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Abstract
Normative capabilities in multi-agent systems
(MAS) can be represented within agents, separately
as institutions, or a blend of the two. This paper ad-
dresses how to extend the principles of open MAS
to the provision of normative reasoning capabili-
ties, which are currently either embedded in exist-
ing MAS platforms – tightly coupled and inacces-
sible – or not present.
We use a resource-oriented architecture (ROA) pat-
tern, that we call deontic sensors, to make nor-
mative reasoning part of an open MAS architec-
ture. The pattern specifies how to loosely couple
MAS and normative frameworks, such that each is
agnostic of the other, while augmenting the brute
facts that an agent perceives with institutional facts,
that capture each institution’s interpretation of an
agent’s action. In consequence, a MAS without
normative capabilities can acquire them, and an
embedded normative framework can be de-coupled
and opened to other MAS platforms.
More importantly, the deontic sensor pattern allows
normative reasoning to be published as services,
opening routes to certification and re-use, creation
of (formalized) trust and non-specialist access to
“on demand” normative reasoning.

1 Introduction
The concepts of norm and institution [North, 1991; Ostrom,
1990] have been imported into artificial intelligence from the
humanities as a way to capture formal and informal contextu-
alized expectations of behaviour, and hence to influence the
decision-making of autonomous systems, through statements
of what ought and ought not to hold and what actions are for-
bidden, permitted or obliged [von Wright, 1951]. Normative
reasoning has been particularly influential in the area of au-
tonomous agents and multiagent systems (MAS), and given
its social origins, it is not surprising that knowledge repre-
sented as norms is seen too as an appropriate lingua franca
to govern actors in socio-technical systems (STS). These to-
gether provide the context for the work on engineering for
norms presented here.

Some implementations of normative reasoning are stand
alone, but embeddding in an agent platform is more common
(see [Aldewereld et al., 2016] for a detailed comparative eval-
uation of contemporary examples). The integrated approach
has benefits and drawbacks: users must ‘buy the package’
of agents and norms, cannot readily use the normative com-
ponent alone and cannot readily use an alternative norma-
tive component. More importantly, for the development of
norm representation and reasoning as a topic and as an AI
artefact, normative knowledge represented on one platform
cannot typically be shared and re-used. Furthermore, lack of
transparency in representation and reasoning, and means for
external verification, inhibit establishment of trust.

Reaction to the silo approach of agents + norms is found in
several works, including the Environment Interface Standard
(EIS) [Behrens et al., 2011], the Alive [Vázquez-Salceda et
al., 2010; Carlos Nieves et al., 2011] service-oriented archi-
tecture (SOA)1, the THOMAS [del Val Noguera et al., 2010]
platform, and the JaCaMo [Boissier et al., 2016] framework.
Each of these tries in different ways to break up aspects of
the agent platform in order to allow substitution and re-use of
components. They are discussed in more detail in section 6.

It is against the backdrop of the above efforts and the pre-
ceding discussion that we introduce the concept of the deon-
tic sensor, and show how to create and deploy such sensors so
they can be used freely by any web-client capable platform,
through the use of a web framework into which normative
reasoning tools can be inserted. We define a deontic sensor
as a transducer that observes brute (real world) facts and in-
terprets them to generate institutional (sometimes also called
social) facts [Searle, 1995]. The contributions of the paper
are: (i) the conceptualisation of norm representation and rea-
soning as a deontic sensor (section 2); (ii) a ROA design pat-
tern for deontic sensors which makes the concept concrete but
has a pattern’s intrinsic scope for variation in implementation
(section 3); (iii) an instantiation of the pattern (section 4) and
its evaluation using the Jason [Bordini et al., 2007] agent plat-
form and the InstAL [Padget et al., 2016] normative frame-
work (section 5).

By establishing the deontic sensor as a ROA pattern for

1SOA is a precursor to ROA that uses so-called arbi-
trary SOAP web services, rather than ROA’s RESTful ser-
vices [Fielding, 2000].
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normative reasoning, we aim to pave the way to more open
norm-aware multiagent systems, while published and discov-
erable norm reasoning services can open routes to certifi-
cation/validation and re-use of normative reasoning compo-
nents, build the foundation for trust in such systems, and en-
able non-specialist access to normative reasoning.

