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Abstract

Grounding, or localizing, a textual phrase in an im-
age is a challenging problem that is integral to vi-
sual language understanding. Previous approaches
to this task typically make use of candidate region
proposals, where end performance depends on that
of the region proposal method and additional com-
putational costs are incurred. In this paper, we treat
grounding as a regression problem and propose a
method to directly identify the region referred to
by a textual phrase, eliminating the need for exter-
nal candidate region prediction. Our approach uses
deep neural networks to combine image and text
representations and refines the target region with
attention models over both image subregions and
words in the textual phrase. Despite the challeng-
ing nature of this task and sparsity of available data,
in evaluation on the Referlt dataset, our proposed
method achieves a new state-of-the-art in perfor-
mance of 37.26% accuracy, surpassing the previ-
ously reported best by over 5 percentage points. We
find that combining image and text attention mod-
els and an image attention area-sensitive loss func-
tion contribute to substantial improvements.

1 Introduction

In recent years, semantic grounding has been an active area
of research in artificial intelligence. In particular, progress
has been made in multimodal tasks, such as image captioning
and image QA, with deep learning [Xu et al., 2015; Lu et
al., 2016]. Solving this problem is essential for computers
to understand how humans communicate about what they see
and has many applications, such as robot vision. In this paper,
we focus on the task of grounding textual phrases in images.

Previous approaches treat grounding of textual phrases
in images as a ranking problem, assigning scores to candi-
date image regions—which are extracted from the image in
advance—based on their relevance to the textual phrase. Thus,
previous methods are based on the premise that the correct re-
gion is included in the candidate regions, however, this is not
always the case. In addition, previous methods scored can-
didate regions with the likelihood of generating the textual
phrase from an image captioning model, leading to difficulty
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if the target region is not cleanly contained inside a candidate
region proposal. To avoid these problems, we treat region
prediction as a regression problem and propose a method to
directly identify the region using deep learning with atten-
tion models. The objective variables of this regression are
the top left x and y coordinates, width, and height of a re-
gion. Since our proposed method outputs the region itself,
it does not require external candidate region proposals, un-
like previous approaches. Recently, attention models have
been shown to contribute to improved performance in vari-
ous computer vision tasks [Xu er al., 2015; Yang et al., 2016;
Lu et al., 2016]. We apply attention models to learn fine-
grained correspondences between text and image regions.

Our proposed method consists of five components, as
shown in Figure 1. The first component is an image represen-
tation which is constructed by applying a convolutional neu-
ral network (CNN) to the target image. The second compo-
nent is a text representation which is constructed by applying
LSTMs to the textual phrase. The third component is an im-
age attention model which estimates how much each region
in an image is associated with the textual phrase. This image
attention model makes predicting the target region’s bound-
ing box much easier. The fourth component is a text attention
model that estimates the importance of each word based on
the current image attention model’s output. This model helps
us refine the text representation to reflect the most important
words. In the image grounding task, the most important infor-
mation is where. Thus, as input to the text attention model,
we use the image attention map, which represents where in
the image is being attended to by the whole input phrase. The
fifth component is a target region prediction model that per-
forms regression over the image and text attention results to
predict the region’s bounding box in four parameters: the top
left corner’s x and y coordinates, width, and height of the
bounding box. Our method thus learns to understand the im-
age through the image model, the textual phrase through the
text model, and the relationship between the image and tex-
tual phrase though the image and text attention models.

Our main contributions are as follows. First, we propose
a regression model for identifying the region in an image
corresponding to a textual phrase that does not rely on ex-
ternal image region predictions, eliminating a potential bot-
tleneck in both accuracy and computational efficiency. Sec-
ond, we show through detailed evaluation on the Referlt
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Figure 1: Our proposed method

dataset [Kazemzadeh er al., 2014] that our proposed method
achieves a new state-of-the-art of 37.26%, surpassing the pre-
vious best-performing method by over 5 percentage points.
Third, we confirm that, by applying attention models over
both image and text, our approach is able to learn fine-grained
correspondences, further improving its performance.

