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Abstract
Grassland degradation estimation is essential to
prevent global land desertification and sandstorms.
Typically, the key to such estimation is to measure
the coverage of indicator plants. However, tradi-
tional methods of estimation rely heavily on hu-
man eyes and manual labor, thus inevitably lead-
ing to subjective results and high labor costs. In
contrast, deep learning-based image segmentation
algorithms are potentially capable of automatic
assessment of the coverage of indicator plants.
Nevertheless, a suitable image dataset comprising
grassland images is not publicly available. To
this end, we build an original Automatic Grassland
Degradation Estimation Dataset (AGDE-Dataset),
with a large number of grassland images captured
from the wild. Based on AGDE-Dataset, we are
able to propose a brand new scheme to automati-
cally estimate grassland degradation, which mainly
consists of two components. 1) Semantic segmen-
tation: we design a deep neural network with an
improved encoder-decoder structure to implement
semantic segmentation of grassland images. In ad-
dition, we propose a novel Focal-Hinge loss to alle-
viate the class imbalance of semantics in the train-
ing stage. 2) Degradation estimation: we provide
the estimation of grassland degradation based on
the results of semantic segmentation. Experimen-
tal results show that the proposed method achieves
satisfactory accuracy in grassland degradation esti-
mation.

1 Introduction
In recent years, massive grassland ecosystem has undergone
degradation because of climatic variations and overgrazing,
thus resulting in multifarious ecological problems, such as
desertification and sandstorms [Zhan et al., 2017]. Therefore,
how to estimate the stage of grassland degradation accurately
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is of top priority for protecting grassland ecosystem from de-
sertification.

The emergence of indicator plants is an important sign of
grassland degradation [Zhao et al., 2004]. Many countries
have successfully used specific plant species as indicators
for estimating grassland degradation [Mansour et al., 2016;
Mansour et al., 2012]. Our case study of degrading grassland
in Qinghai-Tibet Plateau demonstrates that as the grassland
degrades, the coverage of Stellera chamaejasme (SC) gradu-
ally accumulates. Thus, SC is regarded as the indicator plants
for grassland degradation. Specifically, grassland would go
through five degradation stages before desertification, with
the coverage of SC building up in each stage [Zhao et al.,
2004], as shown in Table 1. Thus, it is intuitive to estimate
the grassland degradation stage based on the coverage of SC.
However, existing methods rely heavily on observations of
human eyes and manual labor, thus leading to subjective re-
sults and high labor costs, which is undesirable in practice.
Consequently, there is an urgent need for developing an effec-
tive and efficient method to automatically estimate the grass-
land degradation stage without human any interactions.

To do this, we attempt to leverage deep learning to cal-
culate automatically the coverage of SC in real-world grass-
land images based on a semantic segmentation algorithm,
and then estimate the stage of grassland degradation by the
coverage of SC based on the results of recognition. Many
challenges stand in the way of achieving an automatic esti-
mation of degradation. First, existing public datasets [Mot-
taghi et al., 2014; Cordts et al., 2016; Caesar et al., 2018;
Ros et al., 2016] contain substantially insufficient grassland
images and thus fail to provide us with enough samples to
train the network. In addition, the aerial or satellite images
used in the studies of remote sensing and environmental sci-
ences [Wang et al., 2018] are not high-resolution enough to
capture such a tiny target as SC.Moreover, due to the particu-
larity of the grassland scene, capturing images with semantic
class imbalance is inevitable. Finally, existing semantic seg-
mentation networks cannot handle directly the complex task
with these challenges.

To this end, we first design a deep neural network to im-
plement semantic segmentation that could accurately seg-
ment the foreground (SC) from the background (grassland
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Degradation Stage Coverage of SC

I 0%-19%
II 20%-39%
III 40%-59%
IV 60%-79%
V 80%-95%

Table 1: The relationship between stage of grassland degradation
and coverage of Stellera chamaejasme (SC).

and other elements in a grassland scene) of the grassland im-
age at the pixel level. Aiming at the problem of sample in-
sufficiency, we create a labeled dataset for automatic grass-
land degradation estimation with ground-level grassland im-
ages captured from Qinghai-Tibet Plateau. To alleviate the
problem of class imbalance, we combine the advantages of
reducing the class imbalance in Focal Loss [Lin et al., 2017]
and increasing class distance in smoothed Hinge loss [Rennie
and Srebro, 2005], and propose an original Focal-Hinge loss
function. Next, we calculate the coverage of SC in the grass-
land area through the analysis of the results from semantic
segmentation of grassland images and accordingly determine
the degradation stage according to the relationship between
stage and coverage (Table 1).

