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Abstract

This paper studies the problem of designing con-
tests for settings where a principal seeks to op-
timize the quality of the best contribution ob-
tained, and potential contestants only strategize
about whether to participate in the contest, as par-
ticipation incurs some cost. This type of contest
can be mapped to various real-life settings (e.g., se-
lection of background actors based on headshots,
photography contest). The paper provides a com-
parative game-theoretic based solution to two vari-
ants of the above underlying model: parallel and se-
quential contest, enabling a characterization of the
equilibrium strategies in each. Special emphasis is
placed on the case where the contestants are a pri-
ori homogeneous which is often the case in contests
where ranking is mostly influenced by some proba-
bilistic factors (e.g., luck) or whenever contestants
are evaluated subjectively by a referee whose taste
cannot be a priori predicted. Here, several (some-
how counter-intuitive) properties of the equilibrium
are proved, in particular for the sequential contest,
leading to a comprehensive characterization of the
principal’s preference between the two.

1 Introduction
Contests have been used since the dawn of man as a mecha-
nism for inducing individual efforts. In recent years, contests
are used not only as a means for determining the best con-
testant, but also for generating value. For example DARPA
is offering Grand Challenges to promote the development of
cutting-edge technologies, scientific organizations run con-
tests to enhance research (e.g., [Baarslag et al., 2013]), firms
run contests to come up with new products (such as the LEGO
Ideas contests [Schlagwein and Bjorn-Andersen, 2014]) and
not-for-profit organizations are organizing contests for trans-
formative solutions that benefit mankind (as with the Hult
Prize (www.hultprize.org)).

The majority of contest research deals with models where
contestants can influence their performance in the contest
through the effort or money they put [Baik, 1994; Moldovanu
and Sela, 2006]. In various settings, however, this is not the

case as not only contestants have no control over their perfor-
mance from the time of making their participation decision
and onwards, but they are also uncertain concerning the way
they will be evaluated in the contest. This holds whenever
contestants are being evaluated subjectively by anonymous
judges, based on the taste of the public (in case of a voting
open to the public), based on criteria that are not fully dis-
closed to them, or simply based on luck or uncertain envi-
ronment parameters (e.g., weather). For example, when an
agency is posting on social media that it seeks background
actors (”extras”) no audition takes place. Instead, contestants
submit their pre-made headshots, and the selection is made
based on how applicants’ headshots match some desired look
(which can be completely subjective as it depends on the spe-
cific casting team member in charge). Similarly, at the time a
department chair solicits submissions from faculty members
for excellence in research prize, prospective candidates can-
not influence anymore the quality of the results they submit
(as the research has already been carried out and published)
and the way their results will be evaluated by the department
chair compared to others’ is somehow uncertain. This recurs
also in applications such as photos contests (as photographers
submit the best photos they have shot and are uncertain about
voters’ tastes) and graduate students applying for a post-doc
(as the evaluation of their achievements by the professor of-
fering the position is uncertain and they cannot influence the
substence of their achievements at the time they apply). Com-
mon to all the above examples, that the contestants’ strategy
is limited to participating or not participating in the contest.
This latter decision becomes non-trivial whenever participa-
tion incurs some cost (e.g., locating and uploading photos,
filling in registration details, sending a CV, emotional suffer
and reputational loss in case of not winning).

In this paper we study contests of the above type, i.e., the
contestants’ performance in the contest is beyond the control
of contestants at the time of the contest and participation is
costly. Unlike most prior literature, that was primarily fo-
cused on parallel contest models, in this work we consider
also the option for a sequential contest. In sequential contest,
only one contestant performs at a time and its performance
measure is known to the following contestants. Such design
is commonly used in real-life, e.g., in Olympic sports such as
platform diving, pole vault and javelin throw.
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Contributions. The paper provides a comprehensive game-
theoretic based analysis of the parallel and sequential contest
model variants of contests where contestants only strategize
about participation, specifying the conditions under which
different kinds of equilibria hold. The analysis enables
demonstrating that the preference of the contest to be used
(parallel or sequential), from the contest organizer’s point
of view, can frequently change as a function of the setting
parameters—even a slight variation in one of the parameters
can result in several alternations in preference. For the case
of homogeneous contestants, however, we manage to charac-
terize some setting classes where parallel contest dominates a
sequential one and vice versa. In particular, we prove a tran-
sition in preference from parallel to sequential contest as the
ratio between the participation cost and the prize awarded in-
creases. Interestingly (and somehow counter-intuitively), we
find that in sequential contest with homogeneous contestants,
despite the asymmetry imposed by the sequential process, in
equilibrium both the contestant’s strategies and their expected
profit do not depend on the number of contestants nor the
position of a contestant in the sequence. The latter finding
suggests that the sequential competition is just as fair as the
parallel one.

