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Abstract

Traffic prediction is a classical spatial-temporal
prediction problem with many real-world applica-
tions such as intelligent route planning, dynamic
traffic management, and smart location-based ap-
plications. Due to the high nonlinearity and com-
plexity of traffic data, deep learning approaches
have attracted much interest in recent years. How-
ever, few methods are satisfied with both long and
short-term prediction tasks. Target at the shortcom-
ings of existing studies, in this paper, we propose a
novel deep learning framework called Long Short-
term Graph Convolutional Networks (LSGCN) to
tackle both traffic prediction tasks. In our frame-
work, we propose a new graph attention network
called cosAtt, and integrate both cosAtt and graph
convolution networks (GCN) into a spatial gated
block. By the spatial gated block and gated lin-
ear units convolution (GLU), LSGCN can efficient-
ly capture complex spatial-temporal features and
obtain stable prediction results. Experiments with
three real-world traffic datasets verify the effective-
ness of LSGCN.

1 Introduction
Traffic prediction is a classical spatial-temporal prediction
problem whose purpose is to predict the traffic condition-
s (e.g. vehicle speed) of several future times based on the
historical traffic observations (e.g. recorded via sensors of
traffic network). The problem has been found useful in
many real-world applications such as intelligent route plan-
ning, dynamic traffic management, and smart location-based
applications [Wu and Tan, 2016]. In general, there are t-
wo kinds of traffic prediction tasks according to the length
of prediction time, namely the short-term (5∼30 minutes)
and long-term (30∼60 minutes) [Ostring and Sirisena, 2001;
Vlahogianni et al., 2005]. The traditional methods often
adopt the queuing theory, computational simulation and s-
tatistics [Ahmed and Cook, 1979; Williams and Hoel, 2003].
Since these methods rely on the stationarity assumption, they
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Figure 1: The left picture shows a road network with seven sensors
numbered from 1 to 7. The right pictures denote the traffic networks
over time from T to T +N . The different color of the sensors rep-
resents the degree of road congestion. For example, red means that
the corresponding roads are congested and green shows the roads
are smooth. If there is a sudden accident on the road with sensor 5
at time T , the road becomes congested. Then, at time T + 1, the
adjacent roads with sensors 3, 4 and 7 may be affected by the acci-
dent and also become congested. Instead, sensors 1, 2 and 6 may be
affected less since they are located at the farther roads. Moreover,
since the roads with sensors 2 and 5 are similar, which are narrower
than the road with sensors 1 and 6, sensor 2 may be affected more
than sensors 1 and 6.

fail to capture complex spatial-temporal features for the pre-
diction tasks.
Due to the high nonlinearity and complexity of traffic da-

ta, deep learning approaches have attracted much interest
in recent years such as convolutional neural network (CN-
N) and recurrent neural networks(RNN) [Wu and Tan, 2016;
Ma et al., 2017; Hochreiter and Schmidhuber, 1997; Xingjian
et al., 2015]. In particular, graph convolution networks(GCN)
and its variants have been used to traffic prediction tasks and
often obtain promising prediction results [Yu et al., 2018;
Li et al., 2018; Guo et al., 2019]. However, few methods
are satisfied with both long and short-term prediction tasks.
For example, STGCN [Yu et al., 2018] adopts the mechanis-
m of iterative prediction. The traffic conditions predicated in
the previous iterations are used as the historical observations
for the next iterations. Since the historical traffic observations
may be not real values, there are errors accumulated for the
prediction task. In general, the more network structure layer-
s, the more errors accumulated, especially for the long-term
task. On the other hand, ASTGCN [Guo et al., 2019] and D-
CRNN [Li et al., 2018] adopt the mechanism of non-iterative
prediction, where all prediction values for multiple time steps
are obtained by one unified evaluation instead of multiple it-
erations. So, it is hard to give considerations to both long and
short-term tasks.
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Target at the shortcomings of existing studies, we propose a
novel deep learning framework called Long Short-termGraph
Convolutional Networks (LSGCN) to tackle both traffic pre-
diction tasks. Intuitively, the mechanism of iterative predic-
tion is good for the simulation of dynamic traffic conditions
over time.
So, we also adopt the mechanism of iterative prediction

