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Abstract

Online decision tree models are extensively used
in many industrial machine learning applications
for real-time classification tasks. These models are
highly accurate, scalable and easy to use in prac-
tice. The Very Fast Decision Tree (VFDT) is the
classic online decision tree induction model that
has been widely adopted due to its theoretical guar-
antees as well as competitive performance. How-
ever, VFDT and its variants solely rely on con-
servative statistical measures like Hoeffding bound
to incrementally grow the tree. This makes these
models extremely circumspect and limits their abil-
ity to learn fast. In this paper, we efficiently em-
ploy statistical resampling techniques to build an
online tree faster using fewer examples. We first
theoretically show that a naive implementation of
resampling techniques like non-parametric boot-
strap does not scale due to large memory and com-
putational overheads. We mitigate this by propos-
ing a robust memory-efficient bootstrap simulation
heuristic (Mem-ES) that successfully expedites
the learning process. Experimental results on both
synthetic data and large-scale real world datasets
demonstrate the efficiency and effectiveness of our
proposed technique.

1 Introduction

Decision trees have been widely adopted by machine learn-
ing practitioners across different domains for their effi-
ciency [Bifet ef al., 20171, scalability [Abuzaid et al., 2016]
and comprehensibility [Freitas, 2014]. It has been used in
myriad applications ranging from Higgs boson classifica-
tion [Chen and He, 2014] to predicting protein-protein inter-
actions [Kingsford and Salzberg, 2008] in computational bi-
ology. In the streaming scenario, incremental decision tree in-
duction algorithms have emerged as the predominant choice
for a broad array of industrial classification tasks like real-
time telecommunications network management and plan-
ning [Bifet er al., 2017], stock market prediction [Kargupta et
al., 2002], vehicle monitoring [Kargupta et al., 2004], health
indicator tracking [Haghi e al., 2017] and biosensor mea-
surements [Aggarwal, 2006].
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Figure 1: Online decision tree construction

The Very Fast Decision Tree [Domingos and Hulten, 2000]
(VFDT), ak.a Hoeffding tree, is the most popular incre-
mental decision tree induction algorithm. Figure 1 illustrates
how a VFDT is built incrementally in a top-down man-
ner as more examples are streamed in. It is typically con-
structed by observing “enough” training examples from an
unbounded data stream and then deciding the splitting cri-
terion from these observations with reasonably high confi-
dence. The main idea is that for any small value ¢, the splitting
attribute chosen from a finite subsample would be the same
as the one selected by traditional learners [Quinlan, 1993;
Breiman er al., 1984] with at least a probability of 1 — 4.
The minimal sample size is ensured via the classic Hoeffding
bound inequality, which determines the number of points that
need to be observed before deciding the split. Theoretically,
VFDT is guaranteed to be asymptotically identical to a deci-
sion tree built by a conventional learner [Breiman et al., 1984,
Quinlan, 1993]. However, the Hoeffding bound is a very con-
servative measure, since it is independent of the underlying
data distribution. This means that a larger number of observa-
tions are needed at every node to make a split with the same
confidence level 1 — 4§, as compared to distribution-dependent
bounds.

We demonstrate this by an example. We built a VFDT with
99% confidence (i.e. § = 10~2) on 5 million streaming tu-
ples produced from the standard MOA RandomTreeGener-
ator [Manapragada et al., 2018] using the same parameters'
mentioned in [Domingos and Hulten, 2000]. Figure 2(a) plots
the total number of examples observed at a leaf before split-
ting vs. the number of ‘redundant’ examples accumulated at
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Figure 2: Observations over Decision Tree Node Split

the same leaf node. The latter represents the observations
trailing a split, which have been collected at the leaf just to
reach the eventual Hoeffding bound, but they do not change
the selection of the best splitting attribute in any way. That
is, the same best split could have been obtained without these
‘redundant’ examples, although the Hoeffding bound would
not have been met. As shown in the figure, even for a moder-
ate confidence level?, majority of the leaves have 50% to 90%
wasted examples (above the red line in Figure 2(a)).