2 Related Work
Contests are organizational structures in which contestants
spend costly efforts (e.g., time, resources) to win one or more
prizes [Dechenaux et al., 2014]. Contest design, i.e., the set
of rules that define a contest, had focused much interest in
literature [Glazer and Hassin, 1988; Dasgupta and Nti, 1998;
Ghosh and Kleinberg, 2016], differing primarily in the as-
sumptions made in the underlying contest model (e.g., offer-
ing several prizes [Galton, 1902; Cohen et al., 2008; Archak
and Sundararajan, 2009] or using more than a single stage
(most commonly in the form of a tournament) [Rosen, 1986;
Clark and Riis, 1996; 1998; Hazon et al., 2008]) and the con-
test organizer’s goals (e.g., maximizing overall effort, best
effort, fairness) [Lev et al., 2013]. In addition to foundational
work on the theory of contests, much research has been de-
voted to providing experimental evidence for the way people
behave in contests [Dechenaux et al., 2014] as well as online
crowdsourcing contests [DiPalantino and Vojnovic, 2009;
Chawla et al., 2012].

Most literature in the area of contest design deals with
effort-based contests, where the effort expended by contes-
tants determines their probability of winning a prize [Nti,
1999; Moldovanu and Sela, 2006] (perhaps the most com-
mon is the Tullock contest [Buchanan et al., 1983] in which
the winning probability is the ratio of the contestant’s effort
and the total effort exerted by all contestants). Our model, as
motivated above assumes contestants cannot influence their
chance of winning at the time the contest takes place and
their strategy space is limited to participating or opting not
to participate in the contest. Among the few works that con-
sider this kind of contest, the most relevant ones are Ghosh
and Hummel (2012) and Ghosh and Kleinberg (2016). These
works however are focused on the question of how to design
a multi-prize scheme and are limited to the case of parallel

contest (whereas ours considers also the option for a sequen-
tial one). More importantly, their model assumes contestants
learn about their performance measure in the contest prior
to having to decide on participation, whereas in our model
there is no certainty concerning performance at the time the
participation decision is made. This latter difference is fun-
damental, as it results in a completely different analysis (and
solution structure).

Finally, our work differs from most existing contest-design
work in a way that it considers the option of using a sequen-
tial contest and provides a comparative analysis of the se-
quential and parallel model variants. Prior work has focused
primarily in simultaneous contest. The sequential contest is
not completely absent in literature [Segev and Sela, 2014;
Liu et al., 2014; Jian et al., 2016], however to the best
of our knowledge has been analyzed only in the context
of effort-based contest [Morgan, 2003; Fu and Lu, 2012;
Stracke, 2013] with very little comparative analysis of the
two.

3 The Model
The model considers a contest organizer and a set A =
{A1, ..., Ak} of k > 1 heterogeneous potential contestants
(denoted “agents” onwards). Agents are fully-rational and
self-interested. Each agent Ai can either participate in the
contest, incurring some cost ci, or opt to avoid participating
in the contest. The performance of an agent in the contest is
a priori unknown and is being affected both by its inherent
competence and various external factors (e.g., luck, weather
conditions, refereeing). This is modeled by taking the per-
formance of agent Ai to be determined according to some
probabilistic function fi(x) (where Fi(x) is the correspond-
ing cumulative distribution function).

The goal of the organizer is to maximize the expected max-
imum performance obtained by agents in a contest it runs. In
order to encourage participation in the contest the organizer
offers a prize M > 0 to the agent ranked first (performance-
wise) in the contest.1 In case none of the agents choose
to participate in the contest, the prize is randomly awarded
to one of the agents and the performance as perceived by
the organizer is set to some pre-set fallback performance
v0.2 The choice of always awarding the prize is a stan-
dard modeling assumption in contest theory [Faravelli, 2011;
Liu et al., 2013] and corresponds to the case where agents
can opt to expend some default minimal performance (e.g.,
submitting a trivial code that chooses randomly in the Net-
flix challenge) without incurring any cost. The goal of each
agent is to maximize its own expected profit, defined as the
expected prize awarded to it minus the cost incurred if par-
ticipating in the contest. It is assumed that fi(x), ci and M
are all common knowledge in the sense that they are known
to all agents and to the organizer [Moldovanu and Sela, 2001;
2006; Luo et al., 2014].

1Since performance is continuous, the chance of having two
agents ranked first is negligible. Otherwise, a tie-breaking rule is
required.

