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Abstract
While off-policy temporal difference (TD) methods
have widely been used in reinforcement learning
due to their efficiency and simple implementation,
their Bayesian counterparts have not been utilized
as frequently. One reason is that the non-linear max
operation in the Bellman optimality equation makes
it difficult to define conjugate distributions over the
value functions. In this paper, we introduce a novel
Bayesian approach to off-policy TD methods, called
as ADFQ, which updates beliefs on state-action
values, Q, through an online Bayesian inference
method known as Assumed Density Filtering. We
formulate an efficient closed-form solution for the
value update by approximately estimating analytic
parameters of the posterior of the Q-beliefs. Uncer-
tainty measures in the beliefs not only are used in
exploration but also provide a natural regularization
for the value update considering all next available
actions. ADFQ converges to Q-learning as the un-
certainty measures of the Q-beliefs decrease and
improves common drawbacks of other Bayesian RL
algorithms such as computational complexity. We
extend ADFQ with a neural network. Our empirical
results demonstrate that ADFQ outperforms compa-
rable algorithms on various Atari 2600 games, with
drastic improvements in highly stochastic domains
or domains with a large action space.

1 Introduction
Bayesian reinforcement learning is a classic reinforcement
learning (RL) technique that utilizes Bayesian inference to
integrate new experiences with prior information about the
problem in a probabilistic distribution. It explicitly quantifies
the uncertainty of the learning parameters unlike standard RL
approaches in which uncertainty is unaccounted for. Explicit
quantification of the uncertainty can help guide policies that
consider the exploration-exploitation trade-off by exploring
actions with higher uncertainty more often [Osband et al.,
2013; Osband et al., 2014]. Moreover, it can also regularize
posterior updates by properly accounting for uncertainty.
∗Contact Author

Motivated by these advantages, a number of algorithms
have been proposed in both model-based [Dearden et al., 1999;
Duff, 2002; Guez et al., 2012; Poupart et al., 2006] and model-
free Bayesian RL [Dearden et al., 1998; Engel et al., 2003;
Engel et al., 2005; Geist and Pietquin, 2010; Chowdhary et al.,
2014]. However, Bayesian approaches to off-policy temporal
difference (TD) learning have been less studied compared to
alternative methods due to difficulty in handling the max non-
linearity in the Bellman optimality equation. Previous studies
such as Dearden’s Bayesian Q-learning [1998] and Kalman
Temporal Difference Q-learning (KTD-Q) [Geist and Pietquin,
2010] suffer from their computational complexity and scala-
bility. Yet off-policy TD methods such as Q-learning [Watkins
and Dayan, 1992] have been widely used in standard RL,
including extensions integrating neural network function ap-
proximations such as Deep Q-Networks (DQN) [Mnih et al.,
2013].

In this paper, we introduce a novel approximate Bayesian
Q-learning algorithm, denoted as ADFQ, which updates belief
distributions of Q (action-value function) and approximates
their posteriors using an online Bayesian inference algorithm
known as assumed density filtering (ADF). In order to reduce
the computational burden of estimating parameters of the ap-
proximated posterior, we propose a method to analytically
estimate the parameters. Unlike Q-learning, ADFQ executes
a non-greedy update by considering all possible actions for
the next state and returns a soft-max behavior and regulariza-
tion determined by the uncertainty measures of the Q-beliefs.
This alleviates overoptimism and instability issues from the
greedy update of Q-learning which have been discussed in a
number of papers [Tsitsiklis, 2002; Harutyunyan et al., 2016;
Hasselt, 2010; Hasselt et al., 2016]. We prove the convergence
of ADFQ to the optimal Q-values by showing that ADFQ
becomes identical to Q-learning as all state and action pairs
are visited infinitely often.