for LSGCN. We try to enhance the performance of LSGCN
from two aspects. On the one hand, we construct a simpli-
fied network structure with fewer layers and reduce the accu-
mulated errors in each iteration. On the other hand, we de-
sign some new network layers to efficiently capture complex
spatial-temporal features. Specifically, we propose a spatial
gated block in which a new graph attention network called
cosAtt and graph convolution networks (GCN) are integrat-
ed by the gated form. By cosAtt and GCN, the spatial gated
block can precisely extract the spatial location adjacency and
similar road conditions of traffic networks. For example, Fig-
ure 1 shows an application scenario can be captured by the
spatial gated block. Moreover, the graph attention cosAtt en-
ables more stable prediction results.
Our contributions are summarized as follows. (1) We pro-

pose a novel deep learning framework LSGCN for both long
and short-term traffic prediction tasks. In LSGCN, we adop-
t the spatial gated block and gated linear units convolution
(GLU) to capture the spatial and temporal features, respec-
tively. We propose a new graph attention network cosAt-
t and integrate both GCN and cosAtt into the spatial gated
block. (2) We evaluate our LSGCN on three real-world traf-
fic datasets and the experimental results show that LSGCN
outperforms state-of-the-art baselines.

2 Preliminary
2.1 Traffic Prediction Problem
Traffic Network. Traffic network is defined as an undirect-
ed graph G = (V,E,W ), where V is the set of nodes, E is
the set of edges between two nodes, and W ∈ RN×N cor-
responds to the adjacency matrix of G. In practice, a node
may represent a sensor located at the corresponding road of
the traffic networks. Each node records some traffic features,
such as traffic flow, vehicle speed, and road occupancy, etc.

Problem Definition. For a traffic network, let xi
t ∈ R

represents the traffic feature value of the ith node at time
step t, and xt ∈ RN represents the traffic feature values
of all nodes at time step t. Given history traffic data X =
(x1, x2, ..., xτ )

T ∈ RN×τ , the purpose of traffic prediction
is to predict the traffic features of all nodes in future Tp time
steps, namely Y ∗ = (y1, y2, ..., yTp)

T ∈ RN×Tp . Without
loss of generality, we consider the feature of vehicle speed in
the following.

2.2 Attention on Graphs
The input to graph attention networks (GAT) is a set of node
features, Q = {q⃗1, q⃗2, ..., q⃗N}, where q⃗′i ∈ RF and N is the
number of nodes, and F is the number of features in each
node. The output is also a new set of node features (of poten-
tially different cardinality F ′), Q′ = {q⃗′1, q⃗′2, ..., q⃗′N}, where

q⃗′i ∈ RF ′
. The attention coefficient for any pair of q⃗i and q⃗j

is given as follows.

eij = A(q⃗iwi, q⃗jwj), wi, wj ∈ F × F ′ (1)
where wi and wj are weight matrix components, and A(·)
is the attention mechanism operation function. Then, we
normalize the attention coefficient eij among node neighbor-
hoods and achieve the output as follows.

aij = softmax(eij) =
exp(eij)∑

k∈Ni
exp(eik)

(2)

q⃗
′
i = σ(

∑
j∈Ni

aij q⃗jwj)) (3)

where Ni is the set of neighbours of node i in the graph and
σ is an activation function [Velickovic et al., 2017].

