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Abstract
Accurately characterizing the user’s current inter-
est is the core of recommender systems. However,
users’ interests are dynamic and affected by intent
factors and preference factors. The intent factors
imply users’ current needs and change among dif-
ferent visits. The preference factors are relatively
stable and learned continuously over time. Existing
works either resort to the sequential recommenda-
tion to model the current browsing intent and his-
torical preference separately or just mix up these
two factors during online learning. In this paper,
we propose a novel learning strategy named FLIP
to decouple the learning of intent and preference
under online settings. The learning of the intent is
considered as a meta-learning task and fast adaptive
to the current browsing; the learning of the prefer-
ence is based on the calibrated user intent and con-
stantly updated over time. We conducted experi-
ments on two public datasets and a real-world rec-
ommender system. When combining it with mod-
ern recommendation methods, significant improve-
ments are demonstrated over strong baselines.

1 Introduction
One of the most challenging problems in online recommender
systems is to predict users’ current interests. Unlike search
engines, where one could directly convey precise interests
with queries like “black Nike sneaker” or “ionic hairdryer”,
the user’s real-time interest in online recommender systems
must be predicted from user history behaviors.

In general, there are two major types of factors affecting
whether a user could be interested in an item: i) User intent
factors imply users’ current needs. Although recommender
systems typically do not require the user to type the query
words, most users visit a recommender with a certain degree
of intent rather than completely wandering around. For ex-
ample, when a user opens Netflix, (s)he may have already de-
cided to watch a comedy or a documentary. For most users,
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they are only interested in a few categories during a certain
visit. Such kinds of factors often change dynamically over
time. Each visit user may come with a completely differ-
ent intent. ii) User preference factors represent the utility of
buying or clicking items displayed by the recommender sys-
tem. The user’s preference factor is not universal–each user
has his(her) own preference on different items. For example,
having the intent of buying a sneaker does not mean a user
will click/buy every sneaker displayed by the recommender
system; instead, the user still needs to consider its brand pref-
erence, shoe size, or price preference. Although user pref-
erences could still be changing over time, those factors are
generally stable and evolve in a gradual manner.

Most existing works on online recommender systems
model users’ intent and preferences as users’ evolving “in-
terests” without distinction, where typical online learning (or
sequential learning) algorithms [Wang et al., 2018; Ying et
al., 2018] are applied to capture changes in interests. Jointly
learning intent and preference from users’ historical behav-
iors in this way could be challenging, and the precision may
suffer for two reasons. On one hand, typical online learn-
ing algorithms expect data distribution to be stable or change
gradually [Hoi et al., 2018], while a user’s intention could
change dramatically from visit to visit. And thus, adapting
the intent estimation from past intent could be inefficient in
comparison to learning the intent factors separately for each
new visit. On the other hand, user preference factors often
require continuous learning over a long period. Dramatically
changed user intent, however, may lead to catastrophic forget-
ting in learning user preference factors, and thus, preference
factors could be much better learnt from a stable data distri-
bution.

In this paper, we propose a learning framework to model
user intent and preference explicitly. Different from previous
online recommender systems which treat the learning of user
interest as an online learning problem [Guo et al., 2019], our
learning framework models the user interests in two spaces:

1) Intent Space. The learning process of intent embedding
space is treated as a meta-learning problem instead of an
online learning problem. Each session (which identifies a
user visit) is viewed as an individual subtask. The meta-
learner is optimized to solve new learning tasks accurately

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2575



using session samples. The intent embedding is learnt
only from samples of the current session.

2) Preference Space. The preference embedding space is
learnt via online learning procedure based on samples
with calibrated user intent. The variation of data dis-
tribution we aim to reduce is mainly due to the inaccu-
rate estimation of user intent. Intuitively, if we know the
user has intent on buying mobile-phone, an observation
of unclicked Nike sneaker item could be better attributed
to the intent of “not buying sneaker” but not the prefer-
ence of “not like Nike”; in contrast, if the user has intent
on buying sneaker, such an observation could be strongly
attributed to the preference of “not like Nike” or some
related price preference. If every data sample is accompa-
nied with correct user intent, the variation of the learning
process due to the sudden change of user intent is signifi-
cantly reduced. Since user intent usually does not change
during a session, we use the learnt user intent at the end
of each session as the intent embedding for all samples in
the session when learning the preference embedding.

