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Abstract
Visual data, such as an image or a sequence of
video frames, is often naturally represented as a
point set. In this paper, we consider the funda-
mental problem of finding a nearest set from a col-
lection of sets, to a query set. This problem has
obvious applications in large-scale visual retrieval
and recognition, and also in applied fields beyond
computer vision. One challenge stands out in solv-
ing the problem—set representation and measure
of similarity. Particularly, the query set and the
sets in dataset collection can have varying cardinal-
ities. The training collection is large enough such
that linear scan is impractical. We propose a sim-
ple representation scheme that encodes both statis-
tical and structural information of the sets. The
derived representations are integrated in a kernel
framework for flexible similarity measurement. For
the query set process, we adopt a learning-to-hash
pipeline that turns the kernel representations into
hash bits based on simple learners, using multi-
ple kernel learning. Experiments on two visual re-
trieval datasets show unambiguously that our set-
to-set hashing framework outperforms prior meth-
ods that do not take the set-to-set search setting.

1 Introduction
Searching for similar data samples is a fundamental step in
many large-scale applications. As the data size explodes,
hashing techniques have emerged as a unique option for ap-
proximate nearest neighbor (ANN) search, as it can dramat-
ically reduce both the computational time and the storage
space. Successes are seen in areas including computer vision
and information retrieval [Kulis et al., 2009; Sun et al., 2017;
Wang et al., 2012a; Wang et al., 2016]. Hashing meth-
ods perform space partitioning to encode the original high-
dimensional data points into binary codes. With the resulting
binary hash codes, one can perform extremely rapid ANN
search that entails only sublinear search complexity.
Conventional hashing schemes concern point-to-point

(P2P) search setting. They either depend on randomization
and are data oblivious (represented by the classic Locality
Sensitive Hashing – LSH), or are based on advanced ma-

chine learning techniques to learn hashing functions that are
better tailored to the specific data and/or label distribution.
The latter includes unsupervised [Gong and Lazebnik, 2011;
Weiss et al., 2008], semi-supervised [Wang et al., 2012a;
Wang et al., 2010], and supervised hashing [Kulis and Dar-
rell, 2009; Salakhutdinov and Hinton, 2009; Mu et al., 2010;
Liu et al., 2012a; Zhang and Li, 2014; Shen et al., 2015;
Li et al., 2016; Weng et al., 2019].
A natural generalization of the point-to-point search is set-

to-set (S2S) search. For example, one can pose the facial
image recognition problem as one that queries for a near-
est subspaces to a given point [Wang et al., 2013]. In-
deed, there are several recent attempts, studying point-to-
hyperplane search that is useful for active learning [Liu et al.,
2012b], or subspace-to-subspace search [Basri et al., 2011]
that models S2S search assuming linear structures in the sets.
In this paper, we consider the set-to-set search problem

in its full generality. This general setting finds applica-
tions ranging from video-based surveillance to 3D face re-
trieval from collections of 2D images [Berretti et al., 2010;
Tuzel et al., 2007; Sivic et al., 2005]. Compared to special-
ized settings discussed above that come with natural notion of
distance, a central challenge here is how to measure the dis-
tance/similarity between sets. We propose a similarity mea-
sure that captures both the statistical and structural aspects of
the sets (Section 3). To learn the hash bits, we adopt dyadic
hypercut as a weak learner [Moghaddam and Shakhnarovich,
2002] to derive a boosted algorithm that integrates both the
structural and statistical similarities. The whole framework is
illustrated in Fig. 1. In this paper, we focus on image appli-
cations, and hence coin the name Image Set Hashing (ISH).
However, the core components of the proposed framework
can be extended to generic scenarios.

2 Related Work
In this section, we discuss representative works in
randomization-based hashing and learning-based hashing for
P2P setting, and recent work on certain restricted S2S setting.
Review of recent development of hashing techniques can be
found in [Wang et al., 2016; Wang et al., 20114].
LSH hashing and variants are iconic randomization-based

hashing schemes. They are simple in theory and efficient in
practice, and flexible enough to handle various distance mea-
sures [Charikar, 2002; Datar et al., 2004; Kulis and Darrell,
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Figure 1: Illustration of the proposed ISH framework. First, statis-
tical and structural information of the image sets are encoded. Sec-
ond, appropriate kernel mappings are chosen to measure the simi-
larities between image sets. A boosted algorithm based on the two
kernels is used to construct the hash function.

