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Abstract
Consider the following problem faced by an online
voting platform: A user is provided with a list of al-
ternatives, and is asked to rank them in order of pref-
erence using only drag-and-drop operations. The
platform’s goal is to recommend an initial ranking
that minimizes the time spent by the user in arriving
at her desired ranking. We develop the first opti-
mization framework to address this problem, and
make theoretical as well as practical contributions.
On the practical side, our experiments on Amazon
Mechanical Turk provide two interesting insights
about user behavior: First, that users’ ranking strate-
gies closely resemble selection or insertion sort, and
second, that the time taken for a drag-and-drop op-
eration depends linearly on the number of positions
moved. These insights directly motivate our the-
oretical model of the optimization problem. We
show that computing an optimal recommendation
is NP-hard, and provide exact and approximation
algorithms for a variety of special cases of the prob-
lem. Experimental evaluation on MTurk shows that,
compared to a random recommendation strategy, the
proposed approach reduces the average time-to-rank
by up to 50%.

1 Introduction
Eliciting preferences in the form of rankings over a set of
alternatives is a common task in social choice, crowdsourcing,
and in daily life. For example, the organizer of a meeting might
ask the participants to rank a set of time-slots based on their
individual schedules. Likewise, in an election, voters might
be required to rank a set of candidates in order of preference.

Over the years, computerized systems have been increas-
ingly used in carrying out preference elicitation tasks such as
the ones mentioned above. Indeed, recently there has been a
proliferation of online voting platforms such as CIVS, OPRA,
Pnyx, RoboVote, and Whale4.1 In many of these platforms,

∗Contact Author
1CIVS (https://civs.cs.cornell.edu/), OPRA (opra.io), Pnyx

(https://pnyx.dss.in.tum.de/), RoboVote (http://robovote.org/),
Whale4(https://whale.imag.fr/).
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Figure 1: Sorting via drag-and-drop operations.

a user is presented with an arbitrarily ordered list of alter-
natives, and is asked to shuffle them around in-place using
drag-and-drop operations until her desired preference order-
ing is achieved. Figure 1 illustrates the use of drag-and-drop
operations to sort a list of numbers in descending order.

Our focus in this work is on time-to-rank, i.e., the time it
takes for a user to arrive at her desired ranking, starting from
a ranking suggested by the platform and using only drag-and-
drop operations. We study this problem from the perspective of
the voting platform that wants to recommend an optimal initial
ranking to the user (i.e., one that minimizes time-to-rank).
Time to accomplish a designated task is widely considered as a
key consideration in the usability of automated systems [Bevan
et al., 2015; Albert and Tullis, 2013], and serves as a proxy
for user effort. Indeed, ‘time on task’ was identified as a key
factor in the usability and efficiency of computerized voting
systems in a 2004 report by NIST to the U.S. Congress for the
Help America Vote Act (HAVA) [Laskowski et al., 2004].
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Figure 2: High level overview of our framework. Our technical contributions are highlighted in blue.

Note that the initial ranking suggested by the platform can
have a significant impact on the time spent by the user on
the ranking task. Indeed, if the user’s preferences are known
beforehand, then the platform can simply recommended it to
her and she will only need to verify that the ordering is correct.
In practice, however, users’ preferences are often unknown.
Furthermore, users employ a wide variety of ranking strategies,
and based on their proficiency with the interface, users can
have very different drag-and-drop times. All these factors
make the task of predicting the time-to-rank and finding an
optimal recommendation challenging and non-trivial.

We emphasize the subtle difference between our problem
and that of preference elicitation. The latter involves re-
peatedly asking questions to the users (e.g., pairwise com-
parisons between alternatives) to gather enough informa-
tion about their preferences. By contrast, our problem in-
volves a one-shot recommendation followed by a series
of drag-and-drop operations until the desired ranking is
achieved. There is an extensive literature on preference elic-
itation [Conitzer and Sandholm, 2002; Blum et al., 2004;
Boutilier, 2013; Busa-Fekete et al., 2014; Soufiani et al., 2013;
Zhao et al., 2018]. Yet, somewhat surprisingly, the problem
of recommending a ranking that minimizes users’ time has
received little attention. Our work aims to address this gap.

