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Abstract

Visualization of high dimensional large-scale
datasets via an embedding into a 2D map is a pow-
erful exploration tool for assessing latent structure
in the data and detecting outliers. There are many
methods developed for this task but most assume
that all pairs of samples are available for common
computation. Specifically, the distances between
all pairs of points need to be directly computable.
In contrast, we work with sensitive neuroimaging
data, when local sites cannot share their samples
and the distances cannot be easily computed across
the sites. Yet, the desire is to let all the local
data participate in collaborative computation with-
out leaving their respective sites. In this scenario,
a quality control tool that visualizes decentralized
dataset in its entirety via global aggregation of lo-
cal computations is especially important as it would
allow screening of samples that cannot be evalu-
ated otherwise. This paper introduces an algorithm
to solve this problem: decentralized data stochastic
neighbor embedding (ASNE). Based on the MNIST
dataset we introduce metrics for measuring the em-
bedding quality and use them to compare dSNE to
its centralized counterpart. We also apply dSNE to
a multi-site neuroimaging dataset with encouraging
results.

1 Introduction

Large-scale datasets have proven to be unreasonably effec-
tive in facilitating solutions to many difficult machine learn-
ing problems (Halevy et al., 2009). High tolerance to mis-
takes and possible problems with individual data samples in
applications relevant to internet businesses,' together with
advances in machine learning methodologies (such as deep
learning (Goodfellow et al., 2016)) are able to effectively
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't is expected that the mistakes average out and even if they do
not the cost of displaying an image that the user did not request is
low.
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average out problems with individual samples lead to im-
proved performance in recognition tasks. The story is dif-
ferent in the domains working with biomedical data, such as
neuroimaging, where a data sample is a magnetic resonance
image (MRI) of the entire brain containing on the order of
100,000 volumetric pixels (voxels). There, the data collec-
tion process for each sample is expensive, considerations of
data privacy often prevent pooling data collected at multiple
places, thus the datasets are not as large. Yet they are large
enough to be difficult to manually vet each sample. An in-
correct data sample may still lead to wrong conclusions and
quality control is an important part of every analysis. Meth-
ods for simultaneous embedding of multiple samples are wel-
comed, as it is very difficult to scan through each and are used
in practice for quality control (Panta et al., 2016).

A common way of visualizing a dataset consisting of mul-
tiple high dimensional data points is embedding it to a 2 or
3-dimensional space. Such embedding can be an intuitive
exploratory tool for quick detection of underlying structure
and outliers. Although linear methods such as principal com-
ponent analysis (PCA) provide the functionality they are not
usually useful when there is a need to preserve and convey
hidden nonlinear structure in the data. Many methods were
developed for the task on nonlinear data embedding and vi-
sualization including Sammon mapping (Sammon Jr, 1969),
curvilinear components analysis (Demartines and Hérault,
1997), Stochastic Neighbor Embedding (Hinton and Rowesis,
2002), Isomap (Tenenbaum et al., 2000), Maximum Vari-
ance Unfolding (Weinberger and Saul, 2006), Locally Lin-
ear Embedding (Roweis and Saul, 2000), Laplacian Eigen-
maps (Belkin and Niyogi, 2003). The problem with these ap-
proaches is in their inability to retain local and global struc-
ture in a single map. A method to handle this situation ef-
ficiently was alternatively proposed: t-distributed stochastic
neighbor embedding (t-SNE) (Van der Maaten and Hinton,
2008). The embeddings resulting from t-SNE applications
are usually intuitive and interpretable which makes it an at-
tractive tool for domain scientists (Bushati ef al., 2011; Panta
et al.,2016).

All of these methods, however, are built on the assump-
tion that the input dataset is locally available. t-SNE, for ex-
ample, needs computation of the pairwise distances between
all samples (points) in the dataset. Yet, in many situations
it is impossible to pull the data together into a single loca-
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tion due to legal and ethical considerations. This is especially
true for biomedical domain, where the risk of identifiability
of anonymized data often prevents open sharing. Meanwhile,
many systems allow virtually pooling datasets located at mul-
tiple research sites and analyzing them using algorithms that
are able to operate on decentralized datasets (Carter et al.,
2015; Gaye et al., 2014; Plis et al., 2016). The importance
of operating on sensitive data without pooling it together and
thus generating truly large-scale neuroimaging datasets is so
high that researchers successfully engage into manually simu-
lating a distributed system (Thompson et al., 2014). For all of
the applications of the above systems quality control is essen-
tial and intuitive visualization of the complete virtual dataset
physically spread across multiple locations is an important
and much needed tool for filtering out participating sites with
bad data, incorrect processing or simply mistakes in the input
process.

