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Abstract

Data-driven approaches are becoming dominant
problem-solving techniques in many areas of re-
search and industry. Unfortunately, current tech-
nologies do not make such techniques easy to use
for application experts who are not fluent in ma-
chine learning nor for machine learning experts
who aim at testing ideas on real-world data and
need to evaluate those as a part of an end-to-end
system. We review key efforts made by various
Al communities to provide languages for high-
level abstractions over learning and reasoning tech-
niques needed for designing complex Al systems.
We classify the existing frameworks based on the
type of techniques as well as the data and knowl-
edge representations they use, provide a compara-
tive study of the way they address the challenges
of programming real-world applications, and high-
light some shortcomings and future directions.

1 Introduction

Multiple research disciplines, from cognitive sciences to bi-
ology, finance, physics, and the social sciences, as well as
many companies, believe that data-driven and “intelligent”
solutions are necessary in order to solve many of their key
problems. Unfortunately, current machine learning (ML) and
Al technologies are not sufficiently democratized—they do
not provide domain experts who are not Al experts easy ways
to develop applications; rather, they provide cumbersome so-
lutions along multiple dimensions. Moreover, even for Al ex-
perts who aim at evaluating their new ideas and algorithms,
there is a need for heavy experimentation and evaluation ef-
forts. This is due to the fact that Al has entered to the era of
serious usage of basic research to solve real-world problems.

Building complex Al systems requires extensive program-
ming skills and the ability to work with various reasoning and
learning paradigms and techniques at a rather low level of ab-
straction. It also requires extensive experimental exploration
for model selection, feature selection, and parameter tuning
due to lack of theoretical understanding that could be used
to automatically abstracting these subtleties. Conventional
programming languages and software engineering paradigms
have also not been designed to support challenges faced by
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users of Al Systems, such as dealing with messy, real-world
data at the right level of abstraction.

Thus, there is a need for innovative paradigms that seam-
lessly support embedded trainable models, abstracting away
most low level details, and that facilitate reasoning with re-
spect to these at the right level of abstraction. We need
to enrich existing frameworks with capabilities for learning
based programming [Roth, 2005] and for designing com-
plex Al systems, including: (1) Easy interaction with raw,
heterogeneous data; (2) High-level and intuitive abstractions
for specifying the requirements of the application; (3) Intu-
itive means to specify the data and domain knowledge and
express uncertainties; (4) Access to various learning, infer-
ence and reasoning techniques; (5) Ability to reuse, combine
and chain models and perform flexible inference on complex
models/pipelines.

Indeed, there have been various Al proposals to address
these problems, most notably Probabilistic (Logic) Program-
ming (P(L)P), Logical Programming (LP), Constrained Con-
ditional Models (CCM) and Statistical Relational Learn-
ing/AI (SRL/StarAl). Most of them aim at learning over prob-
abilistic structures and exploiting knowledge in learning. Re-
cently, Deep Learning (DL) tools have created easy to use
abstractions for programming model configurations of deep
neural architectures. However, even with these frameworks,
one still needs deep mastery of ML and Al techniques and
methodologies in order to engineer Al systems; this knowl-
edge far exceeds what most application programmers have.

To help close this gap and facilitate making progress with
Al technologies, we survey! efforts made in this direction.
We emphasize the need to keep some fundamental declara-
tive ideas such as first-order query languages, knowledge rep-
resentation and reasoning techniques, database management
systems (DBMS), and deductive databases (DDB), but place
them within ML formalisms, integrated with programming
languages and software development techniques as a way to
address complex real-world problems that require both learn-
ing and reasoning models. Our goal is to highlight the impor-
tance of integrating multiple “old” ideas into a new paradigm
of Declarative Learning Based Programming and the neces-
sity of performing principled research to investigate the fun-

!The short survey is necessarily incomplete; we apologize to all
those we failed to cite.
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damental requirements from languages, representations and
computational models that will facilitate this paradigm.

In the next sections, first we describe the requirements of
Al applications, what is addressed, and what is missing. Then
we sketch the ideal characteristics of learning based programs
compared to the abstraction layers of various paradigms.

