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Abstract

Customer behavior modeling is important for busi-
nesses in order to understand, attract and retain
customers. It is critical that the models are able
to track the dynamics of customer behavior over
time. We propose FC-CSM, a Customer Segmenta-
tion Model based on a Fragmentation-Coagulation
process, which can track the evolution of customer
segmentation, including the splitting and merging
of customer groups. We conduct a case study us-
ing transaction data from a major Australian super-
market chain, where we: 1) show that our model
achieves high fitness of purchase rate, outperform-
ing models using mixture of Poisson processes; 2)
compare the impact of promotions on customers
for different products; and 3) track how customer
groups evolve over time and how individual cus-
tomers shift across groups. Our model provides
valuable information to stakeholders about the dif-
ferent types of customers, how they change pur-
chase behavior, and which customers are more re-
ceptive to promotion campaigns.

1 Introduction
Customer behavior analysis is an essential component of
business intelligence and marketing [Sheth et al., 1999].
Constructing customer behavior models allows businesses to
identify the customer segments that are most likely to buy
their products and reach target customers effectively [Rossi
et al., 1996]. With a better understanding of their customers,
it is easier for the stakeholders to develop cost- and time-
efficient strategies, including promotions and tailored pro-
grams with social value.

While the traditional customer segmentation approaches
are based on the demographic information, the recent ap-
proaches focus on identifying different types of customers in
terms of purchase behavior. For example, mixture models
[Bucklin et al., 1998] can be used to discover latent groups in
terms of customer behavior. In this way the purchase behav-
ior of an individual customer can be interpreted as a mixture
of different prototypes of behavior weighted by the member-
ship in those groups.

However, the traditional mixture modeling is not suitable
for behavior modeling in dynamic scenarios, e.g. for tracking
a customer purchase behavior shifting across groups. For ex-
ample, a customer Alice who bought potato chips regularly,
may buy less of them after she embarked on a diet. Con-
sidering the group level, Alice may shift from Group 1 com-
prising customers who prefer snacks, to Group 2 comprising
customers who prefer fruits. If all the other customers re-
main invariant, it is easy to track Alice’s change by simply
updating her group membership. However, other customers
may also change their behavior at the same time, which leads
to shifting the behavior of the entire group (prototype). Al-
ice may still have a large or even unchanged membership of
Group 1, if many other customers from Group 1 also shift
to Group 2. This may provide misleading results to busi-
ness management, who desire to know how the behavior of
each customer changes across groups over time and which
customers are more receptive to promotions.

A better way for dealing with the “group-level behavior
shifting” problem is by adopting a split-merge approach. On
one hand, a group can split into multiple smaller groups,
when different types of behavior emerge in the group; on
the other hand, the customers from two or more groups can
merge into a large group, when they are affected by com-
mon factors, such as changes of seasons and price – which
are of interest for the stakeholders. Due to the aforemen-
tioned limitations of using mixture models to address cer-
tain demands of the stakeholders, we propose a Bayesian
nonparametric Customer Segmentation Model, named FC-
CSM, which can track the varying customer groups via a
Fragmentation-Coagulation Process (FCP).

The FCP is a random partition process, which can describe
the split and merge of groups over time [Bertoin, 2006]. At
each time interval, the model conducts fragmentation and co-
agulation operations on all the existing groups in the parti-
tion. Therefore, one group can split into smaller groups in
the fragmentation step, when the members start to have di-
vergent purchase behavior. On the contrary, several groups
can merge in the coagulation step, when customers from dif-
ferent groups exhibit similar behavior. Another advantage of
FCP is that, by configuring the split and merge rates, it can
be employed to analyze individuals in a minor but interest-
ing group of customers receptive to a promotion or with ab-
normal behavior, which is often desired by the stakeholders.
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FC-CSM facilitates customer purchase behavior analysis and
is capable of answering questions such as how many types of
customers exist, when and how groups split and merge, how
long a group lasts for, who are the customers in each group
and how receptive they are to promotions.