As such, our proposed framework has two major advan-
tages: 1) The user intent factors can be learnt much faster in
a meta-learning fashion which is designed to learn from sam-
ples within the current session. 2) The user preference fac-
tors could benefit from the stable continuous learning process
and be updated smoothly. Experimental results on two public
datasets and a real-world recommender system proved its ef-
fectiveness. Except for the significant performance improve-
ments over competitive online learning strategies, it provides
a seamless way to combine with a variety of modern rec-
ommendation methods, including neural collaborative filter-
ing [He et al., 2017] and sequential recommendation mod-
els [Hidasi et al., 2016; Zhou et al., 2018].

2 Related Work
User Modeling in Recommendation System. A series of
works have discussed how to learn a better user representa-
tion to deliver personalized recommendation outcomes. Ear-
lier user-based collaborative filtering represented each user
by the row vector in a rating matrix [Herlocker et al., 1999]
and recommended items according to the similar users. Ma-
trix factorization [Paterek, 2007] firstly proposed to jointly
map both user and item into a latent space of which each di-
mension reflects a certain user preference towards the item
factor. Deep sequential models enrich the user representa-
tion by a series of model innovations like recurrent neural
network [Hidasi et al., 2016], attention function [Zhou et al.,
2018], and memory network [Chen et al., 2018]. Another
line to model user historical behaviors is to study how to de-
couple the short-term and long-term preference [Ying et al.,
2018]. However, most of them designed the delicate model
structures under the offline settings. Our work followed this
line but proposed an orthogonal view from the online learning
optimization, which is more practical for a real-world recom-
mender system.
Online Learning for Recommendation. A practical solu-
tion to solve the streaming feedback of large-scale recom-
mender systems is to adopt online learning strategies [Ju-

govac et al., 2018], which attempt to capture the user’s in-
stant interest by updating the model with the new arrival
data. Various online learning strategies have been explored
for neighbor-based [Huang et al., 2015], graph-based [He et
al., 2015], probabilistic [Chang et al., 2017], and matrix fac-
torization method [He et al., 2016]. For example, [Chang et
al., 2017] proposed a variational Bayesian approach to per-
mit efficient instantaneous online inference. [He et al., 2016]
adapted ALS optimization techniques for matrix factoriza-
tion. As for deep learning-based methods, a natural choice to
update parameters by gradient descent [Duchi et al., 2011].
However, all these proposed methods are tailored for the spe-
cific problem formulation like graph, matrix, or deep neu-
ral network. They more or less ignored the nature of intent
factors and preference factors for user recommendation, just
adapting the user intent instantly while encountering with the
risk of forgetting the long-term preference since only the most
recent data is used to update the model.

Meta Learning. Meta-learning has proposed a “learning
to learn” framework, intending to learn an update rule
or optimize for fast adaptation with a few training sam-
ples [Andrychowicz et al., 2016; Nichol et al., 2018]. While
a few meta-learning works have discussed the online learning
setting at meta-test time, nearly all previous algorithms as-
sume that the task distribution is stationary during the meta-
train stage. [Finn et al., 2019] introduced an online meta-
setting and extended the MAML algorithm [Finn et al., 2017]
to deal with the changing task distributions.

When applying meta-learning for the recommendation,
previous works have drawn the analogy that the estimation
for different users’ preferences could be taken as different
subtasks and issued the cold-start problem for newly arrival
users or items [Vartak et al., 2017; Lee et al., 2019]. How-
ever, they still considered it under the offline setting and thus
ignored the streaming nature of a real-world online recom-
mender system. [Du et al., 2019] considered an online meta-
learning based recommender system for estimating user pref-
erences under different recommendation scenarios, while the
parameter update overheads are heavy and hard to satisfy the
requirement of online latency.

