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Abstract. Vegetation indices (VIs) have been traditionally
used for quantitative monitoring of vegetation. Remotely
sensed radiometric measurements of visible and infrared so-
lar energy, which is reflected or emitted by plant canopies,
can be used to obtain rapid, non-destructive estimates of cer-
tain canopy attributes and parameters. One parameter of spe-
cial interest for water management applications, is the crop
coefficient employed by the FAO-56 model to derive actual
crop evapotranspiration (ET). The aim of this study was to
evaluate a methodology that combines the basal crop coef-
ficient derived from VIs with a daily soil water balance in
the root zone to estimate daily evapotranspiration rates for
corn and wheat crops at field scale. The ability of the model
to trace water stress in these crops was also assessed. Veg-
etation indices were first retrieved from field hand-held ra-
diometer measurements and then from Landsat 5 and 7 satel-
lite images. The results of the model were validated using
two independent measurement systems for ET and regular
soil moisture monitoring, in order to evaluate the behavior of
the soil and atmosphere components of the model. ET esti-
mates were compared with latent heat flux measured by an
eddy covariance system and with weighing lysimeter mea-
surements. Average overestimates of daily ET of 8 and 11%
were obtained for corn and wheat, respectively, with good
agreement between the estimated and measured root-zone
water deficit for both crops when field radiometry was em-
ployed. When the satellite sensor data replaced the field ra-
diometry data the overestimation figures slightly changed to
9 and 6% for the same two crops. The model was also used to
monitor the water stress during the 2009 growing season, de-
tecting several periods of water stress in both crops. Some of
these stresses occurred during stages like grain filling, when
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the water stress is know to have a negative effect on yield.
This fact could explain the lower yield reached compared to
local yield statistics for wheat and corn. The results showed
that the model can be used to calculate the water require-
ments of these crops in irrigated areas and that its ability to
monitor water stress deserves further research.

1 Introduction

Recent studies have shown that the global demand for food
will increase for at least another 40 yr. It is estimated that the
global population will reach nine billion people by the mid-
dle of this century (Charles et al., 2010). One consequence of
the rapid growth in world population is that the pressure on
water resources is increasing (Rijsberman, 2006). In the fu-
ture, less water will be available for agricultural production
as a result of competition with the industrial and domestic
sectors. At the same time, food production will need to in-
crease to feed the growing population (FAO, 2006). In arid
and semi-arid regions, the very availability of water is a ma-
jor limitation on crop production due to insufficient rainfall
to compensate for the evaporative losses of crops. Improve-
ments in water management in irrigated areas and adequate
irrigation scheduling are essential, not only to improve wa-
ter productivity, but also to increase the sustainability of ir-
rigated agriculture (Hsiao et al., 2007). One of the most im-
portant components of the water balance is evapotranspira-
tion (ET), i.e. the water transferred to the atmosphere by soil
evaporation and plant transpiration. Several techniques, such
as Bowen ratio energy balance, eddy covariance and weigh-
ing lysimeters, provide ET measurements, but these are ex-
pensive, they are limited to point or small experimental field
scales and can only be fully exploited by trained research
personnel (Allen et al., 1998). Several studies have evaluated
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remote sensing techniques for estimating crop evapotranspi-
ration on a large scale (Anderson et al., 2007; González-
Dugo and Mateos, 2008; Teixeira et al., 2009). In the course
of the past few decades, besides advances in sensor devel-
opment, several methodologies for incorporating optical and
thermal remote-sensing data into energy and water balance
models have been developed, producing estimates of actual
ET (Kustas and Norman, 1999; Allen et al., 2007; Neale et
al., 1989). These remote sensing approaches provide an op-
portunity to extend the area of application of these models
from point to basin or regional scales, producing a better rep-
resentation of vegetation heterogeneity.

The current limited availability of high-resolution thermal
satellite sensors hinders their use in irrigation scheduling and
water management at field scales, and thus underlines the im-
portance of models based on readily available optical data
as a more plausible option for these applications. This ap-
proach is usually based on the FAO-56 method, which repre-
sents ET as a product of a reference evapotranspiration value
(ETo), which takes atmospheric demands into account, and a
crop coefficient that considers the characteristics of the crop
(Doorenbos and Pruitt, 1977; Allen et al., 1998). The crop
coefficient can be calculated using a single method that com-
bines the effect of crop transpiration and soil evaporation
into a unique coefficient (Kc), or a dual one that separates
the plant transpiration, represented by a basal crop coeffi-
cient (Kcb) and the soil evaporation coefficient (Ke). The
single model is widely used because it requires only pheno-
logical information and standard meteorological data to pro-
duce acceptable estimated ET values (Er-Raki, 2007). The
dual model is mainly oriented towards research and real-time
irrigation scheduling for high-frequency water applications
(Allen et al., 1998). A great deal of research has been done
in the course of the past 30 yr on estimating the standard
values and temporal evaluation of crop coefficients (Allen et
al., 1998; Wright, 1982), which can be estimated from re-
mote spectral measurements because both the basal crop co-
efficient and the vegetation indices are sensitive to ground
cover fraction (fc) (Choudhury et al., 1994). This coefficient
may be derived from multispectral vegetation indices (VI)
obtained by remote sensing (Jackson et al., 1980; Heilman
et al., 1982; Bausch and Neale, 1987; Neale et al., 1989;
Calera et al., 2004). Some authors have suggested that rela-
tionships betweenKcb and VI are linear (Bausch and Neale,
1987; Neale et al., 1989; Gonzalez-Piqueras et al., 2003), but
others have found non-linear relationships (Hunsaker et al.,
2003, 2005). These relationships have been studied for sev-
eral crops and recently for potato (Jayanthi et al., 2007), cot-
ton and sugarbeet (González-Dugo and Mateos, 2008), wheat
(Duchemin et al., 2006; Er-Raki et al., 2007) and grapes
(Campos et al., 2010).