We conduct a case study on a purchase dataset collected by
an Australian national supermarket chain. We construct FC-
CSM to explore the customer purchase behavior of various
popular products and answer to the above practical questions.
We first evaluate the fitness of FC-CSM and demonstrate that
FC-CSM has achieved a higher accuracy than the mixture of
Poisson processes. Then we examine the impact of promo-
tions on purchase behavior and find that customers buying
fresh products, soft drinks and confectionery are more recep-
tive to the promotions. Most importantly, we illustrate how
the customer segmentation for different products evolves over
time, and track how individual customers shift across groups.
The results of our work can be used by stakeholders to dis-
cover behavior change patterns that are worth noting, ana-
lyze the receptiveness of various customers to promotions,
and identify target customers for the promotions.

Related Work. Extensive research has been carried out
to build stochastic models of purchase behavior [Wagner
and Taudes, 1987], for overall customers [Ehrenberg, 1959;
Trinh et al., 2014] or individual customers [Kim et al., 2014].
However, modeling all customers together may overlook their
heterogeneity, while building individual models can over-
fit the sparse and noisy purchase events of an individual
customer. The customer segmentation based on behavior
via mixture models can overcome the above disadvantages
[Kotler and Armstrong, 2010]. The mixture models can dis-
cover various types of purchase behavior to support group-
level analysis [Bucklin et al., 1998]. The models can capture
the behavior changes by a dynamic temporal component in
the group-level model [Iwata et al., 2013; Luo et al., 2016a;
2016b; Li et al., 2011; 2015]. Another option is Hidden
Markov Models (HMM), in which the possible states of an
HMM correspond to all groups of the partition [Xing and
Sohn, 2007]. Since an HMM needs to label the states, it suf-
fers from the label switching problem, where each permuta-
tion of labels generates a mode in the posterior distribution,
which may lead to non-identifiability [Jasra et al., 2005].

The random partition process FCP can describe the evo-
lution of partitions using the fragmentation and coagulation
operations [Bertoin, 2006]. Moreover, as the group of FCP
is determined by its members rather than an explicit group
label, the FCP can avoid the label switching problem. The
idea of FCP has been applied in different fields such as fi-
nancial markets [Eguiluz and Zimmermann, 2000], evolving
networks [Tadić and Rodgers, 2010], and genetic variation
[Teh et al., 2011; Elliott and Teh, 2012]. To the best of our
knowledge, there are no reported works that track the evolu-
tion of customer groups and how individual customers shift
across the groups via a split-merge approach.

2 Methodology
Given a transaction dataset, we obtain customer purchase be-
havior matrix XU×T of U customers during (0, T ], where xit

is the behavior data for customer i during (t − 1, t]. XU×T
can represent different types of purchase behavior. For ex-
ample, xit can be a binary indicator of whether customer i
purchased a product during (t − 1, t], or it can represent the
number of purchase events in week t (time unit is one week),
or it can reflect a preference level for a product. Our research
tasks are to model customer behavior based on XU×T , track
the evolution of customer groups and capture how individual
customers shift across groups.

In this section, we describe the construction of FC-CSM
from a generative perspective. We also explain how to use
the Gibbs sampler to infer the parameters of our model.

2.1 Construction of FC-CSM
At time t, the set of all customers A can be divided into nt
non-empty and non-overlapping groups, whose union is A.
These groups form a partition πt ofA, where each group con-
tains customers with similar behavior at t. We aim to build
a sequence of partitions {πt} (t ∈ {1, . . . , T}), so that we
know the customers in a group at any time and how customer
groups evolve over time, such as whether they split into sub-
groups or, on the contrary, merge.

FC-CSM is defined in a generative way as follows:

π1 ∼ CRP (A, ρ, 0)

πt+1|πt ∼ FCP (πt, ρ, δ) (1)
xit|πt(i) = k ∼ Poisson(λπt(i))

λk ∼ Gamma(α, β)

Sample Sequence of Partitions: We adopt the Chinese
Restaurant Process (CRP) [Pitman, 2002], a nonparametric
partition model, to describe the partitioning of all customers,
that is, customer segmentation. CRP can avoid predefining
the number of groups in the partition, which allows for a great
flexibility of the model. From the perspective of the genera-
tive model, at t = 1, we draw π1 for customer set A from
CRP (A, ρ, 0), where ρ (ρ > 0) is the parameter to control
the number of groups in the partition.