3 Problem Formulation
Let Ut ⊆ U and It ⊆ I denote a set of users and a set
of items at the time t, where |Ut| and |It| are the numbers
of users and items, respectively. For each user u ∈ U ,
his/her temporally ordered sessions are denoted by Lu =
{Su

1 , . . . , S
u
t , . . . , S

u
Tu
} where Tu is the total number of ses-

sions for user u and Su
t = [sut,1, s

u
t,2, . . . ], t ∈ [1, Tu] rep-

resents a list of successive interacted items at time stamp t.
Under the meta learning setting, estimating user intent in each
session browsing Su

t is considered as a new task. Given users,
their current browsing session Su

t , and previous interacted
sessions Lu

t−1 = {Su
1 , . . . , S

u
t−1}, we aim at delivering the

real-time recommendation results by the fast adaptive user
intent learnt from Su

t in a meta-learning manner and the user
preference calibrated from Lu

t−1. The notations used in this
paper are summarized in Table 1.
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a) Neural Matrix Factorization. b) Deep sequential Model. c) Deep sequential Model with decoupled user representation.

Layer 1

Figure 1: Neural matrix factorization model with sequential modeling.

Notation Description

Ut, It user and item set at the time t
Lu lifelong interacted sessions of user u
Su
t a list of interacted items in the same session

P(u),Q(i) user and item modeling function
f interaction strategy between user and item
h sequential modeling function
W, b weight matrix and bias term
w meta-learnt initialization value
ps, pl intent and preference embeddings for user u
qi item embedding for item i
θs, θl intent and preference parameter sets
Dtr,Dval support set and query set for meta learning
Pt(T ) task distribution at the time t
B a list of task indexes for meta update
A,L optimizer and loss function

Table 1: Notations.

4 Methodology
Since our proposed online learning strategy is orthogonal to
the model structure of the recommender system, we first pro-
pose a unified framework for diverse recommendation mod-
els, with a particular focus on matrix factorization techniques
and deep neural networks. The whole framework has three
essential components: user modeling P(u), item representa-
tion Q(i), and user-item interaction strategy f . The predic-
tion of the future ratings or behaviors is conducted as follows:

r̂ui = f(P(u),Q(i)). (1)
For matrix factorization, we project both users and items

to a joint low-dimensional space, such that user-item interac-
tion is modeled as inner product operation in that space. The
formal definition can be specified as:

P(u) = pu, Q(i) = qi

r̂ui = f(P(u),Q(i)) = p>u qi
(2)

where pu and qi are latent factors for the given user u and
item i, respectively. As shown in Figure 1.a, when adapting it
into the neural network version, the interaction strategy f is
alternated by multiple fully connected layers as follows:

r̂ui=MLP(pu, qi)=φL
(
WL

(
· · ·φ1(W1

[
pu
qi

]
+b1)

)
+bL

)
(3)

where φ is the non-linearity activation function. Wl and bl
are the corresponding parameters of the l-th layer.

Except for latent factors of users and items, sequential
modeling is also involved in recently proposed recommenda-
tion methods [Hidasi et al., 2016; Zhou et al., 2018], which
utilize the historical behaviors to enrich the representation of
the user. The general formulation can be defined as:

P(u) = pu ⊕ h(Lu
t−1),Q(i) = qi

r̂ui = f(P(u),Q(i)) = MLP(pu, qi, h(L
u
t−1))

(4)

where ⊕ denotes the concatenate operation, Lu
t−1 is the user

historical behaviors until the time t and h(·) is the sequen-
tial modeling function, which could be average pooling [Cov-
ington et al., 2016], recurrent neural network [Hidasi et al.,
2016], or attention function [Zhou et al., 2018].

