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Abstract

Evolution strategies have been demonstrated to
have the strong ability to roughly train deep neural
networks and well accomplish reinforcement learn-
ing tasks. However, existing evolution strategies
designed specially for deep reinforcement learning
only involve the plain variants which can not re-
alize the adaptation of mutation strength or oth-
er advanced techniques. The research of apply-
ing advanced and effective evolution strategies to
reinforcement learning in an efficient way is still
a gap. To this end, this paper proposes a restart-
based rank-1 evolution strategy for reinforcemen-
t learning. When training the neural network, it
adapts the mutation strength and updates the prin-
cipal search direction in a way similar to the mo-
mentum method, which is an ameliorated version
of stochastic gradient ascent. Besides, two mecha-
nisms, i.e., the adaptation of the number of elitists
and the restart procedure, are integrated to deal with
the issue of local optima. Experimental results on
classic control problems and Atari games show that
the proposed algorithm is superior to or competi-
tive with state-of-the-art algorithms for reinforce-
ment learning, demonstrating the effectiveness of
the proposed algorithm.

1 Introduction

In reinforcement learning (RL), faced with a specific envi-
ronment, an agent attempts to learn to conduct a sequence of
actions with the aim of maximizing a kind of cumulative re-
ward [Sutton and Barto, 1998]. The popular RL algorithms
(such as Q-learning and policy gradient method) and the neu-
roevolution approach (that is, applying black-box optimiza-
tion methods to train neural networks) have been demonstrat-
ed to perform well on challenging deep RL problems. It is
worth noting that among these algorithms for RL, evolution
strategies (ESs) have been demonstrated to have the ability to
roughly train deep neural networks and can well accomplish
the deep RL tasks [Salimans ez al., 2017].

Existing ES variants for deep RL only involve the plain
variants (such as Natural Evolution Strategies (NES) [Wier-
stra et al., 2008] and (u, A)-ES [Schwefel, 1981]), but do not
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adopt one of the most efficient ESs, that is, the covariance
matrix adaptation evolution strategy (CMA-ES) [Hansen and
Ostermeier, 2014]. CMA-ES adapts the complete covariance
matrix (representing the population) of the normal search
distribution. It maintains and updates a Gaussian distribu-
tion during the search process. and attempts to use the
contours of the Gaussian distribution to approximate that of
the objective function. CMA-ES owns several important in-
variances, including the invariance against angle preserving
transformations of the search space, the invariance against
order preserving transformations of the objective function,
and the scale invariance [Hansen and Kern, 2004]. Ow-
ing to its nice properties, CMA-ES has been successful in
solving optimization problems in low to medium dimen-
sion. However, due to its high space and time complexi-
ty, it is unsuitable for large scale optimization [Varelas et
al., 2018], and also unsuited to the training of deep neu-
ral networks and the solving of deep RL problems. Par-
ticularly, when training the neural network, standard CMA-
ES needs to consume much time on maintaining and up-
dating its full covariance matrix, due to its quadratic time
complexity. As a result, the research of applying CMA-ES
to RL is still a gap. In reality, the issue of how to apply
CMA-ES or other advanced ES variants [Li and Zhang, 2017,
Varelas et al., 2018] to deep RL in an efficient way is a rich
research area, and has a great practical research value for deep
RL problems.

To this end, this paper proposes a restart-based rank-1 evo-
lution strategy (called R-R1-ES for short) for RL. This algo-
rithm can be regarded as a simplified CMA-ES and can retain
the excellent performance of CMA-ES. Notably, it is of lin-
ear time complexity and low space complexity, thus making
it suitable for dealing with large scale black-box optimization
and deep RL problems. Furthermore, compared to the orig-
inal CMA-ES which searches along the coordinate axes and
is more suitable for separable problem, the proposed ES vari-
ant can well deal with the dependency problem of different
variables by virtue of adapting the principal search direction.

