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Abstract
We consider the problem of computing a mixed-
strategy Nash equilibrium (MSNE) in resource
graph games (RGGs), a compact representation for
games with an exponential number of strategies. At
a high level, an RGG consists of a graphical repre-
sentation of utility functions together with a rep-
resentation of strategy spaces as convex polytopes.
RGGs are general enough to capture a wide variety
of games studied in literature, including congestion
games and security games.
In this paper, we provide the first Fully Polytno-
mial Time Approximation Scheme (FPTAS) for
computing an MSNE in any symmetric multilin-
ear RGG where its constraint moralized resource
graph has bounded treewidth. Our FPTAS can
be generalized to compute optimal MSNE, and to
games with a constant number of player types. As a
consequence, our FPTAS provides new approxima-
tion results for security games, network congestion
games, and bilinear games.

1 Introduction
There has been increasing interest in using game theory to
model real-world multi-agent systems, and in the computa-
tion of game-theoretic solution concepts given such a model.
For games with large numbers of agents and actions, the stan-
dard normal form game representation requires exponential
space and is thus not a practical option as a basis for computa-
tion. In particular, in many domains [Daskalakis et al., 2006a;
Rabinovich et al., 2009; Immorlica et al., 2011; Korzhyk et
al., 2010], each player needs to make a decision that consists
of multiple sub-decisions (e.g., assigning a set of workers to
tasks, ranking a set of options, or finding a path in a network),
and hence can have an exponential number of pure strategies.
Nevertheless, this space of pure strategies is often structured,
meaning that it can be represented compactly.

Recently, [Jiang et al., 2017] proposed resource graph
games (RGGs), a general compact representation for games
with structured strategy spaces that unifies and generalizes
many of the existing classes of structured games studied in
literature. In an RGG, there are n players and a set A of

resources. A pure strategy of a player is a subset of the re-
sources, represented by an |A|-dimensional 0-1 vector. Each
player’s set of pure strategies is represented compactly as a
polytopal strategy space: the set of integer points in a convex
polytope, specified by a set of linear inequality constraints.
There is a resource graph, a directed graph whose vertices
are the resources A, and the graph depicts the utility struc-
ture of the game. RGGs are able to compactly encode a
wide variety of games studied in literature, including security
games [Korzhyk et al., 2010; Tambe, 2011], network conges-
tion games [Daskalakis et al., 2006a], simultaneous auctions
[Rabinovich et al., 2009], dueling algorithms [Immorlica et
al., 2011], and Blotto games [Ahmadinejad et al., 2016].

In this paper, we consider the problem of computing a
mixed-strategy Nash equilbrium (MSNE) in RGGs. RGGs
can represent arbitrary games, as a result the PPAD-hardness
of finding an MSNE in normal form games [Chen and Deng,
2006; Daskalakis et al., 2006b] implies the PPAD-hardness
for finding MSNE in RGGs. A natural question arises: are
there subclasses of RGGs for which MSNE can be computed
(or approximated) in polynomial time? In this paper we pro-
vide one answer to this question by identifying a subclass
of RGGs that admits a fully polynomial time approximation
scheme (FPTAs) for finding MSNE. In particular, we focus
on symmetric RGGs that satisfy a multilinearity condition
(the utility functions are linear in each player’s strategy vec-
tor while keeping others’ strategies fixed). We define con-
straint moralized resource graph as an undirected graph con-
structed by starting from the moralized graph (also known as
the primal graph) of the resource graph, then adding nodes
corresponding to the linear strategy constraints, and edges
connecting each constraint with the resources that are in-
volved in the constraint. Our main result is that there is a
FPTAS for computing MSNE for a symmetric multilinear
RGG whose constraint moralized resource graph has bounded
treewidth. Treewidth is a well-studied graph property that
has been applied to many graph-related problems, including
Bayesian network inference and constraint satisfaction. In
particular a tree has treewidth of 1. Our FPTAS can be ex-
tended to find specific MSNE, such as MSNE with the great-
est (or lowest) social welfare. We also generalize our FPTAS
to a constant number of player types. We then applied our
FPTAS to classes of RGGs that correspond to games stud-
ied in literature, and obtained new results for these games.
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In particular, (i) we provide FPTAS for computing MSNE
in generalizations of security games [Korzhyk et al., 2011b;
2011a], in particular for cases when the defender and attacker
have complex strategy sets not covered by existing results.
(ii) [Chan and Jiang, 2016] provided a FPTAS for MSNE in a
class of congestion games [Rosenthal, 1973] where the play-
ers’ strategy constraints are totally unimodular, and the con-
straint graph has bounded treewidth and bounded degree. Our
FPTAS applied to congestion games only requires bounded
treewidth, without restriction on degree, and as a result is ap-
plicable to a boarder range of congestion games. (iii) Bilinear
games [Garg et al., 2011] are two-player games whose util-
ities are characterized by payoff matrices A and B. When
A and B are sparse matrices, the RGG representations have
nontrivial graph structure. Furthermore, due to the special
structure of bilinear game utilities, we can avoid the moral-
ization step, resulting in further reduced treewidth.