In fact, this problem becomes more acute as the decision
tree grows. Under the same experimental settings as before,
Figure 2(b) shows how the average time taken by a leaf to
split increases across the decision tree levels. This is primarily
because the probability of an incoming tuple being assigned
to a leaf reduces as the number of branches increases. This
can be particularly concerning with today’s modern shared
memory and distributed memory architectures, where deci-
sion tree construction can be massively parallelized on mul-
ticore machines [Jin and Agrawal, 2003a] and on multi-node
clusters [Abuzaid et al., 2016]. However, the conservative na-
ture of Hoeffding bound under these same parallel settings
can force more resources (workers or threads) to idle-wait for
longer durations. Naturally, these problems can be mitigated
to a large extent, if an online induction tree model can learn
faster with fewer training examples using tighter data dis-
tribution dependent bounds. Since the online induction tree
model eventually grows and improves via leaf node splitting,
this calls for a better and faster approach to split a leaf cor-
rectly. This is particularly needed when dealing with sensitive
data streams (e.g. stock market or health sensor data), where
inaccurate predictions can incur considerable damages.

In this paper, we propose a memory-efficient bootstrap
simulation strategy (Mem-ES), which consumes fewer ex-
amples in deciding when to split a leaf. While simple adop-
tion of resampling techniques like non-parametric bootstrap
is not conducive to stream processing due to large memory
and computational overheads (Section 3.2), Mem-ES only
uses constant memory space per leaf to ensure accelerated
learning and superior performance. Our proposed approach
Mem-ES (Section 3.3) is able to estimate the distribution de-
pendent bounds for node splitting and can operate robustly

*More stringent confidence levels are used in [Domingos and
Hulten, 2000; Manapragada et al., 2018].

2210

on any dataset. To the best of our knowledge, this is the
first resource-efficient resampling strategy proposed in the
context of incremental decision tree learners that empirically
learns the distribution dependent bounds. We conduct exten-
sive evaluations on Mem-ES using both synthetic data and
large real-world datasets. Experimental results (Section 4)
demonstrate the effectiveness of our proposed technique.

2 Related Work

2.1 Incremental Decision Tree Learning

Traditional decision tree [Quinlan, 1993] model is a corner-
stone of classification tasks in machine learning. However,
it is not well suited for real-time learning on data streams,
where low latency bounded memory models are required.
The most famous online decision tree induction algorithm,
VFDT [Domingos and Hulten, 2000] mitigates this by learn-
ing from massive data streams incrementally in a single pass
using constant memory per leaf. CVFDT [Hulten et al., 2001]
extends VFDT to incorporate gradual changes in the underly-
ing data distribution for concept-drifting data streams. [Fan,
2004] and [Wang et al., 2003] combined VFDT with other
ensemble methods to improve the performance. Some previ-
ous studies also aimed at improving the node split latency of
VFEDT, which is the major bottleneck for the overall learn-
ing stage. [Jin and Agrawal, 2003b] deduced smaller theo-
retical bounds for the sample size required to make a split
decision correctly. These bounds are independent of the input
data distribution and have been derived from the mathemat-
ical properties of information gain [Quinlan, 1993] and Gini
index [Breiman et al., 1984]. However, unlike VFDT, these
bounds are not agnostic to the split measures used. In addi-
tion, they also do not exploit the underlying input data distri-
bution to come up with tighter bounds to hasten the split.

Recent studies like Extremely Fast Decision Tree [Man-
apragada er al., 2018] (EFDT) improves the splitting process
by allowing revision on the split decisions and achieves state-
of-the-art performance on many datasets. Other recently pro-
posed methods like One-Sided Minimum OSM [Losing et
al., 2018] utilizes local node statistics to optimize the fre-
quency of evaluation of split decisions . These recent im-
provements still rely on the Hoeffding bound inequality for
the actual split and are thus independent of our proposed
method. Hence, our proposed algorithm Mem-ES can be
plugged into these frameworks to further improve their per-
formance, as shown in our experimental results. Many data
stream mining systems also provide parallel and distributed
implementations of online decision trees [Jin and Agrawal,
2003al, such as MOA [Bifet et al., 2010] and STREAMDM-
C++ [Bifet er al., 2017], where our optimizations can also be
integrated.