Our Contributions
We make contributions on three fronts:
• On the conceptual side, we propose the problem of mini-

mizing time-to-rank and outline a framework for address-
ing it (Figure 2).
• On the theoretical side, we formulate the optimization

problem of finding a recommendation to minimize time-
to-rank (Section 4). We show that this problem is NP-
hard, even under highly restricted settings (Theorem 3).
We complement the intractability results by providing a
number of exact (Theorem 2) and approximation algo-
rithms (Theorems 4 to 6) for special cases of the problem.
• We use experimental analysis to motivate our modeling

assumptions as well as to justify the effectiveness of our
approach (Section 5). Our experiments on MTurk reveal
two insights about user behavior (Section 5.1): (1) The
ranking strategies of real-world users closely resemble
insertion/selection sort, and (2) the drag-and-drop time
of an alternative varies linearly with the distance moved.
We find that a simple adaptive strategy (based on Borda
count voting rule) can reduce time-to-rank by up to 50%
compared to a random strategy (Section 5.2), validating
the usefulness of the proposed framework.

1.1 Overview of Our Framework
Figure 2 illustrates the proposed framework which consists of
three key steps. In Step 1, we learn user preferences from his-
torical data by developing a statistical ranking model, typically
in the form of a distribution D over the space of all rankings
(refer to Section 2 for examples of ranking models). In Step
2, which runs in parallel to Step 1, we learn user behavior;
in particular, we identify their sorting strategies (Section 3.1)
as well as their drag-and-drop times (Section 3.2). Together,
these two components define the time function which models
the time taken by a user in transforming a given initial ranking
σ into a target ranking τ , denoted by time(σ, τ). The rank-
ing model D from Step 1 and the time function from Step 2
together define the recommendation problem in Step 3, called
(D,w)-RECOMMENDATION (the parameter w is closely re-
lated to the time function; we elaborate on this below). This
is the optimization problem of computing a ranking σ that
minimizes the expected time-to-rank of the user, i.e., mini-
mizes Eτ∼D[time(σ, τ)]. The user is then recommended σ,
and her preference history is updated.

The literature on learning statistical ranking models is al-
ready well-developed [Guiver and Snelson, 2009; Awasthi
et al., 2014; Lu and Boutilier, 2014; Zhao et al., 2016;
Xia, 2019]. Thus, while this is a key ingredient of our frame-
work (Step 1), our work only focuses on Steps 2 and 3 con-
cerning user behavior and the recommendation problem.

Recall that the time function defines the time taken by a
user in transforming a given ranking σ into a target ranking τ .
For a user who follows a fixed sorting algorithm (e.g., insertion
or selection sort), the time function can be broken down into
(1) the number of drag-and-drop operations suggested by the
sorting algorithm, and, (2) the (average) time taken for each
drag-and-drop operation by the user. As we will show in
Lemma 1 in Section 3.1, point (1) above is independent of the
choice of the sorting algorithm. Therefore, the time function
can be equivalently defined in terms of the weight function w,
which describes the time taken by a user, denoted by w(`),
in moving an alternative by ` positions via a drag-and-drop
operation. For this reason, we use w in the formulation of
(D,w)-RECOMMENDATION.

Applicability. Our framework is best suited for users who
have already formed their preferences, so that the recom-
mended ranking does not bias their preferences. This is a
natural assumption in some applications, such as in the meet-
ing organization example in Section 1. In general, however, it
is possible that a user, who is undecided between options A
and B, might prefer A over B if presented in that order by the
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Distribution D Linear Weights General Weights

Hardness Exact Algo. Approx. Algo. Approx. Algo.

k-mixture Plackett-Luce (k-PL) NP-c even for k = 4
(Theorem 3)

Poly for k = 1
(Theorem 2)

PTAS (Theorem 4)
5-approx. (Theorem 5)

αβ-approx.
(Theorem 6)

k-mixture Mallows (k-MM) NP-c even for k = 4
(Theorem 3)

Poly for k = 1
(Theorem 2)

PTAS (Theorem 4)
5-approx. (Theorem 5)

αβ-approx.
(Theorem 6)

Uniform (Unif) NP-c even for n = 4
(Theorem 3)

Poly for n ∈ {1, 2}
(Theorem 2)

PTAS (Theorem 4)
5-approx. (Theorem 5)

αβ-approx.
(Theorem 6)