3 Proposed Model
3.1 Network Architecture
LSGCN is composed of five layers, namely two gated lin-
ear units convolutional layers (GLUs), spatial gated block,
convolution-unified layer and fully connection layer. The s-
patial gated block is between two GLUs as shown in Fig-
ure 2. Our network structure has fewer layers compared with
STGCN [Yu et al., 2018]. LSGCN adopts the mechanism
of iterative prediction as follows. In each iteration, we first
obtain H ′ = (h′

1, h
′
2, ..., h

′
τ−KT+1)

T ∈ RN×(τ−KT+1)×C1

by the first GLU layer, where KT is the width of 1D convo-
lution kernel and C1 is the channel numbers. Then, we can
obtain H

′′
= (h

′′

1 , h
′′

2 , ..., h
′′

τ−KT+1)
T ∈ RN×(τ−KT+1)×C1

by spatial gated block, which is based on H ′ and the adja-
cency matrix W . Next, H

′′
is processed by the second GLU,

and we can obtain H
′′′

= (h
′′′

1 , h
′′′

2 , ..., h
′′′

τ−2×(KT−1))
T ∈

RN×(τ−2×(KT−1))×C2 , whereC2 is the second channel num-
bers. Finally, the output is achieved by the convolution uni-
fied layer and fully connection layer, namely Y = (y1)

T ∈
RN×1×1. Note that the obtained Y is added into the input for
next iteration. For example, the input for the second iteration
is {x2, ..., xi, ..., xτ , y1}. The iteration process is halted after
Tp iterations. The adjacent road conditions are important in
short-term task, the similar road conditions more so in long-
term task. They can be captured by GCN and cosAtt of the
network model, respectively.

3.2 Spatial Gated Block for Extracting Spatial
Features

We consider two main spatial features, namely spatial loca-
tion adjacency and road condition similarity. We use GCN to
extract the spatial location adjacency and a new graph atten-
tion network cosAtt to extract road condition similarity.
Inspired by the sequential gate structure, such as LST-

M [Hochreiter and Schmidhuber, 1997] and GRU [Chung et
al., 2014], we adopt the gate structure to integrate both com-
ponents. We use the sigmoid function to map the results of
GCN to the interval (0, 1) and control the output of cosAt-
t. Intuitively, GCN determines how much information gen-
erated by cosAtt can flow into the next layer based on the
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Figure 2: Network architecture of LSGCN. P and Q are the output-
s of 1-D Conv, σ represents the sigmoid activation function and ⊗
represents the element-wise Hadamard product between two branch-
es.

topological structure (i.e., spatial location adjacency) of traf-
fic networks.
As shown in Figure 2, the spatial gated block works as fol-

lows. First, we pass the H l+1 generated by the first GLU
and the adjacency matrix W into GCN. The results of GCN
then go through the sigmoid activation function. On the other
hand, we make a copy of H l+1 and pass it to cosAtt. Finally,
H l+2 is achieved by the element-wise Hadamard product on
the results generated before.
Graph Attention cosAtt. Based on the observation that the
roads adjacent to each other in a traffic network often have
similar road conditions as shown in Figure 1. We design a
new graph attention cosAtt to extract the similar road condi-
tions of traffic networks. In cosAtt, we adopt global graph
attention networks to learn the similar conditions of any two
roads of traffic network instead of neighbours in graph atten-
tion networks (GAT).
Initially, nodeH = {h1, ..., hi, ..., hN}, hi ∈ RN×T×Ci is

passed into cosAtt, where T represents time steps and Ci is
input channels. We define cosAtt as follows.