2 Al Applications Requirements

To discuss aforementioned (1)—(5) as well as the existing re-
search and key techniques addressing them, we will use de-
signing an intelligent model solving a simple entity-mention-
relation (EMR) extraction task as running example: Given
an input text as "Washington works for Associated Press.”,
find a model that is able to extract the entity types such as
people, organizations and locations as well as their relation-
ships, such as, works for, lives in, and generate the following
labels, [Washington]person [WOTKS for]worksFor [Associated
Press]organizatiow

2.1 Interaction with Heterogeneous Data

For real-world applications, organizing and using data is an
essential starting point of a learning based program. The
EMR task, e.g., can be helpful to put raw data from emails
into a structured database for easy access in other tasks.

Heterogeneous and unstructured data. Many real-world
systems need to operate on heterogeneous and unstructured
data such as text and images. To put the data in some struc-
ture, we need information-extraction modules that could be
complex intelligent components themselves. In the EMR
task, a primary step to operate on the sentence before any
learning, is chunking, that is splitting the sentence into a num-
ber of phrases such as [Washington][Works For][Associated
Press][.]. This is a challenging learning task by itself but also
provides a primary structure that classifiers can operate on.

Some of the current research has tried to combine infor-
mation extraction modules with relational DB systems and
use standard querying languages for retrieving the informa-
tion [Krishnamurthy et al., 2009]. Some systems are de-
signed for processing textual data and provide a regular ex-
pression language to directly query from text [Broda et al.,
2013]. To facilitate working on unstructured data, there has
been efforts in designing unified data structures for process-
ing textual data and preparing tools that can operate on those
data structures. A well-known example of such universal data
structure is UIMA that can be augmented with NLP tools that
provide lexical, syntactic and semantic features [Sammons et
al., 2016]. They focus on providing a specific internal repre-
sentation of raw data (text here) but do not allow for decla-
ration of a data model with an arbitrary structure. However,
some of these information extraction systems are equipped
with very well designed and efficient query languages, such
as SystemT [Krishnamurthy et al., 2009].

In one hand, such systems do not address learning and in-
ference, i.e., their functionality is independent from designing
learning models. However, they indeed could be used as sen-
sors for information extraction in designing learning models.
On the other hand, there are many ML tools such as WEKA

and newer python and deep learning packages. They provide
easy access to learning algorithms, but typically support a flat
data structure in a specific format only; one cannot work eas-
ily with raw nor structured data. Here is the obvious gap in
the existing systems for working on raw data and applying
machine learning.

Relational and graph data. In many applications we are
facing data with complex structures. Organizing, manipulat-
ing and efficient querying from data has been well addressed
by relational database management systems based on rela-
tional representations and standard query languages. How-
ever, these systems are traditionally independent from learn-
ing based models, as our EMR task illustrates. We want to
learn to extract the entities and relationship and put them into
a database for efficient and easy usage.

Providing ML capabilities on top of relational databases
has been followed e.g. in the DeepDive [Zhang et al., 2017]
while first order logical SQL expressions are grounded and
form a Markov logic network or some other relational proba-
bilistic model [De Raedt et al., 2016] to be trained and used
for inference and predictions over relational data. Or, one
may use black box classifiers based on relational features on
top of a datalog-style as e.g. implemented in kLog [Frasconi
et al., 2014], a relational logic based learning framework.
The possibility of programming for the objective functions
by SQL in DBMS environment and forming learning objec-
tives was followed in the LogicBlox [Aref et al., 2015] and
RELOOP [Kersting ef al., 2017] systems. Another exam-
ple is the Saul [Kordjamshidi er al., 2015] language, which
is equipped with in-memory graph queries which can be di-
rectly used in learning models as features or for constructing
learning examples. Moreover, the queries can form global
structural patterns between inputs as well as outputs [Kord-
jamshidi et al., 2016; Kordjamshidi et al., 2017].