We used a combined methodology of basal crop coeffi-
cient derived from vegetation indices obtained initially from
a hand-held radiometer and then from a series of satellite im-
ages and a daily water balance in the root zone of the crop.

This combined methodology enables us to calculate the daily
corn and wheat crop coefficient and daily ET. A further ob-
jective was to determine the ability of the model to assess
water stress in both crops. A validation was performed us-
ing field soil moisture measurements and two different in-
struments to measure ET; an eddy covariance system and a
weighing lysimeter.

2 Materials and methods

2.1 Description of the model

The model used to estimate ET was developed in the
Bajo-Guadalquivir Irrigation Scheme in southern Spain
(Gonźalez-Dugo and Mateos, 2008). Daily ET was com-
puted using the dual approach in the form popularized by the
FAO56 manual (Allen et al., 1998), combined with spectral
data provided by remote sensors. A brief description of this
approach is presented below and a complete explanation of
the FAO model can be found in Allen et al. (1998).

Crop transpiration, represented by the basal crop coeffi-
cient,Kcb, is separated from soil surface evaporation as fol-
low:

ETc = (KcbKs+Ke)ETo (1)

Reference evapotranspiration (ETo, mm d−1) was estimated
using the Penman-Monteith equation (Allen et al., 1998),
with daily solar radiation, air temperature, wind speed, and
relative humidity data supplied by weather stations. The wa-
ter stress coefficient,Ks, quantifies the reduction in crop tran-
spiration due to soil water deficit, whereKs = 1 for non-stress
conditions andKs < 1 when there is a shortage of water in
the root zone.Ke is the soil evaporation coefficient that de-
scribes the evaporative component of ETc. The procedure for
calculating each coefficient is described below.

2.1.1 Basal crop coefficient

TheKcb in Eq. (1) may be derived from multispectral vegeta-
tion indices obtained by remote sensing. VIs are transforma-
tions of two or more spectral bands designed to assess veg-
etation condition, foliage, cover, phenology and processes
related to the fraction of photosynthetically active radiation
absorbed by a canopy (fPAR) (Asrar et al., 1989; Baret et
al., 1991; Glenn et al., 2008) VIs are also essential tools in
land-cover classification, climate and land-use-change detec-
tion, drought monitoring and habitat loss, to name just a few
applications (Glenn et al., 2008). SAVI (Soil Adjusted Veg-
etation Index, Huete, 1988) is one of the most used indices
highlighting the ability of the index to minimize the effect
of the soil on vegetation quantification. It was taken into ac-
count due to the positive results obtained in previous work
(Gonźalez-Dugo and Mateos, 2008). The SAVI index was
calculated as follow:
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Table 1. Crop parameter values used for deriving the crop coef-
ficients and computing the water balance following the procedure
described in FAO Irrigation and Drainage Paper No. 56 (Allen et
al., 1998).

Corn Wheat
Parameter 2008 2009 2009

Maximum crop height (m) 2.6 2.6 0.92
Maximum effective root depth (m) 1.35 1.35 1.25
Minimun effective root depth (m) 0.3 0.3 0.3
SAVImax 0.65 0.65 0.7
SAVImin 0.07 0.07 0.09
Maximum basal crop coefficient 1.11 1.13 1.06
(Kcbmax)

Ground cover fraction for Kcbmax 80 80 80

a Typical values adjusted for local relative humidity and wind speed.

SAVI =
(ρNIR −ρred)

(ρNIR +ρred+L)
(L+1) (2)

whereρNIR andρred are the reflectance in the near-infrared
and red spectra, respectively, andL is a soil normalization
factor, generally taken to be 0.5 (Huete, 1988).

An equation described by González-Dugo et al. (2009) to
compute the basal crop coefficient (Kcb) from SAVI was used
in this study:

Kcb=
Kcbmax

fcbmax

(
SAVI −SAVImin

SAVImax−SAVImin

)
if fc < fcmax (3)

Kcb= Kcbmax if fc ≥ fcmax (4)

wherefcmax is the ground-cover fraction (fc) at whichKcb is
at its maximum (Kcbmax), and the subscripts max and min of
SAVI refer to the values for very large LAI and bare soil, re-
spectively. The values adopted in the model are derived from
field measurements, and can be found in Table 1. The change
over time in SAVI for each field throughout the growing sea-
son was calculated by linear interpolation of the SAVI values
obtained by remote sensors.

2.1.2 Water stress coefficient

A soil root-zone water balance was calculated by keeping
track of the main incoming and outgoing water fluxes at the
boundaries of the root zone in order to calculateKs in Eq. (1).
The root-zone depth (Zr) was calculated as a function ofKcb.

Zr = Zrmin+(Zrmax−Zrmin)
Kcb

Kcbmax
(5)

whereZrmax andZrmin are the maximum effective root depth
and the effective root depths during the early stages of crop
growth (Table 1). The minimum effective root depth is
treated here as the depth of the soil layer from which the
seed can extract water to germinate, and a value of 0.3 m was

adopted. The change in the root zone water content,1Sw,

was calculated as the difference between the water inflows
and outflows.

1Sw = Swf −Swi = R−ET−D (6)

whereSwf andSwi (mm) are the root-zone water content at
the beginning and end of the water balance period, respec-
tively. R is infiltrated rainfall andD is deep drainage, both
during the water balance period. Equation (7) may be ex-
pressed in terms of root-zone water deficit, calculated daily:

RZWDi = RZWDi−1+ETi +Di −Ri (7)

where the subscript i indicates a given day and RZWDi and
RZWDi−1 are the root-zone water deficits on dayi andi−1,
respectively.