ADFQ is computationally efficient and is extended to com-
plex environments with a neural network. There are previous
works that implement Bayesian approaches to Deep RL by us-
ing uncertainty in the neural network weights and show promis-
ing performance in several Atari games [Azizzadenesheli et
al., 2018; O’Donoghue et al., 2017; Osband et al., 2016].
However, these approaches only focus on exploration and un-
certainty information does not directly applied to updating RL
parameters. Our method differs from these approaches as it ex-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2607



plicitly computes the variances of the Q-beliefs and uses them
both for exploration and in the value update. Bellemare et al.
[2017] proposed a gradient-based categorical DQN algorithm
using a distributional perspective. The value distribution in
their work represents the inherent randomness of the agent’s
interactions with its environment. In contrast, the Q-belief
defined in ADFQ is a belief distribution of a learning agent
on a certain state-action pair. Therefore, only ε-greedy is used
in their experiments. We evaluate ADFQ with Thompson
sampling (TS) [Thompson, 1933] as well as ε-greedy meth-
ods in various Atari games and they outperform DQN and
Double DQN [Hasselt, 2010]. Particularly, the non-greedy
update in ADFQ dramatically improves the performance in do-
mains with a large number of actions and higher stochasticity.
Example source code is available online1.

2 Background
2.1 Assumed Density Filtering
Assumed Density Filtering (ADF) is a general technique for
approximating the true posterior with a tractable paramet-
ric distribution in Bayesian networks. It has been indepen-
dently rediscovered for a number of applications and is also
known as moment matching, online Bayesian learning, and
weak marginalization [Opper, 1999; Boyen and Koller, 1998;
Maybeck, 1982]. Suppose that a hidden variable x follows a
tractable parametric distribution p(x|θt) where θt is a set of
parameters at time t. In the Bayesian framework, the distribu-
tion can be updated after observing some new data (Dt) using
Bayes’ rule, p̂(x|θt, Dt) ∝ p(Dt|x, θt)p(x|θt). In online set-
tings, a Bayesian update is typically performed after a new
data point is observed, and the updated posterior is then used
as a prior for the following iteration.

When the posterior computed by Bayes’ rule does not
belong to the original parametric family, it can be approx-
imated by a distribution belonging to the parametric fam-
ily. In ADF, the posterior is projected onto the closest dis-
tribution in the family chosen by minimizing the reverse
Kullback-Leibler divergence denoted as KL(p̂||p) where p̂
is the original posterior distribution and p is a distribution in
a parametric family of interest. Thus, for online Bayesian
filtering, the parameters for the ADF estimate is given by
θt+1 = argminθKL(p̂(·|θt, Dt)||p(·|θ)).

2.2 Q-learning
RL problems can be formulated in terms of an MDP described
by the tuple, M = 〈S,A,P, R, γ〉 where S and A are the
state and action spaces, respectively, P : S ×A× S → [0, 1]
is the state transition probability kernel, R : S ×A → IR is a
reward function, and γ ∈ [0, 1) is a discount factor. The value
function is defined as V π(s) = Eπ[

∑∞
t=0 γ

tR(st, at)|s0 = s]
for all s ∈ S , the expected value of cumulative future rewards
starting at a state s and following a policy π thereafter. The
state-action value (Q) function is defined as the value for
a state-action pair, Qπ(s, a) = Eπ[

∑∞
t=0 γ

tR(st, at)|s0 =
s, a0 = a] for all s ∈ S, a ∈ A. The objective of a learning
agent in RL is to find an optimal policy π∗ = argmaxπ V

π.

1https://github.com/coco66/ADFQ

Finding the optimal values, V ∗(·) and Q∗(·, ·), requires solv-
ing the Bellman optimality equation:
Q∗(s, a) = Es′∼P (·|s,a)[R(s, a) + γmax

b∈A
Q∗(s′, b)] (1)

and V ∗(s) = maxa∈A(s)Q
∗(s, a) ∀s ∈ S where s′ is the

subsequent state after executing the action a at the state s. Q-
learning is the most popular off-policy TD learning technique
due to its relatively easy implementation and guarantee of
convergence to an optimal policy [Watkins and Dayan, 1992;
Kaelbling et al., 1996]. At time step t, it updates Q(st, at)
after observing a reward rt and the next state st+1 (one-step
TD learning). The update is based on the TD error – a differ-
ence between the TD target, rt + γmaxbQ(st+1, b), and the
current estimate on Q(st, at) with a learning rate α ∈ (0, 1]:

Q(st, at)← Q(st, at) + α
(
rt + γmax

b
Q(st+1, b)−Q(st, at)

)