We can obtain the following partition πt+1 based on
FCP (πt, ρ, δ), where δ (δ ∈ [0, 1)) controls the temporal
dependence between πt and πt+1. When δ = 0, the partition
fully depends on the previous one, which means the partition
remains the same from t to t+ 1; while δ → 1 means πt and
πt+1 are independent. Any group in πt can split into smaller
groups and merge with the other groups to generate πt+1.

Given π1, the transition from πt to πt+1 at t ∈ {1, . . . , T −
1} can be completed in two sub-steps: the first step splits all
groups in πt into smaller groups and produces an intermedi-
ate partition π′t, while the second step merges groups in π′t to
produce πt+1. For example, Figure 1 illustrates the sequence
of partitions for 10 customers from t to t + 2 with differ-
ent scenarios. The FCP transition rules are: 1) each group
in π′t either exists in πt or is a subgroup of another group
in πt; 2) each group in πt+1 either exists in π′t or is a com-
bination of other groups in π′t. These two steps correspond
to the fragmentation (split) and coagulation (merge) opera-
tions, respectively. FCP assumes that the partition sequence
{πt} (t ∈ {1, . . . , T}) satisfies Markov property. It means
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Figure 1: Sequence of partitions for 10 customers from t to t + 2.
Each blue block represents one group.
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that given πt, πt+1 is conditionally independent on the parti-
tions at the other time intervals. The fragmentation and coag-
ulation steps do not affect the marginal distribution, so P (πt)
at any t is CRP (A, ρ, 0), and the marginal distribution of in-
termediate partition P (π′t) is CRP (A, ρ, δ).

Sample Behavior Data: The partition of customers is dic-
tated by the behavior metrics determined by the requirements
of analysis. For instance, if we desire to distinguish cus-
tomers by the number of times they buy a product fortnightly,
the purchase behavior data xit stores the number of purchase
events in two weeks. The Poisson distribution can be used to
model the number of events in each period of time. Specif-
ically, the parameter λ of the Poisson distribution can be in-
terpreted as the expected number of events per unit of time.
Therefore, we draw xit from a Poisson distribution with in-
tensity λπt(i) for customer i in group πt(i). In addition, we
use the conjugate prior, Gamma(α, β) for the Poisson dis-
tribution, where α is the shape parameter and β is the scale
parameter of the Gamma distribution.

The main advantage of our model is that we can customize
the grouping of customers according to the requirements of
the analysis. As mentioned above, the customer behavior
can be defined in different ways, by storing different data in
XU×T . The changes would only affect the sampling of behav-
ior data, which means that we could replace Gamma-Poisson
by other distributions, but the sampling of partition sequence
remains unchanged. For example, if the behavior data xit is
the binary purchase indicator, xit could be sampled from a
Bernoulli distribution with a Beta prior; if xit is a preference
rating, xit could be sampled from a Multinomial distribution
with a Dirichlet prior.

For each customer i, we can trace how they shift across
groups and their purchase rate at any time based on the se-
quence of their group membership {πt(i)}, where πt(i) is the
group of customer i at t. The purchase rate λi(t) is defined
as a stepwise function λπt(i)(t). Therefore, we can obtain
purchase rate curve λi(t) of customer i, which captures the
changes of their purchase behavior, besides the main output
of FC-CSM – partition sequence.

2.2 Inference of FC-CSM
In FC-CSM (Equation 1), CRP has exchangeable and projec-
tive properties, which means that: 1) the order of allocating
customers to groups does not affect the marginal distribution
P (π) and 2) the projection of π on a subset A′ of the com-

plete set A follows CRP (A′, ρ, 0). Since FCP is a Markov
chain with a series of split and merge operations, it is also
exchangeable and projective [Teh et al., 2011]. These two
properties allow us to infer the group allocation for customer
i based on the current partition of the other customers, assum-
ing customer i is the last customer who needs to be mapped
to a group. Then we can update the sequence of group allo-
cations for customer i, complying with the split and merge
rules. In one sampling round, due to the exchangeability,
we go through all customers to update their group allocations
from t = 1 to t = T , as if this customer is the last one to join
the existing customer groups.