4.1 Intent & Preference Decoupling
Under such a unified recommendation framework, a key com-
ponent is the modeling of user representations P(u), which
is directly related to learning the intent factors and prefer-
ence factors for users. When resorting to the online learn-
ing framework, we propose to decouple the learning of user
preference and instant intent from the user modeling P(u).
Different from decoupling these two factors from behavior
sequence [Ying et al., 2018], we separately model these two
factors using the parameters pu of users. The reasons are as
follows: 1) Under the online setting, we cannot maintain the
lifelong behaviors of user histories due to the limitation of the
storage overhead in the online system while the latent factor
pu is updated all the time. The lifelong interaction trajectories
are memorized in the representation of pu. 2) The parameter
pu is personalized for different users. Compared with up-
dating the model parameters during the online process, pu is
expressive enough and much easier to be updated instantly.

As such, we maintain two sets of parameters (ps, pl) for
users in parallel: ps is initialized by the meta-learner and re-
sponsible for adapting the instant intent of the current brows-
ing, named as the intent embedding; pl is the preference em-
bedding undertaking the role of learning a stable preference
excluding the effects of changing user intent. After this de-
coupling, the model structure is shown in Figure 1.c and the
prediction is computed by:

P(u) =Wsps +Wlpl +Whh(L
u
t−1), Q(i) =Wiqi

r̂ui=f(P(u),Q(i))=φL(WL(. . . φ1(W1x+b1))+bL)
(5)

where x = [p>s p
>
l q
>
i h(L

u
t−1)

>]> and W1 = [WsWlWi
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Algorithm 1 Follow the Intent and Preference Decoupling
Require: Initial intent parameters θs0 = {ps}, preference pa-
rameters θl0 = {pl, qi,W, b,W(h)}, and corresponding opti-
mizers A = (As,Al), objective function L
Require: meta-learning rate η, meta-update number nmeta

and frequency δ
1: randomly initialize w0 with the same dimensionality as
θs0

2: initialize the session buffer as empty, B ← []
3: for t = 1, 2, . . . do
4: add B ← B + [Tt] // append task index into the

buffer
5: given the task (session) data St at the time t
6: θst ← INTENT-UPDATE(wt−1, θ

l
t−1, St,As,L)

7: θlt ← PREFERENCE-UPDATE(θst , θ
l
t−1, St,Al,L)

8: if t mod δ = 0 then
9: wt = META-UPDATE(wt−1,B, t, η, nmeta)

10: B ← []
11: else
12: wt ← wt−1
13: return parameters θl, wt

Wh]. The set of trainable parameters is θ = {W, b, ps, pl, qi,
W(h)} whereW(h) is the weight collection of h.

Until now, we could describe our Follow the Intent and
Preference Decoupling (FLIP) strategy with this decoupled
model design and discuss its properties. FLIP mainly con-
sists of two essential components: 1) session intent learning
from the meta-learnt initialization value; 2) preference learn-
ing after the calibration of the user intent. In the following
subsections, we will introduce the details of these two com-
ponents.

Learning of User Intent
As mentioned in section 1, capturing the user browsing in-
tent is an extremely challenging task since the user intent may
change from visit to visit. Even in the same browsing session,
the limited interaction behaviors pose great challenges on in-
tent modeling. Meta-learning, also called learning to learn,
aims to train a model that can rapidly adapt to a new task
that does not appear during the training with a few examples.
From this inspiration, we propose a meta-based recommender
system that can rapidly estimate a new session browsing in-
tent based on only a few interactions. By adopting the Online
MAML algorithm [Finn et al., 2019], we can reformulate the
problem as: 1) estimating user intent in each session brows-
ing Su

k is regarded as a new task drawn from the current task
distribution Pt(T ); 2) the firstm behaviors in Su

k are taken as
the support set for intent learning and denoted by Dtr

k while
the rest is the query set for intent testing and denoted byDval

k .
Instead of learning the whole parameters θ of the model in

a meta manner, we consider the interaction strategy f is sta-
ble among different browsing sessions. Thus the meta-learnt
parameter is focused on the intent embedding ps of the user.
We attempt to find a good initialization value w of user intent
parameter ps such that after a few update steps on ps from w
by support setDtr, the model can quickly learn an intent rep-

