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Abstract

Repeated game has long been the touchstone model
for agents’ long-run relationships. Previous results
suggest that it is particularly difficult for a repeated
game player to exert an autocratic control on the
payoffs since they are jointly determined by all par-
ticipants. This work discovers that the scale of a
player’s capability to unilaterally influence the pay-
offs may have been much underestimated. Under
the conventional iterated prisoner’s dilemma, we
develop a general framework for controlling the
feasible region where the players’ payoff pairs lie.
A control strategy player is able to confine the pay-
off pairs in her objective region, as long as this
region has feasible linear boundaries. With this
framework, many well-known existing strategies
can be categorized and various new strategies with
nice properties can be further identified. We show
that the control strategies perform well either in a
tournament or against a human-like opponent.

1 Introduction

Understanding what are the best strategies for intelligent
agents in a long-run relationship is a fundamental challenge
in many disciplines. Repeated games are prevailing tools for
modeling and analyzing intelligent agents’ long-run relation-
ships [Mailath and Samuelson, 2006], which have been richly
studied in economics, artificial intelligence and biology [Kan-
dori, 2002; Claus and Boutilier, 1998; Nowak et al., 1995].
For multi-agent systems, repeated games are widely utilized
for understanding how cooperation or competition emerges
among agents and how cooperative or winning strategies can
be identified. It has been commonly accepted that in such
games, it is impossible for a unilateral player to freely control
the payoffs and determine the evolutionary route of the game,
since the outcomes are jointly determined by all participants.

In this paper, we propose a general framework for payoff
control in iterated prisoner’s dilemma, which is a conven-
tional model for repeated games. First of all, based on the
game’s Markov decision process (MDP), the correlation be-
tween a single player’s strategy and the MDP’s joint station-
ary distribution is derived. Then according to this correlation,
we establish a general payoff control framework, under which

a control strategy can be easily obtained by solving a system
of linear inequalities. Using the payoff control framework,
as long as the control objective is feasible, a controller can
restrict the relation between her and the opponent’s payoffs
(represented by a two-tuple) to an arbitrary region with linear
boundaries. More specifically, she can (i) unilaterally deter-
mine the maximum and minimum values of the opponent’s
possible payoffs; or (ii) always win the game no matter what
the opponent’s strategy is, and she can even control her win-
ning probability; or (iii) control the evolutionary route of the
game, as long as the opponent is rational and self-optimizing,
the controller can enforce the game to finally converge either
to a mutual-cooperation equilibrium or to any feasible equi-
librium that she wishes. We simulate serval specific strate-
gies generated under the payoff control framework in a tour-
nament similar to that of Axelrod [Axelrod and Hamilton,
1981], it is found that the new payoff control strategies have
remarkably good performances.

The discussion of payoff control in games can be traced
back to [Boerlijst et al., 1997], in which the authors discov-
ered that, in iterated prisoner’s dilemma, one player can set
the opponent’s payoff to a certain value. However, what is the
underlying mechanism for such strategies to exist and how to
formally derive them are not thoroughly investigated. In re-
cent years, Press and Dyson’s discovery of “zero-determinant
(ZD)” strategies illuminates a new starting point for the con-
trol [Hao et al., 2014]. They show that in repeated games,
it is possible for a player to unilaterally enforce a linear rela-
tion between her and the opponent’s payoff [Press and Dyson,
2012]. This is the first time that the linear payoff relation
control is formally investigated, which receives a lot of at-
tention. Thereafter, the linear control on players’ payoff re-
lations is discovered in multiplayer games [Pan et al., 2015;
Hilbe et al., 2014], games with imperfect information [Chen
and Zinger, 2014; Hao et al., 2015] and evolutionary games
[Adami and Hintze, 2013; Hilbe et al., 2013]. Furthermore,
from a mathematical point of view, Akin formally investi-
gated why such linear control exists in games which can be
represented by an MDP and proposed a new payoff control
scheme whereby one player can fix the upper bound of the
opponent’s payoff to the mutual cooperation reward R, and
such strategies can enforce the game to converge to a mutual
cooperation situation [Akin, 2012]. Extended cases of Akin’s
cooperation-enforcing control are then studied and special
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cases of the nonlinear payoff relation control are identified
[Hilbe et al., 2015].