Table 1: Computational complexity results for (D,w)-RECOMMENDATION. Each row corresponds to a preference model and each column
corresponds to a weight function. We use the shorthands Poly, NP-c, PTAS, and αβ-approx. to denote polynomial-time (exact) algorithm, NP-
complete, polynomial-time approximation scheme, and αβ-approximation algorithm (for (α, β)-close weights; see Definition 6) respectively.

recommended ranking. Investigating such biases (a.k.a. “fram-
ing effect”) is an interesting direction for future work.
Additional related work. Our work is related to the lit-
erature on inferring a ground truth ordering from noisy in-
formation [Braverman and Mossel, 2008], and aggregat-
ing preferences by minimizing some notion of distance
to the observed rankings such as the total Kendall’s Tau
distance [Procaccia and Shah, 2016]. Previous work on
preference learning and learning to rank can also be inte-
grated in our framework [Liu, 2011; Lu and Boutilier, 2014;
Khetan and Oh, 2016; Agarwal, 2016; Negahban et al., 2017;
Zhao and Xia, 2018].

2 Preliminaries
Let A = {a1, . . . , am} denote a set of m alternatives, and let
L(A) be the set of all linear orders over A. For any σ ∈ L(A),
ai �σ aj denotes that ai is preferred over aj under σ, and let
σ(k) denote the kth most preferred alternative in σ. A set of n
linear orders {σ(1), . . . , σ(n)} is called a preference profile.
Definition 1 (Kendall’s Tau distance; [Kendall, 1938]). Given
two linear orders σ, σ′ ∈ L(A), the Kendall’s Tau dis-
tance dkt(σ, σ

′) is the number of pairwise disagreements be-
tween σ and σ′. That is, dkt(σ, σ

′) :=
∑
ai,aj∈A 1[aj �σ′

ai and ai �σ aj ], where 1 is the indicator function.
Definition 2 (Plackett-Luce model; [Plackett, 1975; Luce,
1959]). Let θ := (θ1, . . . , θm) be such that θi ∈ (0, 1) for
each i ∈ [m] and

∑
i∈[m] θi = 1. Let Θ denote the corre-

sponding parameter space. The Plackett-Luce (PL) model
parameterized by θ ∈ Θ defines a distribution over the set of
linear orders L(A) as follows: The probability of generating
σ := (ai1 � ai2 � . . . � aim) is given by

Pr(σ|θ) =
θi1∑m
`=1 θi`

· θi2∑m
`=2 θi`

· · · · · θim−1

θim−1
+θim

.

More generally, a k-mixture Plackett-Luce model (k-PL)

is parameterized by {γ(`), θ(`)}k`=1, where
∑k
`=1 γ

(`) = 1,
γ(`) ≥ 0 for all ` ∈ [k], and θ(`) ∈ Θ for all ` ∈
[k]. The probability of generating σ ∈ L(A) is given by
Pr(σ|{γ(`), θ(`)}k`=1) =

∑k
`=1 γ

(`) Pr(σ|θ(`)).
Definition 3 (Mallows model; [Mallows, 1957]). The Mal-
lows model (MM) is specified by a reference ranking σ∗ ∈

L(A) and a dispersion parameter φ ∈ (0, 1]. The probability

of generating a ranking σ is given by Pr(σ|σ∗, φ) = φdkt(σ,σ
∗)

Z ,

where Z =
∑
σ′∈L(A) φ

dkt(σ
′,σ∗).

More generally, a k-mixture Mallows model (k-MM) is
parameterized by {γ(`), σ∗(`), φ(`)}

k
`=1, where

∑k
`=1 γ

(`) = 1,
γ(`) ≥ 0 for all ` ∈ [k], and σ∗(`) ∈ L(A), φ(`) ∈ (0, 1] for all
` ∈ [k]. The probability of generating σ ∈ L(A) is given by
Pr(σ|{γ(`), σ∗(`), φ(`)}

k
`=1) =

∑k
`=1 γ

(`) Pr(σ|σ∗(`), φ(`)).
Definition 4 (Uniform distribution). Under the uniform dis-
tribution (Unif) supported on a preference profile {σ(i)}ni=1,
the probability of generating σ ∈ L(A) is 1

n if σ ∈ {σ(i)}ni=1
and 0 otherwise.

3 Modeling User Behavior
In this section, we will model the time spent by the user in
transforming the recommended ranking σ into the target rank-
ing τ . Our formulation involves the sorting strategy of the user
(Section 3.1) as well as her drag-and-drop time (Section 3.2).