In this paper we propose a way to embed into a 2D map
a decentralized dataset that is spread across multiple loca-
tions such that the data at each location cannot be shared
with others due to e.g. privacy concerns. Even the meth-
ods that are seemingly suitable to this setting (after a possi-
ble modification) do not seem to address the problem of in-
ability to compute the distance between samples located at
different sites. For example, Globerson et al. (2007) sug-
gested a method of embedding multiple modalities into the
same space. We could think of the modalities as our locations
and modify their approach to our settings. This, however,
is not straightforward as, again, the approach requires mea-
suring co-occurrence, which transcends the borders of local
sites.

We base our approach on availability of public anonymized
datasets, which we use as a reference and build the over-
all embedding around it. This is most similar to the land-
mark points previously used for improving computational ef-
ficiency (De Silva and Tenenbaum, 2003, 2004). In fact,
we start with a method that resembles the original landmark
points approach. We show that it is not as flexible and does
not produce good results. Then we introduce a dynamic mod-
ification that indeed is able to generate an embedding that
reflects relations between points spread across multiple lo-
cations. Unlike the original landmark point approach, we
use t-SNE as our base algorithm. We call the decentral-
ized data algorithm dSNE. To evaluate the performance and
to compare with the centralized version we use the MNIST
dataset (LeCun et al., 1998) and taking advantage of the
known classes of the samples introduce a metric of overlap
and roundness to quantify the comparisons. We evaluate and
compare our algorithms in a range of various settings, estab-
lishing 4 experiments with MNIST data. Furthermore, we ap-
ply our approach to a truly multi-site neuroimaging dataset:
ABIDE (Di Martino et al., 2014).2

2 Methods

In the general problem of data embedding we are given a
dataset of N points X = [x; ...,z ], such that each point

nttp://fcon_1000.projects.nitrc.org/indi/
abide/
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x; € R"™ with the task of producing another dataset Y =
[y - -, Yy], such that each point y, € R™, where m << n.
Usually m = 2 for convenience of visualization. Of course,
this is an incomplete definition of the problem, as for any in-
teresting results Y must be constrained by X.

2.1 t-SNE

In t-SNE the distances between the points in Y must be as
close to the distances between same points in X as possi-
ble given the weighted importance of preserving the relations
with nearby points over those that are far. To achieve that,
tSNE first converts the high dimensional Euclidean distances
between datapoints into conditional probability that represent
similarities (see Algorithm 1).

Algorithm 1 PairwiseAffinities

Input: p (site index), p (perplexity), X € RVXC* Ky
Output: P

1: Eq. (1) to compute p;; with perplexity p

2: Pij = (Pji + Pij)/(2n)

The similarity of datapoint x; to datapoint x; is the condi-
tional probability, p;;, that z; would pick z; as its neighbor if
neighbors were picked in proportion to their probability den-
sity under a Gaussian centered at z;.

Algorithm 2 t SNE

Input:
Data: X = [x1, 22 ... xN], z; € R"
Objective parameters: p (perplexity)
Optimization parameters: 7' (number of iterations), n
(learning rate), a (momentum)
Output: Y = {y17y27 s 7yN}ayi € Rmvm <<n
I: {pij} =PairwiseAffinites0,p,X
2: Y oc N(0,107%I), I € R™*™ initialize from Gaussian
3: fori =1toT do
4: Eq. (2) to compute low-dimensional affinities g;;
5
6
7

Eq. (3) to compute 6C' / dy;

D yb =y (00 8y;) + alt) (Y —yi?)
: end for

At the same way we can compute ¢;; from low dimensional
output data. Algorithm 2 outlines the full procedure. In this
algorithm, high dimensional and low dimensional pairwise
affinities are formulated using equation (1) and (2) respec-
tively. The gradient of the Kullback-Leibler divergence be-
tween P and the Student-t based joint probability distribution
Q is expressed in (3).

exp(—||®; — ]| /204(p)?)