It is understood that the root zone is full of water,
RZWD = 0, when its water content is at field capacity, and
that it is empty when the water content reduces plants to
the wilting point. The root-zone water-holding capacity
(RZWHC) is the depth of water between these two extremes:

RZWHC= 1000
(
θfc −θwp

)
Zr (8)

whereθ fc is the water content at field capacity (m3 m−3), θwp
is the water content at wilting point (m3 m−3), andZr is the
rooting depth (m).

The stress coefficient,Ks, is calculated on the basis of the
relative root-zone water deficit as:

Ks=
RZWHC−RZWDi

(1−p)RZWHC
if RZWDi < (1−p)RZWHC (9)

Ks= 1 if RZWDi > (1−p)RZWHC (10)

wherep is the fraction of the RZWHC below which tran-
spiration is reduced as a consequence of water deficit. Ac-
cording to the FAO-56 manual, the recommendedp value is
0.55 for corn, winter and spring wheat when ETc is 5 mm per
day. The value forp was adjusted for different values of ETc,
using the following approximation:

p = 0.55+0.04(5−ETc) (11)

2.1.3 Soil evaporation coefficient

The estimation ofKe requires the daily water balance of the
soil surface evaporation layer, of effective depth equal toZe,

to be calculated. The evaporation coefficient is at its maxi-
mum when the topsoil is wet following rain or irrigation, and
is zero when the soil surface is dry and no water remains near
the soil surface for evaporation.Ke is calculated as:

Ke= Kr(Kcmax−Kcb) (12)

whereKr is a dimensionless evaporation reduction coeffi-
cient that depends on the cumulative depth of water depleted
from the topsoil andKcmax is the maximum value ofKc fol-
lowing rainfall or irrigation. Since evaporation is restricted at
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Table 2. Soil parameter values used for computing the water balance following the procedure described in Allen et al. (1998), beingθFC
the soil water content at field capacity,θWP the soil water content at wilting point,Ze the depth of soil surface evaporation layer, REW the
readily evaporable water and TEW the total evaporable water.

Parameter θFC(m3 m−3) θWP(m3 m−3) Ze (m) REW (mm) TEW (mm)

Corn (2008–2009) 0.255 0.09 0.1 10 21
Wheat (2009) 0.23 0.085 0.1 10 18.78

any moment by the energy available at the exposed soil frac-
tion, the value ofKe cannot exceed the productfew×Kcmax,
wherefew is the fraction of the soil surface not covered by
vegetation and wetted by irrigation or precipitation (Allen et
al., 1998).

The soil evaporation can be assumed to take place in two
stages: an energy-limiting stage, and a falling-rate stage.Kr
can thus be estimated as:

Kr = 1 if De,i−1 ≤ REW (13)

Kr =
TEW−De,i−1

TEW−REW
if De,i−1 > REW (14)

whereDe,i−1 is the cumulative depth of evaporation from
the soil surface layer at the end of dayi −1. TEW, the to-
tal evaporable water, is equal to the maximum depth of water
that can be evaporated from the soil during a complete drying
cycle, and the readily evaporable water, REW, is the maxi-
mum depth of water that can be evaporated from the topsoil
layer without restriction during the energy-limiting stage.

It is assumed that shortly following a major wetting event,
the water content of the evaporation layer is at field capac-
ity, θ fc, and the soil can dry to a water content level that is
halfway between oven dry and wilting point,θwp. The to-
tal evaporable water can be then estimated as (Allen et al.,
1998):

TEW= 1000
(
θfc −0.5θwp

)
Ze (15)

2.2 Description of experimental sites and model input
data

2.2.1 Site description

Two experimental sites grown with wheat(Triticum aes-
tivum)and corn(Zea mays)were monitored during the 2008
(corn) and 2009 (corn and wheat) growing seasons (Fig. 1).
Two contiguous drip-irrigated corn fields were selected in
the Bemb́ezar Irrigation Scheme of Hornachuelos (Province
of Cordoba, southern Spain) for the consecutive field mea-
surement campaigns. Both fields were large enough, 8 and
7.4 ha, respectively, to be clearly observed by a satellite re-
mote sensor with a spatial resolution of 30 m, thus avoid-
ing edge effects. The planting dates were 7 March 2008
and 5 March 2009 respectively, andPR31D58corn was used

in both seasons. Finally, the two fields were mechanically
harvested on 17 September 2008 and 1 September 2009, re-
spectively. The second site was a rainfed bread wheat field
of 1.5 ha, located in the IFAPA Alameda del Obispo (City
of Cordoba) experimental farm, where a weighing lysime-
ter has been in operation since 1985. It was planted on
19 December 2008 with theLubricancultivar and harvested
on 3 July 2009. The Mediterranean climate of this area is
characterized by an annual average precipitation of around
600 mm, very dry summers and average air temperatures of
10◦C in winter and 27◦C during the summer. For the period
of interest, from planting to harvest date on 2009 wheat sea-
son, 301 mm of precipitation and an average air temperature
of 15◦C were measured. The corresponding figures for the
2008 and 2009 corn seasons were 356 and 101 mm, and 22
and 23◦ C, respectively.

Soil properties such as texture and depth were measured
in the wheat field and in one of the corn fields. Soil water
content at field capacity and wilting point were derived from
texture data using the Rosetta pedotransfer function model
(Schapp et al., 2001). The same water content limits were
used for both corn fields, in view of their close proximity
and the similarity of their soil types.

Soil and crop parameters values used in the model appli-
cations are listed in Tables 1 and 2 respectively. Soil pa-
rameters such as the depth of soil surface evaporation layer
(Ze), readily evaporable water (REW) and total evaporable
water (TEW) were adapted from values tabulated in Allen et
al. (1998).