2 Requirements
The following naı̈ve diagram captures the primary intention
of providing normative reasoning for an agent platform:

Agent
Platform

brute

social

Deontic
Sensor

in which agents’ actions (brute facts) pass from the agent plat-
form, to be observed by the deontic sensor, and their interpre-
tation, as normative (social) facts, goes in the other direction
to be perceived by agents.

In the remainder of this section, we discuss the require-
ments that lead to the architecture in section 3. We anal-
yse requirements arising from a consideration of what various
kinds of users might want of the deontic sensor architecture.
We use the term institution to refer to a (typically) coherent
set of norms that it is intended should guide agent behaviour
towards the achievement of one or more goals. An institu-
tional model is the computational representation [Fornara et
al., 2013] of an institution [Grossi et al., 2006] and a deontic
sensor is its instantiation for a given set of literals.

2.1 Institutional Models
We begin by considering the state of an institution, the nature
of that state and the operations it might be desirable to support
on that state. The deontic sensor creates a resource from the
institutional states of all participating institutions within each
normative reasoning framework. In abstract terms, the sys-
tem tracks a sequence of actions performed by agents, each
changing the state in the instances of the institutions models
that are observing them. The representation and its corre-
sponding computation are invisible, and an instantiation of a
particular normative framework with a particular set of norms
at a specific time can be regarded as a resource to manipulate
through exogenous events, such as agent actions. To realise
this institutional repository, it must be possible to populate
the deontic sensor platform with (abstract) institution specifi-
cations, and instantiate and verify the corresponding models.
Hence the initial user stories (US) [Beck, 2000]:
US1: As an institution designer, I want to be able to add new

institutions to the deontic sensor;
US2: As an institution designer, I want to be able to create

an instance of an institution;

US3: As an institution designer, I want to be able to ver-
ify the normative interpretation of an action (and se-
quences of actions) by an institution;

US4: As an institution designer, I want to be able to investi-
gate the normative interpretations of an action and se-
quences of actions in the context of one or more (inter-
acting) institutions;

US5: As a system developer, I want to be able to create an
instance of an institution;

US6: As a system developer, I want to connect an agent plat-
form and a deontic sensor.

2.2 Agents and Institutions
A common model of a situated agent interacting with its en-
vironment in a multi-agent system (Fig. 1) sees the agent re-
ceiving information about the environment through percepts
and using those percepts to make action selection decisions.

We extend this model to add an explicit, referenceable, nor-
mative aspect, represented as an institution (Fig. 2), that ob-
serves agents’ actions and interprets them according to the
norms of a given institution, giving rise to the institutionally
situated agent. Thus, in addition to receiving brute informa-
tion through conventional environmental percepts, an agent
may additionally sense the deontic commentary coming from
institutions and acquire normative information that can be in-
corporated into its reasoning process as beliefs [Dybalova et
al., 2013; Lee et al., 2014; van Riemsdijk et al., 2013], as-
suming for sake of argument a BDI agent. In this way, dif-
ferent institutions, governing concurrently, may deliver com-
patible or conflicting normative interpretations of an agent’s
behaviour, as well as identifying instances of non-compliant
behaviour that the subject or other agents in the MAS may de-
cide to act upon. We emphasize that institutions as presented
here, are observers, not actors (or enforcers) in a MAS. It is
their purpose to provide actors with normative interpretations
of actions, while it is the actors who are responsible for using
them to choose what to do. Agents’ chosen or hypothetical
actions are communicated to the deontic sensors via the plat-
form. This suggests the following additional user stories:
US7: As an agent platform, I want to be able to create and

instance an institution;
US8: As an agent platform, I want to communicate that ac-

tion a has taken place and get a normative interpreta-
tion of that action;

US9: As an agent platform, I want to find out the normative
interpretation of action a without enacting a (correct
subject to the actions of other agents);

US10: As an agent platform, I want to pass normative infor-
mation back to agents concerned;