3.1 Sorting Algorithms
A sorting algorithm takes as input a ranking σ ∈ L(A) and
performs a sequence of drag-and-drop operations until the
target ranking is achieved. At each step, an alternative is
moved from its current position to another (possibly differ-
ent) position and the current ranking is updated accordingly.
Below we will describe two well-known examples of sort-
ing algorithms: selection sort and insertion sort. Let σ(k)

denote the current list at time step k ∈ {1, 2, . . . } (i.e., be-
fore the sorting operation at time step k takes place). Thus,
σ(1) = σ. For any σ ∈ L(A), define the k-prefix set of σ
as Pk(σ) := {σ(1), σ(2), . . . , σ(k)} (where P0(σ) := ∅) and
corresponding suffix set as Sk(σ) := A \ Pk(σ).

Selection sort. Let ai denote the most preferred alternative
according to τ in the set Sk−1(σ(k)). At step k of selection
sort, the alternative ai is promoted to a position such that the
top k alternatives in the new list are ordered according to τ .
Note that this step is well-defined only under the sorted-prefix
property, i.e., at the beginning of step k of the algorithm, the
alternatives in Pk−1(σ(k)) are sorted according to τ . This
property is maintained by selection sort.
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Insertion sort. Let ai denote the most preferred alternative
in Sk−1(σ(k)) according to σ(k). At step k of insertion sort,
the alternative ai is promoted to a position such that the top k
alternatives in the new list are ordered according to τ . Note
that this step is well-defined only under the sorted-prefix prop-
erty, which is maintained by insertion sort.

Sorting algorithms. In this work, we will be concerned
with sorting algorithms that involve a combination of insertion
and selection sort. Specifically, we will use the term sorting
algorithm to refer to a sequence of steps s1, s2, . . . such that
each step sk corresponds to either selection or insertion sort,
i.e., sk ∈ {SEL,INS} for every k. If sk = SEL, then the algo-
rithm promotes the most preferred alternative in Sk−1(σ(k))
(according to τ ) to a position such that the top k alternatives
in the new list are ordered according to τ . If sk = INS,
then the algorithm promotes the most preferred alternative in
Sk−1(σ(k)) (according to σ(k)) to a position such that the top
k alternatives in the new list are ordered according to τ . For
example, in Figure 1, starting from the recommended list at
the extreme left, the user performs a selection sort operation
(promoting 19 to the top of the current list) followed by an
insertion sort operation (promoting 30 to its correct position in
the sorted prefix {19, 22, 40}) followed by either selection or
insertion sort operation (promoting 23 to its correct position).
We will denote a generic sorting algorithm by A and the class
of all sorting algorithms by A.

Count function. Given a sorting algorithmA, a source rank-
ing σ ∈ L(A) and a target ranking τ ∈ L(A), the count
function fσ→τA : [m− 1]→ Z+ ∪{0} keeps track of the num-
ber of drag-and-drop operations (and the number of positions
by which some alternative is moved in each such operation)
during the execution of A. Formally, fσ→τA (`) is the number
of times some alternative is ‘moved up by ` positions’ dur-
ing the execution of algorithm A when the source and target
rankings are σ and τ respectively.2 For example, let A be
insertion sort, σ = (d, c, a, b), and τ = (a, b, c, d). In step 1,
the user considers the alternative d and no move-up operation
is required. In step 2, the user promotes c by one position
(since c �τ d) to obtain the new list (c, d, a, b). In step 3,
the user promotes a by two positions to obtain (a, c, d, b).
Finally, the user promotes b by two positions to obtain the
target list (a, b, c, d). Overall, the user performs one ‘move
up by one position’ operation and two ‘move up by two po-
sitions’ operations. Hence, fσ→τA (1) = 1, fσ→τA (2) = 2,
and fσ→τA (3) = 0. We will write #moves to denote the total
number of drag-and-drop operations performed during the
execution of A, i.e., #moves =

∑m−1
`=1 fσ→τA (`).

Remark 1. Notice the difference between the number of drag-
and-drop operations (#moves) and the total distance cov-
ered (i.e., the number of positions by which alternatives are
moved). Indeed, the above example involves three drag-and-
drop operations (#moves = 3), but the total distance moved is

2Notice that we do not keep track of which alternative is moved
by ` positions. We believe it is reasonable to assume that moving a1
up by ` positions takes the same time as it does for a2. Also, we do
not need to define the count function for move down operations as
neither selection sort nor insertion sort will ever make such a move.