2 Preliminaries

As a class of black-box optimization algorithms, ESs belong
to heuristic search algorithms inspired by natural evolution.
At every generation, a population of parameter vectors are
perturbed through sampling from a Gaussian distribution, and
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their objective function values are evaluated. The parameter
vectors with better quality are then recombined to construct
new distribution for the next generation, and this procedure is
iterated until the termination criterion is fulfilled. Algorithms
in this class differ in how they represent the population and
how they perform mutation and recombination.

Substantially, NES can be viewed as an (1, A)-ES algorith-
m [Beyer, 1993]. Suppose the parameter vector and the fit-
ness function for a specific optimization problem are 6 and
F(0), respectively. And let p,(6) denote a distribution of
parameter vectors @ characterized by parameters ¢. NES rep-
resents the population as p,(6), and strives to maximize the
average fitness of the population Eg,,, [F' (#)] by means of
optimizing ¢ with stochastic gradient ascent method [Ruder,
2016].

Recently, scientists from OpenAl designed a version of
NES applied to RL problems [Salimans et al., 2017]. This
variant will be referred to as OpenAI-ES hereinafter. For an
RL problem, 6 is the parameters of a policy my, and the fit-
ness function F'(6) denotes the stochastic reward over a full
episode of agent interaction. At the ¢-th iteration, the pop-
ulation distribution py, is an isotropic multivariate Gaussian
with mean 6, and covariance oI (i.e., N (6;, *I)). Differ-
ent from NES which updates the mean and the covariance of
the population distribution during the evolutionary process,
OpenAI-ES does not attempt to evolve the covariance (re-
flected by o). Thus, the mutation strength o is fixed during
the evolutionary process of OpenAI-ES.

At each iteration, \ parameter vectors 0 ~ N (6;,0°I)
(@ = 1,...,) are sampled from the Gaussian distribution
N (61,0°T), and their corresponding policies 7y; are evalu-
ated to obtain a reward F’ (0;) Similar to the classical REIN-
FORCE method [Williams, 1992] in RL, OpenAI-ES com-

putes the approximate gradient of expected reward with re-
spect to #; in the following manner:

A
VsEop, [F (0)] ~ Z F(6]) Vylogps (0;) (1)
=1

> =

In fact, the sampling of #; in OpenAI-ES is reformulated
as adding additive Gaussian noise to 0;: 0 = 0, + oe; (g; ~
N (0,I)). Then, Eq. (1) can be simplified according to the
property of Gaussian distribution. Concretely, Eq. (1) can be
converted to the following formula:
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Furthermore, they also made several contributions to im-
prove the performance of ES. The technique of virtual batch
normalization [Salimans er al., 2016] and other reparameter-
izations of the neural network policy are adopted to enhance
the reliability of ES. Moreover, by virtue of the high par-
allelization property of ES, a novel communication strategy
based on common random numbers is introduced to reduce
communication cost, and it can make the algorithm well s-
caled to a large number of parallel workers.
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3 Proposed Method: R-R1-ES
This section detailedly introduces the proposed R-R1-ES.

3.1 Distribution Model

Unlike all these existing ES variants for RL, the pro-
posed R-RI-ES utilizes the Gaussian distribution model
N (6;,02C;), where 6; € R"™ (n is the dimension of the pa-
rameter vector 6) is the distribution mean, o; > 0 is the mu-
tation strength, and C, is the n X n covariance matrix at the
t-th iteration. The covariance matrix C; is set as follows [Li
and Zhang, 2017]:

Ct = (1 - Ccov) I+ CcovptptT (3)

where cqo, € (0, 1) is called the changing rate of covariance
matrix, and p; € R" is called principal search direction.

In reality, the aforementioned model is designed for cap-
turing the most important search direction (reflected by p;)
and parameter dependencies, so as to endow the proposed al-
gorithm with the ability of handling the dependency problem
of different variables. In addition, the term ptptT in Eq. (3)
produces an n X n matrix whose rank is 1. This is also why
we call our proposed algorithm a rank-1 ES.