2 Related Work

Hu et al. [2016b] proposed a Spatial Context Recurrent Con-
vNet (SCRC) to predict the region in an image corresponding
to a given textual phrase. SCRC extracts candidate regions
in advance using EdgeBox [Zitnick and Dollar, 2014], and
then it assigns a score to each candidate region based on the
probability of a given textual phrase being generated by an
image captioning model from that candidate region. SCRC
takes advantage of spatial information as well as image con-
text features for candidate regions when computing the prob-
ability. Training SCRC requires full images, target image re-
gion annotations, and the associated textual phrase. However,
it is difficult to collect large amounts of such data, so SCRC
uses a pre-trained image captioning model to generate textual
phrases from candidate regions.

To cope with the problem of sparse training data, Rohrbach
et al. [2016] proposed a method called GroundeR that uses
unsupervised learning. Like SCRC, GroundeR scores candi-
date regions with a caption generation model, but it also uses
an attention model to decide which candidate region is most
likely to be referred to by a textual phrase. It then gener-
ates the text of a gold standard caption, making it possible
to learn image attention without correct region annotations.
When the correct region is given, it is possible to supervise
learning by directly fitting the predicted region to the correct
region. Fukui et al. [2016] proposed Multimodal Compact
Bilinear pooling (MCB) to extract multimodal feature. The
outer product is more expressive than element-wise product
and concatenation for making the multimodal feature. How-
ever, the outer product is typically infeasible due to its high
dimensionality. MCB makes it possible to project the outer
product to a lower dimensional space. They evaluate MCB
on image QA and visual grounding. In the evaluation on vi-
sual grounding, their model receives the textual phrase and
candidate regions as the input and makes multimodal fea-
ture from these. The output is the classification result that
is which region is corresponds the textual phrase. Luo et
al. [2017] proposed the model in which a generation model,
which generates the expression for the region in the image,
and a comprehension model, which selects the region corre-
sponding to given expression, are integrated. First, the com-
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prehension model is trained, and then the generation model
is trained to generate the expression from which the compre-
hension model can select the correct region. Finally, Hu et
al. [2016a] proposed a method which directly learns the se-
mantic segmentation of the region corresponding to a textual
phrase. Their method, however, requires gold standard se-
mantic segmentation data, and they evaluate the Intersection-
over-Union (IoU) between the correct region’s segmentation
and their predicted segmentation, making direct comparison
to methods predicting bounding boxes infeasible.

Our approach differs from [Hu et al., 2016b; Rohrbach et
al., 2016; Fukui et al., 2016; Luo and Shakhnarovich, 2017]
by using regression to ground textual phrases, eliminating
the need for external candidate regions and avoiding adverse
influence from candidate region prediction quality. Unlike
[Rohrbach et al., 20161, it uses attention models over both
image and text, learning more sophisticated relationships be-
tween image regions and text. Unlike [Hu et al., 2016al, it
does not require semantic segmentation annotations.

A task related to image region prediction is object detec-
tion, whose goal is to find a predetermined class of objects in
image. Blaschko and Lampert [2008] proposed a method for
detecting a single object in a single image using Support Vec-
tor Machines (SVM). Their proposed SVM learns a mapping
of an input image to a bounding box. When training, they use
Intersection over Union (IoU), which represents how much
overlap occurs between the two regions, for the loss function.
We designed our loss function with reference to this idea.

Bounding box regression has been used for refining candi-
date regions. Jaderberg et al. [2016] trained a CNN regression
model that receives a candidate region as input and outputs a
refined region. The primary difference between our work and
theirs is that they use regression to refine candidate regions,
while our approach uses it to directly predict a target region
based on the results of attention models.

Recently, attention models have been applied in a variety
of tasks, such as machine translation [Bahdanau et al., 2015],
textual question answering (QA) [Kumar et al., 2015], and
image caption generation [Xu et al., 2015]. In the task of im-
age QA, attention models have been used to detect and focus
on the region in an image that is most related to answering a
question. Attention in this situation makes it possible to boost
the features in the relevant region, leading to more accurate
answer prediction. Lu et al. [2016] proposed a method which
combines both text and image attention at three different lev-
els: word, phrase, and sentence. They introduced a function
to specify which word or phrase in a question to attend to in
an image, and performed a bidirectional attention from both
question-to-image and image-to-question. Attention, thus, is
effective in tasks requiring multimodal understanding.