These existing payoff control strategies confront two ma-
jor problems. The first one is that they only realize special
cases of payoff control such as linear control or coopera-
tive control. Zero-determinant based strategies can only re-
alize linear payoff relations, which are very strong and some-
times not easy to use; Akin’s method based strategies can
only control the upper bound of the opponent’s payoff to a
mutual-cooperation reward R. However, how to establish
a general control framework with multiple and free control
objectives is still challenging. The second problem is that
these strategies are mostly difficult to obtain. For the zero-
determinant based strategies, calculating the determinant of a
matrix already has high computational complexity; for strate-
gies based on Akin’s method, when one tries to add more
objectives other than cooperation-enforcement, the compu-
tational complexity increases exponentially and deriving the
strategy becomes intractable. In this paper, we propose a gen-
eral payoff control framework which conquers both of these
two problems. In section 2, the repeated game is modeled as
an MDP and the relationship between a single player’s strat-
egy and the stationary distribution of the MDP is derived.
In section 3, we realize a control on the opponent’s maxi-
mum and minimum payoffs. In section 4, this is extended
to a free regional payoff control with multiple linear bound-
aries, and various types of regional control strategies, espe-
cially the cooperation-enforcing control strategies, are identi-
fied. To analyze the performances of the payoff control strate-
gies when confronting various famous strategies, in section 5,
we simulate control strategies in the Axelrod’s tournament.
In the last section, to evaluate how payoff control strategies
perform in the real world, we simulate them against a rein-
forcement learning player [Sutton and Barto, 1998].

2 Strategy and Game Convergence

The iterated prisoner’s dilemma (IPD) is the canonical exam-
ple for analyzing the cooperation and competition in agents’
long-run relationships. The IPD consists of multiple rounds
of stage games. In each stage, player i ∈ {X,Y } adopts an
action ai ∈ {C,D} with a certain probability, where C de-
notes cooperation and D denotes defection. The space of the
outcomes in each stage game is Ω = {CC,CD,DC,DD}.
If both players cooperate (CC), then each earns a reward R;
if one cooperates but the other defects (CD or DC), then the
cooperator earns S and the defector earns T ; if they both de-
fect (DD), then both get P . The payoff vector of player X
over Ω is thus defined as SX = (R,S, T, P ) and for player
Y it is SY = (R, T, S, P ). In this paper we consider the
case that player X chooses her action conditioning only on
the outcome of the previous stage. It is worth noting that, in
infinitely repeated games it has been proved that such one-
stage memory strategies have no disadvantages as if the op-
ponent has a longer memory [Press and Dyson, 2012]. The
strategy of player X is defined as a vector of probabilities
p = (p1, p2, p3, p4), where each component is a probabil-
ity that she cooperates with player Y conditioning on the last
stage outcomes CC, CD, DC or DD, respectively. Analo-

gously, the strategy of player Y is a vector of probabilities for
cooperation q = (q1, q2, q3, q4) conditioning on the previous
outcomes CC, DC, CD or DD, respectively.

Then the transition matrix over the state space between ad-
jacent stage games is derived as M:






p1q1
p2q3
p3q2
p4q4

p1 (1− q1)
p2 (1− q3)
p3 (1− q2)
p4 (1− q4)

(1− p1) q1 (1− p1) (1− q1)
(1− p2) q3 (1− p2) (1− q3)
(1− p3) q2 (1− p3) (1− q2)
(1− p4) q4 (1− p4) (1− q4)






(1)

If this Markov matrix is regular, it has the unique station-
ary distribution v = (v1, v2, v3, v4), which is a probability
distribution over the state space Ω and can be calculated as

v = lim
n→∞

1

n

n∑

t=1

vt, (2)

where vt is the distribution over Ω at the t-th stage. Then
the average expected payoffs for players X and Y are derived
as sX = v · SX = (v1, v2, v3, v4) · (R,S, T, P ) and sY =
v · SY = (v1, v2, v3, v4) · (R, T, S, P ), respectively. In the
t-th stage, the total probability that player X cooperates is
ptc = (1, 1, 0, 0) · vt. And the probability she will cooperate
in the next stage game is calculated as pt+1

c = p·vt. Deriving
the difference between these two probabilities, we have:

pt+1
c − ptc = (p− (1, 1, 0, 0)) · vt. (3)