US11: As a norm aware agent, I want to be able to perceive
normative information.
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Figure 3: The deontic sensor architecture: agents sense and act via the environment on the left. Actions and queries are propagated from the
environment to the deontic sensor platform (US8, US9). Their interpretation according to the instances of the normative models is then fed
back to the environment (US10) as percepts for the agents to sense (US11). New models are created by a designer uploading them (US1),
although this operation could be used by agent systems as well, then instantiated (US2, US5, US7) to satisfy different users. The institution
designer can interact with the DSP via a software client to achieve US3 and US4 (as done for the evaluation in section 5)

Abstract (pattern) endpoints (AEP1-4) Concrete (implementation) endpoints (CEP1-4)
POST /model/ Creates a model from a specification in a
framework-specific format. This is how a client sends a normative
specification to a normative reasoning service. Returns a URI
/model/X .

POST/model/ Creates a new model using the provided set of
InstAL/AnsProlog specifications.

POST /model/X/instance/ Creates an instance of model
X with data from POST. This is how a client sends any necessary
additional data to a normative reasoning service. Returns a URI
/model/X/instance/Y .

POST /model/X/instance/ Creates a new grounding of
model X , using a provided set of literal data. This allows for
grounding a model in more than one way without duplicating files
or repeat groundings, but using it for multiple queries.

POST /model/X/instance/Y /query/ Creates a query of
instance Y , with POST data (e.g. events or normative framework
specific input). Returns a URI
/model/X/instantiate/Y /query/Z.

POST /model/X/instance/Y /query/ Creates a query of
grounding Y , given a set of query events and/or other parameters.
Through this endpoint, queries on the same grounding can be
accessed and analysed together.

GET /model/X/instance/Y /query/Z/output Reads
the result of query Z in a protocol-defined format. In practice, this
is defined by the HTTP Accept header, but also depends on what
the actual platform supports.

GET /model/X/instance/Y /query/Z/output Reads
the result of query Z and returns it in a format defined by the
HTTP Accept header. The current options for InstAL output are
text and JSON.

Table 1: The three Create and one Read operations of the abstract and concrete deontic sensor ROA

3 The Deontic Sensor Architecture

Our aim is an architecture for normative reasoning in large
scale (open) multi-agent systems that is model independent
and distributed computation is an essential aspect of large
scale systems. As our naı̈ve diagram at the start Section 2
indicates, we want to decouple the agent platform from the
institution platform, so that computation can be separated and
distributed. This motivates the proposal for deontic sensors as
a Resource Oriented Architecture (ROA) pattern.

A pattern is not an environment interface specification or
application program interface (API). These both prescribe
functionality that must be or is present, at different levels of
detail, forcing new and existing clients to adhere to a particu-
lar interaction protocol using specified data formats. In con-
trast a ROA pattern describes a collection of Create, Read,
Update and Delete (CRUD) [Fielding, 2000] operations over
a set of resources through the (abstract) endpoints AEP1–
AEP4 (see Table 1), in this case to realise deontic sensors.

The nature of a ROA decouples the service – in this case
an institutional model – from its clients – in this case an agent
platform – meaning the service may be implemented by using
any institution platform that is able to track the state of its
institution(s) and allows queries, as per US1-11.

3.1 Abstract Resource Architecture
Working from the user stories (US1–11) set out in Section 2,
we propose the deontic sensor architecture in Figure 3, while
Table 1 details the abstract endpoints.

The architecture expands upon the naı̈ve diagram with an
agent platform (AP) and a deontic sensor platform (DSP).
The AP creates new institutional models on-demand (sup-
plying its own specifications) using AEP1, and creates as
many instances of each of those, again on-demand, via AEP2.
Agents themselves are unaware of the DSP, but agent actions
detected by the AP are passed to the DSP through AEP3,
creating fresh institutional states that reflect the observation
of the action. Deontic commentary on agent actions is pro-
vided by AEP4, which the AP then makes available for its
host agents to sense in whatever form is appropriate for the
platform. Because action communication and normative in-
terpretation are handled by the AP, its agents can be agnostic
about, or even ignorant of the DSP. Norm-aware agents, how-
ever, may want to know the normative consequences of an
action or sequence of actions beforehand, or want to know
how to achieve a particular normative state. Answers to these
questions depend on the capabilities of the particular DSP, so
although the endpoint to use (AEP4) does not change, and
neither does the AP’s role as a mediator (see e.g. A3 in Fig-
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ure 3), such queries establish a dependence between agent
and a DSP through the use of such functionality and through
the language used to express the question (but see the end of
section 3.2). The DSP itself is stateless (in line with RESTful
practice); AEP3 provides the means to read each state that is
created and to create as many states as actions or speculative
queries require, but it is the AP’s responsibility to track which
resource is the current canonical state for each DS it is using.