3 Bayesian Q-learning with ADF
3.1 Belief Updates on Q
We define Qs,a as a Gaussian random variable with mean µs,a
and variance σ2

s,a corresponding to the action value function
Q(s, a) for all s ∈ S and a ∈ A. We assume that the random
variables for different states and actions are independent and
have different means and variances, Qs,a ∼ N (µs,a, σ

2
s,a)

where µs,a 6= µs′,a′ if s 6= s′ or a 6= a′ ∀s ∈ S, ∀a ∈ A.
According to the Bellman optimality equation in Eq.1, we
can define a random variable for V (s) as Vs = maxaQs,a.
In general, the probability density function for the maximum
of Gaussian random variables, M = max1≤k≤N Xk where
Xk ∼ N (µk, σ

2
k), is no longer Gaussian (see the appendix).

For one-step Bayesian TD learning, the beliefs on Q =
{Qs,a}∀s∈S,∀a∈A can be updated at time t after observing rt
and st+1 using Bayes’ rule. In order to reduce notation, we
drop the dependency on t denoting st = s, at = a, st+1 = s′,
rt = r, yielding the causally related 4-tuple τ =< s, a, r, s′ >.
We use the one-step TD target with a small Gaussian white
noise, r+ γVs′ +W where W ∼ N (0, σ2

w), as the likelihood
for Qs,a. The noise parameter, σw, reflects stochasticity of
an MDP. We will first derive the belief updates on Q-values
with σw = 0 for simplicity and then extend the result to the
general case. The likelihood distribution can be represented
as a distribution over Vs′ as p(r + γVs′ |q, θ) = pVs′ ((q −
r)/γ|s′, θ) where q is a value corresponding to Qs,a and θ
is a set of mean and variance of Q. From the independence
assumptions on Q, the posterior update is reduced to an update
for the belief on Qs,a:

p̂Qs,a(q|θ, r, s′) ∝ pVs′

(
q − r
γ

∣∣∣∣ s′, θ) pQs,a(q|θ)

The resulting posterior distribution is given as follows where
φ(·) is the standard Gaussian probability density function
(PDF) and Φ(·) is the standard Gaussian cumulative distribu-
tion function (CDF) (derivation details in the appendix):
p̂Qs,a(q|θ, r, s′)

=
1

Z

∑
b∈A

cτ,b
σ̄τ,b

φ

(
q − µ̄τ,b
σ̄τ,b

) ∏
b′∈A
b′ 6=b

Φ

(
q − (r + γµs′,b′)

γσs′,b′

)
(2)
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Z is a normalization constant and

cτ,b =
1√

σ2
s,a + γ2σ2

s′,b

φ

 (r + γµs′,b)− µs,a√
σ2
s,a + γ2σ2

s′,b

 (3)

µ̄τ,b = σ̄2
τ,b

(
µs,a
σ2
s,a

+
r + γµs′,b
γ2σ2

s′,b

)
(4)

1

σ̄2
τ,b

=
1

σ2
s,a

+
1

γ2σ2
s′,b

(5)

Note that all next actions are considered in Eq.2 unlike the
conventional Q-learning update which only considers the sub-
sequent action resulting in the maximum Q-value at the next
step (maxbQ(s′, b)). This can lead to a more stable update
rule as updating with only the maximum Q-value has inherent
instability. The Bayesian update considers the scenario where
the true maximum Q-value may not be the one with the highest
estimated mean, and weights each subsequent Q-value accord-
ingly. Each term for action b inside the summation in Eq.2
has three important features. First of all, µ̄τ,b is an inverse-
variance weighted (IVW) average of the prior mean and the
TD target mean. Therefore, the Gaussian PDF part becomes
closer to the TD target distribution if it has a lower uncertainty
than the prior, and vice versa as compared in the first row
of Fig.1. Next, the TD error, δτ,b = (r + γµs′,b) − µs,a, is
naturally incorporated in the posterior distribution with the
form of a Gaussian PDF in the weight cτ,b. Thus, a subse-
quent action which results in a smaller TD error contributes
more to the update. The sensitivity of a weight value is deter-
mined by the prior and target uncertainties. An example case
is described in the second row of Fig.1 where δτ,0 < δτ,1 and
σs′,0 > σs′,1. Finally, the product of Gaussian CDFs provides
a soft-max operation. The red curve with dots in the third
row of Fig.1 represents

∏
b′ 6=b Φ(q|r + γµτ,b′ , γστ,b′ ) for each

b. For a certain q value (x-axis), the term returns a larger value
for a larger µs′,b as seen in the black circles. This results has
a similarity with the soft Bellman equation [Ziebart, 2010],
but the degree of softness in this case is determined by the
uncertainty measures rather than a hyperparameter.