= |
H > ki XP(— @i — x| |2 /204(p)?) O
(L4 ly; — yj||2)71
Qij S eal + llye — il (2
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e 42(% —4i))(y; —y;) 1+ [ly, —y,[1H)7 3
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Inspired by the overall quite satisfactory performance of
t-SNE on a range of tasks, we base on it our algorithms for
decentralized datasets.

2.2 Single-shot dSNE

In a scenario that we consider here, no data can leave a lo-
cal site and thus it seems impossible to compute distances of
samples across the sites. Without those distances (see equa-
tion (1)) we will not be able to obtain a common embedding.
Fortunately, in neuroimaging not all data is private and un-
shareable. Public repositories of MRI data are popular and
they provide diverse datasets for analyses (Castellanos et al.,
2013; Hall et al., 2012; Ivory, 2015).

First we introduce some notation for sending and receiving
messages. For a matrix X, X7 means that it is sent to site
p and X*P means that it is received from site p. We assume
that a shared dataset is accessible to all local sites and the sites
have it downloaded.

Algorithm 3 singleshotDSNE

Input:

Objective parameters: p (perplexity)

Optimization parameters: 7', 1, «

Shared Data: X, = [z}, 25 ...z} |, zf € R"

Data at site p¥p: X, = [#}, 5 ... 2} |, 2} € R"
Output: Y = {y17y27 e ayN}ayi € Rm’m << TL,N =
Zp Np + NS
Y, < tSNE X%, p, T, 1, a
forp =0to P do

Y.P

Run t SNE on [X,, X,]

At each iteration only update Y,
end for
Y «+ |
forp =0to P do

Y P

Y «[Y,Y,]

: end for
Y + [Y, Y]

> At the master node
> At local site p
> At local site p

> At the master
> At the master

PRI R

_— =
N

For Single shot d-SNE (Algorithm 3) we at first pass the
reference data from centralized site C' to each local site.

Now each local site’s data consists of two portions. One
is its local dataset, for which we need to preserve privacy,
and another one is the shared reference dataset both comprise
the combined datasets. Each local site runs the t-SNE algo-
rithm on this combine data and produces an embedding into
a low dimensional space. However, while computing each it-
eration of tSNE a local site computes gradient based on com-
bined data, but it only updates the embedding vectors y for
local datasets. The embedding for the shared data has been
precomputed at the master node and shared with each local
site. Similarly to the landmark points approach of De Silva
and Tenenbaum our method uses reference points to tie to-
gether data from multiple sites. In practice the samples in the
shared dataset are not controlled by the researchers using our
method, and it is hard to assess the usefulness of each sam-
ple in the shared data in advance. In the end each local site

obtains an embedding of its data together with the embed-
ding of the shared dataset. Since the embedding points of the
shared dataset did not change, all local embeddings are easily
combined by aligning the points representing the shared data.

2.3 Multi-shot dASNE

Algorithm 4 GradStep

Input:
Data embeddings: Y, (local), Y (shared), P
Optimization parameters: 7, «
Output: Yp (local), Y (shared)
1: Eq. (2) to compute low-dimensional affinities g;;
2: Eq. (3) to compute 0C' / dy;
3: 9y = n(6C/5y;) +aly; ' —yi %)
4: group y, into Yp (local) and Y, (shared)

Singeshot dSNE, however, tends to produce results with
significant overlap as the data from different sites does not
affect each other and often end up in the same location despite
belonging to different classes. To overcome this problem we
developed an iterative algorithm: multishot d-SNE. Unlike
the single shot version we allow the embedding of the shared
dataset to change. However, we change it exactly the same
way for each site. This is achieved by averaging the updates
to shared data embedding based on the updates that each of
the local sites requires to be made. This allows information
about desirable embedding of the local data points to flow
across sites and thus communicate preferred location through
the influence on the shared data. Algorithm 6 details all of
the steps.

Algorithm 5 UpdateStep

Input:
Data embeddings: Y, Y, Yp, Y,
Output: Y,, Y,
LY, =Y, + Yp
2 Y, =Y, +Y,

2.4 Comparison Metrics

Figure 1: A t-SNE output on centralized MNIST dataset and outlier-
free convex hull boundaries for each digit.