Algorithm 2 FLIP Subroutines

1: function INTENT-UPDATE(w, θl, St,A,L)
2: Synchronize parameter θs0 ← w, n = |St|
3: for i = 1, . . . , n steps do
4: Record the performance of st,i by parameters
θsi−1, θ

l

5: θsi = θsi−1−A(L, θsi−1, θl, st,i) // meta test, intent
embedding update

6: return θsn
7: function PREFERENCE-UPDATE(θs, θl, St,A,L)
8: Perform update θl = θl−A(L, θs, θl, St) by Eq. (7).
9: return θl

10: function META-UPDATE(w,B, t, η, nmeta)
11: for i = 1, . . . , nmeta steps do
12: Sample task Tk from B
13: Dtr

k ← the first m interactions of Sk, Dval
k ←

Sk −Dtr
k

14: Compute gradient gt(w) using Dtr
k ,Dval

k , and
Eq. (6)

15: Update parameters w ← w − ηgt(w)
16: return w

resentation and generalize well to the rest behaviors in Dval.
Specifically, at each meta-train stage, we collect a set of

session behaviors {S1, . . . , SK} from different users drawn
from Pt(T ). For simplicity, we omit the superscript of Su

k
since we do not distinguish the sessions from different users
and just take each session as a subtask. The update of the
initialization value w to adapt for the new task distribution is
computed as follows:

gt(w) = ∇wEk∼Pt(T )L(Dval
k , Uk(w)),

where Uk(w) = w − α∇wL(Dtr
k , w)

(6)

where L is the loss function, α is the hyper-parameter to con-
trol the learning step size, and Uk(w) is the updated parame-
ter of w for the task k using the support set Dtr

k from the cor-
responding session behaviors. gt(w) is the aggregated gradi-
ent direction with respect to the generalization loss among
different sessions from the task distribution Pt(T ). The
learning procedure is abstracted as function META-UPDATE
in Algorithm 2.

At meta-test time, the user intent parameter ps is initial-
ized by the meta-learnt parameter wt−1 at time t − 1. As
illustrated in function INTENT-UPDATE, we perform parame-
ter update on ps by predefined loss function L and optimizer
As, which could be stochastic gradient descent [Zinkevich,
2003] or other advanced online learning optimizers like Ada-
grad [Duchi et al., 2011]. The rest parameters θ/ps is fixed
during this intent learning process and we record the testing
performance for each interaction.

Learning of User Preference
For recommendation, the prediction errors are generally from
two aspects: 1) the inaccurate estimation of the user intent
which caused a significant deviation of the recommended
items; 2) the forgetting of user preference which caused a
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Dataset Mode NCF DNN GRU4Rec uDin

AUC pAUC NDCG@5 AUC pAUC NDCG@5 AUC pAUC NDCG@5 AUC pAUC NDCG@5

MovieLens

OGD’ – – – 0.7315 0.6251 0.8078 0.7317 0.6250 0.8058 – – –
OGD 0.7579 0.6251 0.8107 0.7615 0.6289 0.8165 0.7583 0.6252 0.8084 0.7600 0.6285 0.8163

RMFX 0.7621 0.6255 0.8127 0.7653 0.6295 0.8184 0.7642 0.6283 0.8113 0.7653 0.6298 0.8194
SSRM 0.7685 0.6267 0.8157 0.7701 0.6304 0.8210 0.7723 0.6308 0.8149 0.7715 0.6325 0.8223
FLIP 0.7710 0.6282 0.8179 0.7740 0.6320 0.8240 0.7756 0.6332 0.8167 0.7762 0.6354 0.8247

Advertising

OGD’ – – – 0.5765 0.5532 0.4013 0.5862 0.5542 0.4026 – – –
OGD 0.6039 0.5429 0.3901 0.6092 0.5514 0.3997 0.6099 0.5501 0.4005 0.6075 0.5522 0.4006