To realize the aforementioned model, the proposed R-R1-
ES needs to maintain the following critical variables at each
generation of the evolutionary process:

e distribution mean 6; € R™;
e mutation strength o; > 0;
o principal search direction p; € R™.

Thus, the new model enables the R-R1-ES to achieve the
adaptation of mean and mutation strength as well as the
search direction.

3.2 Framework Of R-R1-ES

Algorithm 1 sketches the framework of our proposed R-R1-
ES algorithm. The important procedures will be introduced
in details hereinafter.

At the beginning of Algorithm 1, the initialization proce-
dure initializes a random parameter vector 6, and several dis-
tribution parameters, including mutation strength op = 0.05,
principal search direction pg = 0 and cumulative rank rate
sp = 0. For convenience, we set Fy = [F (6p), ..., F (6o)].
which indicates that F{y contains p function values of the ini-
tialized parameter vector 6.

At the t-th generation, R-R1-ES samples A random vec-
tors z; ~ N (0,I) and \ random variables r; ~ N (0,1)
(i =1,..., M), and constructs A new solutions in the following
manner:

X; = et + oy (\/ 1-— CeovZi + \/@Tipt) (4)

Since R-RI1-ES adopts the Gaussian distribution model
N (6;,02C;) where C, is determined by Eq. (3), new so-
lutions can be sampled by using Eq. (4). Then, these A new
solutions are sorted in descending order according to their re-
ward function values, and the best i ones are selected to form
Fip1 =1[F (x1:2), -, F (xu:0)],, wherex;\ (1 = 1,...,X)
means that it is the ¢-th best solution among all the A solution-
s. The best 1 solutions will be utilized to update the distribu-
tion mean and principal search direction. The updating of the
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Algorithm 1 R-R1-ES

. In(p+1)—Ins .

1: Parameters setting: wi = 5 ln(us-#l)—) .Y (i =
17"'5,”’)7.[‘Leff Zu 2;0(01):3»\;7%,0:#’
qgx=0.3,¢cs =0.3,d, = 1;

2: Imitialization: 6y, 0y = 0.057 Po =0,s0 =0;

3: Set Fy = [F (90), F (90)],

4: fort < 0to T do

5. fori << 1to Ado

6: Sample z; ~ N (0,I), r; ~ N (0,1);

7: X; & 0; + oy (\/ 1 —ceovzi + vV Ccovript);

8: end for

9:  Sortx;as F(x1.0) > F(x2.0) > ... > F(xa0);

10:  Increase y linearly from pg to A;

11: Set Fypq = [F (x1:2), -+ F (X))

12:  Update distribution mean: 6; 1 < Z;‘Zl WiXi:N,

13:  Update principal search direction: p;4;
1_Cpt+ / _lefef f+1 Gf

14: Rt, Rt+1 — ranks of Ft, Ft+1 m Ft U Ft+1;

15  Compute rank difference: q —

iy i (Ry (1) = Ry (4));

16: Compute cumulative rank rate: s;11 < (1 —c¢s) s¢ +
¢s (g — q%);

17:  Adapt mutation strength: 0,11 < o, exp ( 2l ) ;

18:  if restart criterion is fulfilled then

19: Conduct restart procedure;
20:  endif

21:  t+t+1;

22: end for

distribution mean and principal search direction can be for-
mulated as follows:

I
O =) wiXiox (5)
=1
01— 0
Pr1=1—-c¢)pt+1/c(2—¢) Meff% (6)
t

where ¢ € (0,1) denotes the changing rate of principal search
direction, flefr = E,L ST wT and w; > 0@ = 1,...,)

are weighting parameters satlsfymg E w, = 1. Addi-
tionally, these weighting parameters are required to satisfy
wy > wg > --- > w, for the reason that setting larger
weighting parameter value for better solution can put more
emphasize on better solutions. The concrete settings for these
parameters can be seen in Line 1 of Algorithm 1.