2.2 Resampling Methods

Statistical resampling techniques provide conceptually sim-
ple and powerful tools to (1) measure an estimate and (2) as-
sess the quality of the corresponding estimation from an em-
pirical distribution. The classical Bootstrap method [Bickel
and Freedman, 1981; Gine and Zinn, 1990] was the first to
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quantify the uncertainty in an estimator using confidence in-
tervals via repeated Monte Carlo trials, where in each trial
the estimator was computed over a resample drawn from the
entire observed data. These estimates were more accurate,
robust and consistent than those obtained using asymptotic
approximations [Hall, 2013] on a wide domain of problems.
Variants of the bootstrap algorithm like subsampling [Politis
et al., 1999] and m out of n bootstrap [Bickel et al., 2012]
are computationally much less demanding than the classic
bootstrap algorithm, since the estimators are repeatedly com-
puted on significantly smaller resamples. Unlike the tradi-
tional bootstrap method, these variants are less generic in
nature, and often require rescaling and analytic asymptotic
approximation of the output. This is addressed by the most
recent Bag of Little Bootstraps (BLB) [Kleiner ef al., 2012]
method, which combines the weighted results of bootstrap-
ping multiple small subsets of a larger dataset in a robust man-
ner. Our proposed algorithm Mem-ES is a variant of BLB
that performs the Monte Carlo approximation over incoming
streaming tuples under bounded memory constraints using a
computationally efficient strategy.

3 Methodology

3.1 Preliminary

First we provide a detailed overview of the general online
decision tree induction algorithm. Suppose S denotes a se-
quence of examples s, where s = (X, y). Let X denote the set
of attributes an example s has. The goal is to predict the class
label y given the attribute values x of an incoming example
s. VEDT, in particular, adopts the Hoeffding bound to decide
when a node in the decision tree can be split with a confidence
level of 1—§. Formally, the Hoeffding bound inequality states
that for n independent observations of a real-valued random
variable r with range R and observed mean 7, the true mean
of r > 7 — € with probability 1 — &, where

. Bn(1/5) M
2n

Thus intuitively, if G(X;) denotes the information gain®
[Quinlan, 1993] for an attribute X; computed from n training
examples, and G(X,), G(Xp) indicate the highest and sec-
ond highest information gain among all the attributes, then
G(X,) — G(Xp) > e implies X, can be judged as the best
splitting attribute with probability 1 — § without considering
additional points for this particular split. In other words, by
Hoeffding bound, we have G(X,) — G(Xp) > 0 with proba-
bility 1 — § over entire data.

Algorithm 1 demonstrates the process of constructing an
online decision tree. The decision tree is first initialized with a
single node (line: 2). Then for each incoming example s € S,
it assigns the example into a leaf node [ using the existing
decision tree (line: 5). The leaves do not store the actual ex-
amples. Instead they maintain statistics like the number of
examples seen for each attribute X; € X, with value j and
class label y = k, which are denoted as n;;; and are used

30ther heuristic measures such as Gini index [Breiman ef al.,
1984] can also be used.

Algorithm 1: Online Decision Tree Induction (S, X, §)

Input: S: A sequence of examples; X: The set of
attributes; J: One minus the desired probability
Qutput: 7: Online decision tree learned from S

1 begin

2 Initialize 7 with a single root node;

3 Initialize the statistics for tree growth;

4 foreach s € S do

5 Sort s into leaf node [ using 7

6 Update the statistics at [ for tree growth;

7 if Examples at | are not from the same class then
8 async Attempt to Split(l, X, §);

9 return 7;
10 end

Function Attempt to Split ([, X, d) in VFDT

1 begin

2 X, Xp, < The two attributes with highest G(X;)

values, where X; € X;

Compute € using Equation 1;

G(Xp) + Gain corresponding to no split;

if G(X,) — G(Xp) > ecand G(X,) # G(Xy) then
Replace [ with an internal node;

foreach branch of split on X, do

L Add anew child /,,, to ! and set X,,, + X — X,;

®w NN AN AW

9 end

for computing G(X;). These statistics are updated along with
new incoming examples (line: 6). A leaf node in VFDT is
split (line: 8) when its best attribute satisfies the Hoeffding in-
equality (as shown in the function Attempt to Split).
The split attempts on different leaves can be executed in par-
allel and asynchronously [Jin and Agrawal, 2003al. How-
ever, more importantly, as shown in equation 1, the Hoeffding
bound does not take into account the underlying distribution
of the examples seen and hence most leaf nodes consume con-
siderably more examples than necessary in order to make a
successful split with reasonable confidence.

3.2 Non-parametric Bootstrap Driven Split

According to the bootstrap principle, given any unknown dis-
tribution F' and a sample S drawn i.i.d from F', the quality
of an estimation 6 of some unknown population value, asso-
ciated with F', can be assessed by drawing with replacement
sufficient resamples from S of size |S|. The confidence in-
terval of § computed via a form of Monte Carlo approxima-
tion from the resampling (or empirical) distribution F™* holds
well in practice, since by the law of large numbers the rela-
tive variation among F and F* are similar [Gine and Zinn,
1990]. Interestingly, bootstrap does not necessarily improve
upon the actual value of the estimation 6. Instead it provides
a good assessment of the quality of the estimate via standard
error or confidence intervals.