The notation used in the description is summarized as fol-
lows: π¬it represents the projection of πt on A excluding cus-
tomer i; zt is the latent group index for customer i at t; set
Sk is the selected group for the customer, with group index
k; |Sk| is the number of customers in Sk; |πt| is the number
of groups in πt. The variables with the prime (′) are for the
intermediate partition π′t.

The inference of FC-CSM proceeds as follows. Firstly, we
describe the conditional probabilities of allocating groups for
a behavior sequence xi according to FCP. At t = 1, the con-
ditional probability of group allocation is:

P (z1 = k|π¬i1 ) =

{
|Sk|/(|A| − 1 + ρ) if Sk ∈ π¬it
ρ/(|A| − 1 + ρ) if Sk = φ

(2)

where the condition Sk ∈ π¬it in the first case means that the
selected group for customer i is Sk, an existing group in π¬it .
The second case Sk = φ means that customer i will start a
new group. Therefore, the possible space for Sk is φ ∪ π¬it .

When t > 1, the conditional probabilities of selecting a
group for customer i in the two sub-steps are:

P (z′t = k′|zt = k, π¬it , π
′¬i
t ) =

1 if Sk = Sk′ = φ

δ|Ft(Sk)|/|Sk| if Sk ∈ π¬it , Sk′ = φ

(|Sk′ | − δ)/|Sk| if Sk ∈ π¬it , Sk′ ∈ Ft(Sk)
0 otherwise

(3)

P (zt+1 = l|z′t = k′, π¬it+1, π
′¬i
t ) =

ρ/(ρ+ δ|π′¬it |) if Sl = Sk′ = φ

δ|Ct(Sl)|/(ρ+ δ|π′¬it |) if Sl ∈ π¬it+1, Sk′ = φ

1 if Sl ∈ π¬it+1, Sk′ ∈ Ct(Sl)
0 otherwise

(4)
These two equations are for the split and merge steps, re-
spectively. Specifically, Ft(Sk) refers to the set of groups
in π′¬it which are split from Sk; it is formally defined as
Ft(Sk) = {B|B ∈ π′¬it , B ⊆ Sk, B 6= φ}. Similarly, Ct(Sl)
refers to the set of groups in π′¬it which are merged into Sl; it
is defined as Ct(Sl) = {B|B ∈ π′¬it , B ⊆ Sl, B 6= φ}.

Given the conditional probabilities, we use the forward-
backward (F-B) algorithm [Frühwirth-Schnatter, 1994] to in-
fer the partition sequence for all customers. The F-B algo-
rithm is a commonly used inference framework for dynamic
latent variable models. The posterior distributions used to
sample the group for customer i at t = 1 is represented as:

P (z1 = k|xi, {π¬iτ }T1 , {π′¬iτ }T−11 ) (5)
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where {π¬iτ }T1 refers to the sequence of partitions projected
on A \ {i} from τ = 1 to τ = T .

When t > 1, we sample k′ for the split step as follows:
P (z′t = k′|zt = k, xi, {π¬iτ }T1 , {π′¬iτ }T−11 ) (6)

∝ P (z′t = k′|zt = k, π¬it , π
′¬i
t )

×P ({xiτ}Tt+1|z′t = k′, {π¬iτ }Tt , {π′¬iτ }T−1t )

After that, we sample l for the merge step as follows:
P (zt+1 = l|z′t = k′, xi, {π¬iτ }T1 , {π′¬iτ }T−11 ) (7)

∝ P (zt+1 = l|z′t = k′, π¬it+1, π
′¬i
t )P (xi(t+1)|zt+1 = l)

×P ({xiτ}Tt+2|zt+1 = l, {π¬iτ }Tt+1, {π′¬iτ }T−1t+1 )

To compute the posterior distributions in Equations 5 –
7, we need the conditional probabilities of observations af-
ter the current t given the partition sequences {π¬iτ }Tt and
{π′¬iτ }T−1t , which are called “messages”. The messages for
the split and merge steps are denoted as mf and mc:
mft(k

′) = P ({xiτ}Tt+1|z′t = k′, {π¬iτ }Tt , {π′¬iτ }T−1t ) (8)

mct(k) = P ({xiτ}Tt+1|zt = k, {π¬iτ }Tt , {π′¬iτ }T−1t ) (9)
Given mcT (k) = 1 at t = T , the messages at other time
intervals can be computed in a backward manner recursively.