Feature extraction. One central goal of interaction with
data in learning based programs is to be able to define and
extract features from various data sources for learning mod-
els. Typically, feature engineering includes a) the capability
of obtaining low level sensory properties of learning exam-
ples, for example the length of a phrase, or the lemma of
its contained words, b) the capability of selecting, projecting
or joining properties for complex and structured data, c) fea-
ture induction, d) feature selection, and e) mapping features
from one representation to another. This basically implies
that feature extraction is a component that needs to deal with
the two aforementioned issues of interaction with raw data
putting them into structure and querying from the obtained
structure. While there has been research on each of them, a
unifying framework as well as programming environment en-
abling ML is still missing. Specifically, feature extraction ap-
proaches can be deterministic such as logical query languages
on relational data or can be information extraction tools as
described above. For example, we can have all phrases in
a relational database and query for all pairs of phrases that
have a specific distance between them in the sentence. In
NLP, Fextor [Broda et al., 2013] is a tool that provides an
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internal representation for textual data and provides a library
to make queries, like asking the pos-tag of a specific word,
relying on its fixed internal representation. Prior to Fextor,
Fex [Cumby and Roth, 2003] viewed feature extraction from
a first order knowledge representation perspective. Their for-
malization is based on description logic where each feature
extraction query is answered by logical reasoning.

2.2 High-level Abstractions

While the goal of conventional programming is to automate
tasks that are step-by-step instructions, the main goal of Al
are programs that make intelligent decisions and solve real-
world problems. Recall the very first Al problem solvers.
They were expert systems modeling the way experts reason
and make decision based on a set of logical rules. Program-
ming languages like Lisp and Prolog made programming
them easy even for non-expert users, or at least targeted this
idea. Only the domain knowledge is programmed in a declar-
ative form; the way the rules are used in a logical reasoning
process is hidden from the programmer. This declarative pro-
gramming paradigm highlights the ‘what’ and not the ‘how’.

Traditional declarative programming often considers pro-
grams as the theories of formal logic. But declarative pro-
grams could be any high-level specifications of ‘what’ needs
to be done where the ‘how’ is left to the language’s im-
plementation. This being said, all current tools and lan-
guages aim at obtaining the right level of abstraction and be-
ing declarative in that sense. We distinguish between two
types of abstractions, a) data and domain abstractions and b)
computational and algorithmic abstractions.

Current ML? and deep learning tools**> have made a
huge progress towards being more declarative and indepen-
dent from algorithms, at least for standard ML problems.
Using classical ML libraries, the programmer needs to pro-
vide feature vectors and specify a number of parameters only.
The programs are written independent from the training al-
gorithms. However, keeping the high-level declarations be-
comes harder when the data becomes complex and structured
as we go beyond predicting a single variable in the output. We
need to use additional domain knowledge beyond data items.

Depending on the type of techniques, various abstractions
have been made based on both data and computations: a)
Data abstractions based on the dependency structure of vari-
ables, b) Data and domain abstractions in terms of logical
model of the domain knowledge and c¢) Computational ab-
stractions based on mathematical functions that form the ob-
jective of learning and inference, d) A mixture of data and
computational abstractions by representing the model as a
procedural partial program. We describe these various per-
spectives and related implementations.

Dependency structure of the variables. Probabilistic
programming languages facilitate the specifications of
(in)dependencies. The user declares random variables and

2scikit*learn.org
3
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their dependency structure and other related parameters such
as distributions and density functions. The structure is spec-
ified and used declaratively and, ultimately, independent of
underlying algorithms for inference and parameter estima-
tion. Reconsider our EMR task. We specify the phrases
as random variables after we already have obtained an ap-
propriate representation for them. Then we specify the de-
pendency between each word and its label, or the labels of
each word and its adjacent word. Given the data, we can
then train the parameters and query probabilities of each la-
bel or do MAP inference, etc. Examples of such languages®
are InferNet [Minka er al., 2014], Figaro [Pfeffer, 2016], Au-
toBayes [Fischer and Schumann, 2003], BUGS [Gilks et al.,
1994], and Stan [Carpenter ef al., 2017]. Some of them are
Turing-complete and support general purpose programs us-
ing probabilistic execution traces (Venture [Mansinghka et
al., 2014], Angelican [Wood et al., 2014], Church [Goodman
et al., 2008], and Pyro’.