The water balance computation was initialized on
1 September 2007 and 2008, for 2008 and 2009 corn seasons,
and simulated under different starting soil moisture condi-
tions, with all cases indicating that on 1 March 2008 and
2009, just before the planting dates of each season, the root
zone could be assumed to be at field capacity due to cumu-
lative precipitations of 310 and 370 mm during the winters
of 2008 and 2009, respectively. In a similar way, the soil
layer depth was assumed to be at field capacity on 15 De-
cember 2008 in the wheat field.

2.2.2 Meteorological measurements

Daily and semi-hourly weather data for both sites were
provided by two meteorological stations belonging to the
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Table 3. Sensor, number of selected pure pixels (PP) for each field/date and dates (day of year and day after emergency) used for monitoring
corn and wheat fields during 2008 and 2009 growing seasons.

Corn Wheat

2008 growing season 2009 growing season 2009 growing season 2009 growing season

DOY(DAE) Sensor∗ DOY(DAE) Sensor PP DOY(DAE) Sensor∗ DOY(DAE) Sensor PP

91(9) ASD 67(0) ETM+off (L7) 10 43 (40) ASD 11 (8) TM (L5) 4
105(23) ASD 99(20) ETM+off (L7) 9 56 (53) ASD 43 (40) TM (L5) 4
115(33) ASD 123(44) TM (L5) 39 71(68) ASD 67 (64) ETM+off (L7) 4
143(61) ASD 147(68) ETM+off (L7) 40 78 (75) ASD 99 (96) ETM+off (L7) 4
158(76) ASD 163(84) ETM+off (L7) 38 96 (93) ASD 123 (120) TM (L5) 4
169(87) ASD 171(92) TM (L5) 40 113 (110) ASD 147 (144) ETM+off (L7) 4

185(103) ASD 203(124) TM (L5) 41 125 (122) ASD 163 (160) ETM+off (L7) 4
200(118) ASD 219(140) TM (L5) 39 139 (136) ASD 171 (168) TM (L5) 4
217(135) ASD 227(148) ETM+off (L7) 29 175 (172) ASD
233(151) ASD 235(156) TM (L5) 40 178 (175) ASD
261(179) ASD 243(164) ETM+off (L7) 11 184 (181) ASD

∗ ASD = Field measurements with a hand-held radiometer ASD-FieldSpec.

Agroclimatic Information Network of Andalusia (RIA)
(Gavilán et al., 2008), with one station located inside the Be-
mbezar Irrigation Scheme, and the second one at 100 m from
the wheat plot. The stations are controlled by a CR10X dat-
alogger (Campbell Scientific, Logan, UT) and are equipped
with sensors to measure air temperature and relative humid-
ity (HMP45C probe, Vaisala, Helsinki, Finland), solar radi-
ation (pyranometer SP1110 Skye Instruments, Llandrindod
Wells, UK), wind speed and direction (wind monitor 05103,
RM Young, Traverse City, MI) and rainfall (tipping bucket
rain gauge ARG 100, Environmental Measurements Limited,
Sunderland, UK).

2.2.3 Spectral data acquisition and processing

Field canopy reflectance measurements were performed us-
ing a hand-held radiometer (ASD-FieldSpec, Analytical
Spectral Devices, Boulder, CO) over corn in 2008 season
and wheat in 2009. The spectral range of the instrument, be-
tween 325 and 1075 nm (with a sampling interval of 1.6 nm),
covered the visible and near-infrared (NIR) regions of the
spectrum required for computing the vegetation indices and
overlapped Landsat red and NIR spectral bands. A fiber optic
jumper cable with a field of view (FOV) of 25◦ was used in
this study. Twenty-point regularly distributed measurements
were taken over each field of corn and wheat at midday and
under cloudless conditions. A sampling scheme based on
knowledge of the row spacing (pairs “on row and off row”)
was selected for measurements over corn, taking one mea-
surement over the plant (on row) and the second halfway be-
tween adjacent rows (off row) at each point of measurement.
The altitude of the sensor above the soil was 4.5 m, result-
ing in a FOV diameter at the soil surface 2.7 times as large

as the row spacing (0.75 m). The measurements over wheat
were taken in accordance with a simple random sampling
scheme with a sensor altitude above the soil of 2.2 m result-
ing in a FOV diameter at the soil surface 5.4 times as large
as the row spacing (0.18 m). Six additional measurements
were made over the weighing lysimeter surface inside the
wheat experimental field. The reflectance spectrum was cal-
culated as the ratio between the reflected and incident spectra
on the canopy, obtaining the incident spectrum from the light
reflected by a white reference panel close to a Lambertian
surface (Spectralon, Labsphere, North Sutton, NH). Red and
NIR reflectance values, required for SAVI calculation, were
computed by averaging the reflectance values corresponding
to Landsat 5 TM red and NIR spectral intervals (bands 3 and
4) using the spectral response function of each TM band. All
the spatially distributed SAVI data were averaged for each
measurement day and field.

Satellite remote data were provided by TM and ETM+
sensors carried on board LANDSAT 5 and 7, during the 2009
corn and wheat seasons. All cloudless satellite images for
both growing periods (a total of 13 images) were calibrated
and geometrically and atmospherically corrected. The geo-
metric correction was applied using reference ground con-
trol points acquired from a 1-m resolution ortho-photograph
taken in 2004. At-surface reflectance was obtained from the
correction of the shortwave bands of the images using the
atmospheric radiative transfer model MODTRAN 4 (Berk et
al., 1998). SAVI maps were calculated using the red and NIR
reflectance bands for each Landsat image. Average SAVI
values were extracted for each study field and the changes
in SAVI over time were obtained by linear interpolation of
the SAVI values from each image. The Landsat 7 ETM+
scan line corrector (SLC) failed on 31 May 2003, causing the
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scanning pattern to exhibit wedge-shaped scan-to-scan gaps.
However, the ETM+ has continued to acquire data with the
SLC powered off, leading to images that lack approximately
22 percent of the normal scene area (Storey et al., 2005).
When some of these gaps fell within the experimental plots,
their values were eliminated from the calculations.

