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Abstract
Pedestrian attribute recognition in surveillance is
a challenging task in computer vision due to sig-
nificant pose variation, viewpoint change and poor
image quality. To achieve effective recognition,
this paper presents a graph-based global reason-
ing framework to jointly model potential visual-
semantic relations of attributes and distill auxil-
iary human parsing knowledge to guide the rela-
tional learning. The reasoning framework models
attribute groups on a graph and learns a projection
function to adaptively assign local visual features
to the nodes of the graph. After feature projection,
graph convolution is utilized to perform global rea-
soning between the attribute groups to model their
mutual dependencies. Then, the learned node fea-
tures are projected back to visual space to facili-
tate knowledge transfer. An additional regulariza-
tion term is proposed by distilling human parsing
knowledge from a pre-trained teacher model to en-
hance feature representations. The proposed frame-
work is verified on three large scale pedestrian
attribute datasets including PETA, RAP, and PA-
100k. Experiments show that our method achieves
state-of-the-art results.

1 Introduction
Pedestrian attribute recognition aims to make prediction of a
set of attributes, e.g., age, gender and clothing, as the seman-
tic descriptions of a pedestrian image. It has recently drawn
increasing attentions due to its great potential in real appli-
cations such as person retrieval [Siddiquie et al., 2011] and
person re-identification [Wang et al., 2018]. Although great
development has been made in recent years, there still exist
a variety of challenges to address, such as significant pose
variation, viewpoint change and poor image quality.

To boost the performance of attribute recognition, it’s im-
portant to model both spatial and semantic relations of at-
tributes. In terms of spatial distribution, some attributes
may be correlated to different body parts, e.g., Longhair and
Boots, while others may correspond to the same region, e.g.,
Sweater and Shirt. From view of semantics, some attributes
are mutually exclusive, e.g., Long-Sleeve and Short-Sleeve,

while others may co-appear with a high probability, e.g.,
Dress and Female. These relations provide important con-
straints for attribute recognition complementary to visual ap-
pearance features.

Previous methods [Zhu et al., 2013; Deng et al., 2014]
solved the pedestrian attribute recognition by optimizing a
separate classifier for each of the attributes. In this way, the
relations between attributes are simply ignored. Some meth-
ods model the semantic relations or dependencies between at-
tributes using weighted loss functions [Li et al., 2015], prob-
abilistic graphical models [Chen et al., 2012], or Recurrent
Neural Networks [Wang et al., 2016; Wang et al., 2017]. In
these methods, pedestrian images are usually represented by
a holistic model or a simple rigid structure. As each attribute
may intrinsically be tied to different local regions, the spatial
relations of attributes may not be captured.

To explore spatial context, some methods [Liu et al., 2017;
Liu et al., 2018; Sarafianos and Kakadiaris, 2018] treated
pedestrian attribute recognition as a weakly supervised lo-
calization problem, and proposed attention mechanisms to
extract attribute-specific local features for image represen-
tation. Since accurate localization information is not avail-
able, these methods may lack the ability to describe human
body structures. To overcome the above-mentioned prob-
lem, some methods [Li et al., 2016c; Li et al., 2018] uti-
lize additional knowledge to guide the learning process. By
extracting local features using pre-trained part detectors or
around detected body key points, these methods can learn
well aligned features of body parts. However, the bounding
boxes are coarse annotations, thus may have limited capabil-
ity to describe some fine-grained details. Besides, additional
background noise may also be introduced since the rectangu-
lar bounding boxes may not always match the irregular body
contours.

In this paper, a graph-based global reasoning framework is
proposed to model both spatial and semantic relations of at-
tributes. To exploit potential constraints between attributes,
we first divide the attributes into multiple groups according
to their semantics or their described body parts. A reason-
ing module is proposed to model attributes on a graph struc-
ture, with each vertex representing one particular group of
attributes. To bridge the gap between visual features and se-
mantic attributes, a projection function is learned to assign
each local feature to the nodes of the graph. By aggregating
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local visual features as semantic representations, the attribute
groups can adaptively relate to their corresponding regions.
To perform global reasoning, graph convolution [Kipf and
Welling, 2017] is proposed to propagate information across
the nodes. Compared with traditional methods [Wang et al.,
2016; Wang et al., 2017] that employ RNNs to model long-
range dependencies of attributes, semantic relations of at-
tributes can be modeled in a more efficient way using the
graph convolution. After performing graph-based reasoning,
separate linear classifiers are applied on each node to sepa-
rately predict the attributes.