The likelihood term P (xit|zt = k) in the sampling and
messages is determined by the selected distribution for xit.
Assuming xit has Poisson distribution, the likelihood of xit
in group k is defined as:

P (xit|zt = k) =
λxit

k e−λk

λk!
(10)

Based on the partition sequence {πt} (t ∈ {1, . . . , T}),
we can estimate the intensity parameter λk of the Gamma-
Poisson distribution by maximum a posteriori (MAP):

λk =


∑
j∈Sk

xjt + α− 1

|Sk|+ (1/β)
if Sk ∈ π¬it∑

j∈A\{i} xjt + α− 1

|A| − 1 + (1/β)
if Sk = φ

(11)

It means that when Sk is an existing group in π¬it , we com-
pute λk based on the other customers in Sk. Otherwise, if Sk
is a new group without any customers, we compute the de-
fault λk based on all the other customers in A \ {i}. When
customizing our model to handle different types of behavior
data, the only change in terms of inference is the computation
of the likelihood term.

In a sampling round, for each customer, we first update the
sequence of messages based on the current partition sequence
using Equations 8 and 9. Then we sample new group alloca-
tions for the current customer based on Equations 5-7. After
updating the group allocations of all the customers, we start
the next sampling round and repeat this process until conver-
gence. The output is the partition sequence of all customers.

To summarize, FC-CSM offers several notable advantages.
First, it can track the evolution of customer groups and find
the size, duration, ancestors and descendants of each cus-
tomer group. Second, it can capture the trajectories of cus-
tomers shifting across groups and the variations of individual
purchase rates. Third, it is customizable and can analyze var-
ious types of purchase behavior.

3 Case Study
Our case study is based on a transaction dataset of an Aus-
tralian national-wide supermarket chain, collected through
the supermarket loyalty cards between January 1 and Decem-
ber 31, 2014. Each transaction contains a unique customer
identifier, product metadata (id, category, brand and name),
timestamp, purchased quantity and cost. There are 931 cus-
tomers in this dataset. We select 38 most popular products
based on the number of customers who bought these prod-
ucts at least 10 times during the observation period. There
are 21 fresh products including fruits and vegetables and 17
other products such as soft drinks and biscuits.

The supermarket stakeholders desire to construct accurate
models to understand the purchase behavior, including what
types of customers they have and whether supermarket pro-
motions are effective. They also want to track the dynamics
of purchase behavior such as how the customer groups evolve
over time and how individual customers shift across groups.
Therefore, we conduct the case study aiming to: 1) evalu-
ate the fitness of our model and compare it with two mix-
ture models – Homogeneous Poisson Process (PP) and Non-
Homogeneous Poisson Process (NHPP) [Luo et al., 2016a;
2017]; 2) explore the impact of promotions on purchase be-
havior of customers for different products; 3) demonstrate the
trajectories of customer partitions and how customer shifts
across groups.

The parameters of our model are configured as: ρ = 0.2,
δ = 0.1, α = 2, β = 0.5, and the unit of time is 14-day. We
conducted 500 iterations of Gibbs sampling for each product
to obtain the sequence of partitions.

3.1 Fitness of Purchase Rate

We use the Mean Absolute Error (MAE) metric to evaluate
the fitness of purchase rate. For each customer, we first com-
pute the absolute difference between the estimated and actual
number of purchase events for each interval, and average the
values across T intervals. Then, the MAE for a product is
the mean absolute difference obtained for all customers, com-
puted by

∑|A|
i=1(

∑T
t=1 |λi(t)− xit|)/(|A|T ).