Our algorithm makes use of a compact, primal-dual for-
mulation of the MSNE condition. We then use a tree-
decomposition based dynamic programming approach to
solve the resulting feasibility problem, passing partial assign-
ments of primal and dual variables and partial sums of con-
straints across subgraphs. We omit all proofs in this version.
A longer version of the paper with proofs and more discussion
is available on the authors’ websites.

2 Preliminaries
Denote by Z+ the set of nonnegative integers. A rational
polytope is defined by a set of inequalities with integer coef-
ficients; P = {x ∈ Rm|Dx ≤ f} is a rational polytope if D
and f consist of integers.

2.1 Games, Strategies and Equilibrium
A game is specified by (N,S, u), where N = {1, . . . , n} is
the set of players. Each player i ∈ N chooses from a finite
set of pure strategies Si. Denote by si ∈ Si a pure strategy
of i. Then S =

∏
i Si is the set of pure-strategy profiles.

Moreover, u = (u1, . . . , un) are the utility functions of the
players, where the utility function of player i is ui : S → R.
A mixed strategy σi of player i is a probability distribution
over her pure strategies. Denote by σ = (σ1, . . . , σn) a mixed
strategy profile. Denote by σ−i the mixed strategy profile of
players other than i. Denote by ui(σ) the expected utility of
player i under σ.

For ε ≥ 0, player i’s mixed strategy σi is an ε-best response
to σ−i if ui(σi, σ−i) ≥ ui(s

′
i, σ−i) − ε ∀s′i ∈ Si. A mixed

strategy profile σ is an ε-MSNE if for each player i ∈ N ,
σi is an ε-best response to σ−i. A best response is a 0-best
response and an MSNE is a 0-MSNE.

2.2 Resource Graph Games
A resource graph game (RGG) is specified by the tuple Γ =
(N,A, {Si}i=1,...,n, G, {uα}α∈A), where N = {1, 2, ..., n}
is the set of n players; A = {1, ...,m} is the set of m
resources. Each si ∈ Si is an |A|-dimensional 0-1 vec-
tor. Si is represented as a polytopal strategy space where
Si = Pi ∩ {0, 1}|A|, Pi = {x ∈ [0, 1]|A||Dix ≤ fi},
Di ∈ Zli×|A|, and fi ∈ Zli . In other words, Pi is a rational

polytope defined by li linear constraints. We let siα denote
the component corresponds to α ∈ A. Given a pure-strategy
profile s = (s1, ..., sn), the configuration c =

∑
i∈N si is

an integer vector that counts the number of players who have
selected each resource. The resource graph G = (A, E) is
a directed graph that could contain self-loops. The neigh-
borhood of α ∈ A, denoted by ν(α), is the set of resources
with edges going into α. Let C(α) ⊂ Zν(α)

+ be the set of
local configurations over ν(α), and c(α) ∈ C(α) a local con-
figuration. The local utility function uα : C(α) → R rep-
resents the utility contribution of using α given the configu-
ration over its neighborhood ν(α). Given the pure-strategy
profile s = (s1, ..., sn), the utility of player i is defined to be
ui(s) =

∑
α:siα=1 u

α(c(α)) =
∑
α∈A siαu

α(c(α)).
[Jiang et al., 2017] showed that the representation size is

polynomial in m, nI , and
∑
i li, where I is the maximum

in-degree of the resource graph.
We define symmetric RGGs to be those in which the play-

ers have the same polytopal strategy space.
Definition 1. An RGG, Γ = (N,A, {Si}ni=1, G, {uα}α∈A),
is symmetric if and only if for all player i, Di = D, fi = f ,
Si = S, and Pi = P for some D ∈ Zli×|A| and f ∈ Zli .