As for the adaptation of the mutation strength, R-R1-ES
adopts a slightly modified version of the rank-based success
rule proposed in [Li and Zhang, 2017] (Lines 14-17 of Al-
gorithm 1). The adaptation of mutation strength is based
on fitness ranking, and is irrelevant to the concrete objective
function value. Firstly, the elements in F; U F}; are sorted
in descending order, and the ranks of the ¢-th best solutions of
F; and Fy4q in Fy U Fy 44 are expressed as R; (i) and R4 (%)
(¢ = 1,..., u), respectively. Then, the cumulative rank rate
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s¢ € R is computed as follow:

St+1 = (1 — Cs) St + Cg (q — q*) (7)

Based on the computed cumulative rank rate, the mutation
strength is adapted in the following manner:

S
Otr1 = oy exp ( ;“) ©)

3.3 Mechanisms For Escaping Local Optima

In RL, optimizing the stochastic reward experienced over a
full episode of agent interaction can often make an agent
trapped in local optima. Thus, it is necessary to design mech-
anisms for escaping local optima. To this aim, our proposed
R-R1-ES algorithm integrates two mechanisms: one is the
adaptation of the number of elitists , and the other is the
restart procedure.

As for the adaptation of p, we make the value of y lin-
early increase from an initial value p to A. This adaptation
can add more diversity to the updating of distribution mean at
the later stage of algorithm, and can promote the balance be-
tween exploration and exploitation to a certain extent. Thus,
it can make R-R1-ES less prone to getting stuck in local op-
tima. It is noticeable that the settings of w; (¢ = 1,..., 1)
and pi. ¢ ¢ rely on the value of p (see Line 1 of Algorithm 1).
Thus, when the value of p is changed during the evolutionary
process, the values of w; and s 5 are also adjusted.

As for the restart procedure, it is invoked when the muta-
tion strength o; < 10719 ! or the difference between the lat-
est reward function value and the mean of the reward function
values during the latest n generations is less than 10% 2 of
the latest reward function value. When the restart procedure
is invoked, both the values of population size A and damp-
ing parameter d,, are doubled. This is because that increasing
the population size and slowing down the decaying speed of
the mutation strength are conducive to the further evolution
process. The novel restart procedure fully considers the s-
tochastic characteristics of reward function in RL problems,
and thus can make R-R1-ES more suitable for RL problems.

3.4 Analyses Of R-R1-ES

Complexity Of R-R1-ES

The proposed R-R1-ES is of low space and time complexity.
On the one hand, R-R1-ES has a space complexity of O (An)
at each generation. On the other hand, since R-R1-ES uti-
lizes a novel distribution model and the sampling procedure
only involves the multiplications of scalar and vector (see E-
q. (4)), the time complexity of R-R1-ES in terms of the time
consumed on one evaluation of objective function is O (n).

!The threshold value for mutation strength is set according to the
suggestion in [Li and Zhang, 2017].

The threshold value for the difference in reward function in the
restart condition is set based on our study of parameter tuning. In
fact, this value should change per problem so as to make the perfor-
mance of our proposed R-R1-ES become better on different prob-
lems. However, in our experiments, for the sake of convenience and
uniformity, we simply use a fixed value for different problems. To
a certain extent, this setting also makes the numerical comparison
fairer.
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This means that R-R1-ES greatly reduces the time complex-
ity of the original CMA-ES, and can become more efficient
when dealing with the issue of training deep neural networks
and solving deep RL problems.