3.2 ADF on Q-Belief Updates
The posterior distribution in Eq.2, however, is no longer Gaus-
sian. In order to continue the online Bayesian update, we
approximate the posterior with a Gaussian distribution us-
ing ADF. When the parametric family of interest is spherical
Gaussian, it is shown that the ADF parameters are obtained
by matching moments. Thus, the mean and variance of the
approximate posterior are given by those of the true posterior,
Ep̂Qs,a

[q] and Varp̂Qs,a
[q], respectively. It is fairly easy to

derive the mean and variance when |A| = 2. The derivation is
presented in the appendix. However, to our knowledge, there
is no analytically tractable solution for |A| > 2.

When σw > 0, the expected likelihood is obtained by solv-
ing
∫
R p(r + γVs′ + w|q, θ)pW (w)dw which is an integral of

a similar form with the posterior in Eq.2. Therefore, a closed-
form expression is also not available in general except when
|A| = 2 (see the appendix).

Figure 1: An example of the belief update in Eq.2 when |A| = 2, r =
0.0, γ = 0.9 and prior (+ green) has µs,a = 0.0, σ2

s,a = 0.5. Each
column corresponds to a subsequent state and action pair, (Left) b =
0: µs′,b = 1.0, σ2

b = 2.0, (Right) b = 1: µs′,b = 4.5, σ2
b = 0.1.

In the next sections, we prove the convergence of the means
to the optimal Q-values for the case |A| = 2 with the exact
solutions for the ADF parameters. Then, we show how to
derive an analytic approximation for the ADF parameters
which becomes exact in the small variance limit.

3.3 Convergence to Optimal Q-values
The convergence theorem of the Q-learning algorithm has pre-
viously been proven [Watkins and Dayan, 1992]. We, there-
fore, show that the online Bayesian update using ADF with
the posterior in Eq.2 converges to Q-learning when |A| = 2.
We apply an approximation from Lemma 1 in order to prove
Theorem 1. Proofs are presented in the appendix.
Lemma 1. Let X be a random variable following a normal
distribution, N (µ, σ2). Then we have:

lim
σ→0

[
Φ

(
x− µ
σ

)
− exp

{
−1

2

[
−x− µ

σ

]2
+

}]
= 0 (6)

where [x]+ = max(0, x) is the ReLU nonlinearity.
Theorem 1. Suppose that the mean and variance of Qs,a
∀s ∈ S, ∀a ∈ A are iteratively updated by the mean and
variance of p̂Qs,a

after observing r and s′ at every step. When
|A| = 2, the update rule of the means is equivalent to the
Q-learning update if all state-action pairs are visited infinitely
often and the variances approach 0. In other words, at the kth
update on µs,a:

lim
k→∞
{σ}→0

µs,a;k+1 = (1− ατ ;k)µs,a;k+ατ ;k
(
r+γmax

b∈A
µs′,b;k

)
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where ατ ;k = σ2
s,a;k/

(
σ2
s,a;k + γ2σ2

s′,b+;k + σ2
w

)
and b+ =

argmaxb∈A µs′,b.
Interestingly, ατ approaches 1 when σs,a/σs′,b+ → ∞

and 0 when σs,a/σs′,b+ → 0 for σw = 0. Such behavior
remains when σw > 0 but ατ eventually approaches 0 as
the number of visits to (s, a) goes to infinity. This not only
satisfies the convergence condition of Q-learning but also
provides a natural learning rate – the smaller the variance of the
TD target (the higher the confidence), the moreQs,a is updated
from the target information rather than the current belief. We
show empirical evidence that the contraction condition on
variance in Theorem 1 holds in the appendix.

4 Analytic ADF Parameter Estimates
When |A| > 2, the update can be solved by numerical approxi-
mation of the true posterior mean and variance using a number
of samples. However, its computation becomes unwieldy due
to the large number of samples needed for accurate estimates.
This becomes especially problematic with small variances as
the number of visits to corresponding state-action pairs grows.
In this section, we show how to accurately estimate the ADF
parameters using an analytic approximation. This estimate
becomes exact in the small variance limit.