More generally, we call an RGG k-symmetric if there are
k equivalence classes of players, and within each equivalence
class the players have the same polytopal strategy space.
Definition 2. An RGG, Γ = (N,A, {Si}ni=1, G, {uα}α∈A),
is k-symmetric if and only if the players are partitioned into k
classes, and for any player i in class j ∈ {1, ..., k},Di = Dj ,
fi = f j for some Dj ∈ Zl

j
i×|A| and f j ∈ Zl

j
i (and therefore

Si = Sj , and Pi = P j).
Every (k-)symmetric game has a (k-)symmetric MSNE in

which every player in the same equivalence class plays the
same (possibly mixed) strategies [Nash, 1951].

2.3 Multilinearity and Marginal Vectors
When |Si| is exponential, representing a mixed strategy σi
explicitly would take exponential space. Given player i’s
mixed strategy σi, the marginal vector πi that corresponds
to σi is πi = Eσi [si] =

∑
si∈Si σi(si)si. In other words, πiα

is the marginal probability that resource α is chosen under
the mixed-strategy σi. Thus if we represent a mixed strat-
egy using its marginal vector, this would only require O(m)
space. However, for this representation to work, we need to
be able to express the expected utilities of the game in terms
of marginal vectors. [Chan et al., 2016] showed that this
can be done if the game has the multilinear property: for all
i, j ∈ N , given a fixed s−j , ui is a linear function of sj .

Not all RGGs are multilinear; the following proposition
gives a sufficient condition for an RGG to be multilinear.
Proposition 1 (Proposition 7 of [Jiang et al., 2017]). An
RGG, Γ = (N,A, {Si}i=1,...,n, G, {uα}α∈A), is multilinear
if, for each player i, for each α ∈ A, and for each si ∈ Si,∑
α′∈ν(α)∪{α} siα′ ≤ 1. Moreover, given an RGG, we can

verify the above condition in polynomial time.
In practice, it is often desirable to be able to recover a

mixed strategy from a marginal vector representation. Since
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the explicit representation of mixed strategies has exponen-
tial size, we would instead like to have the mixed strategy
specified in some manner that requires less space. [Chan et
al., 2016] provides one sufficient condition for the efficient
recovery of mixed strategies from marginals: If the constraint
matrix Di is totally unimodular, then given a marginal vector
πi, we can efficiently generate a mixed strategy σi, repre-
sented as a sparse vector with polynomial number of nonzero
entries, such that πi =

∑
si∈Si σi(si)si.

3 Statements of Results
Assumptions. In summary, to ensure the compact represen-
tation of mixed strategies as marginal vectors, we make the
following assumptions:

Assumption 1. ∀i ∈ N , the matrix Di is totally unimodular.

Assumption 2. For each i ∈ N , for each α ∈ A, and for
each si ∈ Si,

∑
α′∈ν(α)∪{α} siα′ ≤ 1.

Without either one of these assumptions, even single agent
versions of RGG can represent NP-hard optimization prob-
lems, i.e., we end up with problems whose hardness has noth-
ing to do with game theory.

Assumption 3. For α ∈ A, the range of uα is in [0, 1].

A fully-polynomial time approximation scheme (FPTAS)
for MSNE is an algorithm that given an RGG, computes an
ε-MSNE in time poly(nI ,m, l, 1

ε ). While Nash equilibria are
preserved under affine transformations of the utility functions
ui, ε-Nash equilibria are not. E.g. multiplying all ui by a
constant κ would turn a ε-MSNE into a κε-MSNE in the new
game. A standard practice is to normalize the utility func-
tions ui into the range [0, 1], by the affine mapping ui 7→
(ui − umin)/(umax − umin), where umax = maxi,s ui(s)
and umin = mini,s ui(s) are the maximum and minimum
achievable utilities of the game, respectively. Then use the
normalized game to measure the quality of approximation,
i.e., ε. An ε-MSNE in the original game would correspond
to an ε

(umax−umin) -MSNE in the normalized game. While
Assumption 3 implies ui(s) ∈ [0,m] for all i and s, these
are in general not tight bounds on umax and umin, and in-
deed umax and umin may be hard to compute given an RGG.
We note that this is a common issue with compact game rep-
resentations whose utility functions are sums of other func-
tions, e.g., polymatrix games [Barman et al., 2015]. For our
purposes, in order to ensure that our FPTAS remains an FP-
TAS for the normalized game, it is sufficient to assume that
(umax − umin) is lower-bounded by an inverse polynomial
of the size of the game.

Assumption 4. (umax − umin) ≥ 1
poly(nI ,m,

∑
i li)

.

This is a reasonable assumption for natural classes of
games, as we would normally expect umax−umin to not de-
crease as the size of the game grows. Indeed it can be easily
verified that this holds for all games discussed in this paper.