Through these two steps, we manage to automatically es-
timate grassland degradation based on deep learning. To the
best of our knowledge, we are the first to leverage deep learn-
ing techniques to solve ecological problems regarding grass-
land ecosystem. To be more specific, we propose a brand new
scheme for grassland degradation estimation using semantic
segmentation by a deep neural network. Moreover, we design
a Focal-Hinge loss function to train the proposed network for
addressing the problem of class imbalance. Experiments of
our scheme on the Automatic Grassland Degradation Estima-
tion Dataset (AGDE-Dataset) are carried out and reveal sat-
isfying estimation results, which substantiate the feasibility
and prospect to solve the problem of automating grassland
degradation estimation leveraging deep learning.

2 Related Work
2.1 Plant Identification
Image-based plant identification is one of the most promis-
ing solutions towards furthering botanical taxonomy, as illus-
trated by the wealth of research regarding this topic [Cerutti
et al., 2011; Kebapci et al., 2011; Goëau et al., 2016].

Although we need to identify indicator plants for grass-
land degradation, our task is much more demanding. First,
the deep learning-based plant recognition of these researches
are more of image classification. However, in our task con-
cerning automatic grassland degradation estimation, we also
need to tell the spatial information like the locations and ar-
eas of them in an image. In addition, these algorithms only
recognize plants in an image with discernible plants and back-
ground. However, the indicator plants often lurk in the vast
expanse of grassland, making themselves indistinguishable in
an grassland image.

With this regard, to precisely figure out the proportion of

the indicator plants in an image, we propose a semantic seg-
mentation methodology.

2.2 Plant Density Estimation
In recent years, there has been a lot of research into plant den-
sity estimation based on image processing [Liu et al., 2017a;
Liu et al., 2017b; Jin et al., 2017]. For example, [Liu et al.,
2017b] takes wheat plant images by a high-resolution RGB
camera and train Artificial Neural Networks with 10 manu-
ally extracted features to estimate the number of plants. [Jin
et al., 2017] captures images by a UAV and train a Sup-
port Vector Machine with 13 hand-crafted features to identify
wheat plant.

In fact, plant density estimation entails the quantification
of the plant within a given unit area, which is highly biased
by plant distribution. However, plant coverage refers to a rel-
ative area covered by the plant species in a plot, the calcu-
lation of which is more complex than that of quantification,
since the area would not necessarily scale with the quantity
of plant. In addition, both [Liu et al., 2017b] and [Jin et
al., 2017] treat the density estimation problem as object clas-
sification, which might work with manually extracted fea-
tures. In contrast, our task is based on semantic segmentation,
where hand-engineered features are not feasible, so we auto-
matically extract features with the designed deep network.

2.3 Semantic Segmentation
Semantic segmentation necessitates object classification at
the pixel level. Recently, there are many fabulous seman-
tic segmentation models such as FCN [Long et al., 2015],
SegNet [Badrinarayanan et al., 2017], DeepLab-v3 [Chen
et al., 2018a], PSPNet [Zhao et al., 2017] and etc. Leong
first proposed Fully Convolutional Networks (FCN) [Long et
al., 2015] that is a convolutional network for dense predic-
tion without a fully-connected layer. This model makes it
possible to segment images at any size effectively, and it is
much faster than traditional methods based on patch classifi-
cation. However, an obtrusive problem using convolutional
neural networks for semantic segmentation is that pooling
layers enlarge the receptive field, aggregating contextual in-
formation while discarding location information. Therefore,
in order to solve this problem, an encoder-decoder architec-
ture is devised. The encoder gradually reduces the spatial
dimensions by pooling layers, while the decoder restores the
target details and spatial dimensions step by step. Among
such architectures, U-Net [Ronneberger et al., 2015] is a very
efficient one, whose semantic segmentation model employs
the architecture of encoder-decoder based on a fully convo-
lutional neural network. At present, semantic segmentation
is widely applied to the geographic information system, un-
manned vehicles [Menze and Geiger, 2015], medical image
analysis [Zhang et al., 2017], robots and etc. Endowed with
the power of the designed encoder-decoder deep network, we
manage to figure the coverage of the indicator plants in grass-
land images by the results of semantic segmentation.