Logical representation of the domain knowledge. Tradi-
tional expert systems emphasize world knowledge. We use
the term knowledge for the type of information that goes be-
yond single data items and expresses the relationships be-
tween classes of objects in the real-world. This is the kind of
information that, for example, first order logical formalisms
are able to express. In our EMR example, while the specific
linguistic features of each word/phrase is a part of our infor-
mation about each instance, we can have some higher level
knowledge over the sets of phrases. For example, we know
that ‘if an arbitrary phrase is a person it can not be a location’
and that ‘if an arbitrary phrase is a person and another arbi-
trary phrase is a location the relationship can not be married’.

Though the domain knowledge can convey more informa-
tion compared to a set of data items, it is not always straight-
forward to account for it in classical learning approaches.
Statistical relational learning models and probabilistic logi-
cal languages [De Raedt er al., 2016] tackle this issue. Some
probabilistic logical models provide the computational mod-
els of logical reasoning, using resolution, unification, etc.,
while the data items are also represented in the same frame-
work, and learning models can be trained based on the data.
A typical example is Problog [De Raedt et al., 2007]. Log-
ical representation of the domain knowledge has been used
in other frameworks under the umbrella term of SRL mod-
els such as MLNs [Domingos and Richardson, 2004] and
BLOG [Milch et al., 2005], and PSL models [Broecheler
et al., 2010]. However, the logical representations in these
frameworks are all grounded and generate data instances that
form underlying probabilistic graphical models of various
kind. In contrast to the above-mentioned probabilistic logical
models, these SRL models do not necessarily consider logical
reasoning. Representing domain knowledge along with the
data has been instantiated in deductive databases such as Dat-
alog [Gottlob er al., 1989] while expressing uncertainties in
the data has been considered in probabilistic databases [Suciu
et al., 2011]. An example of a deductive database with rep-

6probabilisticfprogramming.org
7pyro.ai
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resenting uncertainties is ProPPR [Wang et al., 2014], which
has been augmented to learn the probabilities of the facts in
the database using neural techniques in TensorLog [Cohen et
al., 2017].

Programming the mathematical objective functions.
Typical examples of this type of abstraction are deep learn-
ing tools. The programmer does not concern specifying the
structure of the data and the dependencies between variables
but the architecture of the model based on mathematical op-
erators, activation functions, loss functions, etc. [Abadi et
al., 2016]. Given the architecture of the operations, which
is a computational graph in contrast to a dependency graph,
the program would know how to compute the gradients and
what procedure to run for training and prediction. If we de-
sign the EMR model in this paradigm, we will have a vec-
tor representation of each phrase beforehand and then specify
the architecture of our model based on multiplications, sum-
mations and activations. The idea of mathematical abstrac-
tions has been used in other paradigms even in probabilis-
tic programming tools such as WOLFE [Riedel ez al., 2014].
Such abstractions have been used in the context of designing
structured output prediction models such as SSVM? or with
search-based inference techniques [Daumé III et al., 2014]
where the loss and predict procedures can be written in a few
lines of code. However, the end-to-end program has a sequen-
tial and imperative structure rather than a declarative form.

Procedural representation of the domain knowledge.
When we compare the declarative and imperative paradigms,
we refer to the way we express the training and prediction
specifications/procedures. However, teaching a machine to
perform a task with a sequence of steps may require one to
express the procedure of the task as parts of the background
knowledge. The imperative task definition is different from
an imperative program that hard codes the information about
the task when training an objective function. For the same
reason, here in this paper, even defining a task procedure
subject to the learning is referred to as declaring the proce-
dural domain knowledge. The procedure of a task, which
is expressed in an imperative form, could be taken as the
declaration of a specific learning model and be connected to
some formal semantics with an underlying computation dif-
ferent from the deterministic sequential execution of a set
of instructions. We call this also declarative programming
since parts of the domain knowledge is expressed procedu-
rally while its execution is not deterministic and depends on
the trained models. While this might be terminology only, we
believe this perspective is important to broaden the scope of
declarative knowledge representation in our context. Given
this view, we can call differentiable programs [Bosnjak e al.,
2017] also learning based programs. This will be more clar-
ified when we talk about model composition in Section 2.5.
An example of an imperative program based learning for the
EMR task could be a basic if-then-else structure to form a
pipeline of decision making, like, if phrase x is a person then

8 www.cs.cornell.edu/people/tj/svm_light/
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check phrase y; if phrase y is a location then check the rela-
tionship between x and y; and so on. This specifies a proce-
dure for decision making, though the decisions are based on
learning functions. Nevertheless it guides the formulation of
a global objective function for learning.