Denote p̃ = p − (1, 1, 0, 0). Essentially, this vector depicts
to what extend of speed player X changes its probability for
cooperation. Sum eq. (3) from t = 1 to t = n, then we have

n∑

t=1

p̃ · vt =

n∑

t=1

pt+1
c − ptc = pn+1

c − p1c . (4)

If the game is infinitely repeated, averaging the above equa-
tion when n → ∞ ensures that

p̃ · v = lim
n→∞

1

n

n∑

t=1

p̃ · vt = lim
n→∞

1

n

(
pn+1
c − p1c

)
= 0, (5)

where v is just the stationary distribution of the game’s state
transition matrix. Expanding the vector equation p̃ · v = 0
leads to:

(−1 + p1) v1 + (−1 + p2) v2 + p3v3 + p4v4 = 0. (6)

This relation is firstly discovered in [Press and Dyson, 2012]

and then investigated in [Akin, 2012]. It significantly reveals
the underlying relationship between the game’s transition ma-
trix and the unilateral strategy of a single player.

3 Control the Maximum and Minimum

Values of Opponent’s Payoff

If player X’s objective is to ensure that Y’s expected payoff

sY ≤ W, (7)

where sY = v · SY = (v1, v2, v3, v4) · (R, T, S, P ) and
W is a constant, then the objective function eq. (7) be-
comes (v1, v2, v3, v4) · ((R, T, S, P )− (W,W,W,W )) ≤ 0.
Multiplying both side with a positive factor 1 − p2 does

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

297



not change the inequality, thus eq. (7) is equivalent to
(sY −W ) (1− p2) ≤ 0. Substituting eq. (6) into it and
combining the coefficients of vi, the objective of player X
is finally reduced to an inequality as follows.

α1v1 + α3v3 + α4v4 ≤ 0, (8)

where α1, α3 and α4 are the coefficients and
{

α1 = (R−W ) (1− p2) + (W − T )(1− p1),
α3 = (T −W )p3 + (S −W )(1− p2),
α4 = (T −W )p4 + (P −W )(1− p2).

(9)

One sufficient condition for eq. (8) to hold is that all αi are
non-positive. This further requires that the strategy of player
X should fall into the following region:





0 ≤ p2 < 1,

0 ≤ p1 ≤ min
(
1− R−W

T−W
(1− p2), 1

)
,

0 ≤ p3 ≤ min
(

W−S
T−W

(1− p2), 1
)
,

0 ≤ p4 ≤ min
(

W−P
T−W

(1− p2), 1
)
.

(10)

It is shown that there are multiple candidate strategies for
player X to control the maximum value of Y’s possible pay-
off. Moreover, how to choose p1, p3 and p4 depends on the
value of p2, which is the probability that X will cooperate
after she cooperated but was defected by the opponent. The
value of p2 partially reflects X’s bottom line for cooperation
and all the other components in p should be adjusted accord-
ingly. Nevertheless, as long as eqs. (10) has solutions, no
matter which level of such a bottom line player X has, it is al-
ways possible for her to control the maximum value of player
Y’s payoff to her objective W .

Based on the above model, besides controlling the maxi-
mum value of Y’s payoff, player X can also control the the
minimum payoff Y can achieve. If X’s objective is:

sY ≥ U, (11)

then X actually secures a bottom line for Y’s payoff. Apply-
ing the similar trick as for solving eq. (7), the constraints for
eq. (11) becomes:

β1v1 + β3v3 + β4v4 ≥ 0, (12)

where
{

β1 = (R − U) (1− p2) + (U − T ) (1− p1) ,
β3 = (T − U) p3 + (S − U) (1− p2) ,
β4 = (T − U) p4 + (P − U) (1− p2) .