Constraint Moralized Resource Graph. Let C =
{1, ..., l} be the set of constraints, corresponding to rows of
the constraint matrix D of a symmetric RGG.

Figure 1: T -target Security Games. (a. Top Left) RGG repre-
sentation of Security Games, (b. Top Right) Constraint Moralized
Resource Graph, and (c. Bottom) a tree decomposition of the Con-
straint Moralized Resource Graph.

Definition 3. Given a resource graph G = (A, E), its
moralized resource graph is an undirected graph MG =
(A, E ∪ E′) where E is an undirected edge set of E, and
E′ = {{α, α′} ∈ A ×A | ∃ᾱ ∈ A s.t. (α, ᾱ), (α′, ᾱ) ∈ E}
is a set of undirected edges connecting the parents of their
children. The constraint moralized resource graph is an
undirected graph CMG = (A ∪ C,E ∪ E′ ∪ E′′) where
E′′ = {{c, α} ∈ C × A | Dcα 6= 0} is a set of undirected
edges connecting resources and constraints. In other words,
there is an edge from the constraint to all of the resources
involved in the constraint.

Our main result is stated as follows.
Theorem 1. There is an FPTAS for computing a k-symmetric
MSNE in k-symmetric RGGs that satisfy Assumptions (1-4)
and have constraint moralized resource graphs with bounded
treewidth, when k is a constant. In particular, the algorithm
finds an ε-MSNE in time poly(n,m, l, 1

ε ). The algorithm can
be extended to compute ε-MSNE with the highest (or lowest)
social welfare.

Applications to Security Games. In a typical security
game [Tambe, 2011] between a defender (d) and an attacker
(a), there is a set T of targets, the defender can only protect
m of the targets and attacker can attack one target. Defender
and attacker’s utilities depend on whether the attacked target
is covered. [Jiang et al., 2017] showed that security games
can be compactly encoded as RGGs. Figure 1(a) illustrates
the resource graph. For each target t ∈ T , we have a resource
node at for the attacker, representing the utility of attacker
for attacking target t, and two resource nodes b0t and b1t for
the defender, representing the defender’s utility for not pro-
tecting and protecting t, respectively. The constraint matrices
of the attacker and the defender are totally unimodular, and
the strategies of the players satisfy Proposition 1. This can be
generalized to the model of [Korzhyk et al., 2011a] where the
attacker can attack K targets.

Given the RGG representation of the security game, we can
proceed to construct its moralized constraint resource graph,
as shown in Figure 1(b). We provide a constant-width tree
decomposition of the moralized constraint resource graph in
Figure 1(c). Since we have only two classes of players (an at-
tacker and a defender) and constant treewidth, our algorithm
yields an FPTAS for Nash equilibrium in these games.
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Our result holds for general classes of security games with
arbitrary strategy constraints for the players as long as their
constraint matrices are totally unimodular and the treewidth
of the moralized constraint resource graph is bounded.
Proposition 2. Given a security game, if the strategy con-
straint matrices for the attacker and defender are totally uni-
modular, and treewidth of the moralized constraint resource
graph is bounded, there is an FPTAS for computing MSNE.
Example 1. Consider a security game as defined above, but
with a more complex attacker strategy space. In particular
the targets correspond to edges in a network with a source
and a destination, and the attacker can choose a path from
source to destination, thereby attacking all edges on the path
chosen. It is known that the set of valid paths can be en-
coded compactly as linear constraints with a totally unimod-
ular constraint matrix. If the network has constant treewidth,
the constraint moralized resource graph also has constant
treewidth, and Proposition 2 applies.

Applications to Congestion Games. Congestion games
model the situation in which there is a set of resources, and
each player selects a subset of resources. The cost of using a
resource depends on the total number of agents using it. As
such, the agent’s goal is to select a subset of resources that
minimizes the total cost.