There have been a variety of attempts to enhance fea-
ture representations, e.g., using reconstruction loss as a reg-
ularization [Sabour et al., 2017]. However, these attempts
may not be appropriate for pedestrian images as they usu-
ally contain much background noise. As an alternative, we
project the node features back to visual space to predict hu-
man part segmentation maps, and utilize pixel-level classi-
fication loss as a regularization. This process can also be
viewed as an exploration of human parsing knowledge to
guide the visual-semantic reasoning. Compared to bound-
ing box part detection, human parsing can precisely localize
deformable body parts with more fine-grained details. Be-
sides, the way of introducing auxiliary knowledge is differ-
ent from previous methods [Li et al., 2016c]. Instead of
simply adopting a pre-trained detector for feature extraction,
we jointly optimize semantic part localization and attribute
recognition tasks, and thus can benefit from the cross-domain
multi-task learning. To facilitate knowledge transfer and dis-
covery, we perform knowledge distillation from a pre-trained
human parsing model to align to its prediction distributions at
each location.

The contributions of this paper are as follows:

• A graph-based reasoning module is proposed to adap-
tively bridge visual features and semantic attributes and
to perform global reasoning between attribute groups to
jointly model their spatial and semantic relations.

• A regularization term is proposed by distilling auxiliary
human parsing knowledge to guide the visual-semantic
reasoning and enhance feature representations.

• Experiments on three large scale pedestrian attribute
datasets including PETA, RAP and PA-100k demon-
strate the effectiveness of the proposed framework.

2 Related Work
2.1 Pedestrian Attribute Recognition
Semantic pedestrian attribute has been widely exploited in a
variety of vision tasks [Siddiquie et al., 2011; Wang et al.,
2018]. Earlier methods [Zhu et al., 2013; Deng et al., 2014]
treated multiple attributes independently and trained a sep-
arate classifier for each of the attributes. Later, [Sudowe
et al., 2015] trained a holistic CNN model for joint multi-
attribute classification. Based on [Sudowe et al., 2015], [Li
et al., 2015] adopted weighted cross entropy loss to addi-
tionally model inter-attribute correlation. Although achieving
great improvement in recognition performance, these meth-
ods fail to model potential relations between attributes. On

the other hand, some methods studied semantic dependencies
between attributes. [Chen et al., 2012] employed a Condi-
tional Random Field (CRF) to model mutual dependencies
between cloth attributes. Inspired by [Wang et al., 2016],
[Wang et al., 2017] proposed a RNN based recurrent sequen-
tial prediction model to capture high-order dependencies of
attributes. By representing images with a holistic model or a
rigid encoding scheme, these methods may not capture spatial
relations of attributes.

Some methods formulate attribute recognition as a weakly
supervised localization problem. [Liu et al., 2017] pro-
posed multi-directional attention modules to learn attention-
strengthened features at multiple levels and scales. Based
on a multi-scale attention model, [Sarafianos and Kakadiaris,
2018] added penalties on attention masks with high predic-
tion variance to boost the recognition performance. [Liu et
al., 2018] extracted attribute-specific local features using a
variant of class activation map to achieve attribute predic-
tion. Without accurate localization information, these meth-
ods may have limited capability to describe human body
structures.

Other methods depend on auxiliary knowledge to assist
part-based models. [Zhang et al., 2014] and [Li et al., 2016c]
utilized pretrained body-part detectors to extract multiple lo-
cal features for image representation. In this way, background
noise may also be included into the regions generated by
coarse bounding boxes. [Li et al., 2018] combined multi-
ple local features extracted around body key points which are
predicted by a pose estimation model. However, more fine-
grained details may not be explored by only focusing on par-
tial regions.

2.2 Graph-based Reasoning
Graph-based reasoning has been proved to be beneficial to a
variety of vision tasks, e.g., object recognition [Chen et al.,
2018a] and video understanding [Ma et al., 2018]. CRFs are
utilized to model the dependencies between labels [Li et al.,
2016b] in multi-label image classification. Recently, Graph
Convolutional Network (GCN) [Kipf and Welling, 2017] was
proposed for semi-supervised classification in language pro-
cessing. Further, [Wang and Gupta, 2018] employed GCN
to perform relational learning between detected objects for
video classification. [Li and Gupta, 2018] proposed to di-
rectly learn graph representations from 2D feature maps by
the clustering process. For more generic context modeling,
[Chen et al., 2018b] proposed an end-to-end trainable reason-
ing module with simpler convolutional operations. [Li et al.,
2019] proposed a graph-based reasoning module to capture
potential relations between pedestrian attributes.