Our approach is related to the attention models used in im-
age QA. The textual phrase specifying an image region cor-
responds to a question, and predicting the target region cor-
responds to predicting the answer to the question. The dif-
ference between our approach and the approach for image
QA is the target of the attention. In image QA, the attention
model estimates the image region most related to the answer.
In contrast, our image attention model directly predicts the
region related to the textual phrase. Furthermore, attention-
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Figure 2: Overview of attention models. The image and the text attention models each have an independent MLP that is used to compute the
weights associated with each target attention unit. Each target attention unit is paired with the input to that attention model and fed into the
MLP one at a time. The red path in figures represents the first pair, the green path represents the second pair, and the blue path represents the
last pair. In this way, both MLPs process the each feature pair independently.

based image QA methods use the features focused on by their
attention models to produce a textual answer of some kind,
whereas we use it to predict the region that the textual phrase
refers to. Thus, in addition to image attention, we introduce a
text attention model that estimates which words are important
in the spirit of [Lu er al., 2016].

3 Attention Models for Region Prediction

Here we describe our proposed method for predicting the
bounding box of a region in an image given a textual phrase
by regression over four variables (z,y,w, h), where (x,y)
represents the left-top corner of the bounding box and (w, h)
represents the width and the height of the bounding box. An
overview of our proposed method is shown in Figure 1, con-
sisting of an image representation generated with CNNs, a
text representation generated with LSTMs, independent im-
age and text attention models, and the region prediction re-
gression model. In this section, we elaborate on these com-
ponents and describe the loss function used to train the model.

3.1 Image Model

We use the CNN VGG 16-layer model of [Simonyan and Zis-
serman, 2014] to extract image features images. Specifically,
we extract image features from v;, the output of intermedi-
ate layer conv5-3. Conv5-3 outputs 512 feature maps of size
14 x 14. Since the VGG 16-layer accept a 224 x 224 pixel
image as input, one feature map produced by conv5-3 cor-
responds to a 16 x 16 region of the input image, amounting
to a 14 x 14 x 512 dimension feature vector. Hereafter, we
denote this image feature by V,,0p = (vr1,Vr2, ..., Vr196),
where v,; € R%12 is the feature for region i.

3.2 Text Model

In order to construct feature representations from text, we use
Bidirectional LSTMs (BLSTM) to extract textual phrase fea-
ture v and word features v;. The text attention model com-
putes how much attention is given to each word feature out-
putted by the text model. BLSTMs are used to prevent the
model from learning representations that are biased toward
words near the end of the textual phrase. Given each word in
the textual phrase represented by one-hot vector q; whose size
is the word embeddings’ vocabulary size and the dimension

associated with a target word set to 1 and all other dimen-
sion set to O, first we transform each word into a distributed
representation u; denoted by embedding matrix W,

u = W.q, l€1,2,..,L
where [ denotes the position where the word appears, and L
denotes the length of the phrase. The BLSTM outputs are

computed as follows:

v, = LSTMyya(u)
B = LSTMyyua(w)
v, = tanh(Wpwa®, + Whwati + be;)

In the above equations, LST M ,,q denotes an LSTM encod-
ing the textual phrase in the forward direction. LST Mpq
denotes an LSTM encoding the textual phrase in the back-
ward direction. To merge the v} and by, we use single layer
perceptron from the result of the preliminary experiment. The
gates (27, f1,0;,2;), memory cell (¢;), and the hidden state (v;)
of the LSTM are computed as follows:

i = o(Wyu + Wyvi—1 + by)

fi = o(Wupui+ Wy + by)
o, = U(Wuoul + Wvovlfl + bo)

z; = tanh(We,up + We,vi—q + be)
a = fic_1+1iz

v, = o;tanh(g)

where o denotes the sigmoid activation function.
For the word features, we use v;, and for the phrase feature
v, an element-wise mean vector computed as follows:

vr = mean(vy, Vs, ..., VL)

Our system does not make use of any explicit semantic or
syntactic information outside of what is captured from word
context during the training of the embeddings.