2As otherwise the expected maximum performance is undefined.
Typically this will be zero.
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The analysis considers two model variants, differing in the
way the contest is designed. The first is based on simul-
taneous participation (”parallel contest”), i.e., each agent’s
participation decision takes part in parallel to the others’.
The second is based on sequential participation (”sequential
contest”). Here, each agent in its turn (according to some
pre-defined order) gets to see the results of its predecessors
(whether participated, and if so also their performance) and
then decides whether to participate in the contest.

4 Analysis
The analysis is divided according to the contest type (parallel
and sequential).

4.1 Parallel Contest
We use {P,¬P} to denote the actions available to each agent,
where P stands for participate and ¬P for not participate.
Since the game in this case is simultaneous, every agent Ai’s
strategy can be captured by the probability pi (0 ≤ pi ≤ 1) it
chooses action P (∀Ai ∈ A).

Consider agent Ai. Given the strategy profile of all other
agents {pj |Aj ∈ A ∧ Aj 6= Ai}, the probability that the
maximum performance obtained by others is equal to or less
than y, denoted F̄i(y), is:

F̄i(y) =
∏

Aj∈A−{Ai}

(
pjFj(y) + (1− pj)

)
The expected profit of agent Ai if participating, denoted BP

i ,
is thus given by:

BP
i = −ci + M

∫ ∞
y=−∞

fi(y)F̄i(y)dy (1)

i.e., agent Ai is awarded the prize M whenever its perfor-
mance y is the maximum among all agents that participate.

Similarly, the expected profit of agent Ai if not participat-
ing, denoted B¬Pi , is given by:

B¬Pi =
M

k

∏
Aj∈A−{Ai}

(1− pj) (2)

i.e., with probability
∏

Aj∈A−{Ai}(1−pj) neither of the other
k−1 agents participate and the prize M is randomly awarded
to one of the k agents.

The best response strategy of every agent Ai is thus to
participate if BP

i > B¬Pi and not participate otherwise. A
Bayesian Nash Equilibrium (BNE) solution {p1, ..., pk} to
the parallel contest should therefore satisfy: (a) for every
agent Ai for which pi = 0, BP

i ≤ B¬Pi ; (b) for every agent
Ai for which pi = 1, BP

i ≥ B¬Pi ; and (c) for every agent Ai

for which 0 < pi < 1, BP
i = B¬Pi . It is possible that a given

setting will have more than a single equilibrium solution (i.e.,
multi-equilibria), though the question of which of those will
be used is beyond the scope of the current paper.

One specific setting where we can determine the nature
of equilibrium in terms of the strategies to be used is where
the agents differ only in their participation costs (e.g., in the
background actors search where participants differ primarily
in their costs of locating and uploading photos) as stated in
the following proposition.

Proposition 1. When fi(x) = fj(x) ∀i, j, x, the BNE ob-
tained is: (a) strictly in pure strategies such that all agents
participate, whenever ci

M ≤
1
k ∀i; (b) strictly in pure strate-

gies such that all agents do not participate, whenever ci
M ≥

k−1
k ∀i; and (c) in mixed or pure strategies, where different

agents use different strategies, otherwise.

Proof. For case (a), since fi(x) = fj(x) ∀i, j, all participants
in the contest are equally likely to win. Therefore participa-
tion results in an expected profit of at least M

k − ci ≥ 0 and
hence it is the best response for the agent if the number of
other participants is at least one (in which case not partici-
pating results in a zero profit). If no other agent participates
then if agent Ai participates its profit is M − ci and other-
wise M

k . The difference between the two is: M − ci − M
k =

M(k−1)
k − ci ≥ ci(k − 1) − ci ≥ 0. Hence even in this case

participation is the best strategy. For case (b), any individual
agent Ai has an incentive not to participate, regardless of the
strategy used by the others, as otherwise its expected profit is
bounded from above either by M − ci ≤ M

k in case no one
else participates, or by M

k − ci <
ci

k−1 − ci ≤ 0 in case the
number of the other participants is at least one (k > 1). In
all other cases, there is an incentive for at least one agent to
participate in the contest if all others opt not to participate,
and similarly to opt not to participate if all others do partici-
pate.

Finally, the organizer’s expected profit is given by:

Borg =

∫ ∞
y=−∞

max(y, v0)
d(F̄ (y))

dy
dy (3)

where F̄ (y) =
∏

Aj∈A

(
pjFj(y) + (1 − pj)

)
is the prob-

ability that the maximum performance obtained in a contest
involving k agents is less than y.