(13)

Thus one sufficient condition for sY ≥ U is that all βi are
non-negative, then the solution is:






0 ≤ p2 < 1,

max
(
0, 1− R−U

T−U
(1− p2)

)
≤ p1 ≤ 1,

max
(
0, U−S

T−U
(1− p2)

)
≤ p3 ≤ 1,

max
(
0, U−P

T−U
(1− p2)

)
≤ p4 ≤ 1.

(14)

It is straightforward that X can set W and U simultane-
ously and sandwich Y’s expected payoff sY into an interme-
diate region. She can do this by choosing a strategy p satis-
fying both eqs. (10) and eqs. (14). When W and U become
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Figure 1: Control on maximum and minimum values of Y’s pos-
sible payoffs. Each black dot is a possible payoff pair. In
(A), (B) and (C), X’s strategies are p = (1, 0.51, 1, 0), p =
(0.998, 0.994, 0.01, 0.0012) and p = (0.5, 0, 1, 0.5), respectively.

closer to each other, the range of Y’s possible payoff shrinks.
In the extreme case, when controller X sets W = U , the re-
gion of Y’s possible payoffs will be compressed into a line.
At this point, p degenerates to an equalizer strategy, which
has been discovered in [Boerlijst et al., 1997] and formally
discussed in [Press and Dyson, 2012].

In Figure 1 we show an example of how a payoff control on
Y’s maximum and minimum payoffs degenerates to a equal-
izer strategy. The convex hull is the space for the two players’
payoff pairs (sX , sY ). The x-axis and y-axis are the payoff
values for player X and Y, respectively. In each subfigure, X
uses a control strategy and Y’s strategy is randomly sampled
for 5000 times. We use a traditional prisoner’s dilemma pay-
off matrix setting (R, T, S, P ) = (2, 3,−1, 0). Each black
dot represents a possible payoff pair consisted of X’s and Y’s
average payoffs under the fixed control strategy of X and a
random strategy of Y. The upper and lower bounds of Y’s
possible payoffs are depicted by the red and blue lines, re-
spectively. In 1(A), X’s control strategy yields the maximum
and minimum values W = 2 and U = 0 for Y; In 1(B), X
sets W = 1.5 and U = 0.5 and the possible payoff region of
Y shrinks; In 1(C), the general regional payoff control finally
degenerates to an equalizer strategy, under which Y’s payoff
is pinned to a fixed value W = U = 1.0. We can see that the
equalizer/pinning strategy are special cases of control on the
maximum and minimum values of opponent’s payoffs.

4 Control of Players’ Payoff Relations and

Cooperation Enforcement

The above framework makes it possible to control the maxi-
mum and minimum values of the opponent’s possible payoffs.
In this section, we show that it is even possible for the con-
troller X to confine the two players’ possible payoff pairs in
an arbitrary region of which the boundaries are characterized
by linear functions. Under such a regional control, the game
can be lead to a mutual-cooperation situation.

Assume the controller X wants to establish a relation be-
tween the two players’ payoffs such that the opponent always
obtains less than a linear combination of what she earns:

sY ≤
1

χ
sX + κ, (15)

where χ ≥ 1 and (1 − 1

χ
)R ≥ κ ≥ (1 − 1

χ
)P . This ob-

jective claims a linear upper bound of Y’s payoff and ensures
that all possible payoff pairs are under it. Eq. (15) is equiva-
lent to (SX − χSY + χκ · 1) · v ≥ 0, which further leads to
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Figure 2: Control on the region of possible payoff pairs. Each black dot is a possible payoff pair. (A) is a normal winning/selfish control
p = (1, 0.1, 0.75, 0). (B) is a normal altruist control p = (1, 0.182, 1, 0). (C) is a TFT-like strategy with p1 = 1, p4 = 0 and p2 + p3 = 1.
(D) is an extreme case of selfish control p = (1, 0, 0.005, 0). (E) is an extreme case of altruist control p = (1, 0.995, 1, 0). (A), (B), (C) and
(D) are all cooperation-enforcing.