Each resource in the congestion game corresponds to a
resource node in the RGG representation. The resource
graph contains only self-edges. When the constraint ma-
trix of each player is totally unimodular, then we have to-
tally unimodular congestion games [Chan and Jiang, 2016;
Del Pia et al., 2017]. Our result generalizes the results of
[Chan and Jiang, 2016]. In particular, their FPTAS for to-
tally unimodular congestion games requires each resource to
only be involved in a constant number of constraints and each
constraint can only involve a constant number of resources, in
addition to having bounded treewidth. Our result lifts these
restrictions and applies as long as the treewidth of the con-
straint moralized resource graph is bounded.
Proposition 3. Given a totally unimodular congestion game
with k player types, if the treewidth of the moralized con-
straint resource graph is bounded, there is an FPTAS for com-
puting k-symmetric MSNE for constant k.
Example 2 (Network Congestion). Consider network con-
gestion games [Fabrikant et al., 2004], where resources cor-
respond to edges in a network, and each player chooses a
path from a source to a destination in the network. [Chan
and Jiang, 2016] provided an FPTAS when the network has
constant treewidth and constant degree. Our result provides
an FPTAS when the network has constant treewidth, without
restriction on the degree.
Example 3 (Security Game with Multiple Attackers). Con-
sider the following generalization to security games, now
with na attackers. Each attacker can attack K targets. Pay-
offs for defender and attackers are sums of contributions from
each target, which depend on (a) the number of attackers
choosing to attack that target, and (b) whether defender pro-
tects that target. The attackers are interchangeable so this is
a 2-symmetric game. This game combines the utility struc-
ture of congestion games (among the attackers) and security

games (between defender and attackers). The RGG represen-
tation has resource graph similar to Figure 1(a), except now
there are self-loops on each attacker node at for each target.
It can be verified that Assumption 2 remains satisfied, and
Figure 1(c) remains a tree decomposition for the new con-
straint moralized resource graph. Thus our result applies to
yield an FPTAS.

Bilinear Games. A bilinear game [Garg et al., 2011] is
played between two players 1 and 2. The strategy spaces of
the players are described using polytopes X and Y . Player
1 and player 2 have payoff matrices A ∈ RM×N and B ∈
RM×N , respectively. In particular, given (pure) strategies
x ∈ X and y ∈ Y , u1(x, y) = xTAy and u2(y, x) = xTBy.

Given a bilinear game with (possibly sparse) A and B, the
resource graph is a bipartite graph where one side has M re-
sources corresponding to rows and the other side has N re-
sources corresponding to columns. There is an edge from
column c to row r iff Ac,r 6= 0, and an edge from row r to
column c iff Br,c 6= 0. We can further exploit the linearity of
the utility functions, and as a result we do not need to moral-
ize the resource graph.

Theorem 2. Given a bilinear game, if the strategy con-
straint matrices for both players are totally unimodular, and
treewidth of the constraint resource graph (without moraliza-
tion) is bounded, there is an FPTAS for computing MSNE.

4 Sketch of Derivation of Our FPTAS
4.1 A Primal-Dual Definition of MSNE
We can express the expected utility as ui(πi, π−i) =
πTi ∇i(π−i) where ∇i(π−i) is the utility gradient of i and
∇i(π−i)α denotes the expected utility contribution of i from
using the resource α and πTi is the transpose of πi. [Jiang
et al., 2017] showed that given an RGG and π−i, the util-
ity gradient ∇i(π−i) can be computed in polynomial time.
Moreover, to compute ∇i(π−i)α we only need to know
(πjα′)j 6=i,α′∈ν(α), i.e., other players’ marginals projected to
α’s neighborhood.

In the standard definition of MSNE, we need to enumerate
all pure strategies to verify whether a mixed-strategy profile
is a MSNE. This is not feasible for games (RGGs) with expo-
nential number of pure strategies. We need a more efficient
way to check whether a mixed-strategy profile is an MSNE.

Given the marginal vectors of others π−i, the best response
for i is the solution to the following primal and dual LPs.

Primal Dual

maximize πTi ∇i(π−i) minimize fTi λi

subject to Diπi ≤ fi subject to DT
i λi ≥ ∇i(π−i)

πiα ≥ 0 for α ∈ A λij ≥ 0 for j = 1, 2, ..., li

Here we assume that the constraint πiα ≤ 1 is embedded
into the constraints Diπi ≤ fi. Given that the primal LP
has a solution, the primal and dual LPs solutions have the
same optimal objective value. As a result, πi is i’s best re-
sponse when there exists a feasible dual vector λi such that
πTi ∇i(π−i) = fTi λi. Thus, a feasible marginal vector π̄ is
an MSNE if for each player i, there exists λi ≥ 0 such that
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DT
i λi ≥ ∇i(π̄−i) and π̄Ti ∇i(π̄−i) = fTi λi. This primal-

dual formulation of best responses do not tell us how to find
an MSNE; in particular we cannot simply solve the LPs to
find an MSNE because these are LPs only for fixed π−i.

Next, we show the existence of a symmetric ε-MSNE in
which the marginal vector lies in a discretized grid in Pi. This
allows us to search for an ε-MSNE in this discretized space.