2009]. However, the data oblivious design of the LSH fam-
ily methods often causes suboptimal recall-precision trade-
off curve. Hence, learning-based hashing schemes have been
under active development recently. Generally, both the data
and label information is fed into carefully designed learning
pipeline to produce more adaptive and efficient hash codes.
Depending on whether the label information is in use, these
schemes are either unsupervised, e.g., spectral hashing [Weiss
et al., 2008], graph hashing, and ITQ (iterative quantiza-
tion) [Gong and Lazebnik, 2011], or (semi-)supervised hash-
ing, including [Lin et al., 2013; Liu et al., 2012a; Mu et
al., 2010; Norouzi and Fleet, 2011; Sablayrolles et al., 2017;
Wang et al., 2010]. Particularly, recent efforts have built more
powerful hashing schemes on top of deep learning [Salakhut-
dinov and Hinton, 2009; Salakhutdinov and Hinton, 2007;
Liong et al., 2015; Masci et al., 2013]. All these methods
only deal with the P2P setting.
Study of the S2S setting started only very recently, and is

mostly about image applications. Statistical or geometric as-
sumptions are often made on the sets to facilitate representa-
tion. For example, statistical distribution of data points in
each set can be assumed, and KL-divergence can be used
to measure set similarity [Arandjelovic et al., 2005]. By
comparison, point sets can also lie on linear subspaces or
more general geometric objects [Cevikalp and Triggs, 2010;
Hu et al., 2011; Kim et al., 2007; Liu et al., 2014; Sun et
al., 2014; Sun et al., 2015; Wang et al., 2012b]. Among
the representation schemes, representation based on covari-
ance matrices has led to superior performances on image
sets (video frames) [Wang et al., 2012b; Lu et al., 2013;
Tuzel et al., 2007]. For instance, in [Li et al., 2015], covari-
ance matrix is used in such way, and similarity is then mea-
sured via kernel mapping and learning. Promising result has
been reported, but the framework is restricted to cases when
the query is a single point. For image applications specifi-
cally, the Set Compression Tree [Relja and Zisserman, 2014]
compresses a set of image descriptors jointly (rather than in-
dividual descriptors) and achieve a very small memory foot-

concept1

concept2

concept n1

concept3

concept1

concept2 concept n2

concept1

concept2
concept3

concept4

concept n3

Index of image

In
d

ex
 o

f 
im

ag
e

In
d

ex
 o

f 
im

ag
e

Index of image Index of image

In
d

ex
 o

f 
im

ag
eImage Set 1 Image Set 2 Image Set 3

Figure 2: Extracting the structural information and measure the
structural similarity. In the top row, graphs are constructed to rep-
resented individual sets: nodes are data points and graph weights
indicate the similarities. Dense cliques (red circles) are then ex-
tracted to reveal the holistic structure in a set. Point sets with similar
clique structures (sets 2 and 1 as shown) are assumed to have higher
similarity. The bottom row shows the similarity matrices, in which
yellow blocks indicate the high similarities among data points in
each clique. Best viewed in color.

print (as low as 5 bits). However, all existing representation
methods do not account the holistic structural information;
this may lead to incorrect similarity measurements on highly
nonlinear data distributions. Our representation and hashing
scheme is a first attempt to directly address the above prob-
lems in the general S2S setting.

3 Structural and Statistical Modeling
In this section, we detail how the structural and statistical in-
formation is extracted from the point sets, and how similarity
between sets is measured.

3.1 Structure via Graph Modeling
The idea here is to use graph for discovering structures within
data, and then measure the similarity via appropriate kernel
mapping on graphs [Tenenbaum et al., 2000; Gartner, 2003;
Zhou et al., 2009], Fig. 2 gives an example.
To model data points within a set, we derive an affinity

matrix A based on quantized pairwise distances [Zhou et al.,
2009]: if the distance is larger than a predefined threshold
µ, the corresponding affinity value in A is set to 0, and 1
otherwise. We use xi’s to denote the point sets, and Ai’s to
denote the corresponding affinity matrices thus constructed.
With all the Ai’s at hand, the point set similarity is defined
as:

Kg(xi,xj) =
󰁓ni

p=1

󰁓nj
q=1 AipAjqg(xip,xjq)

󰁓ni
p=1 Aip

󰁓nj
q=1 Ajq

, (1)

where, Aip = 1/
󰁓ni

u=1 a
i
pu, Ajq = 1/

󰁓nj
v=1 a

j
qv and

g(xip, xjq) = exp(−γg 󰀂 xip − xjq 󰀂2). The parameter
γg is a constant and ni and nj are the number of data points
in xi and xj , respectively.
To understand the captured structural information, each

clique (formed by several 1 elements) in Ai can be regarded
as one concept. If Ai is an all-one matrix, all data points in
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one set belong to one concept and each point set is consid-
ered as one data point. When Ai is an identical matrix, each
data point is independent, and no relation can be discovered.
When Ai is a clique-based matrix, data can be clustered into
cliques and Kg is a clique-based graph kernel. In this way,
we leverage the structural information for our set hashing.

3.2 Statistical Information
Covariance matrices have provided effective local region
representation for visual recognition and human identi-
fication [Tuzel et al., 2007; Liu et al., 2014]. Intu-
itively, they describe the local image statistics. In this
work, we use covariance matrices to depict the statisti-
cal variance of images within each set. Given N image
sets, X = {(x1, l1), · · · , (xi, li), · · · , (xN , lN )}. xi =
{xi1, · · · , xi,ni} is an image set, where xi,j ∈ Rd represents
the jth d-dimensional feature vector in xi, and the set con-
sists of ni images. li’s are the labels of each image set. Each
image set is represented with a d× d covariance matrix:

Ci =
1
ni

󰁓ni
j=1(xij − x̄i)(xij − x̄i)

⊤, (2)

where x̄i is the mean feature vector within the set. The diag-
onal elements of Ci represent the variance of each individual
image feature, and the off-diagonal elements are their respec-
tive covariance. In this way, the covariance modeling can pro-
vide a desirable statistic for semantic variance among all im-
ages for an image set. Moreover, we use Gaussian-logrithm
kernel [Jayasumana et al., 2013] to map each covariance ma-
trix of an image set into high dimension space, as follows:

Ks(xi,xj) = φ(Ci)
⊤φ(Cj)

= exp(−󰀂log(Ci)− log(Cj)󰀂2F /2γ
2
s ),

(3)

where γs is a positive constant, which be set to the mean dis-
tances of training points. Kernel matrix Ks, is for the im-
age sets in Riemannian space and 󰀂 · 󰀂F denotes the matrix
Frobenius norm. In the end, each pair of image sets xi and
xj are mapped by theKg andKs kernel functions into a high
dimensional space.

4 Image Set Hashing
4.1 Learning Framework
Suppose we have an image set datasetX = {xi, li}. The goal
of hashing is to generate an array of appropriate hash func-
tions h : Rd 󰀁→ {0, 1} by a designed function Ψ and each
bit is constructed by h(x) = sign(Ψ(x)). However, there is
no straightforward way to generate hash codes for each im-
age set. Inspired by [Vemulapalli et al., 2013; Li et al., 2015;
Wang et al., 2012b] , we develop a mapping framework to
construct hash codes for image sets in a common Hamming
space based on multiple kernels. Kernel methods [Hamm and
Lee, 2009; Jayasumana et al., 2013; Vemulapalli et al., 2013;
Wang et al., 2012b] are known to capture and unfold rich
information in data distribution. After the mapping process,
we can generate hash codes in a Hamming space by simulta-
neously considering the structural and statistical information
and iteratively maximize the discriminant margins based on
multiple kernels learning.

4.2 Weak Learners with Boosting Algorithm for
Hash Functions

Since a multi-class classification problem can always be
treated as an array of two-class problems by adopting one-
against-one or one-against-all strategies, we design a boost-
ing algorithm to learn binary splits for constructing hash func-
tions. Specifically, we consider dyadic hypercut [Moghad-
dam and Shakhnarovich, 2002] with multiple kernel func-
tions. A dyadic hypercut f is generated by a kernel with a
pair of different labels in training samples, where f is param-
eterized by positive sample xa , negative sample xb , and ker-
nel functions {Km},i.e., m indicates statistical kernel (Ks)
or structural kernel (Kg), and can be represented as follows:

f(x) = sign(Km(xa,x)−Km(xb,x) + ε), (4)

where ε ∈ R is a threshold. The size of the totally gener-
ated weak learner pool is |f | = M × na × nb, whereM , na
and nb are the numbers of kernels, positive training samples
and negative training samples, respectively. With an efficient
boosting process, we iteratively select a subset of weak learn-
ers by considering the learning loss.
Note that the learning process may be susceptible to over-

fitting when |f | is large. To alleviate this issue, we adopt
a boosting algorithm [Freund and Schapire, 1995; Moghad-
dam and Shakhnarovich, 2002] to combine a number of weak
splits (weak learners) into a strong one. Specifically, we
iteratively select the discriminant weak learners generated
from multiple kernels via maintaining a weighted distribution
wt over data. Each iteration t produces a weak hypothesis
f(x) : x → {+1,−1} and a weighted error δt. The learning
algorithm is aimed at selecting weak learner f t for minimiz-
ing δt followed by updating next distribution wt+1. We adopt
exponential loss [Freund and Schapire, 1995] and minimize
the loss function to select the best weak learner f t at iteration
t and the best weak learner is computed as:

f t = minf
󰁓N

i=1 w
t
iexp(−lif(xi)), (5)

where wt
i indicates the weight of xi at iteration t. Once ob-

taining the best weak learner, we update the data distribution
based on weighted errors. The linear combination of weak
learners, i.e., a strong split, is computed as follows:

F (x) = sign(
󰁓T

t=1 λ
tf t(x)), (6)

where λt = 1
2 log

1−δt

δt . Each iteration t, F =
󰁓t−1

τ=1 λ
τfτ is

a linear combination of the (t− 1) weak learners.

4.3 Objective Function
With the designed hash functions, the following are desired
properties of the hash codes: (1) Each hash value is indepen-
dent of the binary representation for each sample. (2) When
samples are close to each other in feature space (e.g. with
similar distributions), the hash codes should induce similar
hash values with a small Hamming distance. (3) In the re-
sulting Hamming space, different contents of samples should
have different hash codes, which push different samples of
categories as far as possible, meanwhile gather the samples
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of the same category close to each other. Based on the crite-
ria, we derive our multiple kernel hashing as follows:

min
Hq,Hr

αDs + βDc + ν1
󰁛

r′∈{1:R}
i∈{1:N}

Ω

s.t. Hr′i
q = sign(

T󰁛

t=1

λtf
tr′

q (xi)), ∀i ∈ {1 : N}, ∀r′ ∈ {1 : R}

Hr′i
r = sign(

T󰁛

t=1

λtf
tr′

r (xi)), ∀i ∈ {1 : N}, ∀r′ ∈ {1 : R},

(7)
where Hr′i

∗ is the hash value of the ith image set using the
r′th strong split, i.e., hash function, and r and q represent the
retrieval and query sets in the training process. R is the num-
ber of the splits and Ω =

󰁓T
t=1(λ

t
qf

tr′
q (xi) + ν2λ

t
rf

tr′
r (xi)).

fr
′

∗ is the r′th strong split generated from the number of T
weighted weak learners (in eq. (6)), λt∗ is the coefficient of
weak learners trained via a boosting algorithm, ν1 and ν2 are
constant parameters.
The minimization of the first two terms, i.e., Ds and Dc,

tend to find an optimal difference of the distance between
intra- and inter- categories, which capture the discriminative
property among all the samples and are defined in eq. (8)
and eq. (9), and d(·, ·) indicates distance measure in Ham-
ming space. In addition, Dc can refine the hash codes gen-
erated from the training image sets (q and r parts) by max-
imizing the separability of category algorithm in [Rastegari
et al., 2012]. Simultaneous consideration of the two distance
functions helps to minimize the within-category distances and
meanwhile maximize the between-category dis. By formu-
lating the structural and statistical information with multiple
kernels for our objective function, the image set hashing be-
comes more robust and discriminative.
Ds =

󰁓
(m,n)∈M d(Hm

∗ , Hn
∗ )− ν3

󰁓
(m,n)∈C d(H

m
∗ , Hn

∗ )
(8)