2.3 Representing Uncertainty

Most data is uncertain due to noise, missing information or
inherent ambiguities. Moving from traditional AI’s logical
perspective to models that support randomness and proba-
bilities has been triggered by this fact. Statistical and prob-
abilistic learning techniques inherently address the issue of
uncertainty and this is reflected in the probabilistic program-
ming and SRL languages [Domingos and Richardson, 2004;
Milch et al., 2005; De Raedt et al., 2016]. Conventional
programming languages by no means address the issue of
uncertainty—a main reason why they can not directly solve
real-world problems and help intelligent decision making.

Dealing with uncertainty in a generic problem solving pro-
gramming paradigm has been addressed in a very limited
way. Considering uncertainty when programming for prob-
lem solving with Turing-complete capabilities can be seen
in the implementations of probabilistic logical programming
languages [De Raedt er al., 2007; Sato and Kameya, 1997,
Eisner, 2008] as well as probabilistic programming consid-
ering randomness in the execution traces [Goodman et al.,
2008; Mansinghka et al., 2014]. In these frameworks, re-
searchers have used a Turing-complete language in the back-
ground, which enables performing any arbitrary task, and
have enriched it with uncertainty representation to find the
best possible output when lacking evidence for finding the
exact output of the program. However, the way the uncertain-
ties are interpreted is mapped to a specific formal semantics
in the existing languages. Therefore different inference tech-
niques based on various formalisms are often not supported.

The recent idea of differentiable programming also ad-
dresses this by using a different type of underlying algorithm,
namely that of recurrent neural networks and neural Turing
machines [Graves er al., 2014]. Based on this type of tech-
niques, in [Bosnjak et al., 2017] e.g., the sketch of an im-
perative program is given while the uncertain components of
the program are trained given a set of input/output examples.
We believe as a future direction there is a need to address the
uncertainty and incompleteness in the data and knowledge in
its various forms and be able to use various computational
models and underlying algorithms.

2.4 Wide Range of Algorithms

One of the challenges of designing learning-based Al systems
is the lack of theoretical evidence about the effectiveness of
various inference and learning approaches. This issue leaves
the programmer with the huge space of experimentation us-
ing trail and error. While automatic exploration is an ideal
goal and first steps for are promising, see e.g. [Thornton et
al., 2013; Pfeffer et al., 2016], representations that can be
connected to a variety of algorithms without much engineer-
ing is still essentially unexplored. The current programming
frameworks mostly support a specific class of algorithms for
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training and inference. For example, probabilistic program-
ming languages and SRL frameworks are based on inference
and learning in probabilistic graphical models, either directed
on undirected ones or generic factor graphs. Probabilisitc soft
logic considers a PGM too with more scalable algorithms and
efficient solutions by forming a convex optimization problem
in a continuous space to do inference. LBJava, RELOOP and
Saul map the inference problems under the domain’s logical
constraints to form integer linear programs and use efficient
off the shelf techniques in that area to solve inference. In
LBJava and Saul, learning independent models provides the
possibility to exploit any arbitrary ML algorithm in the train-
ing phase and perform global inference during the prediction.

2.5 Model Composition

As we move towards engineering and using Al systems for
more and more complex real-world tasks, the ability to reuse,
combine and chain models and perform flexible inference on
complex models or pipelines of decision making becomes an
essential issue for learning based programming. When de-
signing complex models, one main question is how we com-
pose individual models and build more complex ones based
on those in the current formalisms. Reconsider our EMR task.
We can design a model for classifying entities and a separate
model for classifying the relationships. The final EMR model
will use them as its building blocks.