A comparison between satellite-derived and ground-
derived SAVI was performed to evaluate the ability of satel-
lite imagery to reproduce field measurements and success-
fully extrapolate field results to a larger scale. The esti-
mates of SAVI derived from the Landsat-5 and 7 imagery
were compared with SAVI values calculated from ground ra-
diometry at the wheat experiment site (Table 3). The change
over time in ground-derived SAVI was obtained by linear in-
terpolation of the values of SAVI calculated from the radio-
metric measurements. Seven 2009 cloudless Landsat-5 and
Landsat-7 images, overlapping the spectral measurement pe-
riod, were used for this comparison.

A list of the sensors and dates used throughout the study
for both crops is shown in Table 3.

2.3 Validation data

The model was validated using field measurements of soil
moisture and ET. ET was measured using two differ-
ent instrumentation sets: an eddy covariance system (EC)
mounted on a micrometeorological flux tower, and a weigh-
ing lysimeter.

2.3.1 Eddy covariance measurements and adjustment
of turbulent fluxes

Half-hourly sensible (H) and latent (LE) heat fluxes over
the corn plot were measured using an eddy covariance sys-
tem consisting of a datalogger CR23X (Campbell Scien-
tific), a three-axis sonic anemometer CSAT3 (Campbell Sci-
entific), a fine thermocouple (model 127, chromel-constantan
0.013 mm diameter) attached to the anemometer, a krypton
hygrometer KH20 (Campbell Scientific), a net radiometer Q-
7.1 (Radiation and Energy Balance Systems, Seattle, WA),
two soil heat flux plates HFP01 (Hukseflux Thermal Sensors,
Delft, The Netherlands) and four parallel soil thermocou-
ples (TCAV). The distance between the sonic anemometer
and the hygrometer measuring paths was 0.20 m, and both
were located at a height ofz = 1.5 m, above the canopy. As
the crop height changed along the season, the height of the
instruments was checked twice a week and changed when-
ever necessary. Sampling frequency was 10 Hz. Fetch was
at least 200 m in all directions. Corrections were applied to
latent heat flux to account for air density fluctuations due
to heat and vapor transfer (Webb et al., 1980; Tanner et
al., 1993) and O2 radiation absorption (Tanner et al., 1993).
The net radiometer was located 1.5 m above the canopy and
net radiation data (Rn) were corrected for wind speed mea-
sured with the sonic anemometer according to the manu-

facturer’s recommendations. Soil heat flux (G) was deter-
mined at two locations (within the row and midway between
rows). The combination method (Fuchs and Tanner, 1967)
was employed, using the measurement of soil thermocouples
at 0.02 and 0.06 m and heat flux measured with the soil heat
flux plates at 0.08 m. Measurements ofRn andG were per-
formed at 10s intervals and the mean reading was recorded
half-hourly. The system was installed on the corn field be-
tween 28 April and 4 September 2008 and from 16 May un-
til 29 August 2009, measuring continuously except on days
with more than 0.2 mm of rain. A total of 96 complete days
of eddy covariance measurements were collected during each
growing season.

Detailed studies have shown how the eddy covariance
technique underestimates turbulent fluxes, a finding that has
been attributed to many different factors (Massman and Lee,
2002). Twine et al. (2000) compared different energy-
balance closures; EC measurement ofH and LE fluxes can
be adjusted for closure, maintaining the Bowen ratio or forc-
ing closure, assuming thatH is accurately measured and
solving LE as a residual to the energy balance equation
(LE =Rn–H–G). Brotzge and Crawford (2003) suggested
residual LE closure as the best eddy covariance approach be-
cause the Bowen ratio technique tends to underestimate LE
under highly evaporative conditions. We therefore calculated
daily ET values by forcing closure of the energy balance us-
ing the residual-LE closure method, and an average closure
of 80% was obtained.

2.3.2 Weighing lysimeter

Wheat ET was measured by a weighing lysimeter located in
the center of the plot. The surface dimensions of the lysime-
ter tank are 2× 3 m2 and the depth is 1.5 m. It is supported
by a counter-weighted platform scale capable of detecting
changes in weight of about 0.1 kg (equivalent to 0.02 mm wa-
ter depth over the lysimeter surface). The lysimeter weight
was sensed by a load cell (model TSF-P, Epel Industrial S.A.,
Alcala Guadaira, Spain) connected to a Datalogger CR10X
(Campbell Scientific) and set to measure semi-hourly ET.
Daily changes in mass (kg) were converted to equivalent wa-
ter depths (mm) to obtain daily ET. The outputs were ob-
tained as the average of 120 readings taken every 2 s over
a 4-min period centered at the respective sampling times, so
that fluctuations in weight due to wind friction on the lysime-
ter surface were smoothed (Berengena and Gavilán, 2005).
Only measured ET from days with precipitation below 0.2
mm were used for comparison purposes. During the data-
acquisition period (17 January to 25 June 2009) the lysime-
ter was drained twice (DOY 42 and 76), on neither of which
days its measurements were used. A total of 112 days of
lysimeter-measured ET were available for this study.
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Table 4. Sensitivity analysis parameters: reference values and ranges.

