |
| |-> ( >---|-> expr >-|---> ) >-|
| | | |

-----| |-----< , <----| |--> = >--> expr >--->
| |
| |--< , <---| |
| | | |
|-> < >---> name >---> > >----------------|
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A statement (what we would nowadays call an “assignment statement” consists of a left-hand side,
an equals sign, and a right-hand-side expression. The left-hand side may be a name, a subscripted
name, or a list of names within angle brackets. If it is a subscripted name, the subscripts are
separated by commas, and each subscript may be either an expression or a single colon symbol ‘:’.

clause

|---> FOR >---> name >---> = >---> expr >---------------|
| |
| |-> WHILE >-| |
|-| |-> expr >---------------------- |
| |-> IF >-| | | | | | | |

-----| < <= = <> >= > |---->
| | | | | | | |
| ----------------------> expr >--|
| |
|---> ELSE >---------------------------------------------|
| |
|---> END >---------------------------------------------|

A clause is either a for loop header, a while or if header (which must compare the values of two
expressions), an else delimiter for use with if, or an end delimiter that terminates a for, while,
or if control structure.
Today’s MATLAB uses ‘~=’ rather than ‘<>’ for the “not equal to” operator, and all six of the

comparison operators produce results of type “logical array” rather than numeric arrays.
Today’s MATLAB allows the use of any expression (possibly involving logical operators) rather

than just a single comparison operation in a while or if clause.
Today’s MATLAB has a return statement that returns control from a function in a manner that

would be familiar to any user of languages such as C or Java.
Today’s MATLAB allows the use of break and continue statements within for and while loops

in a manner that would be familiar to any user of languages such as C or Java.
Today’s MATLAB has a try/catch statement that can react to errors in a manner that would be

familiar to Java programmers.
Today’s MATLAB has a parallel for loop clause indicated by parfor (see Section 5.8).

expr

|-> + >-|
| |

-------|-------|-------> term >---------->
| | | |
|-> - >-| | |-< + <-| |

| | | |
|--|-< - <-|--|

| |
|-< : <-|

An expression is a sequence of one or more terms, where the first term may be preceded by a
(unary) ‘+’ or ‘-’ operator and adjacent terms are separated by a ‘+’ or ‘-’ or ‘:’ operator. Note
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that an expression containing three terms separated by two ‘:’ operators is interpreted as a single
range-construction operation.
Today’s MATLAB also has logical operators that that produce logical arrays as values: ‘&’ rep-

resents logical AND, ‘|’ represents logical OR, ‘&&’ represents logical AND with short-circuiting
(the expression to its right is not evaluated if the expression to its left produces a false value),
‘||’ represents logical OR with short-circuiting (the expression to its right is not evaluated if the
expression to its left produces a true value), and ‘~’ represents logical NOT. The four binary logical
operators have lower precedence than comparison operators. (Today’s MATLAB also supports
bitwise logical operations on two’s-complement integers, but they are provided by functions such
as bitand and bitor and bitxor rather than as operators.)
This syntax diagram for expr is equivalent to (but more concise than) the syntax diagram for

Expression in PL/0 [Wirth 1976, page 310].

term

---------------------> factor >---------------------->
| |
| |-< * <-| |
| |-------| | | |-------| |
|--| |--|-< / <-|--| |--|

|-< . <-| | | |-< . <-|
|-< \ <-|

A term is a sequence of one ormore factors, where adjacent terms are separated by amultiplication
or division operator. The syntax supports four multiplication operators:

‘*’ represents matrix multiplication
‘.*’ represents elementwise multiplication
‘.*.’ represents the Kronecker tensor product

(It was only during preparation of this paper that we discovered that Classic MATLAB would also
accept the fourth case ‘*.’ and treat it as if it were ‘.*’).

The syntax similarly supports eight division operations, but only six were intentionally defined:

‘\’ represents matrix left division
‘/’ represents matrix right division
‘.\’ represents elementwise left division
‘./’ represents elementwise right division
‘.\.’ represents Kronecker tensor left division
‘./.’ represents Kronecker tensor right division

The 1980 design paper [Moler 1980] does not provide for using periods before and/or after
the multiplication and division operators; it had only matrix multiplication and not elementwise
multiplication.
The Kronecker tensor operator symbols were eventually removed from the MATLAB syntax,

though the corresponding function kron remains for computing the Kronecker tensor product
(and Kronecker division operations are easily expressed using kron after taking the elementwise
reciprocal of the divisor).
This syntax diagram for term is equivalent to (but more concise than) the syntax diagram for