Outside the AP, we note the role of institution designer,
who can introduce new models (AEP1), instantiate models
and query instances for verification purposes (US1–4).

3.2 Action Monitoring
For an institution to be able to provide its deontic commen-
tary, it needs data about the events that occur in the environ-
ment through the actions of agents. This corresponds to the
observe arc in Fig. 2. At the conceptual level, this is the in-
stitutional equivalent of an agent ‘seeing’ a percept. At the
operational level, actions and their representation need to be
delivered in a form that an institution can process and the ac-
tion vocabulary must overlap with that of an institution if it is
to recognise the action and interpret it against the institutional
state. The deontic sensor pattern is neutral on these issues.
We have taken pragmatic decisions in the sample architecture
in Section 4, but interoperability via a standard set of oper-
ators and representation is an open issue. Possible solutions
might be the approach adopted in FIPA ACL of specifying
content language and ontology in the envelope, and building
on the semantic sensor network ontology [W3C, 2011].

3.3 Deontic Commentary
The agent senses the normative context as percepts in an
equivalent manner to its sensing other information about its
environment. This corresponds to the interpret arc in Fig. 2.
We refer to the ongoing normative information being pro-
vided to agents in the form of percepts as a deontic com-
mentary. Following deontic logic, there are three kinds of
percepts an agent can receive from an institution, regarding
an action A:
perm(A): Action A is permitted, written PA in deontic

logic. The agent may perform action A.
pro(A): Action A is prohibited (forbidden), written ¬PA

(also FA). The agent may not perform action A.
obl(A, [D,V ]): The agent is obliged to perform action A

(possibly before deadline D or else violation V ensues),
written OA.

We emphasize that these are the terms used to ground the
architecture, that the percept language can be whatever is fit
for purpose, and reiterate the point made in Section 3.2 above
regarding operators, representation and encoding.

An agent may respond (or not) how it pleases to conven-
tional environmental percepts and the same applies to norma-
tive percepts. Thus, receiving a percept pro(action) does not
mean that an agent is unable to perform action, but – assum-
ing it is a norm-aware agent – that it should not. The norm-
unaware agent may simply disregard it as an unrecognised
percept. An agent’s behaviour is not necessarily regimented
with respect to the institutions it is participating in, although
it would certainly be possible to use the information from the

institution to make it so. Our intention here is to provide nor-
mative information alongside other percepts, as input to an
agent’s decision-making process, on the assumption that the
agent is capable of recognising and the platform is capable of
forwarding normative percepts.

At the architecture level, we intentionally only specify an
abstract syntax for an example set of operators, but it is clear
that the pattern can simultaneously admit different institu-
tional models, which could either deliver normative percepts
in a common language or equally use distinct representations
and semantics, which must be resolved either by agent or plat-
form. The essential feature is that agent normative reasoning
is decoupled from the institutions themselves.

4 A Sample Architecture
We illustrate the deontic sensor pattern using Jason [Bor-
dini et al., 2007] for the agents and the environment, and
InstAL (Institutional Action Language) [Padget et al., 2016]
for the normative framework. InstAL specifications compile
to AnsProlog [Baral, 2003], which following grounding pro-
duces a model of the institution that can be queried through
presenting it with sequences of one or more events, leading
to the generation of one or more answer sets containing nor-
mative interpretations of the action(s)2.