Corn (2008–2009) Wheat (2009)
Parameter Reference value Simulated rangeReference value Simulated range

Maximum effective root depth (m) 1.35 1.08–1.62 1.25 1-1.5
Minimun effective root depth (m) 0.3 0.1–0.5 0.3 0.1–0.5
TEW (mm) 21.5 17.2–25.8 21.5 17.2–25.8
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Fig.1 A mid-infrared (band 5), near-infrared (band 4) and red (band 3) composite of the Landsat TM-5 image (3 May 2009; 19 
DOY 123) and a high resolution ortho-photograph (2004) showing the fields that contained the eddy covariance (EC) flux 20 
stations (2008 and 2009) and the weighing lysimeter (2009). 21 
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Fig. 1. A mid-infrared (band 5), near-infrared (band 4) and red
(band 3) composite of the Landsat TM-5 image (3 May 2009; DOY
123) and a high resolution ortho-photograph (2004) showing the
fields that contained the eddy covariance (EC) flux stations (2008
and 2009) and the weighing lysimeter (2009).

2.3.3 Soil water content

Soil water content was calculated as the difference between
wet and dry weight of soil samples taken at intervals of 9–19
days throughout the wheat and corn-growing season. Four
randomly distributed samples were taken each measurement
day. The samples were taken at a depth of 120 cm and
were extracted as 30 cm-deep layers. The direct weight of
these samples represented the wet weight. The samples were
placed in an oven at 105◦C for two days to obtain the dry
weight.

2.4 Sensitivity analysis

A sensitivity analysis was performed to clarify, for this par-
ticular application of the model, the range of accuracy re-
quired for several input parameters involved in the calcula-
tion of the amount of water available for evaporation. A sim-
ple parameter perturbation (Chapra, 1997) was applied here,
by varying each model parameter while holding all the other

terms constant. The corresponding variations of the output
variable reflected the sensitivity of the solution to the varied
parameter.

The seasonal evapotranspiration (ETt , mm) was selected
as output variable and three parameters of the model af-
fecting ETt; maximum effective root depth (Zrmax), mini-
mum effective root depth (Zrmin) and TEW were selected
to be analysed during the 2008 and 2009 corn and 2009
wheat seasons. The simulated ETt was compared with a ref-
erence simulated seasonal evapotranspiration (ETtref). The
reference values of TEW andZrmax were obtained from
the central value of the intervals recommended by Allen et
al. (1998) for silt loam soil and wheat and corn crops, respec-
tively. Parameter reference values were varied by±10%, un-
til they reached similar values to the intervals recommended
by Allen et al. (1998). The referenceZrmin was 0.3, the
value suggested by the FAOAquacropmodel (Steduto et al.,
2009; Raes et al., 2009; Hsiao et al., 2009), which is de-
signed to predict attainable yield based on the available wa-
ter supply. Little attention has been paid to this parameter in
previous studies, and the uncertainty about the variation in-
terval led us to increase the earlier range of variation in the
reference value, using intervals of±33% within limits of 0.1
and 0.5 m. Table 4 shows the range of values used in this
sensitivity analysis.

3 Results and discussion

3.1 Comparison between satellite-derived and
ground-derived vegetation indices

Several studies (Moran et al., 1992, 1995; Liang et al., 2002;
Gonźalez-Dugo and Mateos, 2008) have evaluated the accu-
racy of atmospheric correction algorithms by comparing the
retrieved satellite reflectance with ground-based or aircraft-
based radiometric measurements and vegetation indices ob-
tained from various sensors. In this study, we compared
VIs obtained from Landsat imagery (5 and 7) and a hand-
held radiometer (ASD-FieldSpec). Satellite-derived SAVI
and ground-derived SAVI obtained at the wheat experiment
(Fig. 2) agreed with a coefficient of determination (r2) of
0.98 and a root mean square difference (RMSD) of 0.025.
Specific limitations pointed out by Jackson and Huete (1991)
when using VI obtained from different sensors, such as the
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Fig.2 Satellite-derived soil adjusted vegetation index (SAVI) vs. 17 
ground-derived SAVI at the wheat experiment. The thin solid diagonal 18 
line represents the 1:1 line, while the dark line segment represents the 19 
linear regression through the points. 20 
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Fig. 2. Satellite-derived soil adjusted vegetation index (SAVI) vs.
ground-derived SAVI at the wheat experiment. The thin solid diag-
onal line represents the 1:1 line, while the dark line segment repre-
sents the linear regression through the points.

use of processed data (reflectance) as input variable and the
atmospheric correction of satellite data, have been taken into
account in this comparison.

3.2 ET estimation using field radiometry data

Daily measured ET fluxes were first compared with daily es-
timated ET using the hand-held radiometer measurements to
assess the basal crop coefficient. Figure 3 shows daily es-
timated ET from the model and daily measured ET in corn
(2008) using the eddy covariance system, and wheat (2009)
using the weighing lysimeter.

The performance of the model was measured using the
RMSD between estimated and measured ET values and
the coefficient of determination. RMSD values of 0.8 and
0.67 mm d−1 were obtained for corn and wheat respectively.
These values are slightly higher than those presented by
other authors in earlier studies of the same crops. Er-Raki
et al. (2007) and González-Dugo et al. (2009) found differ-
ences close to 0.5 mm d−1. The poorer performance found
here does not appear to be significant and could be explained
by differences in meteorological data quality and/or man-
agement practices. The model showed a general trend to
overestimate daily ET of 8 and 11% in corn and wheat re-
spectively. A higher dispersion and a reverse of this trend
can be observed in corn for low ET values, suggesting that
at the beginning of the growing cycle, when crop ground-
cover is lower, field-measured SAVI may have been less
representative of average values for the area covering the
flux tower footprint than those measured under conditions
of greater vegetation ground coverage. This problem was
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Fig.3 Daily measured and estimated ET for corn (2008) (a) and wheat 25 
(2009) (b) using a radiometer-estimated Kcb. The thin solid diagonal line 26 
represents the 1:1 line, while the dark line segment represents the linear 27 
regression through the points.  28 
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Fig. 3. Daily measured and estimated ET for corn (2008)(a) and
wheat (2009)(b) using a radiometer-estimatedKcb.The thin solid
diagonal line represents the 1:1 line, while the dark line segment
represents the linear regression through the points.