We next summarize a bootstrap driven split attempt
method: For a given leaf node [/, let A denote all examples
observed in [. X, X, are the best and second best splitting at-
tributes based on G(X,) and G(X}) respectively as computed
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from A. Let 6 = G(X,) — G(X;). Now, we can perform
the classical bootstrap for 7" Monte Carlo iterations, where
in each iteration ¢ we draw a sample .S; with replacement
from A and compute from S;, 07 = G(X,) — G(X;) and
A¥ = 6 — 6. Given a series of sorted A}, for 1 <7 <T, we
can select A} and Aj; as the lower and upper percentiles for
calculating the bootstrap confidence interval corresponding to
1 — 6 confidence. For example, for a confidence level of 95%,
A7} and Aj; would be the 2.5th and 97.5th percentile respec-
tively. Thus, the bootstrap confidence interval for the estimate
6 is given by [0 — Aj;, 8 — A} ]. Now, considering only the
lower bound of the confidence interval, if equation 2 is satis-
fied, then § = G(X,) — G(X,) > 0 holds with probability
1 — 6. Therefore, we can split the node on X,,.

0> Ay, )

It is important to note that for calculating A};, we only need
to store a few top A7 values. For example, for calculating the
97.5th percentile of 100 A} values, we only need to store and
maintain the four top A} values. Note this bootstrap driven
method decides to split based on the empirical distribution.
However, this accelerated split comes at the cost of larger
memory and computational overheads, which are discussed
next.

Space and Time Complexity Analysis

Unlike the VFDT, a bootstrap driven split attempt would need
to store the examples in the leaf in order to be able to resam-
ple from it. Considering nominal data with ¢ classes and d
attributes, where each attribute can have at most v values,
VFDT can maintain the n;;;, counts at each leaf in O(dvc)
memory. Thus for [ leaves, total space complexity for VFDT
is given by O(Idvc). On the contrary, in order to store exam-
ples at the leaves, non-parametric bootstrap would require a
space of O(ldn), where n is the highest number of points ac-
cumulated at any leaf. Since n >> vc, the bootstrap driven
split method has a space complexity of O(ldn).

Information gain computation takes O(c) time and each of
the d attributes needs to calculate at most v information gains.
Thus the time to find the best and second best split attribute
at any node in VFDT is O(dvc). However, in bootstrap, T
iterations are conducted, where in each iteration resamples
are drawn in O(n) time and A}; is computed in O(vc) time.
Again, since n >> vc, the overall time complexity for boot-
strap based split attempt at any leaf is O(T'n + dvc), or
simply O(T'n), assuming the split attempts at each node are
conducted in parallel and asynchronously (see Algorithm 1).
Thus, in terms of both space and time complexity, the depen-
dency on n is the major bottleneck, which makes the boot-
strap based approach practically hard to scale.

3.3 Memory-Efficient Bootstrap Simulation
(Mem-ES)

To mitigate the above problems, we propose the Mem-ES
method based on the principle of Bag of Little Bootstraps
(BLB) [Kleiner et al., 2012]. BLB selects few small sam-
ples (possibly disjoint) and then artificially generates large
bootstrap samples from them, which are consequently used
to compute the quality of the estimators. Under BLB, we

simulate selecting large bootstrap samples of size n from a
considerably smaller sample of size w (w << n) by draw-
ing n trials from a multinomial distribution with parameters
n, 1, /w, where 1,,/w denotes the 1-by-w vector of multi-
nomial probabilities, each initialized with value % The final
estimator quality is assessed by averaging across all the re-
sults. However, this BLB template was proposed in the con-
text of bounded static data. Mem-ES extends BLB and adapts
it for unbounded data streams. For example, Algorithm 3 uses
Mem-ES to specifically check for a potential split with high
statistical confidence in a memory-efficient manner by only
relying on the most recent batch of w points at any leaf to
simulate the bootstrap process. Also note that in Algorithm 3,
unlike the non-parametric bootstrap, the size of A is bounded
to an user-defined value w (lines: 3 and 18). We can easily
integrate Mem-ES into VFDT or other variants by simply
replacing line 8 in Algorithm 1. We next discuss some key
aspects of Mem-ES.