4.2 Sequential Contest
In the case of a sequential contest the (subgame perfect) BNE
is fully in pure strategies, as agents have perfect informa-
tion about the performance of preceding agents. An agent’s
strategy S is its choice of participation given the best per-
formance obtained so far, formally captured by the function
S : R ∪ ∅ → {P,¬P}, where ∅ is the case where all former
agents opted not to participate in the contest. For exposition
purposes we align the agents’ participation order with their
index.

Consider an agent Ai when the best performance obtained
so far is v and the strategies used by all other agents are given
by S−i = {S1, ..., Si−1, Si+1, .., Sk}. We use the function
Fnext
i (y) to denote the probability that given that the best

performance reached once Ai participates is y the maximum
performance obtained by all agents participating after Ai is
equal to or less than y. The expected profit of Ai if partici-
pating, whenever receiving v, denoted BP

i (v), is thus:

BP
i (v) =

{
M
∫∞
y=v

fi(y)Fnext
i (y)dy − ci v 6= ∅

M
∫∞
y=−∞ fi(y)Fnext

i (y)dy − ci v = ∅ (4)
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Similarly, the expected profit of Ai if not participating,
whenever receiving v, denoted B¬Pi (v), is given by:

B¬Pi (v) =

{
M
k v = ∅ ∧ Sj(∅) = ¬P ∀j > i

0 otherwise
(5)

Theorem 1. The best-response strategy of any agent Ai given
the strategies of the other agents S−i and the best perfor-
mance obtained so far v is: (a) use a threshold ri to deter-
mine whether or not to participate in case v 6= ∅ and there is
ri satisfying:

ci
M

=

∫ ∞
y=ri

fi(y)Fnext
i (y)dy (6)

where:

Fnext
i (y) =

{∏
(Sj(y)=P )∧(j>i) Fj(y) i ≤ k

1 i = k
(7)

(b) not participate in case v 6= ∅ and there is no ri satisfying
(6); (c) participate if k−1

k ≥ ci
M and otherwise not partici-

pate, in case v = ∅ and Sj(∅) = ¬P ∀j > i; (d) participate
if ci

M ≤
∫∞
y=−∞ fi(y)Fnext

i (y)dy and otherwise not partici-
pate, in case v = ∅ and ∃j > i such that Sj(∅) = P .

Proof. For the case where v 6= ∅, participating is better than
not participating if M

∫∞
y=v

fi(y)Fnext
i (y)dy − ci ≥ 0 (ac-

cording to (4) and (5)). Since
∫∞
y=v

fi(y)Fnext
i (y)dy de-

creases in v, participating is the preferred choice for any per-
formance v that is lesser than ri for which (6) holds. This
proves part (a). If there is no ri satisfying (6) then it can ei-
ther be because

∫∞
y=ri

fi(y)Fnext
i (y)dy is always greater than

ci
M or always lesser than ci

M . However, the term reaches zero
for ri → ∞ and therefore it is necessarily the case where
the expected gain from participating is lower than the cost in-
curred, resulting in preferring not to participate. This proves
part (b).

The case of v = ∅ is different as the agent can potentially
gain from not participating if no one else will choose to par-
ticipate as well. According to (4) and (5), in case Sj(∅) = ¬P
∀j > i, participating is the preferred choice if M − ci ≥ M

k
and therefore the distinction between the two cases in part (c).
Finally, when v = ∅ and ∃j > i such that Sj(∅) = P , the
decision is based solely on the chance of winning, being the
first to participate. The proof in this case is similar to the one
provided for case (a), in the sense of equating gains and costs
incurred, and therefore omitted.

A BNE is thus of the form ((C∅1 , C
¬∅
1 ), ..., (C∅k , C

¬∅
k )),

where C∅i ∈ {P,¬P} corresponds to the case of being
reached with a performance ∅ and C¬∅i ∈ {P,¬P, ri} cor-
responds to the case of being reached with some real perfor-
mance v, satisfying the conditions specified in Theorem 1.

We now turn to calculating the expected profit of the or-
ganizer. Let Borg

i (v) denote the organizer’s expected profit
when the current participant is Ai (with k − i + 1 more
agents to go) and the maximum performance of the preced-
ing i − 1 agents is v. The value Borg

i (v) is calculated based

on Ai’s position in the sequence. If Ai is the last agent
(i.e., i = k) and does not participate (Si(v) = ¬P ) the
organizer obtains the maximum between the default profit
v0 and the performance v (or trivially v0 if v = ∅). In
case Ai does participate (Si(v) = P ) the profit relies on
the maximum between v0 and the performance obtained by
Ai: Borg

i (v) =
∫∞
y=−∞max(y, v0)fi(y)dy if v = ∅ and

Borg
i (v) =

∫∞
y=v

max(y, v0)fi(y)dy+Fi(v)max(v, v0) oth-
erwise. If Ai is not the last in the sequence (i < k) then
we replace the actual performances y and v in the above
by the expected profits Borg