[(R,S, T, P )− χ (R, T, S, P ) + χκ · 1]·(v1, v2, v3, v4) ≥ 0.
Multiplying both side by 1− p2 and representing v2 by using
v1, v3 and v4, we have:

γ1v1 + γ3v3 + γ4v4 ≥ 0, (16)

where
{

γ1 = µ (−1 + p1) + [(1− χ)R+ χκ] (1− p2) ,
γ3 = µp3 + (T − χS + χκ) (1− p2) ,
γ4 = µp4 + [(1− χ)P + χκ] (1− p2) ,

(17)

and µ = (S − χT + χκ). Making γ1, γ3 and γ4 simultane-
ously nonnegative is sufficient to ensure that eq. (15) holds.
Similarly, if X wants to establish a payoff relation such that
Y always obtains more than a linear combination of what she
earns, then her objective is

sY ≥
1

χ
sX + κ. (18)

This indicates that X sets a linear lower bound of Y’s pay-
off. Such an objective demands a payoff region above the
line sX − χsY + χκ = 0. To realize this, she just needs
to make γ1, γ3 and γ4 in eqs. (17) nonpositive simulta-
neously. One necessary condition for a control strategy to
exist is that the objective region should be feasible, which
means on the one hand, the objective region of the possi-
ble payoff pairs must intersect with the (P, P ) − (S, T ) line,
which is the left boundary of the payoffs in the iterated pris-
oner’s dilemma, depicting the payoff pairs when Y uncon-
ditionally defects, i.e., q = (0, 0, 0, 0); on the other hand,
the payoff region must also terminates at some point on the
(R,R) − (T, S) line, which is the right boundary depicting
the possible payoff pairs when Y unconditionally cooperates,
i.e., q = (1, 1, 1, 1).

Specifically, (1) if X controls by using objective func-
tion eq. (15) with χ ≥ 1 and κ = (1 − 1

χ
)P , we have

(sX − P ) ≥ χ (sY − P ). Any point in the objective region
ensures that X’s payoff difference to P is at least χ times of
that of Y. Under such a strategy, X only concerns about her-
self winning the game regardless of the opponent’s outcome.
This feature well captures the selfishness in nature, therefore,
we call such strategies the “selfish control” strategies. For ex-
ample, in a game with P = 0, if X sets eq. (15) with χ = 1.5
and κ = 0, she always obtains more than 1.5 times of what
Y obtains. p = (0.5, 0.5, 0.4, 0) is one of such selfish strate-
gies. (2) If X’s objective function is eq. (18) with χ ≥ 1

and κ = (1 − 1

χ
)R, Y’s payoff difference to R will be at

most 1

χ
times of that of X, meaning that X is offering a ben-

efit to Y at the expense of hurting her own benefit. Since in
biological organisms, altruism can be defined as an individ-
ual performing an action which is at a cost to themselves but
benefits another individual, we call this strategy the “altruist
control” strategies. (3) However, if X controls with constraint
(1− 1

χ
)R > κ > (1− 1

χ
)P , who can win the game is uncer-

tain, since whether a payoff pair locates below the diagonal
line (P, P ) − (R,R) still depends on Y’s strategy. Thus we
call them “contingent control” strategies.

More generally, it is also possible for controller X to set up
combinatorial objectives, such that there are multiple linear
upper and/or lower bounds of Y’s possible payoffs. She can
do this by generalizing the constraint coefficients γ to

Gv′ ≥ 0, (19)

where v′ = (v1, v3, v4) and G is a coefficient matrix with
each entry γij as the j-th coefficient from the i-th control
objective. Following such a regularization, the complex pay-
off control problem is reduced to a formal linear program-
ming. As long as G constitutes a feasible payoff region, the
combinatorial control objective can be realized. Under this
framework of regional control with multiple constraints, vari-
ous shape of payoff regions can be generated. Especially, ZD
strategies are extreme cases of regional control.