An objective comparison of inherently subjective visual-
ization algorithms is difficult. We quickly found that the k-
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Algorithm 6 multishotDSNE

Input:
Objective parameters: p (perplexity)
Optimization parameters: 7', n, «
Shared Data: X, = [z}, 25 ...z} |, zf € R"
Data at site pVp: X, = [7, @5 ... @ |, @7 € R"
Output: Y = {y;,Yy,---,Yn 1, Y; € R™,m << n,N =
>, Ny + N,

I: Ys o< N(0,107%I), T € R™*™ initialize from Gaussian
2: forp=0to P do > Initialize at sites
3: Y P
4: P, «PairwiseAffinities p,p, [Xp, X]
5: Y, o< N(0,107%I),T € Rm*™
6: end for
7: fori =0toT do
8: forp=0to P do > At local sites
9: YP,YS < Gradstep [Y,, Y, P,]
10: end for
11: Y <0 > At the master
12: forp =0to P do > At the master
13: YiP
14: Y « %Ys > Average local Ys
15: end for
16: forp =0to P do > At local sites
17: YoP o
18: Y,, Y, + Updatestep [Y,, Y, Y, Y]
19: end for
20: end for

means criterion is only weakly correlated with the usefulness
of produced embeddings:

9
_ Zd:o Zsexd g — wg\b
Z(i,j),(i>j),(i7éj) ||N’i - Nj||2

“

In an attempt to quantify perceptional quality of the result-
ing embeddings we have developed two additional metrics:
overlap and roundness. To remove sensitivity to noise we first
remove the outliers [see Figure 1] in each digit’s cluster (Liu
et al., 2012). Then compute the convex hull for each digit
and use them to compute the measure of the overlap (the sum
of all polytope areas minus the area of the union of all the
polytopes normalized by this union’s area) and the roundness
(ratio of the area of each polytope to the area of the circum-
scribed circle).

3 Results

We base our experiments in this section on two datasets:
MNIST (LeCun et al., 1998) for handwritten images of all
digits in the O to 9 range, and Autism Brain Imaging Data
Exchange (ABIDE) for fMRI data (Di Martino et al., 2014).
MNIST data were taken from a Kaggle competition® which
has 28,000 gray-scale images of handwritten digits. Each
image contains 28 X 28 = 784 pixels. Among these data, we

*https://www.kaggle.com/c/digit-recognizer
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randomly (but preserving class balance) pick 5,000 different
samples from the data set for our needs. At first, we reduce
dimension of the data from 784 to 50 using PCA. Then, dSNE
and tSNE are used to generate (z,y) coordinates in two di-
mensional space. The second dataset is the ABIDE fMRI
set, which contains data of 1153 subjects. The ABIDE data
has been pre-processed down to multiple spatial and temporal
quality control (QC) measures*. For ABIDE, because of the
low dimension of QC measures, we do not use dimensional-
ity reduction but directly run our tSNE and dSNE to produce
the embeddings.

3.1 MNIST Experiments

Experiment 1 (No diversity in the reference data): In this
experiment, the reference dataset contains a single digit that is
also present at all of the three (3) local sites. We run an exper-
iment for each of the 10 digits. Each site contains 400 sam-
ples for each of its corresponding digits. Reference dataset
contains 100 samples of its digit.

Experiment 2 (Effect of the sample size): Often central-
ized stores accumulate more data than any separate local site
can contain. Our goal is to check the adaptability of our al-
gorithm on this case. In this experiment, every local site con-
tains only one digit and the reference dataset contains all dig-
its (0-9). We consider 2 cases: when each site contains 400
samples and each digit in the reference consists of 100 sam-
ples; and the inverse case, when sites only have 100 samples,
while the reference digits are represented by 400.

Experiment 3 (Missing digit in reference data): In this
experiment we investigate the effect of the case when a digit
is missing from shared data. This approximates the case of
unique conditions at a local site. Each local site out of 10
contains a single digit. We run 10 experiments; in each, the
reference dataset is missing a digit. For each of the experi-
ments we have 2 conditions: in one the reference dataset is
small (100 samples for each digit but the missing one) while
the sites are large (400 samples per site); in another the ref-
erence data is large (400 samples per digit) and the sites are
small (only 100 samples).

Experiment 4 (Effect of the number of sites): In this ex-
periment, we investigate whether the overall size of the virtual
dataset affects the result. Every local site, as well as the ref-
erence data, contains all digits (0-9) 20 samples per digit. We
continuously increase the number of sites from 3 to 10. As a
result, the total number of samples across all sites increases.