2.3 Knowledge Distillation
To transfer knowledge between network models, [Hinton et
al., 2015] distilled knowledge from a pre-trained teacher
model to improve the learning of a target net. By aligning
to the teacher’s prediction distributions, the representation
power of the target model can be improved. For pedestrian
attribute recognition, it’s also desirable to explore auxiliary
knowledge to achieve effective training. In this paper, we per-
form knowledge distillation from a pre-trained human pars-
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Figure 1: Overview of the proposed framework.

ing model to introduce human body knowledge to guide our
visual-semantic reasoning.

3 Methodology
3.1 Framework Overview
In this paper, a graph-based reasoning framework is proposed
to capture both spatial and semantic relations for attribute
recognition. Given an input image, the reasoning module first
projects its 2D feature maps into a graph by assigning local
features to the nodes of the graph. In the graph, each node
represents one specific group of attributes grouped by their
semantics or their described body parts. To model mutual de-
pendencies between the attribute groups, graph convolution
is performed to propagate information along the edges and
update node features. After that, separate linear classifiers
are adopted on each node to classify corresponding attributes.
Besides, the learned node features are also projected back to
visual space to enhance feature representations. To equip the
framework with human body knowledge, a residual block is
adopted to utilize both inverse transformed features and the
original features to predict human part segmentation maps.
To achieve effective knowledge transfer, knowledge distilla-
tion is performed from a pre-trained human parsing model
to align to its prediction distributions at each location. The
whole framework is illustrated in Figure 1.

3.2 Visual-semantic Reasoning
To bridge local regions and semantic attributes, a projection
function φ is learned to encode spatial features into repre-
sentations of semantic nodes. In this way, different seman-
tic nodes will adaptively relate to corresponding regions ac-
cording to their characteristics. Let X ∈ RN×Dv

denote the
visual features extracted from a convolutional layer, where
N =W ×H is the number of locations and Dv is the feature
channel. The projection function can be formulated as:

B = φ(Avs,X,Wvs) (1)

where B ∈ RM×Ds

denotes the feature matrix of seman-
tic nodes, in which each node feature bm ∈ RDs

is used
to represent one specific group of attributes (e.g., gender,

age or accessories). Wvs ∈ RDv×Ds

denotes the trainable
transformation matrix which projects each local visual fea-
ture xn ∈ X into the dimension Ds. Avs ∈ RM×N denotes
the adjacency matrix which computes the assignment weights
for local visual features to each semantic node. Specifically,
the feature of each semantic node is computed by weighted
summation of transformed local features via the assignment
weights. The element am,n ∈ Avs, which represents the con-
fidence of assigning local features xn to the node m, is com-
puted as:

am,n =
exp (wa

mxn)∑
m exp(wa

mxn)
(2)

where Wa = [wa
1 , ...,w

a
M ] ∈ RDv×M denotes the trainable

weight matrix for computing the assignment weights. Avs

is normalized using the softmax function at each location,
which means the contribution of each local feature to voting
all semantic nodes sums to 1. Based on Eq.(2), the function
φ is computed as:

B = AvsXWvs (3)
In practice, Eq.(2) and Eq.(3) can be implemented by two
convolutional layers with 1× 1 kernel sizes, which is easy to
implement and end-to-end trainable. Different from [Li et al.,
2016c; Zhang et al., 2014] which represent part regions using
rectangular bounding boxes, the soft assignment scheme pro-
vides a more generic solution to better describe deformable
part regions.