3 The AGDE-Dataset
Since existing open image datasets contain inadequate grass-
land images, and even fewer datasets would cover SC images,
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Figure 1: The labeled AGDE-Dataset with ground truth of semantic segmentation and the information of degradation stage. CovSC in label
information represents the coverage of SC in the grassland image.

we create a labeled dataset – Automatic Grassland Degrada-
tion Estimation Dataset (AGDE-Dataset).

First of all, we capture a large number of images from
grasslands on the Qinghai-Tibet Plateau, from which we sift
2,895 images and scale them down. The sizes of the resized
images range from 5KB to 38KB.

Next, we manually label pixels belonging to each of the
five semantic categories – grassland (background), SC, sky,
water, and road – for every image with an open annotation
tool – LabelMe [Russell et al., 2008]. Due to the limitation
on the plateau, there are inevitably quantitative differences in
different semantic categories in the dataset. The number of
these five semantic categories are 2,895, 2,888, 156, 48 and
32 respectively. In addition, the degradation stage for each
image in AGDE-Dataset is labeled according to the coverage
of SC (Table 1) by calculating the proportion of the area of
SC in images, which will be articulated in Section 4.2. We
show several labeled examples of our dataset in Figure 1.

Finally, we randomly divide the dataset into a training set
and a test set in the ratio of 2,095:800, which is detailed in
Table 2. All these RGB images are eventually padded to the
resolution of 256×341. Although the dataset is not very big,
the amount of the training set is enough for our network train-
ing.

4 Proposed Method
We address the problem of automatic grassland degradation
stage estimation following two steps: 1) semantic segmenta-
tion: designing a deep network to implement semantic seg-
mentation for grassland images, and training it using the pro-
posed novel Focal-Hinge loss function; 2) degradation esti-
mation: figuring out the coverage of SC according to the se-
mantic segmentation results and further estimating the degra-

Dataset Number of Images in Each Stage
I II III IV V Total

Train Set 295 500 500 500 300 2,095
Test Set 100 200 200 200 100 800

Table 2: The number of images of each stage in AGDE-Dataset.

dation stage of grassland.

4.1 Semantic Segmentation for Grassland Scene
Network Architecture
The proposed network is based on the classic encoder-
decoder network architecture without the fully-connected
layers [Badrinarayanan et al., 2017] and we improve it by
adding the refined cross connections as shown in Figure 2.

The encoder network consists of 5 encoder convolution
groups. Each encoder in the encoder network contains sev-
eral Convolution, Batch Normalization, and ReLU (Conv +
BN + ReLU) layers with stride 1. Following that, max pool-
ing with a 2× 2 kernel and stride 2 (non-overlapping win-
dow) is performed. Therefore, the input image is totally
down-sampled 25 (32) times through the encoder network.
Symmetrically, the decoder network also contains 5 decoder
up-sampling groups. Each decoder contains 1 deconvolution
layer and 3 Conv + BN + ReLU layers with stride 1. The 5
decoders upsample the last encoder to 32 times, so the size of
the entire network output is equal to that of the input image.

In addition, in order to enrich the representation of the
encoder, we connect symmetrically the feature maps of the
decoder layers to the encoder layers by refined convolution
groups. For example, the feature maps of the 4th encoder are
connected to the 5th decoder by the 4th refined cross connec-
tion unit, and the feature maps of the 1st encoder are con-
nected to the 2nd decoder by the 1st refined cross connection
unit. The cross connections utilize low-level features and pre-
vent gradient disappearance in the underlying gradient. Each
of refined convolution groups contains 3 Convolution lay-
ers, Batch Normalization, ReLU, and Dropout (Conv + BN
+ ReLU + Dropout) layers with stride 1 [He et al., 2016],
which is similar to that in DenseNet [Huang et al., 2017].