Term in PL/0 [Wirth 1976, page 310], except that it permits more kinds of multiplication and division
operators.
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factor

|----------------> number >---------------|
| |
|-> name >--------------------------------|
| | |
| | |--> : >---| |
| | | | |
| |-> ( >---|-> expr >-|---> ) >-|
| | | |
| |-----< , <----| |
| |

-----|------------> ( >-----> expr >-----> ) >-|-|-------|----->
| | | | |
| |--------------| | |-> ' >-| |
| | | | |
|------------> < >-|---> expr >---|-> > >-| |
| | | | |
| |--< <---| | |
| | | | |
| |--< ; <---| | |
| | | | |
| |--< , <---| | |
| | |
|------------> > >-----> expr >-----> < >-| |
| | |
|-----> factor >---> ** >---> factor >----| |
| |
|------------> ' >-----> text >-----> ' >-------------|

A factor may be a number; a name; a subscripted name; an expression in parentheses; an
empty list ‘<>’; a list of one or more expressions within angle brackets ‘< >’ where each pair of
adjacent expressions is separated by whitespace, a semicolon, or a comma; a macro replacement
(interpretation of an expression to produce a character vector, followed by parsing and interpretation
of that character vector as an expression); a pair of factors separated by the matrix exponentiation
operator ‘**’; or a text string (which produces a character vector as its value). If the factor is a
subscripted name, the subscripts after the name are surrounded by parentheses ‘( )’ and separated
by commas, and each subscript may be either an expression or a single colon symbol ‘:’. If the
factor is anything except a text string, it may be followed by an apostrophe ‘’’ to indicate the
operation of (complex conjugate) matrix transposition.

The 1980 design paper [Moler 1980] does not have the >expr< syntax. for macro replacement.
This syntax diagram for factor contains as a subdiagram the syntax diagram for Term in PL/0

[Wirth 1976, page 310], which allows a factor to be a number, an identifier, or a parenthesized
expression.

Today’s MATLAB has a second form of subscripting, used with cell arrays (see Section 4.6, that
is indicated by using curly braces ‘{ }’ after a name rather than parentheses.
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The character translation table in Classic MATLAB allowed the use of square brackets ‘[ ]’
rather than angle brackets ‘< >’ to surround a list. In today’s MATLAB, square brackets are used
in preference to angle brackets. In addition, curly braces ‘{ }’ may be used to surround a list to
indicate construction of a cell array rather than a matrix (see Section 4.6).

Today’s MATLAB uses ‘^’ rather than ‘**’ to represent the exponentiation (matrix power) opera-
tor, and furthermore uses ‘.^’ to represent elementwise exponentiation. A following apostrophe ‘’’
still indicates complex conjugate matrix transposition, as it always has ever since Classic MATLAB,
but today’s MATLAB also allows use of ‘.’’ to indicate the operation of transposition without
taking complex conjugates.

number

|----------| |-> + >-|
| | | |

-----> int >-----> . >---> int >-----> E >---------> int >---->
| | | | | |
| | | |-> - >-| |
| | | |
|---------------------------------------------|

The syntax for numbers is reasonably conventional by either the standards of 1980 or today’s
standards. A number consists of a significand optionally followed by a exponent. The significand
may be either an int, an int followed by a decimal point (period) followed by an int, or a decimal
point (period) followed by an int. An exponent consists of the letter ‘E’, then optionally a sign (‘+’
or ‘-’), then an int.
This syntax diagram for int is a subdiagram of the syntax diagram for Unsigned number in

Pascal [Wirth 1976, page 353; Jensen and Wirth 1974, page 116]; the one difference is that MATLAB
allows a number to begin with a decimal point, whereas Pascal requires at least one digit to precede
a decimal point.

int

------------> digit >----------->
| |
|-----------|

The syntax for numbers is quite conventional by either 1980 standards or today’s standards: it is
simply a sequence of digits, always interpreted as a decimal numeral, even if the first digit is ’0’.

Today’s MATLAB supports the use of hexadecimal notation (indicated by a leading ‘0x’) and of
binary notation (indicated by a leading ‘0b’) for integer values.