3.2 Single-shot

Figure 2 shows examples of the output generated by the sin-
gle shot dSNE algorithm together with tSNE layout of the
centralized data for comparison. We run single shot for the
datasets of Experiment 2, Experiment 3, and Experiment 4.
For all experiments, we are able to correctly group and em-
bed same digits from different sites. However, the problem

“The full list is available here: https://github.
com/preprocessed-connectomes-project/
quality—-assessment-protocol/tree/master/
normative_data
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Experiment 2

Experiment 3

Experiment 4
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Figure 2: Single Shot dSNE examples. Digits are correctly grouped
into clusters that tend to heavily overlap.

was that the digit clusters tended to heavily overlap. Even for
experiment 4, where we found the best results, one can still
observe heavy overlap of digit clusters.

3.3 Multi-shot
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Figure 3: Experiment 1: Single digit in the reference dataset.

The multi-shot algorithm was introduced to cope with the
overlap problem. Figure 3 shows its performance in experi-
ment 1. In this figure, the plots on the left show performance
metrics in comparison to those of tSNE on centralized data.
For each digit we rerun the experiment 10 times with a differ-
ent seed value. On the right, the top figure presents the best,
and the lower figure represents the worst performing run. The
layouts are the same but colored by digits and by sites. From
the analysis of the results, we find that each common digit
from different sites is embedded in the plots perfectly. But,
for many digits, the clusters are less separable.

Figure 4 represents the result of experiment 2. The com-
parison metrics show that when the shared portion contains
large amount of data the metrics are better than in the case of
smaller number of samples in the reference dataset. However,

N
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Figure 4: Experiment 2: Reference data contains samples of all dig-
its but it is either small or large (details in the text).

the cluster roundness degrades with the size of the sample in
the shared data. dSNE clusters are less round compared to the
centralized tSNE.

Figure 5 depicts the results of Experiment 3. Although
there is some variability with respect to which digit is missing
from the reference dataset, this is not the largest effect. Here,
we observe as similar behavior as in experiment 2: larger size
of the reference dataset leads to better results. Note, when
the reference dataset contains a large number of samples, we
always get better results for Kmeans and Intersection Ratio
compared to the case of fewer samples in the reference. Nev-
ertheless, a visual inspection of the best results in the case
of smaller reference dataset size does not lead to conclusions
that the results are unusable.

Figure 6 depicts the results of Experiment 4. The effect of
sample size is the most pronounced for tSNE output, while
the metrics remain fairly constant on the multishot dSNE em-
beddings regardless of the size of the virtual dataset. This is
a surprising outcome. We present best and worst embedding
based on the number of different local sites in our decentral-
ized scenario.

3.4 Real Data

We investigate performance of multishot dSNE in compari-
son with the embedding produced by tSNE on the pulled data
using the QC metrics of the ABIDE dataset. To simulate a
consortium of multiple sites we randomly split these data into
ten local and one reference datsets. Results show 10 different
clusters for centralized data. For three random splits of our
decentralized simulation we obtained 10 different clusters as
well (see Figure 7). Notably, the split into the clusters in the
embedding is stable regardless of the split into sites.

4 Conclusions

Our approach enables embedding and visualization of high
dimensional private data spread around multiple sites. The
data does not leave the sites and only minimal gradient in-
formation from the embedding space gets transferred across
the sites. We consider this approach plausibly private as most
of the information about individual samples was discarded.
Extensive tests on MNIST demonstrate the usefulness of the
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Figure 5: Experiment 3: the reference dataset is missing a digit that
is present at one of the local sites.

approach and high quality of the obtained embeddings over a
variety of settings. Although multi-shot dSNE is quite robust
to various conditions, such as changes in the number of sites,
rare or missing data etc., the best performance is achieved
when the reference dataset is dense. Notably, the single-shot
dSNE, which is mostly an implementation for tSNE of the
previously existed landmark point method, tends to ignore
the differences across the sites and only respects the reference
dataset. An alternative solution—an average of the gradients
weighted by the quality of their respective local tSNE—may
even further bias results toward good local groupings but un-
acceptable overall embedding. In contrast, our multi-shot ap-
proach provides enough information propagation to warrant
better embeddings. Yet, all that is being exchanged is perti-
nent to the already public reference data. We conclude that
dSNE is a valuable quality control tool for virtual consortia
working with private data in decentralized analysis setups.
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Figure 7: Experiment for QC metrics of the ABIDE datasets.
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