i+1(y) and Borg
i+1(v), as the contest

is to be continued with the transition to agent Ai+1, result-
ing in: Borg

i (v) = Borg
i+1(v) for Si(v) = ¬P , Borg

i (v) =∫∞
y=−∞ fi(y)Borg

i+1(y)dy for Si(v) = P and v = ∅, and
Borg

i (v) =
∫∞
y=v

fi(y)Borg
i+1(y)dy+Fi(v)Borg

i+1(v) otherwise.
The organizer’s expected profit from the contest, denoted
Borg , is given by Borg = Borg

1 (∅).

5 Influencing Dynamics
The choice of the type of contest (sequential or parallel) to be
used by the organizer is not trivial and the preference of type
may alternate even with the slightest change in setting pa-
rameters. In this section we illustrate this by following the
changes in the nature and structure of the equilibrium ob-
tained, and consequently the organizer’s preference, as the
participation cost of one of the agents changes. The setting
used includes three agents, where c1 = c2 = 0.16 and c3
is the independent parameter. All three agents are character-
ized by a uniform performance distribution function between
0 and 1 (i.e., f1(x) = f2(x) = f3(x) = 1 for 0 ≤ x ≤ 1
and zero otherwise). The prize to be awarded to the winner is
M = 0.4 and the fallback performance is v0 = 0.

Figure 1 compares the organizer’s expected profit in the
above setting when using sequential and parallel contest, as a
function of the participation cost c3 of A3 (Graph (a)). Graphs
(b) and (c) depict the strategies used by the different agents in
the equilibrium obtained, enabling a better understanding of
the behaviors reflected in the organizer’s expected profit. For
exposition purposes we use (p1, p2, p3) to denote the equilib-
rium in the parallel case, where pi is the participation prob-
ability of agent Ai. For the sequential case we present the
participation’s thresholds r2 and r3.

We begin with the parallel contest. Here, there are several
equilibria, and the curve used depicts the one in which A1 and
A2 are using a symmetric strategy. This latter choice is made
for two primary reasons: First, since A1 and A2 are symmet-
ric, the most natural (and fair) equilibrium is the one where
they use the same strategy (and gain the same profit). Second,
in this example, the symmetric equilibrium is the one that
maximizes the organizer’s expected profit. For c3 < M/3 =
0.133 we obtain an equilibrium (0.6, 0.6, 1). Other equilibria
are (1, 0, 1) and (0, 1, 1). In the interval 0.133 < c3 < 0.186
a mixed equilibrium of type (p, p, p3), which could not hold
for c3 < M/3, replaces the (p, p, 1) solution which is not sta-
ble anymore. Interestingly, in the transition that takes place at
c3 = 0.133 we observe another counter-intuitive phenomena
according to which a decrease in the competence of one of the
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Figure 1: The influence of c3 over: (a) organizer’s expected profit;
(b) participation thresholds when competing sequentially; and (c)
participation probabilities in a parallel contest. See main text for the
details of the setting used.

agents (an increase in the participation cost of A3 in this case)
results in an increase in the organizer’s expected profit. In the
interval 0.186 < c3 ≤ M/2 = 0.2 there are three equilibria,
each characterized by having two of the agents participate in
the contest and the third not participating, all resulting in an
expected profit of Borg = 2/3. Finally, with c3 > 0.2 we
obtain the single equilibrium (1, 1, 0), resulting once again in
Borg = 2/3.

With the sequential contest, we obtain a single BNE. As ex-
pected, the threshold used by A3 decreases as its participation
cost increases. The decreasing competition from A3 results
in an increase in the threshold used by A2. For c3 = 0.16 all
three agents are homogeneous and indeed r2 = r3 = 0.6 as
calculated by (11) which determines the threshold used with
homogeneous agents. Once r3 becomes less than 0.6, the
threshold used by A2 becomes fixed and equals 0.6. This can
intuitively be explained by the fact that in the absence of A3

the threshold used by A2 is r2 = 0.6 (according to (11)).
Meaning that A2’s expected profit in those cases where its
performance is greater than 0.6 is enough to justify participa-
tion. However adding A3 with a strategy r3 < 0.6 does not
affect A2’s profit whenever performing better than 0.6, as A3

opts not to participate in such cases.
Finally, when A3’s participation cost becomes big enough

(c3 = 2M/3 = 0.267), the BNE’s nature changes to having
all three agents opt not to participate (in which case the orga-
nizer’s expected profit drops to zero). This is because as long
as A1 and A2 do not participate, for any c3 > M−M

3 not par-
ticipating dominates participating for A3. In such case, if A1

is not participating then A2 gains more from not participat-

ing and receiving M
3 than participating (and hence invoking

also A3’s participation, though with a relatively small thresh-
old r3). Similar considerations apply to A1. Interestingly,
for c3 > 0.273 these considerations do not hold anymore, as
A3 becomes so incompetent that A2 actually finds it benefi-
cial to deviate towards participating even when A1 does not
participate.