Training
We train the network on AGDE-Dataset (Section 3). How-
ever, we face the challenge of the segmentation of the 5 im-
balanced classes – SC, sky, road, water, and background, with
SC predominating. The problem of class imbalance is very
common in semantic segmentation. In order to alleviate this
problem, we devise a novel loss function – Focal-Hinge loss
as the objective function for training the network.
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3rd decoder
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1st decoder
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Focal-Hinge loss
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Figure 2: An illustration of the network architecture in this paper. Each of the 5 encoder layers implements down-sampling with several
convolution layers and max pooling, and then each of the 5 encoder layers performs up-sampling with several deconvolution layers. The
feature maps of the decoder layers are connected to the corresponding that of encoder layers by refined convolution groups, each of which
contains Conv + BN + ReLU + Dropout layers with stride 1.

Focal-Hinge Loss
The following of this subsection details how the loss function
is derived.

First, in order to classify each pixel in an image, we con-
sider the Cross Entropy loss with a sigmoid activation func-
tion

pt(ypix) =
1

1+ exp(−ypix)
, (1)

where ypix is a heatmap pixel value of the network output, and
pt(ypix) is the probability of ground truth class. The Cross
Entropy loss is represented as

CE(pt) =− log(pt). (2)

However, CE(pt) with sigmoid is not capable of correctly
classifying some pixels into the minority semantic classes in
the training set, due to the class imbalance problem faced
by many classic semantic segmentation models [Long et al.,
2015; Huang et al., 2015; He et al., 2017]. Considering class
imbalance and easy sample overwhelming, we substitute the
classic Cross Entropy loss with a new Focal Loss [Lin et al.,
2017] to reduce the weight of easy samples. In this way, dur-
ing the training process, the model focuses more on hard sam-
ples. Focal Loss is represented as

FL(pt) =−(1− pt)
γ log(pt), (3)

where γ is a focusing parameter. If γ > 0, the relative loss for
correctly-classified examples (pt > 0.5) would decrease.

Nevertheless, we find that although FL(pt) with sigmoid in
Eq. (3) alleviates the problem of the easy sample overwhelm-
ing, the scoring on hard samples is still far from satisfying
because the scores of two classes are too close to each other.
In other words, the boundaries of segmentation results are not
clear-cut, with one class mixed with another. In this regard,
naturally, we would consider the smoothed Hinge loss [Ren-
nie and Srebro, 2005], as shown in Eq. (4), which is always
utilized in maximizing the classification interval in SVM, to

make the final score more discriminative.

HL(ypix) =


1
2 − t · ypix if t · ypix 6 0,
1
2 (1− t · ypix)

2 if 0 < t · ypix < 1,
0 if t · ypix > 1,

(4)

where t stands for the ground truth class to which ypix corre-
sponds.

Nonetheless, the smoothed Hinge loss itself does not tackle
the problem of class imbalance. Therefore, considering these
two problems − insufficient class distance and class imbal-
ance, we propose a Focal-Hinge loss (FH) as

FH(ypix)=


Nt(1− pt(ypix))

γ ( 1
2 − t · ypix) if t · ypix 6 0,

1
2 Nt(1− pt(ypix))

γ (1− t · ypix)
2 if 0 < t · ypix < 1,

0 if t · ypix > 1,
(5)

where Nt(1− pt)
γ represents the FL with a sigmoid activa-

tion function, and Nt denotes the reciprocal of the number of
classes t in one image, and γ denotes the hyper-parameter.
FH is the combination of FL with sigmoid and smoothed HL.
On the one hand, for the part of FL with sigmoid, the net-
work output can be normalized to [0,1], so that the classes
with more samples can receive a severer penalty based on the
probability. On the other hand, the use of smoothed HL en-
sures that a larger score distance is obtained. We experimen-
tally substantiate the effectiveness of proposed FH compared
with CE and FL with sigmoid for alleviating class imbalance
in Section 5.1.

The back propagation gradient of Focal-Hinge loss (FH) is

∂FH
∂ypix

=



Nt(1− pt)
γ (t− 1

2 γ · pt − γ · t · pt · ypix),

if t · ypix 6 0,
Nt(1− pt)

γ (t · ypix−1)[t + 1
2 γ · pt(1− t · ypix)],

if 0 < t · ypix < 1,
0, if t · ypix > 1,

(6)
where pt represents the function pt(ypix). With this brand

new loss function, we manage to alleviate the effect of
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class imbalance while keeping the distance between different
classes large enough.