Algorithm 3: Attempt to split with Mem-ES

Input: [: Leaf to be split; X: The set of attributes; §: One
minus the desired probability; s: current example;
A: Queue of fixed size w; n: User-specified
parameter; 7": Number of Monte Carlo iterations;
r, sum: Variables initialized with O

1 begin
2 Enqueue s to A4;

3 if | A| is not full then

4 return;

5 () < Min-Heap of fixed size for A7; computation;
6 r <— 1+ 1; // count of disjoint sets

7 X, Xp, < The two attributes with highest G(X;)
values computed from n;;;, counts at /;

8 0+ G(X,) — G(Xp);

9 fort € [1,7] do

10 Draw sample S; from Multinomial(n, 1,, /w);
1 0F +— G(Xa) — G(Xp) from Sy;

12 Af < 0f —0;

13 if AY > min(Q) or Q is not full then

14 Add A} to Q;

15 A} — min(Q);

16 sum + sum + A%

17 | Af sy

18 Empty A and Q;

19 if 0 > Aj; then

20 Replace [ with an internal node;

21 foreach branch of split on X, do

22 L Add a new child /,,, to [ and set X,,, +— X — X_;

23 end

Discussion

Each leaf node in Mem-ES maintains at most w last seen
examples. Thus, the overall memory complexity for Mem-
ES is O(ldve 4 ldw). Typically, w values (as used in our
experiments) are comparable to vc.

Similarly, we can draw a sample of size n from the
multinomial distribution of w distinct objects in O(w) time,
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thereby the overall time complexity for a split attempt at any
leaf is reduced to O(T'w + Twe+ dvc). Typically Tw is com-
parable to dvc. However, online decision tree construction is
mostly I/O or network bound [Domingos and Hulten, 2000],
since the streaming rate is primarily throttled by the I/O rate
or network bandwidth. As such, the in-memory computation
time of a split attempt, specially under parallel settings, is
largely overshadowed by the time required to read the corre-
sponding tuples. Lastly, it is worth mentioning that in prac-
tice, instead of two attributes (line: 7 in Algorithm 3), we
maintain top 4 or 5 promising attributes since X,, X; may
change as more examples arrive.

4 Evaluation

4.1 Experimental Setup

Baseline Methods

We evaluate the effectiveness of Mem-ES against two cate-
gory of baselines:

e First, we integrate Mem-ES into VFDT (denoted as
VFDT+ME) and compare its performance against stan-
dard VFDT and [Jin and Agrawal, 2003b] (denoted by
‘VFDT+IG’). Simple VFDT uses Hoeffding bound, whereas
VFEDT+IG uses sample size estimates deduced theoretically
from the property of information gain.

e Second, we incorporate Mem-ES into a VFDT variant like
EFDT and benchmark its performance. EFDT+ME denotes
integration of Mem-ES into EFDT.

Datasets

We evaluate the performance of Mem-ES against the above
baselines on two large real world classification datasets used
in [Manapragada e al., 2018] and one synthetic dataset.

o Gas Sensors dataset(Gas) from UCI repository consists of
900K+ records. The data have 15 continuous attributes and 3
classes in total.

e Human Activity Recognition (WISDM) dataset [Kwapisz
et al., 2011] consists of 1M+ records. The data have 5 contin-
uous attributes and 6 classes in total.

o In addition, we also created a synthetic dataset(SYN) span-
ning across 10M+ records with 100 binary attributes and 2
classes (generated from the standard MOA RandomTree-
Generator) to test Mem-ES for scalability.

VFDT and its variants like EFDT theoretically converge
towards the decision tree built by a traditional learner when
the incoming streaming examples are i.i.d. Hence, the data
sets are shuffled for the experiments as prescribed in [Man-
apragada et al., 2018]. Here we report the metrics averaged
over 5 such shuffles.

Environment

Our experiments are conducted on a standard commodity ma-
chine with 4 cores and 32GB memory running Ubuntu 14.04
LTS. We used Java implementation of Mem-ES and other
baselines with 8 threads. The main program was tasked with
reading the incoming data tuple and assigning it to a leaf
in the decision tree. Other workers concurrently and asyn-
chronously attempt splits at different leaves. All the experi-
ments were performed using a confidence level of 98%, T' =
150, w = 40. We used the standard value of n,,,;, = 200.

4.2 Results and Discussion

In this section, we will try to answer the following questions:
(1) Does Mem-ES help to learn a decision tree correctly with
Sfewer examples? (2) Is memory a major bottleneck for Mem-
ES or can it scale at an affordable cost?