As can be seen in Graph (a) of the figure, there are three
transition points in the organizer’s preference of the type of
contest to be used. Further transitions in preference occur
with different orderings of the agents in the sequential contest
model, as well as changes in c1, c2 and M .

6 Homogeneous Agents
In many real-life contest settings agents are homogeneous in
the sense that they share the same participation cost (ci = c,
∀i) and the probability distribution function according to
which their performance is determined (fi(x) = f(x), ∀i).
Meaning that the agents are a priori homogeneous—even
though each of them will end up with a different performance
at the contest, at the time they make their participation deci-
sion neither of them has an a priori advantage.3 The analysis
of the homogeneous case reveals several interesting proper-
ties related to the structure of the game equilibrium.

6.1 Parallel Contest
Since the agents are homogeneous we are interested in the
symmetric equilibrium (i.e., pi = p ∀i), as it is the natural
and fair one. When using the same p, Equations (1) and (2)
can be substantially simplified and expressed as follows:

BP
i =

k−1∑
j=0

(
k − 1

j

)
1

j + 1
Mpj(1− p)k−j−1 − c (8)

B¬Pi =
M

k
(1− p)k−1 (9)

Theorem 2 provides a comprehensive characterization of the
BNE in this case, as a function of the ratio c

M , including a
closed form solution for p.
Theorem 2. In the homogeneous parallel contest case, the
BNE is: (a) fully based on pure strategies such that p = 1 (all
agents participate) and p = 0 (all agents opt not to partici-
pate) when c

M ≤ 1
k and c

M ≥ k−1
k , respectively; (b) based

on mixed strategies, otherwise, where p is the solution to:

c

M
=

1− (1− p)k−1

kp
(10)

Proof. Part (a) directly derives from Proposition 1. In any
other case there is necessarily one equilibrium which is based
on mixed strategies that use the same p. Equating (8) to (9)
results in c

M =
∑k−1

j=1

(
k−1
j

)
1

j+1p
j(1− p)k−j−1 + k−1

k (1−
p)k−1. Using the identity

(
k

j+1

)
= k

j+1

(
k−1
j

)
and the bino-

mial theorem we obtain (10).
3This is also the case in many of the applications motivating this

research (e.g., in the background actors search where in the absence
of concrete guidelines contestants are typically a priori alike, or in
the photography contests where submissions are typically of high
quality and the public taste is difficult to predict).
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The derivative of the right-hand-side of (10) with respect to
p is always negative, hence the value of p (and consequently
the expected profit of the organizer) increases as participation
cost c decreases over the interval 1

k < c
M < k−1

k .

6.2 Sequential Contest
Theorems 3 and 4 provide a comprehensive characterization
of the BNE for the case of sequential contest with homoge-
neous agents as a function of the problem parameters.

Theorem 3. The equilibrium solution to the homogeneous
case is: (a) have all agents not participate whenever c

M ≥
k−1
k ; (b) have all agents participate whenever c = 0; (c) oth-

erwise, have all agents use the same threshold r to determine
whether or not to participate, where r satisfies:

c

M
=

∫ ∞
y=r

f(y)dy = (1− F (r)) (11)

Proof. The proof for the case where c
M ≥ k−1

k is a triv-
ial modification of the proof given for case (b) of Proposi-
tion 1. The case where c = 0 is straightforward—if not
incurring a participation cost then participating dominates
not participating. Therefore we only need to prove the part
where 0 < c

M < k−1
k . This is proved by induction: The

last agent Ak uses r according to (11) based on substituting
Fnext
i (y) = 1 (according to (7)) in (6). Now assume that

every agent Aj for which j > i uses rj = r according to
(11). We prove that ri = r as well. Assume otherwise, e.g.,
ri < r. Now consider any value z such that ri < z < r. Since
z > ri, not participating dominates participating if being
reached with a value z (i.e., BP

i (z) < 0). However accord-
ing to the proof’s assumption all remaining agents use r and
therefore the expected profit of the agent if participating is:
BP

i (z) = −c+M
( ∫ r

y=ri
f(y)(F (y))k−idy + (1−F (r))

)
.