Given the matrix B, it’s desirable to perform reasoning
over the graph to capture the semantic relations between dif-
ferent groups of attributes. Therefore, graph convolution
[Kipf and Welling, 2017] is utilized to propagate information
across nodes, which is formulated as:

Z = (I−As)BWs (4)

where Ws ∈ RDs×Ds

denotes the learnable weight of the
layer. As ∈ RM×M denotes the adjacency matrix and I is the
identity matrix. The identity matrix is adopted as a shortcut
connection to facilitate optimization and As is learned from
data during the training process.
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After performing graph convolution, the output representa-
tions of the graph are employed for attribute prediction. It’s
achieved by applying separate linear classifiers for each of the
semantic nodes:

p̂m
cls = fmcls(zm; θmcls) (5)

where zm ∈ Z denotes the output of the m-th node. p̂m
cls de-

notes the predicted attribute vector of group m. θmcls denotes
the linear weights for the m-th node. Then, the total attribute
vector can be written as p̂cls = [p̂1

cls, ..., p̂
M
cls] ∈ RK . Note

that it’s also feasible to directly represent each attribute with
one node. However, since some correlated attributes may re-
late to the same local region, reasoning on groups can exploit
the potential constraints between attributes.

To facilitate knowledge transfer, the output features of the
nodes are then projected back to visual space. Given the rep-
resentations Z, a mapping function X̃ = ϕ(Asv,Z,Wsv) is
learned to perform inverse feature transformation. Similar as
Eq.(3), function ϕ is implemented as:

X̃ = AsvZWsv (6)
where Asv ∈ RN×M is the inverse assignment matrix and
Wsv ∈ RDs×Dv

is the learnable weight matrix. The inverse
assignment matrix is set to Asv = (Avs)> for computational
efficiency. Further, a residual connection is adopted to utilize
both transformed features and the original features to train a
human parsing classifier fprs((X + X̃); θprs). By imposing
an additional constraint for the reasoning module, the pro-
posed framework can introduce auxiliary human body knowl-
edge to improve its representation capability.

3.3 Loss Function
The whole network is end-to-end trained using an object
function which is the sum of three losses. First, the cross
entropy loss is employed to achieve multi-class attribute clas-
sification:

Lcls = −
1

K

K∑
k=1

ykcls log(p̂
k
cls)+(1−ykcls) log(1− p̂kcls) (7)

where p̂kcls ∈ p̂cls denotes the output probability of the k-th
attribute. ykcls is the corresponding ground truth annotation.

Besides the attribute classification, our proposed network
also predicts a set of segmentation maps for localizing human
parts. The output label maps are 3D tensors with a shape of
H × W × C, whereC denotes the number of classes includ-
ing the background. Let ẑi,cprs denote the logits for the i-th lo-
cation predicted by our network where c ∈ {1, ..., C} belongs
to one of C classes, the normalized output probability p̂i,cprs
can be computed as p̂i,cprs = exp(ẑi,cprs)/

∑C
j=1 exp (ẑ

i,j
prs).

Similarly, the teacher’s output probability is computed as
pi,cprs = exp(zi,cprs)/

∑C
j=1 exp (z

i,j
prs) with the logits zi,jprs.

Thus, the pixel-wise classification loss can be formulated as:

Lprs = −
1

H ×W

H×W∑
i=1

C∑
c=1

δi,c log(p̂
i,c
prs) (8)

where δi,c is the Dirac delta function which returns 1 if c =
argmaxc∈{1,...,C}(p

i,c
prs), and 0 otherwise.

With the pixel-wise classification loss, the proposed net-
work is trained to predict the pseudo labels in principle of
maximum likelihood. To further enhance knowledge discov-
ery and transfer, knowledge distillation is performed by com-
puting soft probability distributions at a temperature of T for
both the teacher and our proposed network as:

pi,ckl =
exp(zi,cprs/T )∑C

j=1 exp (z
i,j
prs/T )

, p̂i,ckl =
exp(ẑi,cprs/T )∑C

j=1 exp (ẑ
i,j
prs/T )

(9)
To measure prediction similarity between the proposed
framework and the teacher at each pixel location, the Kull-
back Leibler divergence is employed as:

Lkl =
1

H ×W

H×W∑
i=1

C∑
c=1

pi,ckl
log(pi,ckl )

log(p̂i,ckl )
(10)

Finally, the overall loss function can be obtained by:

L = Lcls + Lprs + T 2 ∗ Lkl (11)

where T 2 denotes the scaling factor for distillation loss to
make sure the contributions of the second term and third term
are comparable since the gradient magnitudes produced by
the soft targets are scaled by 1/T 2.