0 + 1 + 2 + 2 = 5. The latter quantity is equal to dkt(σ, τ).

Lemma 1. For any two sorting algorithms A,A′ ∈ A, any
σ, τ ∈ L(A), and any ` ∈ [m− 1], fσ→τA (`) = fσ→τA′ (`).

In light of Lemma 1, we will hereafter drop the subscript A
and simply write fσ→τ instead of fσ→τA . All missing proofs
can be found in the full version [Li et al., 2019].

3.2 Drag-and-Drop Time
Weight function. The weight function w : [m− 1]→ R≥0
models the time taken for each drag-and-drop operation;
specifically, w(`) denotes the time taken by the user in mov-
ing an alternative up by ` positions.3 Of particular interest
to us will be the linear weight function wlin(`) = ` for each
` ∈ [m− 1] and the affine weight function waff(`) = c` + d
for each ` ∈ [m− 1] and fixed constants c, d ∈ N.

Time function. Given the count function fσ→τ and
the weight function w, the time function is defined as
their inner product, i.e., timew(σ, τ) = 〈fσ→τ ,w〉 =∑m−1
`=1 fσ→τ (`) ·w(`).
Theorem 1 shows that for the linear weight function wlin,

time is equal to the Kendall’s Tau distance, and for the affine
weight function, time is equal to a weighted combination of
Kendall’s Tau distance and the total number of moves.

Theorem 1. For any σ, τ ∈ L(A), timewlin(σ, τ) =
dkt(σ, τ) and timewaff(σ, τ) = c · dkt(σ, τ) + d · #moves.

4 Formulation of the Recommendation
Problem and Theoretical Results

We model the recommendation problem as the following com-
putational problem: Given the preference distribution D of
the user and her time function (which, in turn, is determined
by the weight function w), find a ranking that minimizes the
expected time taken by the user to transform the recommended
ranking σ into her preference τ .

Definition 5 ((D,w)-RECOMMENDATION). Given a distribu-
tion D over L(A), a weight function w, and a number δ ∈ Q,
does there exist σ ∈ L(A) so that Eτ∼D[timew(σ, τ)] ≤ δ?

We will focus on settings where D is Plackett-Luce, Mal-
lows, or Uniform, and w ∈ {Linear, Affine, General}. Note
that if the quantity Eτ∼D[timew(σ, τ)] can be computed in
polynomial time for a given distributionD and weight function
w, then (D,w)-RECOMMENDATION is in NP.

Our computational results for (D,w)-RECOMMENDATION
are summarized in Table 1. We show that this problem is
NP-hard, even when the weight function is linear (Theorem 3).
On the algorithmic side, we provide a polynomial-time ap-
proximation scheme (PTAS) and a 5-approximation algorithm
for the linear weight function (Theorems 4 and 5), and an
approximation scheme for non-linear weights (Theorem 6).

Theorem 2 (Exact Algorithms). (D,w)-RECOMMENDATION
is solvable in polynomial time when w is linear and D is

3Here, ‘time taken’ includes the time spent in thinking about
which alternative to move as well as actually carrying out the move.
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either (a) k-mixture Plackett-Luce (k-PL) with k = 1, (b) k-
mixture Mallows model (k-MM) with k = 1, or (c) a uniform
distribution with support size n ≤ 2.

Theorem 3 (Hardness results). (D,w)-RECOMMENDATION
is NP-complete even when w is linear and D is either (a) k-
mixture Plackett-Luce model (k-PL) for k = 4, (b) k-mixture
Mallows model (k-MM) for k = 4, or (c) a uniform distribu-
tion over n = 4 linear orders.

Theorem 4 (PTAS). (D,w)-RECOMMENDATION admits a
polynomial time approximation scheme (PTAS) when w is lin-
ear and D is either (a) k-mixture Plackett-Luce model (k-PL)
for k ∈ N, (b) k-mixture Mallows model (k-MM) for k ∈ N,
or (c) a uniform distribution (Unif).