Analysis On Updating Of Distribution Mean

Focusing on the updating rule of the distribution mean (see
Eq. (5)) in our proposed R-R1-ES, since Y % ; w; = 1, Eq.
(5) is equivalent to the following formula:

m
Opp1 — 0, = Z w; (Xin — 6;) )
i=1

Recall from previous section that OpenAI-ES is based on
NES, and estimates the natural gradient with respect to the
distribution mean in a manner shown in Eq. (2). In fact, Eq.
(2) can be rewritten as follow:

Fg(eg) (6; — 6,) (10)

A
VoE[F ()]~ Y

As can be seen from Eq. (9) and Eq. (10), if we regard
F(0:)

the term —55~ as a weighting parameter (in fact, this term
plays a role of weighting parameter), then the updating for-
mula of the distribution mean (i.e., Eq. (5)) adopted in our
proposed R-R1-ES can serve as an estimator to the natural
gradient Vy,E [F (0)].

Analysis On Updating Of Principal Search Direction

As noted above, Eq. (5) can approximate the natural gradient
Vo, E [F (0)]. Thus, if we replace the term 6,1 — 6, in Eq.
(6) with Vg, E [F (0)], then the updating of principal search
direction can be rewritten as follow:

c(2—c) ey
Ot

Pit1=(1—c)p:t + Vo, E[F (0)] (1D

For comparison, we pay attention to the momentum
method [Qian, 1999]. It is an ameliorated version of stochas-
tic gradient descent, and is commonly used for training neural
networks. When handling a maximization problem with ob-
jective function f, this method can be formulated as follow:

diy1 = pdy +aVf (12)

where o, § > 0 are two parameters.

As can be seen from Eq. (11) and Eq. (12), the principal
search direction in our proposed R-R1-ES acts as a momen-
tum term. Moreover, the principal search direction can accu-
mulate the natural gradients with respect to the distribution
mean over all the generations during the evolutionary process
of R-R1-ES. In this way, solutions with good quality can be
more likely to be generated.

4 Experiments

The experiments are conducted on classic control theory
problems and Atari games.
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Figure 1: Classic control theory problems.
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Figure 2: Comparison of reward values obtained by different algo-
rithms on control problems.

4.1 Classic Control Theory Problems

In the empirical experiments, to investigate the perfor-
mance of the proposed R-R1-ES algorithm, we firstly adop-
t three classic control theory problems from the Ope-
nAI Gym [Brockman et al., 2016], including CartPole-v1,
MountainCar-v0 and Pendulum-v0Q. As shown in Figure 1,
these three problems attempt to achieve some kind of goal
through controlling an object. The goal of CartPole-v1 is
to prevent the pole on a cart from falling over, while that of
MountainCar-v0 is to drive up the mountain on the right. The
Pendulum-v0 aims to swing the pendulum up so it stays up-
right. These problems stem from the classical RL literature,
and can serve as the benchmark problems for verifying the
performance of RL algorithm. Thus, we adopt these prob-
lems to compare the performance of the proposed R-R1-ES
algorithm and the OpenAI-ES [Salimans er al., 2017].

Since these classic control theory problems are relatively
simple, we directly use a simple neural network with two hid-
den layers (one with 30 units and one with 20 units) to act as
the network to be trained by ES. Virtual batch normalization
is utilized as suggested in [Salimans et al., 2017].

The population size A is set as A = 20. Besides, the ini-
tial value p for the proposed R-RI1-ES is set as po = 10.
The maximum number of generations 7' is set as follows:
T = 100 for CartPole-v1 and Pendulum-v0O, 7" = 10000 for
MountainCar-v0. Further, the mechanisms for escaping local
optima in the proposed R-R1-ES are temporarily removed in
this part of experiments.

For each algorithm on each problem, 21 independent train-
ing runs (each run with a final reward value) are performed,
and the median reward values are recorded. As shown in Fig-
ure 2, the median values obtained by R-R1-ES on CartPole-v1
and Pendulum-vO0 are higher than those obtained by OpenAl-
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(d)

Figure 3: Atari 2600 games.

ES. As for the MountainCar-v0 problem, the median reward
value of R-R1-ES is a bit lower than that of OpenAI-ES. In
short, R-R1-ES is on par with OpenAI-ES when solving clas-
sic control theory problems.