If each player has chosen a certain strategy and no one can
benefit by changing his strategy while the other players keep
theirs unchanged, then the current set of strategy choices and
the corresponding payoffs constitute a Nash equilibrium. A
strategy pN of player X is called a Nash strategy if player X
can control the upper bound of player Y to R. Thus, under
the general payoff control framework in eq.(19), any strategy
with sY ≤ R as a tight constraint is a Nash strategy. Accord-
ing to the definition of Nash equilibrium, it is straightforward
that any pair of Nash strategies constitute a Nash equilibrium.
However, although a Nash strategy can induce a fixed upper
bound R of Y’s payoff, it is possible for Y to choose an alter-
native strategy other than fully cooperating (q = 1), which
still yields R for herself but with the payoff for controller X
smaller than R. This is why a Nash equilibrium is not nec-
essarily a cooperative equilibrium. So how to select out an
cooperation-enforcing Nash strategy is a problem. The con-
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troller can enforce cooperation by setting:

sY ≤
1

χ
sX + (1−

1

χ
)R, p1 = 1, (20)

where χ ≥ 1. Under such strategies of X, the only best re-
sponse of Y is to fully cooperate, whereby both players finally
receive payoffs R which will lead the game to a win-win sit-
uation. We call them “cooperation-enforcing control”.

Under the above framework, one can derive arbitrary re-
gional control strategies, as long as the region has feasible
linear boundaries. In Figure 2, we show several examples of
regional control strategies. In 2(A) and 2(B), X sets same lin-
ear upper and lower bounds for the payoff region. The red
lines are upper bounds with χ = 1.5 and κ = −1 and blue
lines are lower bounds with χ = 1.5 and κ = 0. In 2(A),
X uses a selfish control where her payoff is always larger
than that of Y. In 2(B), X uses an altruist control which al-
ways lets Y win. Both these two strategies are cooperation
enforcing, leading the game to evolve to a mutual coopera-
tion equilibrium. In 2(C), we shrink the controlled region to
an extreme case by setting the upper and lower bounds iden-
tically with χ = 1.0, κ = 0. The solution shows, as long as
p1 = 1, p4 = 0 and p2 + p3 = 1, the control strategies have
similar effect as the traditional Tit-for-tat (TFT): equalizing
the two players’ expected payoffs. In 2(D) X uses an extreme
case of selfish control while in 2(E) X uses an extreme case
of altruist control. These two cases are also investigated as
partnership and rival strategies in [Hilbe et al., 2015].

5 Control in Axelrod’s Tournaments

Right up to today, it has been a fundamental challenge for
many disciplines to understand how various strategies per-
form in multi-agent interactions, what is the best strategy in
repeated games and why it is the best. The most influential
experiments for strategy evaluation are established by Robert
Axelrod as his iterated prisoner’s dilemma computer tourna-
ments [Axelrod and Hamilton, 1981]. Based on the payoff
control framework, in this section, we derive several control
strategies and simulate them in a tournament.

The simulated tournament is similar as in [Stewart and
Plotkin, 2012] but uses a different IPD setting (R, T, S, P ) =
(2, 3,−1, 0). Besides classic strategies, Stewart and Plotkin
implemented two ZD strategies: Extort-2 with sX − P =
2(sY −P ) and Generous-2 with sX −R = 2(sY −R). Their
simulation shows the best performance is from Generous-2,
which is followed by GTFT and TFT. We add four regional
control strategies into the tournament, including Altruist G,
Selfish G, Altruist TFT and Selfish TFT. HereG denotes the
control objective matrix from eq. (19). Altruist G is derived
with respect to two objectives sX − R ≥ 2(sY − R) and
sX − R ≤ 4

3
(sY − R), while the Selfish G is derived with

respect to sX − P ≤ 2(sY − P ) and sX − P ≥ 4

3
(sY − P ).

Selfish TFT and Altruist TFT are using the same strategies as
in Figure 2(A) and 2(B), respectively. It is worth noting that
Altruist G is essentially a regional control expansion based
on Generous-2, while Selfish G is expanded from Extort-2.
Both Selfish TFT and Altruist TFT can be viewed as expan-
sions from original TFT.