The PTAS in Theorem 4 is quite complicated and is pri-
marily of theoretical interest (indeed, for any fixed ε > 0, the
running time of the algorithm is m2Õ(1/ε)

, making it difficult
to be applied in experiments). A simpler and more practical
algorithm (although with a worse approximation) is based on
the well-known Borda count voting rule (Theorem 5).
Theorem 5 (5-approximation). (D,w)-RECOMMENDATION
admits a polynomial time 5-approximation algorithm when w
is linear and D is either (a) k-mixture Plackett-Luce model
(k-PL) for k ∈ N, (b) k-mixture Mallows model (k-MM) for
k ∈ N, or (c) a uniform distribution (Unif).

Our next result (Theorem 6) provides an approximation
guarantee for (D,w)-RECOMMENDATION that applies to non-
linear weight functions, as long as they are “close” to the
linear weight function in the following sense:
Definition 6 (Closeness-of-weights). A weight function w is
said to be (α, β)-close to another weight function w′ if there
exist α, β ≥ 1 such that for every ` ∈ [m− 1], we have

w′(`)/β ≤ w(`) ≤ αw′(`).

For any (possibly non-linear) weight function w that
is (α, β) close to the linear weight function wlin, Theo-
rem 6 provides an αβ-approximation scheme for (D,w)-
RECOMMENDATION.
Theorem 6 (Approximation for general weights). Given any
ε > 0 and any weight function w that is (α, β)-close to the
linear weight function wlin, there exists an algorithm that runs
in time m2Õ(1/ε)

and returns a linear order σ such that

Eτ∼D[timew(σ, τ)] ≤ αβ(1 + ε)Eτ∼D[timew(σ∗, τ)],

where σ∗ ∈ arg minσ′∈L(A) Eτ∼D[timew(σ′, τ)].

Remark 2. Notice that the PTAS of Theorem 4 is applicable
for any affine weight function waff = c ·wlin +d for some fixed
constants c, d ∈ N. As a result, the approximation guarantee
of Theorem 6 also extends to any weight function that is (α, β)-
close to some affine weight function.

5 Experimental Results
We perform two sets of experiments on Amazon Mechanical
Turk (MTurk). The first set of experiments (Section 5.1) is
aimed at identifying the sorting strategies of the users as well

as a model of their drag-and-drop behavior. The observations
from these experiments directly motivate the formulation of
our theoretical model, which we have already presented in
Section 4. The second set of experiments (Section 5.2) is
aimed at evaluating the practical usefulness of our approach.

In both sets of experiments, the crowdworkers were asked
to sort in increasing order randomly generated lists of numbers
between 0 and 100. Sections 5.1 and 5.2 provide details about
the length of the lists and how they are generated.

In each experiment, the task length was advertised as 10
minutes, and the payment offered was $0.25 per task. The
crowdworkers were provided a user interface (see Figure 1)
that allows for drag-and-drop operations. To ensure data qual-
ity, we removed those workers from the data who failed to
successfully order the integers more than 80% of the time, or
did not complete all the polls. We also removed the workers
with high variance in their sorting time; in particular, those
with coefficient of variation above the 80th percentile. The
reported results are for the workers whose data was retained.

5.1 Identifying User Behavior
To identify user behavior, we performed two experiments: (a)
RANK10, where each crowdworker participated in 20 polls,
each consisting of a list of 10 integers (between 0 and 100)
generated uniformly at random, and (b) RANK5, which is
a similar task with 30 polls and lists of length 5. In each
poll, we recorded the time taken by a crowdworker to move
an alternative (via drag-and-drop operation) and the number
of positions by which the alternative was moved. After the
initial pruning (as described above), we retained 9840 polls
submitted by 492 workers in the RANK10 experiment, and
10320 polls submitted by 344 workers retained in the RANK5
experiment. Table 2 summarizes the aggregate statistics. Our
observations are discussed below.

Sorting behavior. Our hypothesis regarding the ranking be-
havior of human crowdworkers was that they use (some com-
bination of) natural sorting algorithms such as selection sort
or insertion sort (Section 3.1). To test our hypothesis, we
examined the fraction of the drag-and-drop operations that
coincided with an iteration of selection/insertion sort. (Given
a ranking σ, a drag-and-drop operation on σ coincides with
selection/insertion sort if the order of alternatives resulting
from the drag-and-drop operation exactly matches the order of
alternatives when one iteration of either selection or insertion
sort is applied on σ.) We found that, on average, 2.21

2.91 = 76%

of all drag-and-drop operations in RANK5 (and 5.09
7.69 = 66.2%

in the RANK10) coincided with selection/insertion sort.