Lemma 1. For any δ > 0, there is a (symmetric) marginal
vector ∀i qi = q = (qα)α∈A in which qα ∈ {0, 1

K ,
2
K , . . . , 1}

and K = O( logm
δ2 ), such that u(qi, q−i) = qT∇(q−i) ≥

q′T∇(q−i)−O(δdnm) for q′ ∈ [0, 1]m that satisfiesDq′ ≤ f
and d is the maximum in-degree of the resource graph G.

The above lemma implies that if every player plays accord-
ing to q, then we have an O(δdnm)-MSNE. Our next step is
to present an efficient algorithm to find such q.

4.2 An Efficient Algorithm to Compute ε-MSNE
From Lemma 1, there is a marginal vector q that lies in the
m-dimensional uniform discretized grid with discretization
size 1

O(δdnm) . Thus, a brute-force approach does not yield
an efficient algorithm. We instead use the definition of NE in
terms of linear programming of Section 4.1 and introduce a
message-passing algorithm that runs on a tree decomposition
of the constraint moralized resource graph.

Discretization of Variables. To search for the marginal
representation, we provide discretization bounds for the ex-
istence of an ε-MSNE in the marginal and utility spaces.
Here, we provide other discretization spaces that are neces-
sary for our algorithm. We use the notation DC,A to denote
the subcomponent of D consisting of the rows in C ⊆ C
and columns in A ⊆ A. If |C| = 1 and |A| = 1,
then DC,A is the value corresponds to the row and col-
umn. To begin, recall that we want to find a marginal vec-
tor q = (qα)α∈A where qα ∈ Q (as in Lemma 1) such that
Dq ≤ f , DTλ∗q ≥ proj(∇(q−i)), and qT proj(∇(q−i)) ≥
fTλ∗q − ε

2 − O(δdnm) for λ = (λc)c∈C where λc ∈ Λ.
Clearly, we are not going to try all the possible q ∈ Q|m| di-
rectly. Instead, our approach is to find feasible (qα)α∈A′ and
(λc)c∈C′ for some ordering of A′ ⊆ A and C ′ ⊆ C induced
by the tree decomposition incrementally. Thus, we need to
keep track of the partial sums of (1)Dc,Aq for each constraint
c, (2) DT

α,Cλq for each resource α, (3) qT proj(∇(q−i)), and
(4) fTλq for a given q and λq . Because D is totally unimod-
ular, its entries can only have values of 0, 1, or -1. Thus, the
possible values of the partial sums are finite. For (1), given a
constraint c, we let ∂Sc be partial sum of the constraint c from
Sc. For (2), given a resource node α, we let ∂λα be the partial
sum of a resource constraint α (i.e., DT

α,C ) from SA. For (3),
we let ∂t to be the partial utility sum from T . For (4), we let
∂f to be the partial dual objective sum from F . Finally, to
ensure we have a marginal vector of ε-Nash equilibrium, we
let δ = O

(
ε

dmn

)
. For the sake of space, we leave the details

of the discretization of set in full version1.
Message Passing Algorithm. Given the tree decomposi-

tion of the constraint moralized graph and the discretization
spaces, we provide a two-pass message passing algorithm that

is an FPTAS when the tree decomposition has a bounded tree
width and there is a polynomial number of constraints.

To begin, let T = (B,E) be the decomposed tree. It is
clear that, for each X ∈ B, the node X consists of a set of
resources and a set of constraints, denoted byAX andCX , re-
spectively. From the moralization and the tree decomposition,
for each α ∈ A, there is an X ∈ B such that ν(α) ⊆ AX .
This allows us to compute the partial sum of the expected
utility qα · proj(∇(qν(α))α). Because of that, we preprocess
the tree and designate a node ofX to compute the partial sum
of the expected utility for each resource α exactly once. Of
course, the designated node X should contain the ν(α). We
let A∗X ⊆ AX to denote the set of resources where we com-
pute the expected utility at X ∈ B. Such preprocessing can
be done using depth-first search or breath-first search.

We first present the algorithm when the tree T is a line.
Then, we show how we can generalize the algorithm to a tree.
We assume all of the graphs are connected, otherwise we can
just form a new tree by joining the connected components.

The Line Case. Suppose that the resulted tree decomposi-
tion is a line, say L = (B,E). We relabel the nodes of L so
that B = {1, 2, ..., n} where 1 is the leftmost node and n is
the right most node. Thus, the edge set E = {{i, i + 1}, i =
1, ..., n− 1} is the adjacent neighbors.