Dc =
󰁓

(m,n)∈M d(Hm
q , Hn

r )− ν4
󰁓

(m,n)∈C d(H
m
q , Hn

r ),

(9)
where M and C are represented as intra- and inter-category,
H∗ can be Hq or Hr, and ν3 and ν4 are the pre-computable
constant parameters to balance the intra-catetory and inter-
category scales.
4.4 Optimization
The objective function optimization problem 7 is a typical
nonsmooth, nonconvex multiple variable minimization prob-
lem. We derive an iterative block coordinate descent algo-
rithm [Tseng, 2001] for the optimization. Algorithm 1 gives
the entire algorithm. Here, we highlight several critical steps
in our algorithm. We first compute the kernel matrices Kg

and Ks with eq. (1) and eq. (3) for q training and r train-
ing image sets. After the kernel computation, we adopt ker-
nel PCA [Scholkopf et al., 1997] for the q and r two parts
to obtain the initial hash codes, i.e., Hq and Hr, based on
their statistical kernels in Step 1 to Step 3. Next, we update
the Hq and Hr codes by optimizing eq. (8) for seeking the

Algorithm 1 Image Set Hashing
Input: a set of training image sets, X = {xi, li} is divided into q and r two training

image set parts, where xi = {xij}nij=1 ∈ Rd, i ∈ {1, 2, · · · , N}, li =

{1, · · · , L}.
Initialize: Compute kernel matrices for q training image sets, i.e., (Km)q , by using

the kernel functions (Kg and Ks) according to eq. (1) and eq. (3); Similar to r
training image sets, (Km)r

1: Vq ∈ RN×R, Vr ∈ RN×R ← kernel PCA with statistical kernels forKq and
Kr , respectively

2: Hq ← sign(V ⊤
q (Ks)q)

3: Hr ← sign(V ⊤
r (Ks)r)

Optimization:
4: while not converged do
5: OptimizeHq ,Hr with eq.(8)
6: Train R splits by weak learner selection in e.q.(6) on q kernels (Km)q by

usingHr as training labels, and inversely train anotherR splits on r kernels
(Km)r by usingHq as training labels

7: Hq ← sign(
󰁓R

r′=1 F
r′
q (x)) ← (Km)q

8: Hr ← sign(
󰁓R

r′=1 F
r′
r (x)) ← (Km)r

9: OptimizeH = [Hq, Hr] ∈ {0, 1}R×2N with eq.(9)
10: Train R splits by weak learner selection in e.q.(6) on q kernels (Km)q by

usingHr as training labels, and inversely train anotherR splits on r kernels
(Km)r by usingHq as training labels

11: Check the convergence condition
12: end while
13: Output:

󰁓R
r′=1 F

r′
q (x) and

󰁓R
r′=1 F

r′
r (x) for query and database encoding

in the testing process, respectively.

discriminability and utilize an efficient subgradient descent
algorithm [Rastegari et al., 2012] for the binary optimization
(the optimization algorithm gives the generated code with two
properties: sample-wise balance and bit-wise balance.). In
Step 6, we use the updated hash codes, Hq and Hr, to train
R two-class strong splits based on multiple kernels. More
specifically, we adopt cross-training strategy [M. Rastegari
J. Choi and Davis, 2013] by using the hash codes, Hr, as
training labels to train the strong splits with q training image
sets and similar process toHq hash code with r training image
sets. After that, we update the current hash codes,Hq andHr

by using the learned strong splits based on multiple kernel
learning. In order to improve the discriminability, we com-
bineHq andHr together to refine the learned hash codes with
eq. (9). The process is then repeated. Convergence typically
occurs within few outer iterations. Once we obtained the two
strong split models (

󰁓R
r′=1 F

r′
q (x) and

󰁓R
r′=1 F

r′
r (x) in Al-

gorithm 1), we can adopt them to generate query and database
hash codes in the testing process, respectively.