4.1 Analytic Approximation of Posterior
Applying Lemma 1 to the Gaussian CDF terms in Eq.2, the
posterior is approximated to the summation over b ∈ A of the
following term:

cτ,b√
2πσ̄τ,b

exp

− (q − µ̄τ,b)2

2σ̄2
τ,b

−
∑
b′ 6=b

[r + γµs′,b′ − q]2+
2γ2σ2

s′,b′


Similar to Laplace’s method, we approximate each term as

a Gaussian distribution by matching the maximum values as
well as the curvature at the peak of the distribution. In other
words, the maximum of the distribution is modeled locally
near its peak by the quadratic concave function:

− (q − µ̄τ,b)2

2σ̄2
τ,b

−
∑
b′ 6=b

[r + γµs′,b − q]2+
2γ2σ2

s′,b

≈ −
(q − µ∗τ,b)2

2σ∗τ,b
2

We find µ∗τ,b and σ∗τ,b by matching the first and the second
derivatives, respectively:

1

σ∗τ,b
2 =

1

σ̄2
τ,b

+
∑
b′ 6=b

H
(
r + γµs′,b′ − µ∗τ,b

)
γ2σ2

s′,b′
(7)

µ∗τ,b

σ∗τ,b
2 =

µ̄τ,b
σ̄2
τ,b

+
∑
b′ 6=b

r + γµs′,b′

γ2σ2
s′,b′

H(r + γµs′,b′ − µ∗τ,b) (8)

where H(·) is a Heaviside step function. The RHS of the self-
consistent piece-wise linear equation Eq.8 is an IVW average
mean of the prior, the TD target distribution of b, and other
TD target distributions whose means are larger than µ∗τ,b. The
height of the peak is computed as,

k∗τ,b =
cτ,bσ

∗
τ,b

σ̄τ,b
exp(−Y ) (9)

Algorithm 1 ADFQ algorithm
1: Initialize randomly µs,a, σs,a ∀s ∈ S and ∀a ∈ A
2: for each episode do
3: Initialize s0
4: for each time step t do
5: Choose an action, at ∼ πaction(st; θt)
6: Perform the action and observe rt and st+1

7: for each b ∈ A do
8: Compute µ∗τ,b, σ

∗
τ,b, k

∗
τ,b using Eq.7-9

9: end for
10: Update µst,at and σst,at using Eq.10 and Eq.11
11: end for
12: end for

Y ≡ −
(
µ∗τ,b − µ̄τ,b

)2
2σ̄2

τ,b

−
∑
b′ 6=b

[
r + γµs′,b′ − µ∗τ,b

]2
+

2γ2σ2
s′,b′

The final approximated distribution is a Gaussian mixture
model with µ∗τ,b, σ

∗
τ,b, w

∗
τ,b as mean, variance, and weight,

respectively, for all b ∈ A where w∗τ,b = k∗τ,b/
∑
b′ k
∗
τ,b′ .

Therefore, we update the belief distribution over Qs,a with the
mean and variance of the Gaussian mixture model:

Ep̃[q] =
∑
b∈A

w∗τ,bµ
∗
τ,b (10)

Varp̃[q] =
∑
b∈A

w∗τ,bσ
∗
τ,b

2 +
∑
b∈A

w∗τ,bµ
∗
τ,b

2 − (Ep̃[q])2 (11)

The final mean is the weighted sum of each individual mean
with a weight from k∗τ,b and the final variance is the weighted
sum of each individual variance added to a non-negative term
accounting for the dispersion of the means. As shown in
Eq.9, the weights are determined by TD errors, variances, and
relative distances to larger TD targets. Each weight includes
the TD error penalizing term, cτ,b, and also decreases as the
number of TD targets larger than µ∗τ,b increases. Therefore,
the weight provides a softened maximum property over b. The
algorithm is summarized in Algorithm 1. Its space complexity
is O(|S||A|). The computational complexity of each update is
O(|A|2) which is higher than Q-learning but only by a factor
of |A| and constant in the number of states.