4 Experiments
Datasets. The proposed method is evaluated on three large-
scale pedestrian attribute datasets: (1) The PEdesTrian At-
tribute (PETA) dataset [Deng et al., 2014] consists of 19,
000 person images collected from 10 small-scale person
datasets. The whole dataset is randomly divided into three
non-overlapping partitions: 9500 for training, 1900 for veri-
fication, and 7600 for evaluation. In this dataset, 35 attributes
whose positive ratios are higher than 5% are used for evalu-
ation. (2) The Richly Annotated Pedestrian (RAP) attribute
dataset [Li et al., 2016a] contains 41,585 images drawn from
26 indoor surveillance cameras. Each image is labelled with
69 binary attributes and 3 multi-class attributes. Following
the official protocol, the whole dataset is split into 33,268
training images and 8,317 test images. The recognition per-
formance is evaluated on 51 binary attributes. (3) The PA-
100k Dataset [Liu et al., 2017] consists of 100,000 pedestrian
images from 598 outdoor scenes. Each image is described
with 26 commonly used attributes. The whole dataset is split
into training, validation and test sets with a ratio of 8:1:1.
Implementation Details. For human semantic parsing, we
adopt the architecture of [Kalayeh et al., 2018] as the teacher
model and use the Densepose [Alp Guler et al., 2018] dataset
for training. The Densepose dataset contains 14 part annota-
tions. To reduce training difficulties, the left/right parts are
fused and the hand regions are assigned to lower arm class,
which lead to 7 parts eventually. The parsing net takes im-
ages of size 512×512 as inputs and outputs prediction maps
of size 30×30. The network is trained for 20 epochs with a
batch size of 8. We employ a ResNet-50 network for image
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representation, and extract convolutional features of the last
residual block (“Res 5c”) as the input for our visual-semantic
reasoning module. For data augmentation, the input images
are randomly scaled from 384×192 to 256×128 for each mini
batch. To match the output resolution of the parsing net, bi-
linear interpolation is employed to scale up the input feature
maps of the reasoning module to size 30×30. Dv is 2048
and Ds is set to 512. The temperature T is set to 3. The
attributes are divided into 7 groups for PETA and 10 groups
for RAP following [Zhao et al., 2018]. For PA-100k dataset,
the attributes are divided into 8 groups including gender, age,
view angle, head, accessories, upper body, lower body and
footwear. Function fprs(·) is implemented using an atrous
spatial pyramid pooling followed by a 1×1 convolution layer
for classification. The network is optimized by stochastic gra-
dient descend algorithm with a batch size of 16, a momentum
of 0.9 and a weight decay of 0.0005. The initial learning rate
is set to 0.001 and is divided by 10 after every 30 epochs. The
reasoning network is trained for 60 epochs.

Performance Metrics. Two kinds of metrics are adopted to
evaluate attribute recognition performance. (1) Class-based:
The mean Accuracy (mA) is usually utilized as the class-
based measure. (2) Instance-based: The instance-based met-
rics include accuracy, precision, recall rate and F1-score [Li
et al., 2016a]. For accuracy, precision and recall, the scores of
the predicted attributes against the groundtruth are first com-
puted for each instance and then averaged over all test images.
The F1-score is computed based on precision and recall.

Competitors. The proposed method is compared against 10
state-of-the-art models. (1) ELF-mm [Gray and Tao, 2008]
employs SVM classifier with Ensemble of Localized Features
(ELF) for attribute recognition; (2)-(3) FC7-mm and FC6-
mm replace the hand-crafted ELF features with CNN features
(FC7 and FC6 output of the AlexNet); (4) Attributes Convo-
lutional Network (ACN) [Sudowe et al., 2015] jointly trains a
CNN model for all attributes, which allows to share weights
and transfer knowledge among different attributes; (5) Deep-
MAR [Li et al., 2015] additionally considers inter-attribute
correlation by weighted cross entropy loss function; (6) HP-
net [Liu et al., 2017] is an attention based method that em-
ploys multi-directional attention modules to train multi-level
and multi-scale attention-strengthened features; (7) MsVAA
[Sarafianos and Kakadiaris, 2018] also aggregates visual at-
tention on multi-scales, combined with additional penalties
on attention masks and a weighted loss function. (8) JRL
model [Wang et al., 2017] employs RNN encoder-decoder to
jointly learn image level context and attribute level sequen-
tial correlation for prediction; (9) VeSPA model [Sarfraz et
al., 2017] jointly learns a coarse view predictor and view-
dependent image features for attribute inference; (10) PGDM
[Li et al., 2018] learns a pose-normalized feature representa-
tion for recognition by extracting and aligning local features
around detected key points.