5 Experiments

We evaluate the effectiveness of the proposed Image Set
Hashing (ISH) method on two well-known benchmarks,
CIFAR-10 and TV-series, i.e., Big Bang Theory. We also
conduct extensive comparison studies with state-of-the-art
methods, including Locality Sensitive Hashing (LSH) [In-
dyk and Motwani, 1998], Spectral Hashing (SH) [Weiss
et al., 2008], Kernelized LSH (KLSH) [Kulis and Darrell,
2009]; Semi-Supervised Hashing (SSH) [Wang et al., 2010]
and supervised methods, Kernel-Based Supervised Hashing
(KSH) [Liu et al., 2012a] and Hashing across Euclidean
space and Riemannian manifold (HER) [Li et al., 2015]. For
the competing techniques, we adopted the publicly released
codes of SH, KLSH, KSH and HER in our experiments.
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Figure 3: The evaluation results by mean recall curves for Ham-
ming ranking using 24 bits on the CIFAR-10 dataset. The num-
ber of retrieved samples is up to 1600.
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Figure 4: The evaluation results by mean precision curves for
Hamming ranking using 24 bits on the CIFAR-10 dataset. The
number of retrieved samples is up to 1600.

5.1 Experiment on CIFAR-10

We compare the performance for different hashing techniques
on the CIFAR-10 dataset. As a labeled subset of the 80M tiny
images, the CIFAR-10 dataset consists of a total of 60K color
images, each of which has the size of 32 × 32 resolution.
The dataset contains 6K image samples with ten object cate-
gories. To evaluate the performance, we uniformly and ran-
domly sample images from each category to form a total of
195 image sets, each of which contains about 25 ∼ 50 images
for the training process (q and r two parts), 100 image sets as
query in testing and 1577 image sets for the testing database
in KLSH, KSH, HER, ISH methods. To test the LSH, SH
and SSH methods, we randomly select 1K images as queries
and the remaining as database samples. For feature represen-
tation, each image is represented as a 512-dimensional GIST
feature vector [Oliva and Torralba, 2001].
We evaluate two test scenarios: Hamming ranking and

hash look-up. In Fig. 3 and Fig. 4 show the mean recall and
precision curves from different number of returned search
samples when using 24-bit hash codes. As we can see, the
proposed ISH method produces higher quality of Hamming
embedding since it significantly outperforms the competing
methods in terms of precisions, recalls, and MAPs. In gen-
eral, the methods using set information often provide better
performance than those based on P2P settings. For instance,
the HER method generates the second best MAPs for most of
the test cases. The relative performance gains in MAP ranges
from 6% to 23.6% compared to the HER method. Such per-
formance gains confirm the value of exploring statistical and
clique-based structural information for hash function design.
In Fig. 5, we also evaluate the results using the hash look-up
table strategy by showing the precision curve within Ham-
ming radius 2 for hash codes from 8-bit to 48-bit. Again the
proposed ISH method achieved the best precisions across all
the cases.

5.2 Experiment on TV-series
The Big Bang Theory (BBT) video (image set) benchmark 1

was collected by [Bauml et al., 2013] and contains in 3341
face videos from 1 ∼ 6 episodes of season one. The dataset
includes around 5 ∼ 8 main cast characters and has multi-
ple characters at the same full-view scene shot. Even though
most of the scenes are taken in indoors, it is still extremely
challenging since the resolution of faces regions are quite
small with an average size of 75 pixels. In the experiments,
we use the provided face features, which are extracted from
face videos by block Discrete Cosine Transformation (DCT)
feature. In this way, each face is represented by a 240-
dimensional feature vector.
In the experiments, we have two different settings. For the

first setting, we follow the setting used in [Li et al., 2015]
and apply still images for the q part in training and query
in testing process and denote the setting as ISH0. The sec-
ond setting indicated as ISH, we have 150 image sets for
q and r two parts in the training process, respectively. For
query in testing, we use 100 image sets and the remaining
image sets for database. The setting can completely utilize
statistical and structural information. For the comparison,
the first group of compared methods consists of seven point-
to-point (P2P) hash methods, i.e, LSH, ITQ, SH, Discrimi-
native Binary Codes (DBC) [Rastegari et al., 2012] , SSH,
MM-NN [Masci et al., 2013], and KSH (point). In addition,
we generate kernels for image sets (represented by covari-
ance matrices) and employ them as input for the KLSH, KSH
(set), and HER methods. Thus, we have the second group of
methods that uses kernels for image sets. Such a modifica-
tion can be used to further justify the advantage of explore
the structural and statistical information of image sets. The
performance evaluated by MAPs for the compared methods
is shown in Table 1. We vary the number of hash bits from 8

1https://cvhci.anthropomatik.kit.edu/ baeuml/datasets.html
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TV drama: the Big Bang Theory