We compare the model with: 1) the baseline PP, and 2)
the NHPP, which uses a mixture of Poisson processes with
a polynomial and periodic component in the intensity func-
tions. Figure 2 shows that the MAE of our model is lower
than the MAE of both PP and NHPP for all 38 products. The
MAE of our model is 0.63, which is significantly lower than
the MAE of PP, 0.73 (p < 0.001) and of NHPP, 0.70 (p =
0.002). On average, our model has decreased MAE of NHPP
by 10%. We also notice that our model achieves greater
improvements for fruits (14.35%), soft drinks (21.72%) and
chilled desserts (13.93%), which jointly have an average im-
provement of 16.67%. For the other products, the average
increase of fitness is 6.99%. The possible reason is that
the change of seasons have a stronger impact on fruits, soft
drinks and chilled desserts than on the other products. Al-
though NHPP captures the long-term patterns via the polyno-
mial component, the dynamic partition of our model is more
flexible and can generate a lower MAE for these products.
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Figure 2: Top: MAE of purchase rates of 38 products for FC-CSM, NHPP and PP. Bottom: Correlation between purchase rates computed by
FC-CSM and price. Table: categories of products.

Category Products

Vegetables 1-15

Fruits 16-21

Soft Drinks 22-24

Biscuits 25-26

Snacks 27-29

Confectionery 30-32

Chilled Desserts 33-35

Cereal 36-38
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3.2 Impact of Promotions
We examine the impact of promotion via the correlation be-
tween the average purchase rate and the price. Negative cor-
relation means the purchase rate is higher when the price de-
creases, so smaller correlation values indicate a larger impact
of promotions.

The results are presented by the bar chart in Figure 2.
Among all products, 20 correlation values are lower than -0.2,
which means the customers buying these products are more
receptive to promotions. At the category level, the average
correlation of all fruits except for bananas is strongly nega-
tive, -0.67. The vegetables also have low correlation values,
-0.23 on average. The prices of fruits and vegetables gener-
ally have more significant changes than other products, due
to the varying product availability. It makes sense that the
price of these fresh products impacts the purchase decisions.
As for the other categories, the promotions of soft drinks and
confectionery are generally more effective than of biscuits,
snacks and chilled desserts. Thus, regular promotions with
high discount rates of the soft drinks may play an important
role in attracting customers.

3.3 Trajectory of Purchase Behavior Changes
Given the partition sequence for all customers, we first sum-
marize the group and customer statistics. The total number
of groups for different products over the observation period
varies between 21 and 48. The average lifetime of one group
is 2.15, which corresponds to 30.1 days, as the unit of time
is 14-day. About 14% of the groups lasted for more than 8
weeks, which indicates that the partition changes at a moder-
ate pace. The number of groups at each time interval varies
from 1 to 6, and the average value is 2.57, which shows the
dynamics of the group allocation. As for PP and NHPP, their
numbers of groups remain at 3 over time.

We analyze the trajectory of customer partition for each
product and illustrate the duration, size and purchase rate of
all customer groups using the bubble plots in Figure 3. We
select 3 representative plots as examples, corresponding to
products with: 1) stable behavior (Arnott’s biscuits, top), 2)
behavior strongly affected by seasonal availability (grapes,
middle) and 3) varying behavior, with customers dynamically
shifting across groups (avocado, bottom).

The top plot for Arnott’s biscuits shows that there are two
different values of λ. About 25% customers have λ above 1.5,
while the other 75% have λ below 0.7. We notice that there
are not many shifts between the two levels, which means the
purchase behavior is relatively stable.

The middle plot for grapes shows the impact of the sea-
sonal product availability on the purchase behavior. There
is a major group steadily including about 90% of customers.
Overall, the λ curve of this group has a U shape, which is the
result of the high price and low supply in mid-year, when it
is winter in Australia. Our model has also identified minor
groups of customers (in contrast to mixture models which
would have included these customers in the major group);
this information can be used by stakeholders to discover cus-
tomers who differ from the majority but are worth noting.