eij = cos(hi, hj) · wij =
hi × hT

j · wij

∥hi∥ × ∥hj∥
(4)

aij = sigmoid(eij) (5)

cosAtti =
∑
j∈Ñi

aijhjwij (6)

where Ñi is all nodes in graph except node i.
Next, we show the key differences between cosAtt and

traditional GAT. First, the weight distribution of cosAtt is
used as the output, whereas the weight distribution of GAT
is added into the original features. On the other hand, for any

given two features hi and hj , the similarity value between
them is constant (i.e., cos(hi, hj)). The value of eij is rela-
tively stable and only adjusted by the weight matrix W (i.e.,
wij). In contrary to cosAtt, the value of eij in GAT may be
unstable since we have to learn them by the attention function
and the weight matrixW as shown in Eq.(1).
Note that we use the sigmoid instead of the softmax acti-

vation function in our model. This is because that the soft-
max activation function often results in denominator under-
flow and program crash since the number of neighbors (i.e.,
all nodes except the target node itself) for each node may be
huge.
The details on GCN are as follows. Based on the concep-

tion of spectral graph convolution, the graph convolution op-
erator ”∗G” can be represented as the multiplication of a sig-
nal x ∈ RN with a kernel Θ.

Θ ∗G x = Θ(L)x = Θ
(
UΛUT

)
x = UΘ(Λ)UTx (7)

In the equation, graph Fourier basis U ∈ RN×N corresponds
to the matrix of eigenvectors of the normalized graph Lapla-
cian L = IN −D− 1

2WD− 1
2 = UΛUT ∈ RN×N , where IN

is an identity matrix and D ∈ RN×N is the diagonal degree
matrix with Dii =

∑
j Wij . Λ ∈ RN×N corresponds to the

diagonal matrix of eigenvalues of L and filter Θ(Λ) is also a
diagonal matrix [Shuman et al., 2013].
Since the computation of Eq.(7) is expensive, we adopt the

Chebyshev polynomials approximation in our implementa-
tion to speed up the computation of GCN.

Θ ∗G x = Θ(L)x ≈
K−1∑
k=0

θkTk(L̃)x (8)

where θ ∈ RK is a vector of polynomial coefficients,K is the
kernel size of graph convolution, and Tk(L̃) ∈ RN×N corre-
sponds to the Chebyshev polynomial of order k evaluated at
the scaled Laplacian L̃ = 2L/λmax − IN . The computation
of Eq. (8) takes O(K · |E|) time [Defferrard et al., 2016].

3.3 Gated Linear Units Convolution Layer for
Extracting Temporal Features

We use GLU to capture dynamic behaviors of temporal fea-
tures, which is similar to STGCN [Yu et al., 2018]. As shown
in Figure 2, there are two GLUs each of which consists of a
1D convolution with a width-KT kernel and a residual con-
nection.
In general, GLU works as follows. The input is X =

{x1, x2, ..., xi, ..., xN}, xi ∈ RN×τ×Ci (Ci = 1 for
the first GLU). Next, we use convolutional kernels Θ ∈
RKt×Ci×2Co to obtain the convolutional result Z = [PQ] ∈
RN×(τ−KT+1)×2Co , where Co is the size of the feature set
generated by GLU. Note that the number of 1D convolutional
kernels is set as 2 · Co. The output through 1D convolution-
al layer is divided into two equal parts, namely P and Q. P
is the output of the first half convolution kernels and Q is of
the second half convolution kernels. Then, the element-wise
Hadamard product of P and σ(Q) is computed and added in-
to the input of the residual connection. If the number of input
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PeMSD4 PeMSD7 PeMSD8

#Nodes 307 228 170
#Edges 340 832 295

#Time steps 16992 12672 17856

Time span 2018/1 -
2018/2

2012/5 - 2012/6
(weekdays)

2016/7 -
2016/8

Time interval 5mins
Daily range 0:00 - 24:00

Table 1: The details for the datasets

dimension is less than that of the output dimension, the input
dimension is filled with zero, and vice versa. Finally, we can
reduce the time steps to τ −2× (KT −1) (> 0) based on two
GLUs.

3.4 Convolution Unified Layer
In the mechanism of iterative prediction, we need to output
single prediction value for each time step in each iteration
process. So, it is necessary to reduce dimension on time axis.
As shown Figure 2, LSGCN adopts the convolution unified
layer to merge the τ − 2 × (KT − 1) time steps into single
time step with casual convolution. In general, the sequence
with τ−2×(KT −1) time steps is a relatively long sequence.
For a long sequence, the casual convolution fuse time steps in
proportion, so we can obtain a reasonable time step as the
output of this layer.