Name p Score Wins

ALTRUIST G (1, 2/15, 1, 1/3) 1.66 0
GENEROUS-2 (1, 2/7, 1, 2/7) 1.60 0
ALTRUIST TFT (1, 0.182, 1, 0) 1.52 0
GTFT (1, 2/3, 1, 2/3) 1.46 0
TFT (1, 0, 1, 0) 1.44 0
TF2T 1.43 0
HARD TF2T 1.37 0
SELFISH TFT (1, 0.1, 0.75, 0) 1.33 1
WSLS (1, 0, 0, 1) 1.29 0
HARD PROBE 1.26 8
ALLC (1, 1, 1, 1) 1.18 0
PROBE2 1.11 4
GRIM (1, 0, 0, 0) 1.08 4
HARD TFT 1.08 4
RANDOM (1/2, 1/2, 1/2, 1/2) 0.92 10
HARD MAJO 0.91 13
PROBE 0.81 6
CALCULATOR 0.76 12
PROBE3 0.72 10
HARD JOSS (0.9, 0, 1, 0) 0.72 14
SELFISH G (5/7, 0, 13/15, 0) 0.64 15
ALLD (0, 0, 0, 0) 0.45 20
EXTORT-2 (6/7, 1/2, 5/14, 0) 0.45 19

Table 1: Results of the IPD tournament

Due to the inherent stochasticity of some strategies, the
tournament is repeated 1000 times. In a tournament, each
strategy in the above set meets each other (including itself) in
a perfect iterated prisoner’s dilemma (IPD) game, and each
IPD game has 200 stages. The average results are shown in
Table 1. The shaded rows are for the control strategies de-
rived under our framework. One can see that the Altruist G
has the best performance. It is better than Generous-2 and
has much higher score than either TFT or GTFT. The Altru-
ist TFT also performs better than TFT and GTFT. The Self-
ish TFT is a little tougher than TFT, although it has slightly
higher number of wins. Analogously, using the above pay-
off control framework, one could also generate other regional
control strategies which are better than the corresponding ZD
strategies. Although no strategy is universally best in such
tournaments, because a player’s performance depends on the
strategies of all her opponents as well as the environment of
the game, the control framework still provides us a new per-
spective to formally quantify new nice strategies.

In perfect environments, TFT has long been recognized as
the most remarkable basic strategy. Starting with coopera-
tion, it can constitute a Nash equilibrium strategy that en-
forces long-run cooperation. Nevertheless, TFT is not flaw-
less. The first drawback of it, which is not apparent in perfect
environment, is that if one of the two interacting TFT players
faces the problem of trembling hand or imperfect observation,
then a false defection will leads to a sequence of alternating
cooperation and defection. Then the two players both receive
a payoff much less than mutual cooperation. This indicates
TFT is not a subgame perfect equilibrium strategy. Another
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Figure 3: Control against human-like players. In each subfigure, Y uses a reinforcement learning strategy. In (A) X uses a TFT-like strategy
p = (1, 0.2, 0.8, 0). In (B) X uses a selfish control p = (1, 0.1, 0.6, 0) which makes mutual cooperation (sX = R, sY = R) as the optimal
outcome for Y. In (C) X uses selfish control p = (0.3, 0, 1, 0) which makes a payoff pair (sX = 1, sY = 1) as the optimal outcome for Y. In
(D) X uses a selfish control p = (5/7, 0, 1, 0) which guarantees Y’s payoff is much lower than that of X.

weakness of TFT is a population of TFT players can be re-
placed by ALLC through random drift. Once ALLC has in-
creased to some threshold, ALLD can invade the population.
The reason why TFT is vulnerable to noise is that when con-
fronting the opponent’s unilateral defect (CD), a TFT player
is too vengeful and will fully defect (p2 = 0). The reason
why TFT can be invaded by ALLC players is that it is not
greedy at all, when it occasionally takes advantage of the op-
ponent (DC), it completely stops defection and turns back to
cooperation (p3 = 1). To conquer these drawbacks, a nice
strategy in a noisy environment should necessarily embody
three features: (1) It should be cooperation-enforcing, i.e.,
its objective payoff region should have a tight upper bound
sY ≤ 1

χ
sX + (1 − 1

χ
)R and χ ≥ 1; (2) It should not be too

vengeful, i.e., p2 > 0, meaning its objective payoff region
should not be too far from the (S, T ) point; (3) It should be
somewhat greedy, i.e., p3 < 1, meaning its objective payoff
region should not be too far from the (T, S) point.