4.2 Approximate Likelihood for Stochastic MDPs
In an asymptotic limit of σw/σs′,b → 0, ∀b ∈ A and |A| = 2,
the expected likelihood distribution for σw > 0 is similar to
p(r + γVs′ |q, θ) but the variance of its Gaussian PDF term is
γ2σ2

s′,b + σ2
w instead of γ2σ2

s′,b (see the appendix for details).
Extending this result to the general case (|A| = n for n ∈ N),
the posterior distribution for σw > 0 is same with Eq.2 but
γ2σ2

s′,b is replaced by γ2σ2
s′,b+σ

2
w in cτ,b, µ̄τ,b, and σ̄τ,b (Eq.3-

5). Therefore, µ∗τ,b, σ
∗
τ,b, and k∗τ,b in the ADFQ algorithm

(Table.1) are also changed accordingly. In practice, the non-
zero noise parameter is needed when an MDP is stochastic.

4.3 Convergence of ADFQ
Theorem 1 extends to the ADFQ algorithm (Proof in the ap-
pendix). The contraction behavior of the variances in the case
of Theorem 1 is also empirically observed in ADFQ.
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Theorem 2. The ADFQ update on the mean µs,a ∀s ∈ S,
∀a ∈ A for |A| = 2 is equivalent to the Q-learning update
if the variances approach 0 and if all state-action pairs are
visited infinitely often. In other words, we have :

lim
k→∞
{σ}→0

µs,a;k+1 = (1−ατ ;k)µs,a;k +ατ ;k(r+γmax
b∈A

µs′,b;k)

where ατ ;k = σ2
s,a;k/

(
σ2
s,a;k + γ2σ2

s′,b+;k + σ2
w

)
and b+ =

argmaxb∈A µs′,b.
As we have observed the behavior of ατ in Theorem 1, the

learning rate ατ again provides a natural learning rate with
the ADFQ update. We can therefore think of Q-learning as a
special case of ADFQ.

5 Demonstration in Discrete MDPs
To demonstrate the behavior of the ADFQ update, we look
at the simple MDP (γ = 0.9) in Fig.2 at a specific iteration.
An episode starts at s0 and terminates at either s2 or s3. At
s1, each action returns a stochastic reward with p = 0.2. The
optimal deterministic policy at s1 is a1. Suppose an RL learner
has already visited (s1, a1) 3 times and obtained a reward of
r = 5 every time. Now it is on the t-th iteration with (s1, a1)
The plots in Fig.2 show the ADFQ update for Qs0,a0 at t+ 1
when rt = +5 (left) and rt = −5 (right). When it receives a
less expected reward, −5, at t, σs1,a1;t is updated to a larger
value than the one in the rt = +5 case. Then, the episode is
terminated and the next episode starts at st+1 = s0, at+1 = a0.
ADFQ considers both Qs1,a0 and Qs1,a1 for updating Qs0,a0 .
Due to the relatively large TD error and variance of Qs1,a1 ,
a lower value is assigned to w∗τ,b=1. In this same scenario,
Q-learning would update Q(s0, a0) only from Q(s1, a0) and
regulate the update amount with the learning rate which is
usually fixed or determined by the number of visits.

In order to show the benefits of the update rule, we exam-
ined Q-learning, ADFQ, and a numerical approximation of
the mean and variance of Eq.2 (denoted as ADFQ-Numeric)
for the convergence to the optimal Q-values in the presented
MDP and a similar MDP but with 10 terminating states and
10 actions. Random exploration is used in order to evaluate

Figure 2: A simple MDP with stochastic rewards and ADFQ update
example for st+1 = s0, at+1 = a0, (left) rt = 5, (right) rt = −5

Figure 3: Convergence to Q∗ in an MDP with |A| = 2 (left) and an
MDP with |A| = 10 (right)

only the update part of each algorithm. During learning, we
computed the root mean square error (RMSE) between the es-
timated Q-values (or means) and Q∗, and plotted the averaged
results over 5 trials in Fig.3. As shown, ADFQ converged to
the optimal Q-values quicker than Q-learning in both cases
and showed more stable performance. ADFQ-Numeric suffers
from correctly estimating the parameters when its variances
become small as it is previously pointed out, and resulted a
poor convergence result in the large MDP.