3.5 Loss Function
We use L2 loss to measure the performance of our model
which is defined as follows,

L (ŷ;Wθ) =
∑
t

∥ŷ (xt−τ , . . . , xt,Wθ)− xt+1∥2 (9)

where ŷ(·) is the prediction value, xt+1 denotes the ground
truth and Wθ represents all trainable parameters.

4 Experiment
4.1 Dataset Description
In the experiment, we use three real-world traffic dataset-
s, namely PeMSD4, PeMSD7 and PeMSD8, which
are collected by California Performance of Transporta-
tion(PeMS) [Chen et al., 2001] and widely used in the pre-
vious studies such as STGCN and ASTGCN [Yu et al., 2018;
Guo et al., 2019]. More details for the datasets are in Table 1.
The PeMS sensor network is shown in Figure 3.
PeMSD4. It refers to the traffic data in San Francisco Bay
Area, with 307 sensors on 29 roads. The dataset spanned
from January to February in 2018. The first 47 days are used
as training set, and the remaining as validation and test set.
PeMSD7. It refers to the traffic data in District 7 of Califor-
nia, with 228 sensors and the time range is in the weekdays
fromMay to June in 2012. The first 34 days are used as train-
ing set, and the remaining as validation and test set.
PeMSD8. It refers to the traffic data in San Bernardino from
July to August in 2016, with 170 detectors on 8 roads. The
first 50 days are used as training set, and the remaining as
validation and test set.

0 100 200 300

Station ID

0

100

200

300

S
ta

ti
o
n
 I
D

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: PeMS sensor network in District 4 of California (left).
Sensor stations are denoted by dots. Heat map of weighted adjacen-
cy matrix in PeMSD4 (right).

4.2 Data Preprocessing
We set the standard time interval as 5 minutes. Therefore,
every sensor contains 288 traffic data points per day. We use
linear interpolation method to fill the missing values and Z-
Score method to normalize the input data.
For PeMSD4 and PeMSD8, the weighted adjacency matrix
W can be formed as,

wij =

{
exp

(
−d2

ij

δ

)
, if i, j are neighbours

0 , if i, j aren’t neighbours
(10)

where δ is the threshold to control the distribution of W and
is set to be 0.1, wij is the edge weight which is related to dij
(the distance between station i and j).
For PeMSD7, the weighted adjacency matrix W can be
formed as,

wij =

{
exp

(
−d2

ij

δ

)
, i ̸= j and exp

(
−d2

ij

δ

)
≥ ϵ

0 , otherwise
(11)

where δ and ϵ are the thresholds to control the distribution
and sparsity of W and are set to be δ = 0.1 and ϵ = 0.5,
respectively. wij is the edge weight which is related to dij
(the distance between station i and j).

4.3 Experimental Settings
All experiments are performed on a Linux server (CPU: In-
tel(R) Xeon(R) CPU E5-2620 v4@ 2.10GHz, GPU: GeForce
RTX 2080 Ti). The grid search strategy is executed to lo-
cate the best parameters on validations. All the tests adopt 60
minutes as the history time window, a.k.a. 12 observed data
points (τ = 12) are used to forecast traffic conditions in the
next 15, 30, 45 and 60 minutes (Tp = 3, 6, 9, 12).

Evaluation Metric & Baselines. We adopt Mean Absolute
Errors (MAE), Mean Absolute Percentage Errors (MAPE),
and Root Mean Squared Errors (RMSE) to measure the per-
formance of different methods. The baselines are as follows.

• HA: Historical Average. Here, we use the average value
of the last 12 times slices to predict the next value.