6 Control against Human-like Players

In the real world, if a player is not aware of any nice strate-
gies, he actually dynamically updates his stage action accord-
ing to a learned history of the long-run game, and gradually
evolves his own optimal plan for interacting with the oppo-
nent. In artificial intelligence, this learning and planning pro-
cedure is usually investigated by reinforcement learning mod-
els, which are state-of-the-art human like plays when agents
are confronting with complex environment or strategic oppo-
nents. To try our best to understand the performance of the
payoff control strategies in a real world, in this section, we
simulate several repeated games between the payoff control
players and the reinforcement learning players.

Let X be the payoff controller who uses a payoff control
strategy obtained beforehand, and let Y be the reinforcement
learner who evolves his strategy/plan q according to the rein-
forcement learning dynamics. q is a mapping from the game
history to the probabilities of selecting a = C. Y’s objective
is to find an optimal q∗ which maximizes his stage payoff:

q∗=argmax
q

{
lim
n→∞

1

n

n∑

t=1

Eq

[
stY

]
}
, (21)

where stY is Y’s realized stage payoff at time t and Eq is
an expectation with respect to q. Y’s strategy q is updated

according to the following average-reward value function:

Q (ω, a) ← (1− α)Q (ω, a) + α
[
r̄ +max

a′

Q (ω′, a′)
]

(22)
where Q (ω, a) is an evaluation value of player Y choosing
action a after stage game outcome ω. r̄ = r (ω, a, ω′)− r∗ is
difference between the instantiate reward r and the estimated
average reward r∗. The instantiation reward r (ω, a, ω′) is in-
duced by player Y taking action a after outcome ω and tran-
siting the game to a new outcome ω′. α is a free variable for
the learning rate. With Q’s values updated stage after stage,
Y can improve his strategy dynamically [Gosavi, 2004].

We implement the above algorithm, simulate four repeated
games and show the results in Figure 3. In each of these
four games, player Y uses the reinforcement learning strat-
egy described above. In 3(A) and 3(B), the strategies used by
the controller X are both cooperation-enforcing. Under X’s
TFT-like control strategy in 3(A), X and Y always have al-
most the same average payoff; While under X’s winning yet
cooperation-enforcing strategy in 3(B), X dominates Y for a
long time but the game finally converges to a mutual coop-
eration. In 3(C), X’s objective is to set sX = sY = 1. We
can see the game finally converges as X wishes. In 3(D), X
uses a very tough selfish control, which means she can win Y
a lot. In this situation, when the intelligent agent Y improves
his own payoff step by step, he improves that of the controller
even more. In a word, when playing against human-like re-
inforcement learning players, payoff control strategy players
can lead the game to evolve to their objective outcomes.

7 Conclusions

We propose a general framework for controlling the linear
boundaries of the region where the repeated game players’
possible payoff pairs lie. By generating payoff control strate-
gies under this framework, a single player can unilaterally
set arbitrary boundaries on the two players’ payoff relation
and thereby realize her control objective, including limiting
the maximum and minimum payoffs of the opponent, always
winning the game, offering an altruist share to the opponent,
enforcing the game to converge to a win-win outcome, and
so on. The idea in this work is not limited to iterated pris-
oner’s dilemma, it can be introduced into other two player re-
peated games and also can be generalized for repeated multi-
player games, such as iterated public goods games. Future

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

301



researches on the payoff control in repeated games with im-
perfect monitoring [Hao et al., 2015], with different memory
sizes [Li and Kendall, 2014] and researches investigating bet-
ter winning or cooperation-enforcing strategies [Crandall et
al., 2018; Mathieu and Delahaye, 2015] could be potentially
inspired by this work. Furthermore, all the control strategies
are based on the important premise that the player is with
a theory of mind [Devaine et al., 2014]. Therefore, how to
identify more cognitively complex human-like strategies in
the context of the IPD, such as intention recognition [Han et
al., 2012], is of great value for the future research.
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