not encountered with wheat, where six radiometric measure-
ments were taken over the lysimeter area (plot size 6 m2).
The coefficients of determination (r2) were of 0.92 for both
crops, slightly higher than the good correlations presented by
other authors for extensive and woody crops, including corn,
r2

= 0.70 (Gonźalez-Dugo et al., 2009), wheat,r2 = 0.64–
0.86 (Er-Raki et al., 2007) and vines,r2

= 0.86 (Campos et
al., 2010). The soil water-content measurements were used
to validate the water balance employed in the calculation of
Ke andKs. This may be regarded as an alternative validation
of the complete ET computing procedure. Figure 4 shows
the comparison between the model-estimated root-zone wa-
ter deficit and the real deficit obtained from soil samples,
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Fig.4 Daily measured and estimated root zone water deficit for corn (2008) (a) and wheat 23 
(2009) (b) using a radiometer-estimated Kcb. (DAE= day after emergence). 24 
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Fig. 4. Daily measured and estimated root zone water deficit for
corn (2008)(a) and wheat (2009)(b) using a radiometer-estimated
Kcb. (DAE = day after emergence).

where a significant agreement exists between the estimated
and measured deficit in wheat (RMSD = 9.78 mm). However,
there are some discrepancies at the end of the corn season
during crop senescence. The trend in the estimated deficit
matched reasonably well the measured data, irrespective of
whether particular points, that will require further analysis,
correspond to the general behavior of the model.

3.3 Satellite scale ET assessment

TM and ETM+ sensors were used to derive the SAVI index
as periodic input to the FAO56 model. The comparison be-
tween daily estimated and measured ET is shown in Fig. 5.
An RMSD of 1 mm d−1 was obtained for corn during this
second season. Both RMSD and the 9% overestimate were
similar but slightly higher than 2008 corn season values. The
computed SAVI represented an average of 7.4 ha, discount-
ing field-border pixels, and taking into account the variability
within the field. An RMSD of 0.5 mm d−1 andr2

= 0.9 was
obtained for wheat using satellite inputs. The model showed
a tendency to overestimate ET by six percent. The com-
parison between modeled root-zone water deficit values and
measured values at this scale is shown in Fig. 6. The rea-
sonable agreement during most of the time in the corn and
wheat seasons indicates that the model is able to estimate the
root-zone water deficit under both rain-fed and irrigated con-
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Fig.5 Daily measured and estimated ET for corn (2009) (a) and wheat 25 
(2009) (b) using a satellite-estimated Kcb. The thin solid diagonal line 26 
represents the 1:1 line, while the dark line segment represents the linear 27 
regression through the points. 28 
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Fig. 5. Daily measured and estimated ET for corn (2009)(a) and
wheat (2009)(b) using a satellite-estimatedKcb. The thin solid di-
agonal line represents the 1:1 line, while the dark line segment rep-
resents the linear regression through the points.

ditions. However, some discrepancies similar to those ob-
served during 2008 corn senescence were found at the end
of the 2009 season. For irrigated crops, there is some uncer-
tainly associated with the amount of irrigation water applied
due to problems arising from low uniformity, poor mainte-
nance of the irrigation system or problems with the pipes and
drippers during the growing season, which are common un-
der field conditions. Beyond the uncertainly of applied water
at the end of the season, discrepancies during the senescence
in both years could indicate that the model is not properly es-
timating corn transpiration during the R6 growth stage, issue
that will require further attention in the future.

www.hydrol-earth-syst-sci.net/15/1213/2011/ Hydrol. Earth Syst. Sci., 15, 1213–1225, 2011



1222 F. L. M. Padilla et al.: Integration of vegetation indices into a water balance model

 33 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 
 12 
 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

Fig.6 Daily measured and estimated root zone water deficit for corn (2009) (a) and wheat (2009) (b) 22 
using a satellite-estimated Kcb. (DAE= day after emergence). 23 
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Fig. 6. Daily measured and estimated root zone water deficit for
corn (2009)(a) and wheat (2009)(b) using a satellite-estimated
Kcb. (DAE = day after emergence).

3.4 Water stress monitoring of crops

A further step in irrigation water management is the moni-
toring and control of crop water stress, essential to guarantee
high yields under conditions of water scarcity. This is also
required in deficit irrigation systems and to improve fruit or
grain quality in certain crops. The degree of water stress can
be approximated by following the development of modeled
Ks coefficients. This approach is supported by the studies
of Colaizzi et al. (2003a,b) who pointed out the relationships
between theKs coefficient and the temperature-based Wa-
ter Deficit Index (WDI, Moran et al., 1994) and Crop Water
Stress Index (CWSI, Jackson et al., 1981). Only satellite-
based campaigns were used in our analysis, due to the better
representativeness of satellite-derived VIs of field crop vari-
ability. According to FAO-56 methodology,Ks values lower
than unity indicates that the crop is suffering water stress.
Figure 7 shows the stress and basal crop coefficients for 2009
wheat and corn throughout the growing season. Five periods
of water stress can be observed in Fig. 7a for irrigated corn.
The four first periods were mild, and they occurred during
the rapid growth stage (April–May), before the beginning of
irrigation (22 May 2009). According to the growth dynam-
ics of the crop, represented byKcb curve in Fig. 7a, and the
reasonably good tolerance of corn plants to soil-water stress
during this stage (Doorenbos and Kassam, 1979), these peri-
ods had no impact on the final yield. During the reproductive
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Fig.7 Satellite-estimated basal crop coefficient and stress coefficient for corn 20 
(2009) (a) and wheat (2009) (b). Ritchie's (Ritchie and Hanway, 1982) and Zadok's 21 
stages for corn and wheat, respectively, are also shown. 22 
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Fig. 7. Satellite-estimated basal crop coefficient and stress coeffi-
cient for corn (2009)(a) and wheat (2009)(b). Ritchie’s (Ritchie
and Hanway, 1982) and Zadok’s stages for corn and wheat, respec-
tively, are also shown.