4.2 Atari Games

In the second part, the performance of the R-R1-ES is fur-
ther evaluated on four Atari games (i.e., Breakout-v0, Pong-
v0, Qbert-v0 and Seaquest-v0), which are shown in Fig-
ure 3. And we compare R-RI1-ES with four ES variants,
including OpenAI-ES [Salimans et al., 2017], NS-ES [Con-
ti et al., 2017], NSR-ES [Conti et al., 2017] and Canonical
ES [Chrabaszcz et al., 2018].

As for the neural network architecture, we adopt the sug-
gestion in [Chrabaszcz et al., 2018], which is a bit different
from the DQN [Mnih et al., 2015]. And the virtual batch nor-
malization is also utilized as suggested in [Salimans et al.,
20171.

As for the training of each ES variant on each game, 20
CPUs are used with a time budget of 20 hours. The popula-
tion size A and the initial value p are set to A = 798 and
o = 50, respectively. As for the other parameters used in
each ES variant, we follow the suggestions given by their de-
velopers, and keep their settings the same as in their original
literature.

For each algorithm on each game, 21 independent train-
ing runs are performed. After each training, 30 independent
evaluation runs (each evaluation run with a score evaluated
from the final policy) are conducted for each algorithm, and
the mean values of 30 evaluation scores are recorded. In this
way, each training run is corresponding to a mean evaluation
score, and the median value of all the mean evaluation scores
among 21 training runs serves as the final evaluation score
obtained by each algorithm on each game. The experimental
results are displayed in Figures 4-7.

For the simple Pong-vO game, as shown in Figure 4,
OpenAl-ES obtain the highest scores, and the other four ES
variants obtain lower scores.

Seaquest-vO0 game has an easy-to-reach local optima,
which does not require performing complex behavior. As
can be known from [Conti et al., 2017], NS-ES and NSR-ES
avoid local optima by means of novelty search (NS) [Lehman
and Stanley, 2011] and quality diversity (QD) [Pugh et al.,
20161, respectively. Our proposed R-R1-ES integrates two
mechanisms (i.e., the adaptation of the number of elitists and
the restart procedure) to deal with the issue of local optima.
The effects of these mechanisms for escaping local optima are
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Figure 4: Comparison of evaluation scores obtained by different al-
gorithms on Pong-v0 game.
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Figure 5: Comparison of evaluation scores obtained by different al-
gorithms on Seaquest-vO game.
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Figure 6: Comparison of evaluation scores obtained by different al-
gorithms on Breakout-v0 game.
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Figure 7: Comparison of evaluation scores obtained by different al-
gorithms on Qbert-v0O game.

experimentally validated and underpinned by Figure 5 which
shows that the aforementioned three ES variants (i.e., NS-ES,
NSR-ES and R-R1-ES) have nice performance on Seaquest-
v0 game. Among them, R-R1-ES obtains the highest score
and NSR-ES obtains the second highest score.

As can be seen from Figure 6, all the five algorithms ob-
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tain low scores on Breakout-v0 game. This can also provide
evidence that Breakout-v0 is challenging to ES algorithms.
The proposed R-R1-ES performs best, while two ES variants
(NS-ES and NSR-ES) involving NS and QD also have a good
performance. Compared to the aforementioned three ES vari-
ants which unite mechanism for escaping local optima, the
other two ES variants (that is, OpenAI-ES and Canonical ES)
perform even worse on Breakout-v0 game. This phenomenon
indicates that Breakout-v0 game may also encounter the issue
of local optima.

For Qbert-v0 game, both Canonical ES and R-R1-ES ob-
tain higher scores than the other three ES variants which do
not adopt the framework of (u, A)-ES algorithms. Since both
Canonical ES and R-R1-ES belong to the family of (x, A)-ES
algorithms and they can obtain nice performance on Qbert-v0
game, it is natural to think that their nice performance may be
attributed to the superiority of the framework of (u, A)-ES
algorithms.

To sum up, the whole performance of the proposed R-R1-
ES on Atari games is superior to or competitive with existing
ES variants for reinforcement learning.