InstAL-REST3 provides InstAL as a service with a REST-
ful interface: this supports the deployment of multiple in-
stitutional models on a server, and makes each institution
queryable via standard HTTP operations. Queries and re-
sults are encoded using JSON. InstAL-REST is deployed
using Docker, a tool for running containerised applications.
InstAL-REST uses four supporting processes, but can be
launched with a single command using docker-compose. The
four additional components are: a work queue (we use Cel-
ery), a messaging system (we use RabbitMQ), web server
(we use Gunicorn) and a database (we use Postgres). InstAL-
REST provides three resources, following Table 1:
Model (CEP1): Contains InstAL files (.ial) and AnsProlog

files (.lp). The model resource provides an endpoint for
the creation of an instance of the model.

Instance (CEP2): Contains values for all of the types in
the model, thus allowing the answer set solver to con-
struct a variable-free version of the model (this process
is called grounding). The instance resource provides an
endpoint for the grounded model to be queried.

Query (CEP3): The execution. It is at this stage that the in-
stitutional model is actually run, with respect to some
user-provided parameters. The query resource provides
endpoints for the client to access the result of the InstAL
run in a variety of different formats, as discussed in sec-
tion 3.1 and detailed in Table 1.

The Jason platform provides both the agent and environ-
ment parts of Fig. 1, where an agent senses through percepts
it receives from the environment, then uses those percepts to
reason about how it should act, while the environment re-
ceives and processes the actions of agents and provides per-

2We use the clingo ASP solver (https://github.com/
potassco/clingo) with a Python wrapper

3Code available at https://github.com/instsuite/instal-rest/
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1 Percepts for Alice:
2 [pro(action)[a,inst], pro(action)[b,inst]]
3 [alice] Applying for permit A
4 Environment: Permit A acquired.

5 Percepts for Alice:
6 [perm(action)[a,inst], pro(action)[b,inst]]
7 [alice] Applying for permit B
8 Environment: Permit B acquired.

9 Percepts for Alice:
10 [perm(action)[a,inst], perm(action)[b,inst]]
11 [alice] Doing action!
12 Environment: Action performed.

13 [alice] Complete!

Listing 1: Alice’s normative facts

1 !doAction. // Initial goal
2 // If permitted to do action, do action.
3 +!doAction : perm(action) & not pro(action)
4 <- .print("Doing action!"); action; .print("Complete!").
5 //
6 // If prohibited to do action by a,
7 // apply for permit a, and try again.
8 +!doAction : pro(action)[a]
9 <- .print("Applying for permit A"); applyPermitA;

10 !doAction.
11 //
12 // If prohibited to do action by b,
13 // apply for permit b, and try again.
14 +!doAction : pro(action)[b]
15 <- .print("Applying for permit B"); applyPermitB;
16 !doAction.

Listing 2: Alice’s plan in Jason

cepts to agents based on the environmental state. We pro-
vide a Java interface for the Jason environment called Institu-
tionable, which provides the blueprint for extending the en-
vironment to incorporate the observe-interpret cycle for insti-
tutions (Figure 2). The interface specifies the form of how an
environment should inform the institution of its state and its
actions, and how the environment should translate the output
from querying the institution into percepts. That is, the inter-
face determines which endpoints of the architecture are to be
used and how the data flows from the AP to the DSP (Fig. 3).

Jason, InstAL and JSON are our choices for the sample ar-
chitecture, but other agent platforms, institutional modelling
software and data encodings could equally be used. The pat-
tern describes the relationships between the environment, the
agent, and the institution, but not the specifics of the imple-
mentation of any of them – they are black-boxes – or the na-
ture of the data that passes between them. Thus, the pattern
explicitly decouples the execution of its component parts, and
does not address coupling arising from data meaning or rep-
resentation. Integrating a new tool for the institution and/or
the environment would not require modifications to the envi-
ronment or the institution. It would, however, require modifi-
cations to the interface code between the parts. Consequently,
the pattern allows substitution of environment, institution, or
agent, as long as the percepts use the same conventions and
compatible data representations – or transcoding is employed.