stage, the most critical period, enough water was available
for the plant. The last period of water stress was observed
during the late season, 15 days before harvest. This was
the consequence of a common management practice in this
area, where most local farmers apply the final irrigation 15
to 20 days before the grain ripens, in order to save water and
given the relative tolerance of the crop to water stress during
maturity (Doorenbos and Kassam, 1979). However, this dry
period was too prolonged and probably contributed to a re-
duction in yield that in this particular field was around 20%
lower than the 12 500 kg ha−1 local average (CAP, 2009).

The water stress for wheat affected the entire grain-filling
stage, Fig. 7b, corresponding to Zadoks stages 7–9 (Zadok et
al., 1974). A lack of water at these stages is known to have
a significant effect on grain filling, resulting in lower yields
(Rawson and Ǵomez, 2000). The cumulative soil water con-
tent during the winter was not enough to satisfy the evapo-
transpiration demand of the final two months of the growing
season. In this case, the harvested yield of 2100 kg ha−1 was
28% lower than the figure provided by regional agriculture
statistics for wheat (CAP, 2009).
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3.5 Sensitivity analysis

The results of the sensitivity analysis for the three monitored
growing seasons are shown in Fig. 8. Relative values are
presented to facilitate comparisons between parameters and
seasons. The simulated ETtref values were 803 and 712 for
corn in 2008 and 2009, respectively, and 342 mm for wheat.
In all cases, variations in ETt were more significant forZrmax
than forZrmin or TEW, with an average variation of 3.8% for
20% variation in theZrmax parameter, compared to ETt vari-
ations of 0.2% and 0.5% for the same change in the values of
the other two parameters.

The sensitivity of the model toZrmax differed slightly be-
tween the corn and wheat simulations, with a higher variation
for rainfed wheat. The effect ofZrmax on ETt was higher
for wheat, with an average variation of 7.2% for a 20% of
change in the reference parameter value. However, the max-
imum ETt variations under irrigated conditions were 2 and
3.1% in 2008 and 2009 respectively, for the same parameter
disturbance. An increase or decrease inZrmax significantly
affects the calculation of the control volume for the soil wa-
ter balance and thus the daily water storage capacity. The
influence on ET is more obvious under conditions of water
stress and when the soil water content is close to the thresh-
old value that determines the beginning of stress, starting the
stress coefficient calculation and the reduction of transpira-
tion. Rainfed wheat suffered a prolonged period of water
stress that lasted for 67 days at the end of the season, while
only 15 days before harvest was observed for corn in both
seasons, a difference that may explain the different effect of
Zrmax variation on ETt .

The effects of variations inZrmin on ETt estimation were
very limited for both crops.Zrmin influences the water bal-
ance untilZrmax is reached and its effect is probably more
significant on daily ET during the initial growth stage. How-
ever, a stronger effect was observed for corn (1.9 of ETt vari-
ation on average for 66% of parameter variation), in which
water was scarce during the stage of rapid growth, than for
wheat (0.55 for 66% of variation). TEW appeared to have
a negligible effect on ETt under both rainfed and irrigated
conditions. The maximum variations of ETt with respect to
ETtref were 0.7 and 0.3% for corn in 2008 and 2009, respec-
tively, and 0.8% for wheat.

4 Conclusions

The results of daily ET obtained for both crops with crop co-
efficients calculated using field and satellite derived remote
vegetation indices were generally consistent with measure-
ments. The modeled results compared well with both ET
measurement systems EC and lysimeter, showing average
overestimates of 8% on daily ET. The model was also ca-
pable of tracing a soil water deficit curve in agreement with
point measurements of soil moisture.
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Fig.8 ETt with respect to ETtref for variations in maximum effective root depth (Zmax), 24 
minimum effective root depth (Zmin) and TEW, for wheat 2009 season (a) and corn 2008 25 
(b) and 2009 (c) seasons.  26 
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Fig. 8. ETt with respect to ETtref for variations in maximum effec-
tive root depth (Zmax), minimum effective root depth (Zmin) and
TEW, for wheat 2009 season(a) and corn 2008(b) and 2009(c)
seasons.
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The use of satellite-borne sensors permitted low-cost,
large-scale acquisition of distributed vegetation indices,
without significant loss of accuracy in the final ET estima-
tion, thus avoiding problems of representative field measure-
ments for low plant ground coverage. The extension of the
method to larger areas using satellite inputs is hindered by
the need for a daily water balance that requires accurate soil
and irrigation information, which is difficult to gather on a
large scale. However, D́ıaz et al. (2009) have proposed a
simplification of water balance calculating a synthetic crop
coefficient that accounts for the main effects of rain and irri-
gation soil wetting on ET that could permit an upscaling of
this model, reducing the data requirements.

Analysis of trends in the stress coefficient derived from
the water balance provided valuable information about the
use of water in both crops along the growing season, helped
to quantify the incidence of water stress during individual
growth stages and provided insights into its relationship with
final yields under both rainfed and irrigated conditions.

This methodology can be used to perform water stress
analyses and to decide when and how much to irrigate. The
combination of remote sensing-derived basal crop coeffi-
cients with the FAO methodology could be an important tool
for estimating water requirements and improve water man-
agement at irrigation-scheme and basin scales.
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