• ARIMA [Williams and Hoel, 2003]: Auto-Regressive
Integrated Moving Average method, which is widely
used in time series prediction.
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Model PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE (%) RMSE

HA 2.54 5.56 4.96
ARIMA 2.51/ 2.75/ 2.96/ 3.21 5.32/ 5.69/ 6.01/ 6.56 5.72/ 6.34/ 6.85/ 7.36
DCRNN 1.35/ 1.77/ 2.04/ 2.26 2.68/ 3.71/ 4.48/ 5.10 2.94/ 4.06/ 4.77/ 5.28
STGCN 1.47/ 1.93/ 2.26/ 2.55 2.92/ 3.98/ 4.73/ 5.39 3.01/ 4.21/ 5.01/ 5.65
ASTGCN 2.12/ 2.42/ 2.60/ 2.73 4.16/ 4.80/ 5.20/ 5.46 3.96/ 4.59/ 4.97/ 5.21
LSGCN 1.45/ 1.82/ 2.04/ 2.22 2.90/ 3.84/ 4.42/ 4.85 2.93/ 3.92/ 4.47/ 4.83

Model PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE (%) RMSE

HA 4.01 10.61 7.20
ARIMA 5.57/ 5.94/ 6.27/ 6.68 13.04/ 14.01/ 15.01/ 16.78 9.00/ 9.22/ 9.43/ 9.68
DCRNN 2.22/ 3.04/ 3.64/ 4.15 5.16/ 7.46/ 9.26/ 10.82 4.25/ 6.02/ 7.24/ 8.20
STGCN 2.24/ 3.04/ 3.61/ 4.08 5.28/ 7.46/ 9.00/ 10.23 4.01/ 5.74/ 6.85/ 7.69
ASTGCN 2.85/ 3.35/ 3.70/ 3.96 7.25/ 8.67/ 9.73/ 10.53 5.15/ 6.12/ 6.77/ 7.20
LSGCN 2.22/ 2.96/ 3.43/ 3.81 5.14/ 7.18/ 8.51/ 9.60 3.98/ 5.47/ 6.39/ 7.09

Model PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE (%) RMSE

HA 1.98 3.94 4.11
ARIMA 1.90/ 2.12/ 2.43/ 2.79 5.11/ 5.21/ 5.46/ 5.62 4.87/ 5.24/ 5.63/ 6.22
DCRNN 1.17/ 1.49/ 1.71/ 1.87 2.32/ 3.21/ 3.83/ 4.28 2.59/ 3.56/ 4.13/ 4.50
STGCN 1.19/ 1.59/ 1.92/ 2.25 2.34/ 3.24/ 3.91/ 4.54 2.62/ 3.61/ 4.21/ 4.68
ASTGCN 1.49/ 1.67/ 1.81/ 1.89 3.16/ 3.59/ 3.98/ 4.22 3.18/ 3.69/ 3.92/ 4.13
LSGCN 1.16/ 1.46/ 1.66/ 1.81 2.24/ 3.02/ 3.51/ 3.89 2.45/ 3.28/ 3.75/ 4.11

Table 2: Performance comparison of different approaches on the datasets PeMSD4, PeMSD7 and PeMSD8.

• DCRNN [Li et al., 2018]: Diffusion Convolution Re-
current Neural Network, which combines graph con-
volution with recurrent neural networks in an encoder-
decoder manner.

• STGCN [Yu et al., 2018]: Spatial-Temporal Graph Con-
volutional Network, which combines graph convolution
with gated temporal convolution.

• ASTGCN [Guo et al., 2019]: Attention based Spatial-
Temporal Graph Convolution Network, which com-
bines the spatial-temporal attention mechanism and the
spatial-temporal convolution.