Method 8 bits 16 bits 32 bits 64 bits 128 bits

LSH [Indyk andMotwani, 1998] 0.2109 0.2086 0.2092 0.1963 0.1994
ITQ [Gong and Lazebnik, 2011] 0.2935 0.3025 0.2989 0.3029 0.3060
SH [Weiss et al., 2008] 0.2377 0.2652 0.2665 0.2623 0.2673
DBC [Rastegari et al., 2012] 0.4489 0.4495 0.4235 0.4005 0.3867
SSH [Wang et al., 2010] 0.2716 0.2855 0.2662 0.2584 0.3003
MM-NN [Masci et al., 2013] 0.3752 0.3955 0.4664 0.5124 0.4922

KLSH [Kulis and Darrell, 2009] 0.2450 0.2498 0.2381 0.2256 0.2325
KSH (point) 0.4090 0.4366 0.4454 0.4567 0.4604
KSH [Liu et al., 2012a] (set) 0.4590 0.4619 0.4534 0.4685 0.4631
HER [Li et al., 2015] 0.4606 0.5049 0.5227 0.5490 0.5539
ISH0 0.4833 0.5279 0.5359 0.5501 0.5712
ISH 0.5018 0.5592 0.5864 0.6007 0.6280

Table 1: The evaluation results measured by Mean Average Precision on the on video (image set) benchmark TV-series (BBT). The length
of hash codes ranges from 8-bit to 128-bit. Besides the proposed ISH, the first group of compared methods consists of seven P2P hashing
methods, i.e., LSH, ITQ, SH, DBC, SSH, MM-NN, and KSH. The second group of compared methods include three modified techniques,
i.e., KLSH, KSH, and HER, that use image set information as input.
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Figure 5: Mean precision curves of Hamming radius 2 in 24
bits on CIFAR-10 dataset. The curves of LSH, SH, SSH are
randomly sampled.

The number of samples
0 500 1000 1500 2000 2500 3000

Pr
ec

isi
on

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LSH

SH

SSH

KLSH

KSH

HER

ISH0

ISH

Pr
ec

isi
on

Number of Samples

Figure 6: The evaluation results by mean precision
curves for Hamming ranking using 128 bits on the BBT
video dataset.

to 128 bits. As we can see, the method (ISH0) generates the
second best MAPs when structural information is ignored in
the q training and the query testing process. Moreover, ISH
method achieved the best performance for all the tested cases
when both of statistical and structural information are consid-
ered. This evidence shows that the structural information can
help to generate more robust and discriminative hash codes.
In addition, we use 128-bit hash codes and show the per-

formance curves for the seven compared methods. Fig. 6,
Fig. 7 and Fig. 8 show the precision, recall, and precision-
recall curves, respectively. From these results, the proposed
ISH achieves the best performance compared to all the base-
line techniques, including both P2P methods and modified
S2S methods. The underlying reason lies in that the ISH
method can simultaneously capture the statistical (covariance
matrix) and structural (graph kernel) information, i.e., combi-
nation of weak learners, to generate each hash code. Hence, it
captures the most intrinsic characteristics within complicated
variations of face images for the same subject. Moreover,
if we compare the general performance between the P2P and
S2S settings for the KSHmethod, we can observe that the S2S

hashing continuously attains higher search accuracy. It fur-
ther confirms the advantage of using set information. How-
ever, simply employing the covariance matrix as inputs limits
the performance improvements. In summary, with the S2S
setting and fully explore statistical and structural information,
the proposed ISH yields significant performance gain across
all the experiments.

6 Conclusion
We have presented a set-to-set (S2S) ANN search problem
and proposed to learn the optimal hash codes for image sets
by simultaneously exploiting the statistical and structural in-
formation. The key idea is to transform the image sets into a
high dimension space where each of image set can be char-
acterized by a graph kernel and statistical measurement. As
a result, the proposed S2S hashing achieves a robust and dis-
criminative representation for searching datapoint sets. The
experimental results have demonstrated the effectiveness of
the proposed ISH method by showing superior performance
over several representative competing approaches.
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Figure 7: The evaluation results by mean recall curves
for Hamming ranking using 128 bits on the BBT dataset.
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Figure 8: The evaluation results by mean precision-recall curves
for Hamming ranking using 128 bits on the BBT dataset.
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