We examine the first question by plotting the number of
instances seen vs. the error rate for all three data sets. Fig-
ure 3 shows the corresponding three plots. Figure 3(a) shows
that VFDT+ME learns better from considerably fewer exam-
ples, as compared to VFDT and VFDT+IG, yielding around 8
percentage points lower error rate than VFDT and VFDT+IG
in the first 200K examples. In addition, Figure 3(a) further
shows that even EFDT+ME learns faster with fewer num-
ber of examples than EFDT, although the gap reduces af-
ter 150K examples. Interestingly, simple VFDT+ME has out-
performed the optimized EFDT for the first 400K examples
on the Gas data. Figure 3(b) on WISDM data further reit-
erates that Mem-ES learns and converges faster with fewer
examples than other baseline methods. In fact, Figure 3(b)
exemplifies the utility of Mem-ES as a ‘plug-in’, since it
can be incorporated into VFDT to outperform VFDT and
VFDT+IG and can similarly be integrated into EFDT to im-
prove its performance. For some datasets, VFDT variants can
outperform EFDT, as shown in Figure 3(c), where VFDT+IG
produces lower error rate than simple EFDT. Nevertheless,
Mem-ES still yields a marginal improvement (2 percentage
points lower error in first 400K examples) over VFDT+IG.

It is worth highlighting here that all online models even-
tually converge as examples stream in [Manapragada et al.,
2018]. But online models that learn and converge faster with
fewer examples are naturally more preferable. This is more
important for sensitive data streams, where inaccurate classi-
fications can incur significant penalties. Thus, the nomencla-
ture of ‘fast’ in systems like VFDT or EFDT refers to how
many fewer examples are required in the learning stage. In
other words, at any time instant during the learning stage, the
accuracy of the online learner is determined mainly from its
ability to learn from fewer examples. And in this context of
learning from fewer examples, Figure 3 presents Mem-ES
as a very effective and robust strategy that works well across
different data sets, since EFDT+ME (Figures 3(a), 3(b)) or
VFDT+ME (Figure 3(c)) produces the best results.

Next, we investigate the memory cost of Mem-ES by ex-
amining how the number of nodes and the memory con-
sumption varies as the examples stream in. Figures 4 and
5 show this interplay with double Y-axis graphs, where the
line graph indicates the total memory consumed and the ver-
tical bar represents the total number of nodes created in the
corresponding decision tree. Figure 4 presents the compari-
son between VFDT, VFDT+IG and VFDT+ME. As shown
in Figure 4, the three methods incrementally builds the tree,
but VFDT+ME constructs at the fastest rate i.e. it builds a
more deeper decision tree model as compared to other base-
lines after processing the same number of examples. Also
recall that Mem-ES needs to store at most w examples at
each leaf. As a result, VFDT+ME ends up requiring more
memory than VFDT or VFDT+IG, since it grows better trees
with more nodes at an expedited rate as well as retains some
data points at the leaves. But nevertheless, even for the syn-
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Figure 5: Tree growth and memory consumption: Mem-ES vs. EFDT

thetic data of over 10M records (Figure 4(c)), VFDT+ME
requires only around 100MB memory, which is an order of
magnitude less than the default allocated heap size in stan-
dard Java virtual machines as used in our implementation.
Furthermore, VFDT+ME requires less than 10MB and 3MB
memory for Gas and WISDM datasets respectively. Figure
5 shows the corresponding plots for EFDT and EFDT+ME.
EFDT re-examines the splits of internal nodes in the decision
tree and aggressively prunes the sub-trees if a split better than
the original one is found. Consequently, as shown in Figure 5,
the number of nodes and memory consumption of EFDT and
EFDT+ME can decrease as well. This makes Mem-ES more
suitable for integration into strategies like EFDT where mem-
ory can be aggressively freed. EFDT+ME consumes around
700KB, 300KB and 45MB memory for Gas, WISDM and
SYN datasets.
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5 Conclusion

In this paper, we propose Mem-ES that efficiently performs
resampling techniques to accelerate the node splits for on-
line decision tree learning. The success of Mem-ES is par-
ticularly exciting, since the idea of applying resampling tech-
niques like non-parametric bootstrap on data streams had al-
ways been considered very difficult in the past due to its cum-
bersome nature and high time and space complexity. But, this
first of its kind realization and experimental validation of ap-
proximate bootstrapping can invite further research investiga-
tions in other stream mining algorithms used for frequent pat-
tern mining [Das and Zaniolo, 2016], episode mining [Ao et
al., 2019; 20181, complex pattern detection and ranking [Gu
et al., 2016], where bootstrapping can be useful.
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