LSGCN Model. The batch size of PeMSD4, PeMSD7 and
PeMSD8 are 32, 32 and 16, respectively. The hyperparame-
ters are set as follows. For all datasets, the channels of the first
GLU, GCN, cosAtt, the second GLU are 32, 32, 32 and 64,
respectively. We set both the graph convolution kernel size
K and GLU convolution kernel size Kt to 3. Our model is
trained by minimizing the mean square error with RMSprop
optimizer for 60 epochs. The initial learning rate is set as
10−3 with a decay rate of 0.7 after every 5 epochs.

4.4 Experiment Results
As shown in Table 2, LSGCN performs well in both long-
term and short-term prediction for three evaluation metrics.
In detail, in the three datasets, it performs very well, especial-
ly in the long-term prediction of PeMSD4, both long-term
prediction and short-term prediction of PeMSD7 and PeMS-
D8. In the short-term prediction of PeMSD4, it also achieves
the second best. The results show that LSGCN can efficiently
capture the spatial-temporal features for the prediction tasks.

In particular, STGCN is also based on the mechanism of iter-
ative prediction, but it causes more accumulation errors than
LSGCN since it consists of more network structure layers.
We can easily observe that the traditional statistical meth-

ods (i.e., HA and ARIMA) often have poor performance since
they cannot efficiently handle the complex spatial-temporal
data.
In general, since there are lots of accumulated errors in

STGCN for the prediction tasks, ASTGCN and DCRNN have
better performance than STGCN. In detail, STGCN is not bet-
ter than DCRNN in the short-term tasks and not better than
ASTGCN in the long-term tasks. DCRNN adopts diffusion
convolution which is beneficial to capture complex spatial
topology information. Besides, it can accurately calculate
the probability from the target sensor to neighbour sensors
by using a finite step random walk to express the diffusion
process. Thus, DCRNN has the best performance in the met-
rics of MAE and MAPE for the complex traffic networks of
PeMSD4. But, DCRNN also adopts GRU structure for time
series which often causes information loss in the long-term
tasks.
ASTGCN considers the periodicity in prediction tasks and

various traffic characteristics related to the tasks. So, it
performs well in the long-term prediction of PeMSD4 and
PeMSD8. But, ASTGCN is not better than STGCN in the
long-term prediction of PeMSD7. This is because that the
neighbor information is beneficial to the prediction tasks,
which is removed by the threshold from PeMSD7, and saved
in PeMSD4 and PeMSD8.

Test in extreme case. In particular, we test our LSGCN in
some extreme cases, namely morning peak and evening rush
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Figure 4: Speed prediction in the morning peak and evening rush
hours of the dataset PeMSD4.
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Figure 5: Test RMSE versus the training time(left); Test MAE ver-
sus the number of training epochs(right).(PeMSD4)

hours. As shown in Figure 4, Due to the efficient spatial gat-
ed block, LSGCN is capable of fast response to the dynamic
changes in extreme cases. The trend of rush hours captured
by LSGCN is more accurate than the other methods. Besides,
the ending of the rush hours detected by LSGCN is earlier
than the others.
Training Efficiency and Generalization. We plot the
RMSE and MAE of the test set of PeMSD4 during the train-
ing process to further investigate the performance of different
deep learning models. As shown in Figure 5, it is obvious
that our LSGCN can achieve faster training and easier con-
vergence than DCRNN and ASTGCN. Specifically, LSGCN
and STGCN need almost the same training time, about 1,000
seconds, whereas DCRNN and ASTGCN need about 10,000
and 25,000 seconds, respectively. This is because that more
parameters are used for the training process of DCRNN and
ASTGCN.
Effect of cosAtt. By replacing the proposed cosAtt of LS-
GCN with traditional graph attention, we can obtain a modi-
fied version called LSGCN(GAT). We compare LSGCN and
LSGCN(GAT) to test the changes in prediction results. For
each prediction task, both methods are executed 10 times with
the same hyperparameters. Then, the maximum and mini-
mum values among all evaluation results for each metric are
reported, respectively. As shown in Table 3, the metric value
changes for LSGCN are often smaller than LSGCN(GAT), so
cosAtt enables more stable prediction results.