This syntax diagram for int is equivalent to the syntax diagram for Unsigned integer in Pascal
[Wirth 1976, page 353] [Jensen and Wirth 1974, page 116].

name

|--< letter <--|
| |

------> letter >--|--------------|----->
| |
|--< digit <--|
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The syntax for names is quite conventional by either 1980 standards or today’s standards: it is simply
a letter followed by any number of letters and digits. (Note, however, that in Classic MATLAB—both
the 1980 design and the 1981 implementation—-only the first four letters of a name are significant.)
This syntax diagram for name is equivalent to the syntax diagram for Identifier in Pascal

[Wirth 1976, page 353] [Jensen and Wirth 1974, page 116].

command

|--> name >--|
| |

--------> name >--------|------------|---->
| |
|--> char >--|
| |
|---> ' >----|

The 1980 design paper [Moler 1980] simply defines a command to be a “reserved name”; in
the 1981 Users’ Guide an additional argument is provided for, which may be a name or a single
character. (Note that char refers to any character in the character set except the apostrophe, so the
use of an apostrophe as a command argument is provided for separately in the syntax diagram.)

PHOTO
text

|-> letter >--|
| |
|-> digit >---|

----------------| |-------------->
| |-> char >----| |
| | | |
| |-> ' >-> ' >-| |
| |
|---------------------|

The text in a text string may consist of any sequence of characters, except that a single apostrophe
in the desired text is represented as two consecutive apostrophes. The 1980 design paper [Moler
1980] does not contain a syntax diagram for text, but simply describes “text” as meaning “any
sequence of letters, digits, and characters” where “character” does include the apostrophe as a
possibility; this may have been an error, corrected in the 1981 Users’ Guide with the introduction
of the syntax diagram for text.
This same possible error occurs near the bottom of the syntax diagram for Constant in Pascal

[Wirth 1976, page 353] [Jensen and Wirth 1974, page 116]. The Pascal User Manual does separately
say in the text, “Sequences of characters enclosed by single quote marks are called strings. To
include a quote mark in a string, one writes the quote mark twice” [Jensen and Wirth 1974, page
11]. However, the BNF in Appendix D of the Pascal User Manual does not address this point [Jensen
and Wirth 1974, page 111]. Similar observations apply to the discussion of strings in the Pascal
Report [Jensen and Wirth 1974, page 138].
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B PHOTO GALLERY

Fig. 26. In 1962, after Forsythe’s numerical analysis course and a visit to Stanford by Wilkinson, Moler wrote
a Fortran program to solve systems of simultaneous linear equations, 15 years before the introduction of
the MATLAB backslash operator. Decks of punched cards for the program were distributed fairly widely at
the time, including via SHARE, the IBM User’s Group. Pictured are three punched cards from that program.
(Source: Cleve Moler.)
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Fig. 27. The organizing committee for the 1964 Gatlinburg/Householder meeting on Numerical Algebra. All
six members of the committee—J. H. Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter
Henrici, and F. L. Bauer—have influenced MATLAB. (Source: Oak Ridge National Laboratory.)

Fig. 28. The first “personal computer” that Cleve Moler ever used was the Tektronix 4081, which Argonne
National Laboratory acquired in 1978. The machine was the size of a desk and consisted of a Tektronix
graphics display attached to an Interdata 7/32, the first 32-bit minicomputer. There was only 64 kilobytes
of memory—but there was a Fortran compiler, and so, by using memory overlays, it was possible to run
MATLAB. (Source: Ned Thanhouser.)
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Fig. 29. Participants at the Householder Symposium, 1981, Oxford University. Among them are Leslie Fox,
center in brown suit, chairman of the conference; J. H. Wilkinson, front row, fifth from left; Cleve Moler,
second row, second from left; Jack Dongarra, second row, rightmost. Classic MATLAB, running at the Oxford
Computing Laboratory, was demonstrated informally during coffee breaks. (Source: Oxford University.)

Fig. 30. MathWorks company photo 1988, Sherborn, Massachusetts; 8 employees. (Source: MathWorks.)
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Fig. 31. MathWorks company photo 1991, South Natick, Massachusetts; 44 employees. Jack Little is at the
upper right and Cleve Moler is second from the far left. (Source: MathWorks.)

Fig. 32. MathWorks company photo 2004, over 1100 employees in 11 offices worldwide. Loren Shure holds a
sign commemorating the Boston Red Sox remarkable win of the 2004 World Series. (Source: MathWorks.)
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Fig. 33. MathWorks company photo 2007, Boston Convention Center; over 1800 employees worldwide. (Source:
MathWorks.)

Fig. 34. MathWorks company photo 2019, 35th anniversary; nearly 5000 employees worldwide. (Source:
MathWorks.)
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Abstract: All those factors bearing on the creation of a high-quality Runge–Kutta code for the solution of ordinary
differential equations are studied. These include the selection of a formula based onmany theoretical and experimental
measures of quality; the various aspects of constructing efficient, reliable algorithms; and the design of convenient
but flexible software. A code, RKF45, is presented as a concrete realization of the conclusions of the study. 29 tables.
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