Substituting c = M(1− F (r)) (according to (11)) in the lat-
ter term obtains BP

i (z) = M
∫ r

y=ri
f(y)(F (y))k−idy > 0

which is a contradiction. Similarly, assume ri > r and a
value z such that r < z < ri. Since z < ri participating dom-
inates not participating if being reached with a value z (i.e.,
BP

i (z) > 0). However if participating in the contest the ex-
pected profit of the agent is: BP

i (z) = −c+M(1−F (z)) <
−c + M(1 − F (r)) = 0, which leads again to contradic-
tion.

The use of a threshold-based strategy and in particular
the fact that the exact same threshold is used by all agents
can be explained through similar intuitions that hold in opti-
mal stopping problems such as those studied by McMillan
and Rothschild [McMillan and Rothschild, 1994]. Here a
searcher needs to decide when to stop (and exploit the cur-
rent value observed) when sampling repeatedly from a dis-
tribution while the sampling is costly. Despite some inherent
differences (most observable is the fact that in our model each
decision is made by a different agent in a competition context)
the underlying process is somehow similar in its nature, and
indeed the optimal strategy for the optimal stopping problem
is known to be threshold-based and uses the same threshold
over each sampling period.

Theorem 4. In equilibrium, all agents gain the exact same
expected profit B, regardless of their position in the sequence,
depending on the nature of the equilibrium: (a) M

k if the equi-
librium strategy is not to participate; (b) M

k − c if they all
participate (i.e., when c = 0); and (c) otherwise:

B =
M(F (r))k

k
(12)

Proof. The first two cases are trivial and result from the
model definition. As for the third case, the expected profit
Bi of agent Ai is given by:

Bi =

∫ r

y=−∞
(i−1)f(y)(F (y))i−2

(
M

∫ r

z=y

f(z)(F (z))k−idz+M

∫ ∞
z=r

f(z)dz−c
)
dy

where (i − 1)f(y)(F (y))i−2 is the probability distribution
function of getting to Ai with a performance y and (F (z))k−i

is the probability that the remaining k − i agents will fail to
perform better than y. Substituting

∫∞
y=r

f(y)dy = c
M (ac-

cording to (11)) and further applying several standard mathe-
matical manipulations we obtain (12).

The implications of Theorems 3 and 4 are quite surprising
and counter-intuitive: with homogeneous agents even though
each agent has full information concerning the performance
of those participating before it, in equilibrium all agents fol-
low the same participation rule and that rule does not depend
on the number of participants k (whenever choosing to par-
ticipate) or the number of remaining agents. Furthermore,
despite the fact that the chance of each agent to participate de-
creases (as it depends on the chance that preceding agents per-
formed worse than r), along the agents sequence, all agents
end up with the same expected profit, regardless of their po-
sition in the contest sequence.

Notice that from (11) we obtain that F (r) = M−c
M and

substituting it in (12) yields:

B =
(M − c)k

kMk−1 (13)

meaning that the expected profit of any of the agents can be
calculated even without calculating first the threshold-based
strategy. Furthermore, (M−c)k

kMk−1 < M
k , meaning that the agents

are better off having all of them not participate in the contest.
Unfortunately, this latter solution is not stable, leading as in
many other problems to the tragedy of the commons.

If none of the agents participate the organizer’s expected
profit is v0. Otherwise, her expected profit is given by (3),
where:

F̄ (y) =

{
(F (y))k y < r

(F (r))k + 1−(F (r))k

1−F (r) (F (y)− F (r)) y ≥ r

In case y < r all agents obtain a value below y. In case
y ≥ r there are two possible scenarios. The first is where
all k agents obtain a value below their threshold r, i.e., with
probability F (r)k. The second is where the contest termi-
nates right after j agents, upon revealing a value z such that
r < z < y (otherwise, if z < r the agents would decide
to participate) and all former j − 1 agents obtained a value
smaller than r. The probability of the latter case occurring
(summing over all values of j ≤ k) can be calculated using
the geometric series

∑k
j=1(F (y)− F (r))F (r)j−1.
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6.3 Methods Comparison
The analysis provided in the former section unfolds several
inherent differences between the parallel and sequential con-
test in the homogeneous case. The most significant difference
is the dependency of the equilibrium strategy on the under-
lying distribution function f(x) and the number of agents.
From Theorem 2 we obtain that the parallel contest equilib-
rium strategies depend on the number of agents k however
do not depend whatsoever on f(x). Intuitively, this results
from the fact that the competing agents, being a priori homo-
geneous, are all equally likely to win. With the sequential
contest we obtain the reversed phenomenon—the probability
distribution function plays a key role in shaping the agents’
equilibrium strategies while the number of agents has no ef-
fect at all (see Theorem 3). The independence of the agents’
equilibrium strategies in the number of participating agents
can once again be explained by similar intuitions as those
given in optimal stopping problems for the independence of
the optimal stopping strategy in the number of sampling peri-
ods available for the searcher.