The composition language can be a unified language and
consistent with basic ML building block declarations. For
example, we can form a global objective using the structured
output prediction models and do collective classification to
solve this problem. However, if we have heterogeneous un-
derlying models based on different techniques, then forming a
global objective will not be straightforward and we will have
various possibilities for combining models. This issue brings
up the question, whether the current tools naturally support
composition or should this be an additional language on top
of forming learning objectives. If we look at the aforemen-
tioned frameworks, we see that the first set of tools for classi-
cal ML do not support declarative composition. They rely on
the ML and programming expertise of the users to program
imperatively the model composition.

Composition in probabilistic programming. Probabilis-
tic programming covers the aspect of composition inherently.
Since all involved variables can be declared consistently in
one framework and the dependency structure could express
the decomposition and composition semantics for learning
and inference. However, the way that we compose complex
models is limited to expressing more global dependencies and
the same dependency structure is used for both training and
prediction time. This is not expressive enough for building
complex models and pipelines of decision making. For ex-
ample we might need to check if certain conditions hold and
compose arbitrary parts, etc.

Composition in CCMs. When designing constrained con-
ditional models (CCMs) we need to program the two com-
ponents of local learning declarations and global constraints

specifications. The composition can be done consistently as
far as it can be formulated by imposing global constraints
and building global models in that way. The current im-
plementations based on CCMs [Kordjamshidi er al., 2015;
Rizzolo and Roth, 2010] can model pipelines and model com-
position by considering the learning models as first class ob-
jects where their outputs can be used to form new learners and
new layers of abstractions. Although, in the frameworks that
are designed as libraries of general-purpose languages, the
compositions can be made by the programmer, we believe a
composition language with well-defined semantics will pro-
vide a better way to design complex models end-to-end.

Composition in deep neural models. The deep learning
tools rely on general purpose programming environments and
the ML and programming skills of users to compose models
imperatively. They provide a way for designing single mod-
els, though CapsNets [Sabour et al., 2017] recently made a
first step towards learning compositions in deep networks.

Diffrentiable programs seen as compositions. While the
composition of the trained models is helpful in designing and
programming complex models, one new issue arises. Can
we parameterize them and in turn learn the composition it-
self? This is a less established line of research and it is not
clear how the structure of the program can be represented and
what will be the parameters of the program. Differentiable
programs could be seen as an important step into this direc-
tion. On one hand, they are related to program synthesis in
the sense that we learn a program from inputs and outputs,
on the other hand it is related to the idea of learning the pa-
rameters of the composition of learning based components.
We can provide the structure or the scheme of the program
and learn parts of it. This latter perspective should be dis-
tinguished from program synthesis though, because the target
programs that we learn are not deterministic programs like
sorting; they are never complete and just estimate an output
given a partial structure and making inference. They are un-
likely to be learnable in a full deterministic structure.

3 Declarative Learning based Programming:
An Integration Paradigm

While existing paradigms indeed address some of the capa-
bilities (1)-(5), there is still a need to integrate more aspects
to design truly smart Al systems that can constantly collect
weak signals independently of specific tasks, and relate them
on-the-fly to solve a task without supervision [Roth, 2017].

We here argue for a paradigm that highlights the aspect of
learning from data as a pivot, tries to extend the capabilities
of designing intelligent systems around this concept, and ad-
dress the above-mentioned challenges accordingly by allow-
ing programming to construct complex configurations based
on basic learning building blocks.

Abstractions that are independent from computations.
The idea of learning based programming which has been ini-
tiated in [Roth, 2005] is arguing for the necessity of data ab-
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stractions and hiding the algorithmic details and even hid-
ing high-level algorithmic abstractions. Learning is a map-
ping from one data abstraction layer to another given the data
instances, starting from raw data. Therefore user needs to
specify the intended abstractions for an application in hand
and the system should figure out how to perform the actual
mappings. While this abstraction is similar to what is argued
for in logical formalisms, here we are not limited to logical
predicates —concept-learners can be represented by arbitrary
functions— and the mapping computations are not limited to
logical reasoning mechanisms —heterogeneous learners can
take the data and learn the mappings.