We conclude with a small example that demonstrates what
the pattern enables. An agent (Alice) wishes to carry out an
action action, which is governed by two institutions, a and
b. To perform action, the agent must apply for a permit from
both institutions. The stages are as follows (see Listing 1):

1. Initially, both institutions prohibit the agent from per-
forming action (line 2)

2. The agent applies for a permit from institution a (line 3).
3. The agent is now permitted to perform action by insti-

tution a, but still prohibited by institution b (line 6).
4. The agent applies for a permit from institution b (line 7).
5. The agent is now permitted to perform action by both

institutions (line 10).
6. The agent now performs action, and is permitted to do

so (line 12).
The full log output appears in Listing 1, with the correspond-
ing agent code in Listing 2. We use Jason’s annotation mech-

anism to note, for each normative percept, that it is from an
institution (inst), and from which institution (a or b).

5 Evaluation

A conventional system evaluation demonstrates performance.
The aim of evaluating a pattern is to confirm its effective in-
stantiation, in this case using two MAS components (Jason
and InstAL), whose distribution incurs the expected over-
head. Instal-REST itself is validated using the InstAL test
suite (comprising some 1300 tests). We additionally demon-
strate scalability in our instantiation, by means of the Flask
micro web framework, that provides the web service function,
handling incoming action data, and the Celery asynchronous
task queue, that provides support for multiple deontic sensors,
running queries on instances of institutional models.

We exercise our implementation of the ROA architecture
pattern (Section 4) with a prototypical use case that examines
the service performance under load by varying two parame-
ters: the number of queries to be processed and the number of
(client) agents. We run two synthetic workload tests between
a laptop client and a server across a wide-area network. The
first test sends the service a batch of queries, while the sec-
ond uses a number of synthetic agents to generate batches of
queries. The first stresses throughput, while the second aims
to mimic workload in a typical system. Timings are averaged
over 100 runs and are the difference between the sending of
the first query and the receipt of the last result, in each case.

The first case – batched queries – uses a pool of 12 (Celery)
workers for an event loop processing N queries, with batch
sizes 2, 25, 50, 100 and 250 (see Table 2). Average time per
query falls from 0.273 msec to 0.0140 msec, indicating, as
expected, that network overheads outweigh query cost.

The second case – simulated agent workload – uses A
threads, each corresponding to an agent, to send N queries
as above, to 12 (Celery) workers. Table 3 shows results for 1,
5 ,10 ,25 agents and 2, 5 and 10 queries, indicating that dou-
bling up either the agents or the queries does increase the total
response time but does not double it, as the network overhead
is amortised, meaning that the more agent clients, the greater
the potential benefit (up to the capacity of the service, whose
scalability is a different engineering problem).
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Scenario Average
time Stdev Average

time/query
2 queries 0.546 0.143 0.273
25 queries 1.21 0.587 0.0485
50 queries 1.82 0.529 0.0364
100 queries 2.40 0.592 0.0240
250 queries 3.49 0.268 0.0140

Table 2: Batched queries using 12 (Celery) workers

Scenario Average
time/agent

Stdev average
time/agent

Average
total time

1 agent
2 queries 0.547 0.089 0.628

5 agents
5 queries 0.890 0.275 1.80

10 agents
5 queries 0.958 0.153 1.80

10 agents
10 queries 1.45 0.194 2.44

25 agents
10 queries 2.48 0.135 4.38

Table 3: Simulated agent workload

6 Discussion
To place deontic sensors in the wider context of normative
multi-agent systems we examine four themes: interoperabil-
ity, agent platforms (APs) that are norm agnostic, APs with
embedded norms and APs that work with services. We aim to
provide an overview, rather than be exhaustive, and contrast
our approach with a representative selection of alternatives.

Behrens et al. [2011] aims to address interoperability by
defining an environment interface standard (EIS), which me-
diates and decouples the act-sense cycle between agent plat-
form and environment. It is described as “...a Java-based in-
terface standard for connecting agents to controllable enti-
ties in an environment such as a game. The interface pro-
vides support for managing the connection ...” [Behrens et al.,
2011]. In this way EIS is a classical interface pattern, aiming
to replace an n× n connections by n× 1 and 1× n connec-
tions. Currently, EIS is actively supported by GOAL [Hin-
driks and Dix, 2014], code is provided in the Jason [Bordini et
al., 2007] distribution, and the sourceforge version of 2APL
does not support EIS, but through basing the new implemen-
tation [Dastani and Testerink, 2016] on design patterns, it is
claimed to obviate the need for adherence to EIS. The point
of contrast with the deontic sensors pattern is that EIS also
advocates for the decoupling of of MAS components, in this
case, agents and environment, but it addresses the problem
through the definition of an API, with specified signatures,
rather than the more abstract technique of a pattern.