5 Related Work

In the literature of neuroevolution, there exist a lot of re-
searches which employ ES-related methods to train neural
networks for RL tasks [Risi and Togelius, 2017]. In 2010,
Sehnke et al. proposed a novel algorithm called policy gra-
dients with parameter-based exploration (PGPE for short)
based on a gradient-based search through model parameter
space [Sehnke er al., 2010]. Koutnik et al. [Koutnik et al.,
2010; Koutnik et al., 2013] and Srivastava et al. [Srivastava
et al., 2012] adopted different ways to compress the policy,
but they both attempted to apply an ES method to RL tasks
with visual inputs in a similar manner. In 2014, Hausknecht
et al. applied four neuroevolution algorithms with three dif-
ferent state representations to Atari games, and demonstrated
that neuroevolution is a promising approach to general video
game playing [Hausknecht et al., 2014].

Recently, researchers from OpenAl [Salimans et al., 2017]
studied a version of ES algorithm from the class of NES
[Wierstra et al., 2008], and demonstrated that it can reliably
train neural network policies in a set of RL benchmark en-
vironments. This version of ES can obtain competitive per-
formance with state-of-the-art RL algorithms. Notably, it has
motivated several nice works by scientists from tech compa-
nies and researchers from universities.

Following OpenAI’s work, Conti et al. attempted to im-
prove the performance of ES on sparse and/or deceptive con-
trol tasks by introducing novelty search (NS) [Lehman and
Stanley, 2011] and quality diversity (QD) [Pugh et al., 2016],
and form two algorithms (called NS-ES and NSR-ES, respec-
tively) [Conti ef al., 2017]. The resultant algorithms can ef-
fectively avoid local optima encountered by ES.

Zhang et al. investigated the relationship between the
OpenAI-ES and the stochastic gradient descent method by
conducting several MNIST-based experiments [Zhang et al.,
2017]. This work gives a nuanced insight into the behaviors
of ES, and can promote more informed decisions on the ap-
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plication of ES within RL and other paradigms.

Lehman et al. demonstrated that although ES is not just
a traditional finite-difference approximator [Lehman et al.,
2017]. Most importantly, ES is aimed to optimize the per-
formance of the distribution of solutions rather than a single
solution, and thus it can seek out solutions that are more ro-
bust to the noise in the parameter space.

Chrabaszcz et al. demonstrated that even a very ba-
sic canonical ES algorithm, which belongs to the family of
(1, A)-ES algorithms [Schwefel, 1981], can obtain compa-
rable performance with the OpenAI-ES [Chrabaszcz et al.,
2018]. This indicates that with the integration of the state-of-
the-art advances made in ES field, we can further promote the
performance of ES when solving deep RL problems.

6 Conclusion

In this paper, we have proposed an ES variant called R-R1-ES
for training neural networks on RL problems. As the first at-
tempt of applying CMA-ES to RL, our proposed R-R1-ES is
based on a simplified CMA-ES for large scale black-box op-
timization, and involves the procedures of adapting the mu-
tation strength, updating the distribution and the principal
search direction, and escaping local optima. Strikingly, the
R-R1-ES proposed for RL is of linear time complexity and
low space complexity. Moreover, the updating formula of
the distribution mean in our proposed R-R1-ES can serve as
an estimator to the natural gradient, and the updating of the
principal search direction adopted in R-R1-ES acts like the
momentum method. Through the empirical experiments on
some RL tasks including classic control problems and Atari
games, we have demonstrated that the proposed R-R1-ES is
superior to or competitive with existing ES variants for RL.

In the future research, the effect of the proposed algorithm
on more tough RL tasks can be investigated with the support
of more advanced hardware devices. In addition, other state-
of-the-art CMA-ES variants for large scale black-box opti-
mization and advanced techniques can be studied in depth and
combined to further promote the effectiveness and efficiency
of RL algorithm.
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