From the agents’ point of view, in both methods the ex-
pected profit does not depend on the underlying performance
distribution. In the parallel model variant this derives from
Theorem 2 according to which neither the segments defining
the different equilibria types and the p used (in case (b), ac-
cording to (10)) do not depend on the distribution function.
In the sequential case, this derives from (13).

In the homogeneous case, we can identify some conditions
for determining the type of contest that will maximize the or-
ganizer’s expected profit. These are captured by Proposition
2.
Proposition 2. From the organizer’s point of view (i.e., Borg-
wise): (a) when c = 0 or c

M ≥
k−1
k both the parallel and se-

quential contests result in the same expected profit; (b) when
0 < c

M ≤ 1
k the parallel contest dominates the sequential

one; and (c) for 1
k < c

M < k−1
k there exists at least one

alternation point where the preference shifts from parallel to
sequential contest.

Proof. In case c = 0 all agents participate in the contest, as
proved in Theorems 2 and 3. Therefore the expected profit
is identical. Similarly, in the case c

M ≥ k−1
k all agents opt

not to participate in the contest (Theorems 2 and 3) hence the
expected profit is zero regardless of the method used. When
0 < c

M ≤
1
k all agents participate in a parallel contest (The-

orem 2), while with a sequential contest it is guaranteed that
only the first agent participates, however the participation of
the others depend on the performance of their predecessors.
Therefore the parallel contest yields a greater expected profit.

For 1
k < c

M < k−1
k , we already know (proved above) that

when c
M = 1

k parallel contest dominates sequential contest,
hence to prove that there is an alternation point we need to
show that for c

M →
k−1
k the sequential contest dominates the

parallel. Substituting c
M →

k−1
k in (8) and (9) and equating

the two (to obtain the mixed strategy p) obtains:

k − 1

k
=

k−1∑
j=1

(
k − 1

j

)
1

j + 1
pj(1−p)k−j−1+

k − 1

k
(1−p)k−1

The above can hold only when p → 0. Therefore, the ex-
pected profit is Borg → 0. With sequential contest, on the
other hand, when c

M → k−1
k we obtain r → F−1( 1

k ) (ac-
cording to (11)), hence there will be at least one participant,
leading to an expected profit Borg > 0.

Surprisingly, with parallel contest, the effect of the increase
in the number of agents over the organizer’s expected profit
is not that clear – while one would expect agents to become
more reluctant to participate due to the increased competition,
the actual result can be either an increase or decrease in p. To
illustrate, consider the case where M = 0.4, v∅ = 0 and a
uniform distribution function over the interval (0, 1). Here,
if c = 0.15 then in the transition from k = 3 to k = 4
the value of p decreases from 0.875 to 0.634, and conse-
quently the organizer’s expected profit decreases from 0.714
to 0.687, while in the case of c = 0.25 the value of p in-
creases from 0.125 to 0.177 and consequently the organizer’s
expected profit increases from 0.172 to 0.297. This cannot
happen in the sequential contest (proof is omitted for space
considerations).

7 Discussion and Conclusions
As demonstrated numerically, the preference of the model to
be used highly varies in the setting parameters, in the gen-
eral case. This is where the analysis provided in the paper
becomes particularly important, as it enables a contest or-
ganizer with the appropriate mathematical tools for extract-
ing the equilibrium in both model variants. While the model
assumes (much like most existing literature) the prize is al-
ways awarded, the transition to a model where the prize is not
awarded if none of the agents participates is straightforward
and requires only changing the profit in case of not partici-
pating (B¬P ) to zero. Still, in this latter variant one has to
consider a multi-attribute utility function for the organizer, to
reflect the tradeoff between an increase in the performance
achieved and the prize payments made.

The analysis of the homogeneous case unfolds several in-
teresting properties of the equilibrium in the two models,
many of which are highly counter-intuitive (especially in the
case of sequential contest). In particular, an important im-
plication of Theorem 4 is that an agent’s profit does not de-
pend on its position in the sequence of participants. This has
many important social aspects from the contest design point
of view, as it completely eliminates the need to compensate
agents for their position in the sequence in order to maintain
fairness.

We see many directions for future research extending this
work. Among these are multi-prize allocation for enhancing
participation, sequencing algorithms for maximizing profit in
the case of sequential contest with heterogeneous agents and
prize-setting algorithms for maximizing social welfare.
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