3.3 Image Attention Model

Given the image feature maps V.4, and the text representa-
tion v, the image attention model estimates how much each
region in the image corresponds to the textual phrase. As
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Hyper-parameter Final Range
LSTM layers 1 [1,3]
Hidden size of image attention model 750 | [100,800]
Layers of image attention model 3 [1,3]
Hidden size of text attention model 500 | [100,500]
Layers of text attention model 1 [1,3]
Hidden size of region prediction model 450 | [100,500]
Layers of region prediction model 2 [1,3]
Dropout 0.6 [0.5,0.8]
Batch size 20 -
Word embedding dimensions 300 -
Loss Ay 0.0001 -
Loss A2 0.00001 -
Adam « 0.001 -
Adam (1 0.9 -
Adam S5 0.999 -

Table 1: The hyper-parameter search space and final values.

Method Accuracy (%)
SCRC [Hu et al., 2016b] 17.93
GroundeR [Rohrbach et al., 2016] 26.93
MCB [Fukui et al., 2016] 28.91
Comprehension [Luo and Shakhnarovich, 2017] 31.85
Our proposed method 37.26

Table 2: Comparison of our method to previous works.

shown in the following equations, we use a Multilayer Per-
ceptron (MLP) to compute the weight o, which represents
how much the model attends to region ¢, for each region.

h,; = tanh(W,,v.; + Wy vr + by)
Oz! = relu(thhvi + bvh)

K3
where h,; € R” is the hidden state, W,;, € R*", and
by, € R'. Thus, af is a scalar. We repeat this pro-
cess for the entire region, obtaining the image attention map
vl = (ad,ad, ..., alys) in Figure 2 (a)'. The above equations
are for a 3-layer MLP, however, the number of hidden layers

and the size of hidden state n are tuned as hyper-parameters.

3.4 Text Attention Model

Given the word features v; and the image attention map v’,
the text attention model estimates how important each word
is and updates the phrase feature accordingly. As with the
image attention, we use an MLP to compute the weight ole
for each word feature v; as shown in Figure 2 (b).

htl = tal’lh(Wtw’Ul + Wtav(i + bt)
of softmax(Wy,hy + byp)

where h;; € R™ which is hidden state, Wy, € R1X™ by, €
R!. Similar to image attention, ole is a scalar. Then, the
phrase feature representation is updated as follows:

L
! 2: T
vT: al'Ul
l

't is typical to use softmax as the activation function for atten-
tion models, however, in preliminary experiments we experienced
difficulties training, and switching to relu allowed it to succeed.

Method Accuracy (%)
Full (IA, TA, penalty, GloVe 840B) 37.26
—Text attention 35.55
—Text attention and image attention 29.43
—Loss penalty Lg(6) 35.41

Table 3: Evaluation of various settings. IA is the image attention,
TA is the text attention, and penalty means using Lg(6) in the loss

function. “—" means “without that setting.”
Word embeddings Accuracy (%)
GloVe 840B word embeddings 37.26
GloVe 42B word embeddings 36.60
GloVe 6B word embeddings 36.85
Random word embeddings 35.70

Table 4: Comparison between various word embeddings.

Again, the number of hidden layers and the size of hidden
state m are hyper-parameters.
3.5 Region Prediction Model

We employ an MLP that takes the image attention map v’
and updated phrase feature v/ as input and predicts a bound-
ing box specified by (x,y,w, h) as output. The hidden layer
and the output layer are computed by the following formula:

h, =
g

tanh(vav(IX + Wyvp + byp)
relu(W,h, + b,)

where g is the bounding box. The number of hidden layers
and the size of hidden state are tuned as a hyper-parameters,
as with image and text attention.

3.6 Loss Function

We adopt Intersection over Union (IoU) [Everingham et al.,
2005] in order to define the error between the predicted region
g and the ground truth region ¢. IoU represents the overlap
between two regions, and is calculated as follows:

tN
IoU(t, g) = area(tn g)
area(tUg)
Blaschko et al [2008] defined the following Equation (1) as
part of their loss functions to train SVMs for object detection.