At a high level, the message passing algorithm has an up-
stream pass and a downstream pass. The upstream pass starts
passing messages/tables sequentially from 1 to 2, 2 to 3, ...,
n-1 to n. After n has received the messages, the downstream
pass begins and starts with n passing message to n-1, n-1
to n-2, so on and so forth until 1 received the message/table
from 2, sequentially. The idea of the upstream pass is to keep
track of the potential ε-MSNE, and the goal of downstream
pass is to construct a feasible ε-MSNE.

Upstream pass. For each node i ∈ B, we construct a set
fi containing tuples ofQ|Ai|×S|Ci|C ×Λ|Ci|×S|Ai|A ×T ×F
based onMi−1→i which is the message i−1 sends to i. More
specifically,

fi = {(qα)α∈Ai , (∂Sc)c∈Ci , (λc)c∈Ci , (∂λα)α∈Ai , ∂t, ∂f)

∈ Q|Ai| × S|Ci|C × Λ
|Ci| × S|Ai|A × T × F |∂t =

∑
α∈A∗

i

qαproj(∇(qν(α))α) + ∂t

 (1)

&[∀c ∈ Ci ∩ Ci+1, ∂Sc = Dc,Ai\Ai+1
qAi\Ai+1

+ 1[c∈Ci−1]∂Sc](2)

&
[
∀c ∈ Ci \ Ci+1, ∂Sc = Dc,AiqAi + 1[c∈Ci−1]∂Sc

]
(3)

&[∀α ∈ (Ai \ A∗i ) ∩ Ai+1, ∂λα = D
T
α,Ci\Ci+1

λCi\Ci+1

+ 1[α∈Ai−1]∂λα](4)

&
[
∀α ∈ (Ai \ A∗i ) \ Ai+1, ∂λα = D

T
α,Ci

λCi + 1[α∈Ai−1]∂λα
]

(5)

&[∀α ∈ A∗i ∩ Ai+1, ∂λα = D
T
α,Ci\Ci+1

λCi\Ci+1
+ 1[α∈Ai−1]∂λα

− proj(∇(qν(α))α)](6)

&[∀α ∈ A∗i \ Ai+1, ∂λα = D
T
α,Ci

λCi + 1[α∈Ai−1]∂λα

− proj(∇(qν(α))α)](7)

&
[
∂f = f

T
Ci\Ci+1

λCi\Ci+1
+ ∂f

]
(8)

&[((qα)α∈Ai∩Ai−1
, (∂Sc)c∈Ci∩Ci−1

, (λc)c∈Ci∩Ci−1
,

(∂λα)α∈Ai∩Ai−1
, ∂t, ∂f) ∈Mi−1→i](9)},

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

156



where & denotes the regular “and” condition and 1[exp] is
the indicator function for the expression (1 if the exp is true,
0 otherwise).

The (1) condition keeps track of the partial sums of the
expected utilities of the resources in A∗j , j = 1 to i-1, and
add the expected utilities of resources in A∗i . The (2) and
(3) conditions accumulate the partial sum of the constraints
in Ci (i.e., we are keeping track of the Ci constraints of D
to ensure DCi,Ai qAi ≤ fCi ). This boils down to two cases
given a c ∈ Ci, either c appears in Ci+1 (condition (2)) or c
does not appear in Ci+1 (condition (3)). If c appears in Ci+1

(condition (2)), then we keep track of the partial sum of the
resources together with c that will not appear in Ci+1, other-
wise we will just include all of the resources in Ci if c doesn’t
appear in Ci+1 (condition (3)) since c will not appear again
in the later nodes (due to the property of the tree decompo-
sition). In either case, we need to the include the (possible)
existing partial sum ∂Sc for c that appears in the previous
j = i− 1, ... nodes.

For conditions (4), (5), (6), and (7), they are similar to
conditions (2) and (3) but instead, we want to keep track
of partial sums of the dual constraints (i.e., DT

Ai,CiλCi ≥
proj(∇(qν(Ai))Ai)). Clearly, we can only compute the pro-
jected expected utility for the resources in A∗i . Therefore, we
have cases (6) and (7) for which we can compute the expected
utilities and cases (4) and (5) for which we cannot. For (4)
and (5), we just want to keep track of the partial constraints
of Dα,CiλCi ; either we include all of the constraints in Ci in
the partial sum (condition (5)) or the constraints that do not
appear in Ci+1. For (6) and (7), this is similar except that
we subtract from the projected expected utilities for α in A∗i .
The reason we are doing this is because we will not able to
compute the projected expected utilities after this, therefore
we subtract from the partial sum. In all of these cases, we
need to include the existing partial sum of α.