4.1 Experimental Results
Table 1 reports the evaluation results on three datasets. On
PETA dataset, JRL achieves the best score in mA and our
model reports the second best result (85.67% vs. 84.90%).

Dataset Method Metric

mA Acc Pre Recall F1

PETA

ELF-mm 75.21 43.68 49.45 74.24 59.36
FC7-mm 76.65 45.41 51.33 75.14 61.00
FC6-mm 77.69 48.31 54.06 76.49 63.35
ACN 81.15 73.66 84.06 81.26 82.64
Deep-Mar 82.89 75.07 83.68 83.14 83.41
HP-net 81.77 76.13 84.92 83.24 84.07
MsVAA 84.59 78.56 86.79 86.12 86.46
JRL 85.67 - 86.03 85.34 85.42
VeSPA 83.45 77.73 86.18 84.81 85.49
PGDM 82.97 78.08 86.86 84.68 85.76

Ours 84.90 80.95 88.37 87.47 87.91

RAP

ELF-mm 69.94 29.29 32.84 71.18 44.95
FC7-mm 72.28 31.72 35.75 71.78 47.73
FC6-mm 73.32 33.37 37.57 73.23 49.66
ACN 69.66 62.61 80.12 72.26 75.98
Deep-Mar 73.79 62.02 74.92 76.21 75.56
HP-net 76.12 65.39 77.33 78.79 78.05
MsVAA - - - - -
JRL 77.81 - 78.11 78.98 78.58
VeSPA 77.70 67.35 79.51 79.67 79.59
PGDM 74.31 64.57 78.86 75.90 77.35

Ours 78.30 69.79 82.13 80.35 81.23

PA-100k

Deep-Mar 72.70 70.39 82.24 80.42 81.32
HP-net 74.21 72.19 82.97 82.09 82.53
PGDM 74.59 73.08 84.36 82.24 83.29

Ours 77.87 78.49 88.42 86.08 87.24

Table 1: Evaluation results on three datasets. The 1st and 2nd best
results are in bold fonts and underlined, respectively.

Despite that, the proposed method still outperforms the state-
of-the-arts on all four instance-based metrics by 2.39%,
1.51%, 1.35%, and 1.45%, respectively. On RAP dataset, the
proposed method has achieved the best performance on both
class-based and instance-based metrics. ACN model presents
the second best result in precision and VeSPA achieves the
second best results in accuracy, recall rate and F1-score. PA-
100k is a newly proposed dataset thus has fewer released re-
sults. On this dataset, PGDM has reported better results com-
pared to Deep-Mar and HP-net due to its exploration of coarse
pose information. However, its scores are lower than our pro-
posed method, especially in accuracy (73.08% vs. 78.49%)
and recall rate (82.24% vs. 86.08%). It indicates that PGDM
tends to miss some attributes in recognition, which might be
caused by its limited ability in capturing fine-grained details.
In contrast, our method has significantly improved the results
by all metrics due to its effectiveness of distilling human pars-
ing knowledge as the guidance for reasoning.

4.2 Ablation Study
The improvement of the proposed method can be contributed
to two aspects: visual-semantic graph reasoning and auxil-
iary human parsing knowledge distillation. In this section,
we conduct experiments to show how these two aspects im-
prove recognition performance.

Effect of Visual-semantic Graph Reasoning. For better
comparison, a simple ResNet-50 model is adopted as the
baseline. Without the visual-semantic reasoning module, an-
other model is implemented by exploiting parsing results to
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Dataset Method Metric

mA Acc Pre Recall F1

PETA
Baseline 81.27 76.69 87.33 82.76 84.99
Model-F 82.09 77.40 87.84 83.58 85.75
Ours 84.90 80.95 88.37 87.47 87.91

RAP
Baseline 75.12 66.67 81.16 76.52 79.00
Model-F 76.08 67.45 81.48 77.33 79.82
Ours 78.30 69.79 82.13 80.35 81.23

PA-100k
Baseline 76.31 76.76 88.62 83.22 85.84
Model-F 76.91 77.37 88.30 83.72 85.95
Ours 77.87 78.49 88.42 86.08 87.24

Table 2: Effect of visual-semantic graph reasoning. The best result
is in bold.