LIOU(G) =1- IOU(ta g) (D

We use this IoU loss to train our model. We also use the
squared error between the ground truth and the predicted re-
gions to directly optimize our model’s output. The squared
error is computed by:

1
Lsp(0) = 51t - gl

where we treat t and g as a 4-dimensional vector (z, y, h, w).

Furthermore, we introduce a penalty to help fit the image
attention model area to the ground truth region. We define this
penalty function Lg(#) and the area of the image attention
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where Sy, is the area of the ground truth in 14 x 14 feature
maps.? The loss function L () we propose is as follow:
L(0) = Liou(0) + M Lse(0) + AaLs(0)

where \; and )\, are hyper-parameters.

Satt =

4 Experiments

In this section, we describe the dataset we use, our model’s
configuration, experimental results, and discuss the advan-
tages and disadvantages of our model.

4.1 Dataset

We used the Referlt dataset [Kazemzadeh et al., 2014] for
both training and evaluation. This dataset consists of three
parts: images, regions inside each image, and captions for
each region. There are 20,000 total images, taken from the
TAPRTC-12 dataset [Grubinger er al., 2006]. The regions
come from the SAIAPR-12 dataset [Escalante et al., 2010].
There are approximately 120,000 total captions constructed
in a two-player game with the goal of generating unambigu-
ous referring expressions for target regions. There are ap-
proximately 100,000 total objects with 255 categories. These
categories includes background such as sky. Therefore, this
dataset includes bounding boxes of ambiguous size. We em-
ployed the same data splits as Hu et al. [2016b]: 9,000 im-
ages for training, 1,000 for validation, and 10,000 for testing
to facilitate comparisons with prior approaches. In compari-
son, other multimodal datasets like MSCOCO image caption-
ing [Lin et al., 2014] and VisualQA [Antol ef al., 2015] have
over 10 times as many images and 6-12 times as many unique
image-annotation pairs as Referlt?, illustrating the data spar-
sity challenges faced in this task.

4.2 Model Configuration and Training

We performed hyper-parameter optimization using random
search. The hyper-parameters and final settings are shown

2t is possible that this penalty, when combined with the relu,
which stands for the rectified linear unit activation function, in our
image attention model, has an effect similar to normalization.

3MSCOCO has more than 300K images and 1.5M captions, and
Visual QA has over 250K images with over 750K unique questions.
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Rank Error Cause Count
1 Image attention 84
2 Incoherent bounding box prediction 55
3 Text attention 39
4 Attention requires inference 36
5 Target image region annotation 28
6 Textual phrase annotation 19

Table 5: Error analysis of 100 incorrect predictions.

in Table 1. The size of each hidden layer is sampled by incre-
ment of 50. However, we selected the loss function weights
from preliminary experiments because they have more influ-
ence over the training than other hyper-parameters. We fix the
word embedding size to facilitate comparison between differ-
ent embeddings and use the same 8,800 word vocabulary as
[Hu et al., 2016b]. We train the model with back propagation
using Adam [Kingma and Ba, 2014] for SGD, with the au-
thors’ recommended values of hyper-parameters. We allow
all parameters to be updated, except for the VGG 16-layer.

4.3 Results

In this section we present comparative evaluation against
SCRC [Hu et al., 2016b] and the current state-of-the-art
method, GroundeR [Rohrbach et al., 2016]. Following Hu
et al. [2016b], we adopt accuracy as our evaluation criterion,
where we consider a prediction correct if the overlapping IoU
of the ground truth and the predicted area is > 50%. Table 2
shows the comparison result with previous works. Our pro-
posed method greatly outperforms previous works.

In order to confirm the effect of each component in our ap-
proach, we train models without text attention (—TA), with-
out text and image attention (—TA and IA), and without
the loss penalty (—loss penalty Lg(6)). Comparing the full
model to them as shown in Table 3, we see that the full model
outperforms the model without text attention by 1.71% points
and the model without the text and image attention by 7.83%
points. These result show that combining text and image at-
tention is effective, but that image attention makes an espe-
cially large contribution. In addition, the model without text
and image attention outperforms GroundeR by 2.50% points,
showing that our regression approach is more effective than
approaches that score candidate regions.