4.2 Estimating Grassland Degradation Stage
Inputting a grassland image x into the fully trained deep net-
work, the output image y with the results of semantic seg-
mentation is obtained. However, to finish the grassland degra-
dation stage estimation, we further process the image seman-
tic segmentation results. First, we calculate the coverage of
SC in grassland images. Second, we estimate the grassland
degradation stage according to the corresponding relationship
between the coverage and the stage (Table 1).

Define of the Coverage of SC
There are totally 5 semantic categories: background, SC, sky,
water, and road in AGDE-Dataset. To obtain the coverage of
SC (CvgSC), we calculate the proportion of the areas of SC
and grassland background in one image, which is represented
as

CvgSC =
ASC

Aim−As−Ar−Aw
, (7)

where ASC denotes the area of SC in the image and Aim de-
notes the area of the entire image. The areas of sky, road, and
water are represented by As, Ar, and Aw respectively. The de-
nominator (Aim−As−Ar−Aw) stands for the area of grass-
land background. Given the semantic segmentation results,
ASC, As, Ar, and Aw are obtained easily by quantifying pix-
els in an image. Thus, we could acquire the CvgSC on the
grassland by Eq. (7).

Estimation of Degradation Stage
We construct a mapping relationship between SC coverage
and the degradation stage (Table 1) [Zhao et al., 2004] to ob-
tain the degradation estimation. In this way, we accomplish
the automatic estimation of grassland degradation stage lever-
aging deep learning.

5 Experiments
In order to demonstrate the effectiveness of our proposed
scheme, we evaluate the results from two aspects. First,
we evaluate the performance of semantic segmentation. To
be more specific, we compare the Focal-Hinge loss function
with several other loss functions. In addition, we also show-
case the competence of our network with comparison to other
classic semantic segmentation networks – FCN [Long et al.,
2015], SegNet [Badrinarayanan et al., 2017], and DeepLab-
V3 [Chen et al., 2018b]. Second, to test the performance
of our scheme on grassland degradation stage estimation, we
show its success rate on stage estimation.

5.1 Evaluation of Semantic Segmentation
Implementation Details and Evaluation Criteria
We set the parameters of networks – FCN-8s, FCN-16s, FCN-
32s, SegNet, and DeepLab-v3 – according to that specified in
their original papers. Besides, γ in Eq. (5) and Eq. (6) are
set to 2. The size of the input images is padded to 256×341,
which is the largest size of images in the dataset all experi-
ments are conducted on a GTX1080Ti. More detailed experi-
mental parameters are specified in Supplementary Materials.

The evaluation metrics are the Pixel Accuracy (PA), Mean
Pixel Accuracy (MPA), Intersection over Union (IoU) and
Mean Intersection over Union (MIoU).

Evaluation of Focal-Hinge Loss
Under the same conditions, using the proposed network, we
juxtapose our Focal-Hinge loss with the baseline ones: Sig-
moid + Cross Entropy loss (CE) and Sigmoid + Focal Loss
(FL). The evaluation results are shown in Table 3. We can
see that the Focal-Hinge loss (FH) achieves remarkably bet-
ter performance, in terms of MPA and MIoU. It is notable that
FH achieves satisfactory results on minority semantics.

Therefore, the results demonstrate that Focal-Hinge loss
function outperforms other losses in semantic segmentation
of grassland images and effectively alleviates the problem of
class imbalance.

Evaluation of the proposed network
Employing the Focal-Hinge loss, we further compare the se-
mantic segmentation performance of our network with that
of FCN-32s, FCN-16s, FCN-8s [Long et al., 2015], Seg-
Net [Badrinarayanan et al., 2017], and DeepLab-v3 [Chen
et al., 2018b]. The evaluation results are shown in Table 4.
Results show that our network, designed with a lighter struc-
ture, outperforms other networks. In addition, the proposed
method outperforms FCN and SegNet on minority semantics
(road and water).

The visual results are displayed in Figure 3. From the re-
sults, we can see that our method outperforms other deep net-
works, especially on minority semantics.

Input SegNet Ground TruthFCN-8 Ours

Figure 3: Visual results of semantic segmentation comparing to
other deep networks.