Drag-and-drop behavior. To identify the drag-and-drop be-
havior of the users, we plot the time-to-rank as a function of
the total number of positions by which the alternatives are
moved in each poll (Figure 3). Recall from Remark 1 that
for an ideal user who uses only insertion/selection sort, the
latter quantity is equal to dkt(σ, τ). Our hypothesis was that
the sorting time varies linearly with the total number of drag-
and-drop operations (#moves) and the Kendall’s Tau distance
(dkt(σ, τ)). To verify this, we used linear regression with time-
to-rank (or sorting time) as the target variable and measured
the mean squared error (MSE) using 5-fold cross-validation
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RANK10 RANK5
Mean Median Std. Dev. Mean Median Std. Dev.

Sorting time 24.41 22.65 9.12 7.75 6.99 3.54
Total number of drag-and-drop operations 7.69 8 1.8 2.91 3 1.13

Total number of positions moved during drag-and-drop operations 22.59 23 5.59 5.05 5 2.01
Number of operations coinciding with selection/insertion sort 5.09 6 2.28 2.21 2 1.06
Kendall’s Tau distance between the initial and final rankings 22.55 22 5.6 5.04 5 2.01

Table 2: Summary of the user statistics recorded in the experiments in Section 5.1.

Dataset Avg. MSE
√

Avg. MSE Avg. Sorting Time Number of users based on their best-fit model
(in seconds2) (in seconds) (in seconds) Only dkt Only #moves Both dkt and #moves

RANK10 42.98 6.56 24.41 217 199 76
RANK5 7.74 2.78 7.75 138 180 26

Table 3: Average 5-fold cross-validation MSE over all workers using the best model for each worker, and the number of users for which each
of the models was identified to be the best. # moves is the number of times alternatives are moved using selection or insertion sort.

Figure 3: Relationship between the number of positions moved and
the total sorting time for RANK5 (left) and RANK10 (right).

for three different choices of independent variables: (1) Only
dkt, (2) only #moves, and (3) both dkt and #moves. For each
user, we picked the model with the smallest MSE (see Ta-
ble 3 for the resulting distribution of the number of users). We
found that the predicted drag-and-drop times (using the best-fit
model for each user) are, on average, within 6.56

24.41 = 26.8%

of the observed times for RANK10 and within 2.78
7.75 = 35.8%

for RANK5.

5.2 Evaluating the Proposed Framework
To evaluate the usefulness of our framework, we compared
a random recommendation strategy with one that forms an
increasingly accurate estimate of users’ preferences with time.
Specifically, we first fix the ground truth ranking of 10 alter-
natives consisting of randomly generated integers between 0
and 100. Each crowdworker then participates in two sets of
10 polls each. In one set of polls, the crowdworkers are pro-
vided with initial rankings generated by adding independent
Gaussian noise to the ground truth (to simulate a random rec-
ommendation strategy), and their sorting times are recorded.

In the second set of polls, the recommended set of alter-
natives is the same as under the random strategy but ordered
order to a Borda ranking. Specifically, the ordering in the kth

iteration is determined by the Borda ranking aggregated from
the previous k − 1 iterations.

Figure 4 shows the average sorting time of the crowdwork-
ers as a function of the index of the polls under two different

Figure 4: Relationship between sorting time and the number of polls
completed by the users for std dev=10 (left) and std dev=20 (right).

noise settings: std. dev. = 10 and std. dev. = 20.
We observe that Borda recommendation strategy (in green)

provides a significant reduction in the sorting time of the
users compared to the random strategy (in blue). Indeed,
the sorting time of the users is reduced by up to 50%, thus
validating the practical usefulness of our framework. Note that
the reduction in sorting time is not due to increasing familiarity
with the interface. This is because the average sorting time for
the random strategy remains almost constant throughout the
duration of the poll.

6 Future Work
Our work opens up a number of directions for future research.
First, it would be interesting to analyze the complexity of the
recommendation problem for other distance measures, e.g.,
Ulam distance. Second, it would be interesting to analyze the
effect of cognitive biases such as the framing effect [Tversky
and Kahneman, 1981] and list position bias [Lerman and
Hogg, 2014] on the recommendation problem. Progress in
this direction can, in turn, have implications on the fairness of
recommendation algorithms.
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