LBJava [Rizzolo, 2011] was a first implementation of
the idea based on CCM [Chang et al., 2012] computational
model. Learners are first class objects and the domain knowl-
edge which is also represented in terms of data abstractions
can be used by learners to make global and consistent map-
pings. Saul [Kordjamshidi et al., 2015] has been proposed
with a similar computational model and the possibility of join
training of global models. Saul is in the form of a library
without the data-driven compilation step and it comes with an
explicit support for the representation of the data as a graph
for relational feature engineering. The data graph represen-
tation helps to specify domain concepts and their relation-
ships. Some concepts are connected to sensors abstracting
away from raw data and some are concept learners.

Abstractions that facilitate algorithmic coverage. Most
of the frameworks mentioned in the previous sections have a
limited coverage of algorithms. While some of these are more
flexible than others in supporting heterogeneous computa-
tional building blocks, training complex configurations with
global learning is addressed with one class of techniques in
each framework such as probabilistic inference, integer linear
programming or dynamic programming and search. When
the learning models abstractions are based on the data ab-
stractions in addition to domain knowledge and generic prob-
lem specification, then in principle these representations can
be connected to various computational models. In contrast,
the representations based on computational abstractions (such
as deep learning methods) are more bounded to the type of
underlying techniques for computations.

Abstractions that help in closing the loop of data to knowl-
edge. Intelligent systems need to evolve over time as they
receive more data and knowledge and they find better abstrac-
tions of the data, as illustrated e.g. by NELL [Mitchell et al.,
2015], the never ended language learning. Representations
of the learning models based on the data and knowledge will
naturally support feeding the current models (which will be
trained concepts) to obtain new abstraction layers. This will
also naturally support the model compositions. There will
be a direct connection between how we compose models and
how we compose real-world concepts. Such abstractions will
help closing the loop of moving from data to knowledge and
exploiting it to generate new data.

5469

Abstractions that help learning the programs. While the
goal of ML is to write programs that can learn to do a task
or make a decision, a more ambitious goal would be to learn
even those programs structure from the data. From the clas-
sical ML perspective this is connected to structure learning,
for example, learning the dependency structure of a Bayesian
network, or learning features (feature induction) and global
constraints by analyzing the data [Bessiere et al., 2017]. In
the programming languages community, this problem is very
close to program induction from the inputs and outputs. From
the classical Al perspective this is also related to inductive
logic programming and program induction, see e.g. [Muggle-
ton and De Raedt, 1994], and in the case of not specifying
the domain predicates this will be connected to predicate in-
vention [Stahl, 1995]. More expressive than rules are logical
programs. They can be seen as a set of rules augmented by
global formal semantics for unification, entailment, etc. and
will be treated all together rather than independently.

However, a logical programming or a classical structured
programming language, even if it is Turing equivalent, still
will not be able to solve an Al-complete problem. If we rep-
resent the structure of a learning model with these paradigms,
we still need to think about the parameters addressing incom-
pleteness and uncertainty for solving problems intelligently.

Other issues from AI and learning based systems perspec-
tive. While we focus on the issues related to appropriate and
easy to use abstractions and coverage of various formalisms
for learning based programs, there will be many issues to be
addressed for the Al systems [Stoica et al., 2017] that will
be platforms for such declarative languages. The commu-
nity will need to take a similar considerations into account
as database management systems when designing Al sys-
tems. There will be necessary to have learning based man-
agement systems that can deal with security and privacy of
data as well as learning models, scalability of learning and
inference, distributed and parallel implementations, concur-
rency etc. Moreover, there will be new issues such as fairness
and explainability to be addressed in Al and learning based
management systems.

4 Conclusion

Triggered by the emerging research area of Systems Al—
the computational and mathematical modeling of complex
Al systems—we provided an overview on declarative learn-
ing based programming languages as a central component
of such a mission. We discussed the related works that can
guide designing such a language covering a) the type of ab-
straction that the make over the data and computations, b)
the type of techniques that they cover for learning and rea-
soning/inference c) the way they address the interaction with
data and the issue of incompleteness and uncertainty d) the
way that those facilitate designing complex models by com-
position of simpler models. Most importantly, we pointed to
what is missing and the necessity of joining forces to develop
an integrated framework for Systems Al
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