The bottom plot for avocado illustrates different responses
to promotions from different customers. There is only one
major group at the first 7 time intervals. The λ values in-
creased from t = 8 for all customers and the major group
split into two streams, due to different responses to promo-
tions. About 30% of the customers are more receptive to
promotions and form groups with λ values from 1.5 to 2.2.
The remaining customers are less receptive to promotions and
have λ values between 0.5 and 1. Some customers shift from
one level to the other. For example, at t = 18, most of the cus-
tomers in Group 19 increased their purchase rate and formed
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Figure 3: Trajectory of customer partitions based on the number of
purchases. Each bubble represents a customer group with the id in
it, and its size shows the proportion of customers in the group. The
subplots are for Arnott’s biscuits (top), grapes (middle) and avocado
(bottom). The dashed lines highlight the time intervals discussed in
the text.
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Group 21, while a small number of customers decreased λ
and joined Group 20.

For an individual customer, the purchase rate curve λi(t)
can track how they change behavior and shift across groups,
which supports the fine-grained personal analysis. It also fa-
cilitates the comparison of customers in order to identify their
similarities and differences. We present 3 sets of customers
with contrasting behavior in Figure 4 (the group index has
been omitted for clarity). When the lines with different col-
ors join together, it means that the corresponding customers
are in the same group during that period of time.

The top plot includes three customers buying avocado. The
turning points of their purchase curves are at t = 8 and
t = 15, when the price changed substantially. For example,
at t = 15, customer 2 (red) decreased λ and joined customer
3 (yellow), whereas customer 1 (blue) maintained her high
purchase rate until the end. The middle plot displays two
customers buying Coca-Cola who are in the same group for
22 weeks. However, customer 1 (blue) used to have signif-
icantly larger λ than customer 2 (red) before t = 11. They
split again after t = 22, when customer 1 decreased λ gradu-
ally, whereas customer 2 increased λ abruptly. It shows that
customers with similar total number of purchases can have
contrasting behavior changes. Similarly, the bottom plot con-
tains three customers buying broccoli. The model success-
fully captures that customer 2 joined customer 1 at t = 12
and all of them joined the same group at t = 21.

4 Conclusions
In this paper, we propose the Bayesian customer segmenta-
tion model FC-CSM, which can track the evolution of cus-
tomer groups using a fragmentation-coagulation process. The
FC-CSM can split groups when customer behavior diverges

Figure 4: Individual purchase rate curves of different customers for
avocado (top), Coca-Cola (middle) and broccoli (bottom). Each plot
demonstrates contrasting behavior of multiple customers for one
product, and each line corresponds to one customer. The dashed
lines highlight the time intervals discussed in the text.
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and merge multiple groups when their behavior becomes sim-
ilar. The model outputs the sequence of customer partitions
over time, which can capture the dynamics of customer be-
havior and address the group-level behavior shifts. Moreover,
FC-CSM is also flexible and can be applied to various types
of behavior data.

Our case study uses a real-world supermarket transac-
tion dataset. We analyze the evolution of customer groups
and how it is affected by product promotions and seasonal
changes. The case study shows that FC-CSM is more accu-
rate than a mixture of Poisson processes. We find that cus-
tomers were more receptive to promotions of fresh fruits, soft
drinks and confectionery. The sequence of customer parti-
tions shows that for products with high impact of promo-
tions, customer groups tend to split during promotions and
merge when the price stabilizes. FC-CSM also shows the tra-
jectories of individual customers, which track how they shift
across groups and how customers with similar number of pur-
chases may have contrasting behavior patterns.

In summary, FC-CSM offers a strong and sensitive tool for
analyzing customer purchase behavior and tracking the ef-
fects of promotions and seasonal campaigns. In future work,
we will explore how to process the model outputs with a sys-
tematic and comprehensive procedure, so that we can provide
analytical results to the stakeholders based on their needs,
such as identifying interesting groups based on different cri-
teria, and generating a list of target customers for marketing
campaigns. We believe that the information provided by FC-
CSM can be used by stakeholders in order to understand cus-
tomer behavior changes, identify customer groups, and also
optimize the timing and focus of promotion campaigns and
business strategies.
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