The three platforms above, and other APs (e.g.
JADEX [Pokahr et al., 2013]), are norm-agnostic: they do not
contain a normative framework. Like Jason, these are suitable
APs for instantiation of the deontic sensor pattern described
here. The point for discussion is these significant, maintained
and widely-used agent platforms could be enhanced through
access to explicit norm frameworks, although the agent’s in-
ternal reasoning would need extension (e.g. [Dybalova et al.,
2013; Lee et al., 2014]) to account for normative percepts.

The third topic is APs with embedded normative frame-

works. We highlight three approaches: (i) the Electronic In-
stitutions Development Environment (EIDE) and the associ-
ated Ameli simulation platform [Esteva et al., 2004], where
norms are explicit, and agents act through governors, that
block non-compliant actions, so agents are effectively norm-
regimented; (ii) ROMAS-Magentix2 [Garcı́a et al., 2016]
provides an (explicit) approach in which norms are defined
for roles, affecting agents who play a role, and for organi-
zations, affecting all members of an organization, covering
the range of constitutive, regulative and procedural norms;
(iii) the JaCaMo [Boissier et al., 2016] framework com-
bines agents (Jason), environment (CArtAgO) and organi-
sation (MOISE), whereMOISE provides role-based orga-
nizational norms and CArtAgO provides services, including
normative artifacts (sic) whose norms (expressed in Norma-
tive Organization Programming Language (NOPL) [Hübner
et al., 2011]) constrain the behaviour of an agent wishing to
manipulate an artifact. These three platforms illustrate alter-
native approaches to embedding normative frameworks (via
governors, roles, organizations and artifacts), demonstrating a
richness that appears to be inaccessible except to agents writ-
ten for the particular platform. The norm part of Magentix2
is described as a norm reasoning service and CArtAgO is
described as using a service-oriented style, but they appear
not to be addressable as web services. What these platforms
highlight is the existence of APs with embedded normative
frameworks that could be refactored into deontic sensors and
hence made accessible to norm-agnostic platforms as well as
opening these APs up to other normative frameworks.

Fourthly, we consider two approaches that apply service-
oriented concepts to MAS: (i) Alive [Vázquez-Salceda et al.,
2010] puts forward a three level (organization, coordination,
and services) architecture in which semantic web services are
used for discovery and delivery of services to a coordina-
tion layer of software agents, that participate in organizational
structures whose roles encapsulate norms; (ii) THOMAS [del
Val Noguera et al., 2010] uses semantic web services to im-
plement a virtual organization (VO), agent actions are in-
voked through service requests, and norm processing is han-
dled by the THOMAS platform, using a rule engine. The VO
aspect has been subsumed into Magentix2 without the seman-
tic web services and Alive is no longer maintained. These
platforms show efforts to address the MAS silo issue us-
ing services, but through service-oriented architecture, which
does not decouple as fully as the pattern approach adopted
here, while THOMAS has apparently abandoned (semantic)
web services and Alive is no longer maintained, which may
indicate lessons in the use of arbitrary web services.

In conclusion, we see the deontic sensor pattern as a valu-
able contribution to decoupling agents and institutions, in de-
sign and implementation, allowing independent development,
by refactoring a key MAS component into a service. We hope
this work encourages further deconstruction, and on-demand
delivery of component AI as a service, for other MAS as-
pects such as environmental models and agent reasoning.
Next steps are: (i) distribution of deontic sensors across com-
pute resources, (ii) application in agent-based simulation,
and (iii) investigation of semantic technologies (e.g. [W3C,
2011]) to address the semiotics of deontic sensors.
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