Furthermore, the full model outperforms the model with-
out the loss penalty by 0.85% points, and the region corre-
sponding textual phrase is more accurately focused as shown
in Figure 3, showing that the loss penalty is effective.

We compare word embeddings as shown in Table 4. We
evaluated on GloVe embeddings [Pennington et al., 2014]
because they have higher coverage than word2vec [Mikolov
et al., 2013] and released embeddings trained on various
size datasets. We find that GloVe embeddings trained on
the largest dataset of 840 billion words outperform the other
GloVe embeddings by 0.41—0.66% points and randomly-
initialized embeddings by 1.56% points*, demonstrating the
effectiveness of pre-trained word embeddings.

“We suspect GloVe 840B performed best because it had the
largest vocabulary and training dataset of those tested.
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Figure 4: Predicted examples. The input image is on the left, and the attention map is on the right. The red bounding box is the ground truth
region, and the yellow bounding box is the predicted region. For visualization of attention, red represents high and blue represents low in

both image and text attention.

4.4 Visualization of Attention

Examples of attention visualization are shown in Figure 4.
The successful examples in Figure 4 (a) show that the region
corresponding to the textual phrase is correctly focused on by
the image attention. Furthermore, when a region in the back-
ground of the image is specified by the textual phrase, the im-
age attention model successfully avoids focusing on objects
in the foreground, as shown in the rightmost example. For
text attention, words related to position such as botfom and
left are given attention, demonstrating our model’s ability to
learn linguistic cues indicating location.

4.5 Error Analysis

We randomly sampled 100 erroneous predictions from our
model and manually classified them by error causes. A single
prediction can have multiple causes.

We find that the most common error cause is incorrect im-
age attention, which occurs over 80% of the time. In most
cases, the image attention is spread throughout the image and
does not focus on the correct region as shown in the leftmost
example in Figure 4 (b). In comparison, text attention errors,
where a non-central expression is focused on, occur slightly
less than 40% of the time. As can be seen by the text attention
visualization in Figure 4 (b), despite using BLSTMs, text at-
tention is often still biased toward the end of a sentence. Fur-
thermore, in 36% of cases, a referring expression is attended
more strongly than the object that is the target of the textual
phrase. An example of this is “2nd upright bike tire” having
weaker attention than “closest fo man” in the middle example
in Figure 4 (b). These errors show that our approach could
likely benefit from hierarchical or cyclical attention models
that allow for multiple passes over each attention module.

Gold annotation errors are another common cause of er-
rors. A little less that 20% of the errors are caused by ambigu-
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ity, spelling errors, or unknown words in textual phrases, such
as womans and shelf? in the leftmost example in Figure 4 (b).
Furthermore, in 28% of cases, the ground truth regions given
were ambiguous, either by being too big or small, or by not
having well-defined boundaries, which is often the case for
textual phrases such as sky or corner. These annotation errors
may lead to errors in “image attention” and “text attention.”

Finally, in over half of all errors, the bounding box pre-
dicted by our model does not capture a coherent region in the
image, as shown in the rightmost example in Figure 4 (b),
suggesting that despite our approach’s independence from
image region proposals, it may benefit from incorporating
some kind of objectness judgement in its region predictions.

5 Conclusion

In this paper, we proposed a new attention-based method for
directly predicting the region in an image specified by a tex-
tual phrase through regression. Through evaluation on the
Referlt dataset, we demonstrated that, despite the challeng-
ing nature of this task and sparsity of the dataset, our pro-
posed method greatly outperformed the accuracy of all known
methods by over 5% while eliminating the need for external
image region candidates. Our evaluation and visualization of
attention results also showed that the image and text attention
and image attention size-based loss penalty greatly contribute
to performance. Detailed analysis showed that attention fail-
ures and incoherent bounding box predictions were common
causes of errors. In future work, we plan to refine our penalty
function, incorporating measures of objectness. In addition,
to better handle examples that require inference, we plan to
explore attention architectures that allow multiple passes.
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