For condition (8), we keep track of the partial sum of
fTCiλCi . We only need to add the partial sum for those con-
straints that will not appear again in the tree. Finally (9) en-
sures that our tuples are consistent with the messages that i−1
send to i. We observe that the resulting set fi has cardinality
bounded by poly(n,m, l, 1/ε), if the width of the tree decom-
position is bounded by a constant.

Message Table. Given the set of tuples fi, we discuss the
message Mi→i+1 i sends to i + 1. We define and construct
an auxiliary set Mfi that will facilitate the constructing of the
message and also make the downstream pass more clear.
Mfi = {(qα)α∈Ai , (∂Sc)c∈Ci , (λc)c∈Ci , (∂λα)α∈Ai ,

∂t, ∂f) ∈ fi | [∀c ∈ Ci \ Ci+1, ∂Sc ≤ fc] &

[∀α ∈ Ai \ Ai+1, ∂λα ≥ 0] &[(i = n)

=⇒ ∂t ≥ ∂f − ε]}, and the message from i to i+ 1 is

Mi→i+1 = {((qα)Ai∩Ai+1
, (∂Sc)c∈Ci∩Ci+1

, (λc)c∈Ci∩Ci+1
,

(∂λα)α∈Ai∩Ai+1
, ∂t, ∂f) | ∃((qα)α∈Ai , (∂Sc)c∈Ci , (λc)c∈Ci ,

(∂λα)α∈Ai , ∂t, ∂f) ∈Mfi}.
When i = 0, C0 = A0 = Cn+1 = An+1 = ∅ and M0→1 =
{∅, ∅, ∅, ∅, 0, 0}. When i = n, Cn+1 = An+1 = ∅ and n does
not send message to n+ 1 but still construct table Mfn .

Downstream Pass. Now that we have completed the up-
stream pass, we have enough information to construct an ε-
MSNE. We will do this by starting selecting partial ε-MSNE
for n, n-1, ..., 1, sequentially. In particular, given the selected
partial ε-MSNE at node i, i will send node i−1, Ri→i−1, the
feasible strategies that i− 1 should select to ensure ε-MSNE.
The details are in full version1.

Generalization to Trees. Our message-passing algorithm
can be generalized easily to trees. It has been shown that
given a tree decomposition, we can modify it in polynomial
time to a nice tree decomposition with the same treewidth and
a polynomial increase in the number of nodes, where each
node of the nice tree has at most two children (say left and
right). Thus, we can construct the sets fi, Mfi , Mi→parent,
Ri, Ri→left, and Ri→right based on the messages from the
two children, with only polynomial increase in the computa-
tion and space requirements. For the upstream pass, a node i
with a left child and a right child will construct fi based on
the messages from its left child and right child. The equa-
tions (1)-(8) will include partial sums from the left and right
children (as opposed to just based on i− 1) and i+ 1 will be
replaced by the parent of i. The tables Mfi and Mi→parent
will be constructed the same way as before by replacing the
index i+ 1 with the parent of i. For the downstream pass, the
Ri can be constructed similarly using the message from the
parent of i. The messages Ri→left and Ri→right can be con-
structed the same way but based on the messages Mleft→i
and Mright→i that satisfy the conditions (1)-(8).

Computing Optimal MSNE. For example, to find the so-
cial welfare maximizing symmetric ε-MSNE, in the down-
stream pass, at the root we select a tuple with the highest ∂t,
i.e., utility, among the feasible tuples. Continuing the down-
stream pass as before yields a symmetric ε-MSNE with max-
imum social welfare.

RGGs with Constant Number of Player Types. We can
generalize our message passing algorithms to cases where
RGGs have a constant number of types. It can be veri-
fied our results and tools (constrained moralized resource
graph and message-passing algorithm) for computing sym-
metric approximate MSNE in symmetric multilinear RGGs
can be used to compute k-symmetric approximate MSNE
in k-symmetric multilinear RGGs by considering k different
symmetric strategies for the k classes of players.

More specifically, we construct the constrained moralized
resource graph from the resources and the constraints from
the polytopes of the k-classes and perform a tree decompo-
sition (with bounded treewidth) on the resulting graph. In
the construction of tables/sets for each node i in the tree de-
composition, we need to keep track of (qjα)α∈Ai , (∂Sc)c∈Cji

,
(λc)c∈Cji

, (∂λjα)α∈Ai , ∂t
j , and ∂f j for each class j =

1, ..., k. This results in running time and table size exponen-
tial in k and the treewidth.
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