5 Related Work
Deep learning models. Some solutions for traffic predic-
tion are proposed based on deep learning models. Zhang et
al. [2016] convert the road network to a regular 2-D grid and

min MAPE (%) MAE RMSE

LSGCN
(GAT)

15 2.37±0.06 1.19±0.02 2.62±0.08
30 3.11±0.08 1.49±0.02 3.46±0.07
45 3.55±0.09 1.68±0.03 3.88±0.08
60 3.87±0.12 1.82±0.06 4.16±0.10

LSGCN

15 2.23±0.04 1.17±0.01 2.47±0.03
30 2.96±0.08 1.48±0.02 3.28±0.05
45 3.43±0.10 1.69±0.03 3.77±0.07
60 3.80±0.11 1.85±0.05 4.14±0.08

Table 3: Prediction value changes on PeMSD8

apply CNN to capture adjacent relations among the traffic
network. Yao et al. [2018] proposed a method to predict traf-
fic by integrating CNN and long-short term memory (LSTM)
to jointly model both spatial and temporal dependencies. Dif-
ferent from these methods, both GCN and GAT are integrated
in our proposed model.
Graph convolutional networks(GCN). Bruna et al.
[2013] propose GCN based on the spectral graph theory.
Defferard et al. [2016] and Kipf et al. [2016] propose some
improve methods for the computation of GCN. Based on
GCN, Yu et al. [2018] propose STGCN to tackle the time
series prediction problem in the traffic domain. Wu et
al.[2019] propose Graph Wavenet to precisely capture the
hidden spatial dependency in the data. In addition to GCN,
our model contains an additional GAT which is different
from these methods.
Attention mechanism. It has been widely utilized in var-
ious domains such as natural language processing, speech
recognition and image caption [Vaswani et al., 2017; Shen et
al., 2018]. Recently, researchers apply attention mechanism
to graph [Velickovic et al., 2017; Liu et al., 2018] and traf-
fic prediction. Liang et al. [2018] propose a novel multi-level
attention-based network. Guo et al. [2019] propose ASTGCN
and Zheng et al. [2019] propose GMAN. Different from these
methods, our graph attention is based on the road condition
similarity.

6 Conclusion
In this paper, we propose a new graph convolutional network-
s model LSGCN for long and short-term traffic prediction.
In LSGCN, we integrate both a new graph attention network
cosAtt and GCN to precisely capture the spatial features and
at the same adopt the GLU to capture the temporal features.
The experiments on real traffic networks verify the effective-
ness of LSGCN. In the future, we will consider our proposed
model for more general spatio-temporal structured sequence
forecasting such as preference prediction in recommendation
systems.

Acknowledgements
This paper is supported by the National Nature Science Foun-
dation of China (61572537, U1501252).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2360



References
[Ahmed and Cook, 1979] Mohammed S Ahmed and Allen R

Cook. Analysis of freeway traffic time-series data by using
Box-Jenkins techniques. Number 722. 1979.

[Bruna et al., 2013] Joan Bruna, Wojciech Zaremba, Arthur
Szlam, and Yann LeCun. Spectral networks and local-
ly connected networks on graphs. arXiv preprint arX-
iv:1312.6203, 2013.

[Chen et al., 2001] Chao Chen, Karl Petty, Alexander Sk-
abardonis, Pravin Varaiya, and Zhanfeng Jia. Freeway per-
formance measurement system: mining loop detector data.
Transportation Research Record, 1748(1):96–102, 2001.

[Chung et al., 2014] Junyoung Chung, Caglar Gulcehre,
Kyunghyun Cho, and Yoshua Bengio. Empirical evalua-
tion of gated recurrent neural networks on sequence mod-
eling. arXiv: Neural and Evolutionary Computing, 2014.

[Defferrard et al., 2016] Michaël Defferrard, Xavier Bres-
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