5.2 Evaluation of Degradation Stage Estimation
We evaluate the performance of grassland degradation esti-
mation on the test set of AGDE-Dataset, which covers 800
images with 5 degradation stages (Table 2). The success rate
δ i

c in each stage i is calculated by the ratio of the number of
correctly estimated images Ni

c to the total number of images
Ni

t in the stage:

δ
i
c =

Ni
c

Ni
t
, i ∈ {I, II, III, IV, V}. (8)

Accordingly, the error rate δ
i j
e of our scheme in each stage

i mistaken as stage j is calculated by:

δ
i j
e =

Ni j
e

Ni
t −Ni

c
, j ∈ {I, II, III, IV, V}\{i}, (9)
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Method PA MPA IoU MIoU
SC sky road water SC sky road water

Sigmoid + CE 0.472 0.792 0.296 0.231 0.358 0.449 0.785 0.242 0.207 0.337
Sigmoid + FL 0.508 0.788 0.399 0.359 0.411 0.477 0.781 0.292 0.296 0.369

FH 0.543 0.757 0.439 0.388 0.426 0.499 0.753 0.303 0.303 0.372

Table 3: Results of different loss functions using proposed network measured by PA and IoU.

Method PA MPA IoU MIoU
SC sky road water SC sky road water

FCN -32s 0.454 0.722 0.284 0.229 0.338 0.432 0.720 0.238 0.202 0.318
FCN -16s 0.455 0.767 0.311 0.297 0.366 0.433 0.763 0.253 0.258 0.341
FCN -8s 0.495 0.792 0.326 0.336 0.389 0.466 0.766 0.258 0.283 0.369
SegNet 0.463 0.801 0.345 0.208 0.391 0.453 0.780 0.253 0.265 0.370

DeepLab-v3 0.551 0.742 0.422 0.363 0.421 0.459 0.743 0.299 0.298 0.370
Ours 0.543 0.757 0.439 0.388 0.426 0.499 0.753 0.303 0.303 0.372

Table 4: Results of different neural networks using Focal-Hinge loss function measured by PA and IoU.

Stage Success Rate Error Rate
I II III IV V other

I 90% — 100% 0 0 0 0
II 88% 17% — 83% 0 0 0
III 96% 0 25% — 75% 0 0
IV 85% 0 0 37% — 63% 0
V 84% 0 0 0 38% — 62%

Avg 89% 3% 25% 24% 23% 13% 12%

Table 5: Success rates and error rates of automatic grassland degra-
dation stage estimation.

where Ni j
e represents the number of images in stage i mis-

taken as stage j, and Ni
t −Ni

c represents the total number of
mistaken images of stage i. The success rates and error rates
of the test set of AGDE-Dataset are shown in Table 5, from
which we can see that the success rates on each degradation
stage are remarkably satisfactory and the main error estima-
tions tend to occur in two adjacent stages.

The visual results of automatic grassland degradation esti-
mation are shown in Figure 4. We can see that the segmenta-
tion results and predicted stage label approximate the ground
truth.

6 Discussion and Future Work
The main contribution of this paper is to provide a scheme
to achieve automatic grassland degradation estimation lever-
aging deep learning. Specifically, we design a deep network
especially for semantic segmentation of grassland images. In
addition, due to the insufficiency of grassland image samples
in public datasets, we capture a large number of grassland
images and build a labeled grassland dataset named AGDE-
Dataset. Moreover, as for the problem of class imbalance in
the dataset, we devise a new Focal-Hinge loss function. Then
we calculate the coverage of indicator plants for degradation
using the results of semantic segmentation of grassland im-
ages and accordingly determine the degradation stage by the
mapping of between coverage and stage. Experimental re-
sults on AGDE-Dataset indicate that the proposed deep learn-

Inputs Results of Ours Ground Truths
Class Num: 4

CovSC : 18 %
Stage :Ⅰ

Class Num: 3

CovSC : 60 %
Stage : Ⅳ

Class Num: 4

CovSC : 19 %
Stage :Ⅰ

Class Num: 4

CovSC : 29 %
Stage : Ⅱ

Class Num: 3

CovSC : 27 %
Stage : Ⅱ

Class Num: 2

CovSC : 45 %
Stage : Ⅲ

Class Num: 2

CovSC : 42 %
Stage : Ⅲ

Class Num: 3

CovSC : 46 %
Stage : Ⅲ

Figure 4: Visual results of semantic segmentation and grassland
degradation estimation.

ing based method achieves an remarkably satisfactory result
regarding automatic grassland degradation estimation. We
hope that our model will be embraced at early date by grass-
land preservers on automatic estimation of grassland degra-
dation stage.
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