Dataset Method Metric

mA Acc Pre Recall F1

PETA
Model-N 83.37 78.73 87.84 84.13 85.94
Model-I 80.75 76.05 86.37 82.45 84.36
Ours 84.90 80.95 88.37 87.47 87.91

RAP
Model-N 76.76 67.98 82.01 78.06 79.99
Model-I 75.04 66.17 80.64 76.13 78.32
Ours 78.30 69.79 82.13 80.35 81.23

PA-100k
Model-N 77.28 78.31 88.51 84.96 86.70
Model-I 76.12 75.93 87.76 82.79 85.20
Ours 77.87 78.49 88.42 86.08 87.24

Table 3: Effect of auxiliary human parsing knowledge distillation.
The best result is in bold.

extract multiple part features and then concatenating local
features as a global representation for multi-attribute classifi-
cation. It’s denoted as Model-F. Instead of acting as a seman-
tic regularization, the human parsing knowledge is merely
used for feature extraction and alignment. These two mod-
els are compared with the proposed method. As is shown in
Table 2, by introducing human parsing results for feature ex-
traction and alignment, the evaluation results can be slightly
improved. However, there still exists a significant gap in per-
formance between Model-F and our reasoning framework,
especially in recall rate (83.58% vs. 87.47% on PETA and
77.33% vs. 80.35% on RAP). It demonstrates the effective-
ness of our visual-semantic reasoning in modeling the spatial
and semantic relations of attributes.

Effect of Auxiliary Human Parsing Knowledge Distilla-
tion. Two additional models are implemented to show the
effectiveness of auxiliary knowledge distillation. The first
model only performs visual-semantic reasoning and ignores
the regularization term for knowledge transfer. The second
model replaces human parsing knowledge distillation with re-
construction of input images and uses reconstruction loss as
a regularization following [Sabour et al., 2017]. They are
respectively denoted as Model-N and Model-I. As is shown
Table 3, simply adopting reconstruction loss as the regulariza-
tion could lead to performance decrease on all three datasets.
It might be caused by the difficulties to reconstruct input im-
ages as they usually contain much background noise. In com-

Groundtruth: Male, Age17-30, BodyNormal, 
Customer,  hs-BlackHair, ub-Jacket, lb-Jeans, shoes-
Sport, attach-Other, action-Calling
Baseline:  Male, Age17-30, BodyNormal, Customer, 
hs-BlackHair, lb-LongTrousers, shoes-Casual, attach-
Other, action-Calling (True: 7, False: 2, Miss: 3)
Ours: Male, Age17-30, BodyNormal, Customer, hs-
BlackHair, lb-Jeans, shoes-Sport, attach-Other, action-
Calling (True: 9, False: 0, Miss: 1)
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Groundtruth: Age18-60, Front, Glasses, Backpack, 
LongSleeve, Trousers

Baseline: Age18-60, Front, LongSleeve, Trousers 
(True: 4, False: 0, Miss: 2)

Ours: Age18-60, Front, Glasses, Backpack, 
LongSleeve, Trousers (True: 6, False: 0, Miss: 0)

Figure 2: Qualitative results of human parsing and attribute recog-
nition. The correct and wrong attribute predictions are marked in
green and red, respectively. The samples are from RAP and PA-
100k.

parison, the proposed model can benefit from knowledge dis-
tillation as this process introduces human body knowledge for
the reasoning module.
Qualitative Evaluation. Figure 2 shows the human pars-
ing and attribute recognition results of two pedestrian im-
ages from RAP and PA-100k. Results show that the pre-
trained human parsing model can accurately segment most
body parts of pedestrian images, which is favorable for our
visual-semantic reasoning framework. In recognition, the
baseline ResNet-50 model makes some wrong predictions
and misses some attributes. It might be caused by its limited
capability to describe human body structures. In contrast, the
proposed method can correctly predict lb-LongTrousers and
shoes-Casual in the first image and recognize all attributes in
the second image.

5 Conclusion
In this paper, a graph-based global reasoning framework is
proposed to jointly model potential spatial and semantic re-
lations of attributes and exploit auxiliary knowledge for at-
tribute recognition. The reasoning module not only adap-
tively bridges local visual features and semantic attributes
but also models the dependencies between attribute groups by
performing graph-based reasoning. A regularization term is
proposed by distilling human parsing knowledge to enhance
feature presentations and guide the visual-semantic reason-
ing. Experiment results show superiority of the proposed
method over state-of-the-arts and effectiveness of our reason-
ing module and auxiliary human parsing knowledge distilla-
tion.
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