6 ADFQ with Neural Networks
In this section, we extend our algorithm to complex envi-
ronments with neural networks similar to Deep Q-Networks
(DQN) proposed in [Mnih et al., 2013]. In the Deep ADFQ
model with network parameters ξ, the output of the network is
mean µ(s, a; ξ) and variance σ2(s, a; ξ) of each action for a
given state s as shown in Fig.4. In practice, we use− log(σs,a)
instead of σ2

s,a for the output to ensure positive values for the
variance. As in DQN, we have a train network (ξ) and a tar-
get network (ξ′). Mean and variance for s and s′ from the
target network are used as inputs into the ADFQ algorithm to
compute the desired mean, µADFQ, and standard deviation,
σADFQ for the train network. We used prioritized experi-
ence replay [Schaul et al., 2015] and a combined Huber loss
functions of mean and variance.

In order to demonstrate the effectiveness of our algorithm,
we tested on six Atari games, Enduro (|A| = 9), Boxing
(|A| = 18), Pong (|A| = 6), Asterix (|A| = 9), Kung-Fu Mas-
ter (|A| = 14), and Breakout (|A| = 4), from the OpenAI gym
simulator [Brockman et al., 2016]. For baselines, we used
DQN and Double DQN with prioritized experience replay

Figure 4: A neural network model for ADFQ
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Figure 5: Performance of ADFQ, DQN, and Double DQN during learning smoothed by a moving average with window 6.

implemented in OpenAI baselines2 with their default hyperpa-
rameters for all games. We used ε-greedy action policy with ε
annealed from 1.0 to 0.01 for the baselines as well as ADFQ. In
ADFQ, the greedy selection is performed on the mean values
instead of Q-values. Additionally, we examined Thompsing
Sampling (TS) for ADFQ which selects at = argmaxa qst,a
where qst,a ∼ pQst,a

(·|θt).The algorithms were evaluated for
TH = 10M training steps (5M for Pong). Each learning was
greedily evaluated at every epoch (= TH/100) for 3 times,
and their averaged results are presented in Fig.5. The entire
experiment was repeated for 3 random seeds. Rewards were
normalized to {−1, 0, 1} and different from raw scores of the
games. Both ADFQ with TS and with ε-greedy notably sur-
passed DQN and Double DQN in Enduro, Boxing, Asterix,
and Kung-Fu Master and showed similar results in Pong. The
performance of ADFQ in Breakout is explained as Breakout
is the only tested domain where there is no dynamic object
interrupting the learning agent. As the demonstration in Sec.5
and the additional experiments in the appendix show, improve-
ments of ADFQ from Q-learning is more significant when
an experimental domain has high stochasticity and its action
space is large due to the non-greedy update with uncertainty
measures. Additionally, ADFQ showed more stable perfor-
mance in all tested domains overcoming DQN’s instability.
ADFQ with TS achieved slightly higher performance than the
ε-greedy method utilizing the uncertainty in exploration.

7 Discussion
We proposed an approach to Bayesian off-policy TD method
called ADFQ. ADFQ demonstrated that it could improve some

2https://github.com/openai/baselines

of the issues from the greedy update of Q-learning by showing
the quicker convergence to Q∗ than Q-learning and surpassing
DQN and Double DQN in various Atari games. The presented
ADFQ algorithm demonstrates several intriguing results.

First, unlike the conventional Q-learning algorithm, ADFQ
incorporates the information of all available actions for the
subsequent state in the Q-value update. Each subsequent state-
action pair contributes to the update based on its TD target
mean and variance as well as its TD error. Particularly, we
make use of our uncertainty measures not only in exploration
but also in the value update as natural regularization. The
advantages of this non-greedy update are noticeable in highly
stochastic domains and domains with a large action space
in the experiment. Next, we prove that ADFQ converges to
Q-learning as the variances decrease and can be seen as a
more general form of Q-learning. Last, one of the major draw-
backs of Baysian RL approaches is their high computational
complexity and poor scalability. ADFQ is computationally
efficient and is extended to Deep ADFQ with a neural network.

We would like to highlight the fact that ADFQ is a Bayesian
counterpart of Q-learning and is orthogonal to most other
advancements made in Deep RL. Deep ADFQ merely changes
the loss function and we compare with basic architectures here
to provide insight as to how it may improve the performance.
ADFQ can be used in conjunction with other extensions and
techniques applied to Q-learning and DQN.
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