RMFX 0.5983 0.5320 0.3713 0.6001 0.5390 0.3812 0.6023 0.5429 0.3902 0.6012 0.5433 0.3913
SSRM 0.6048 0.5412 0.3855 0.6098 0.5495 0.3942 0.6121 0.5472 0.3988 0.6097 0.5457 0.3928
FLIP 0.6093 0.5450 0.4415 0.6137 0.5542 0.4529 0.6133 0.5583 0.4589 0.6113 0.5556 0.4810

Recommender

OGD’ – – – 0.6542 0.5617 0.2911 0.6575 0.5606 0.2904 – – –
OGD 0.6661 0.5577 0.2862 0.6697 0.5626 0.2923 0.6703 0.5628 0.2926 0.6686 0.5636 0.2933

RMFX 0.6683 0.5582 0.2987 0.6712 0.5638 0.2993 0.6729 0.5632 0.3052 0.6717 0.5640 0.3055
SSRM 0.6695 0.5585 0.2992 0.6725 0.5642 0.3018 0.6749 0.5643 0.3071 0.6735 0.5642 0.3093
FLIP 0.6747 0.5612 0.3295 0.6771 0.5654 0.3428 0.6776 0.5658 0.3398 0.6758 0.5652 0.3529

Table 2: Performance comparison of different methods.

mismatch between the recommended item features and user
profile. To separate these two kinds of errors, we proposed to
iterate incoming session behaviors twice for the intent learn-
ing and preference learning, respectively. The first pass is
to calibrate instant intent as illustrated in function INTENT-
UPDATE. The second pass is to learn a relatively stable pref-
erence representation based on the calibrated user intent. For-
mally, the learning of the user preference is optimized as fol-
lows:

pl = pl − β∇pl
L(Dtr ∪ Dval, pl)

...

W(h) =W(h)− β∇hL(Dtr ∪ Dval,W(h))

(7)

where the rest parameters {pl, qi,W, b,W(h)} are all updated
in this pass and β is the hyper-parameter to control update
step size. It performs like replaying the session game and
fixing the rest errors of the last time. ps is fixed during this
preference learning process as the intent representation.

To sum it up, our proposed Follow the Intent and Prefer-
ence Decoupling (FLIP) strategy is presented in Algorithm 1.
We first initialize a task buffer B = [], which is designed
to maintain the most recent δ incoming sessions. When pre-
sented with a new session task at time t, we add task Tt to B
and retrieve the corresponding session data St. In the subrou-
tine, we first adapt the user intent embedding ps from wt−1
using the session data St by INTENT-UPDATE. After that,
we reiterate the data and update the preference parameters
in PREFERENCE-UPDATE. For every δ iterations, we update
the initialization value w by META-UPDATE to adapt for the
most recent task distribution.

5 Experiments
In this section, we conduct experiments to answer the follow-
ing questions:
RQ1: does our proposed FLIP learning strategy provide
a general solution for current mainstream recommendation
models and further improve recommendation performance?
RQ2: what’s the influence of instant intent and long-term
preference in our learning strategy?

MovieLens Advertising Recommender

#users 6,040 673,912 295,066
#items 3,043 385,161 2,840,566

#interactions 995,492 23,701,610 161,697,831
#sessions 20,597 4,914,360 2,851,450

avg.session/user 3.41 7.29 9.66
avg.length/session 48 4.82 56.70

Table 3: Dataset statistics.

RQ3: which parameters are of vital importance for the pro-
posed learning strategy and how do they affect the online
learning performance?

5.1 Experimental Settings
Datasets. 1) MovieLens1 is a widely used dataset to eval-
uate collaborative filtering algorithms. We adopted the ver-
sion containing one million ratings from 6040 users and trans-
formed it into a binary class dataset where the ratings above
3.5 are labeled as the positive samples while the rest are the
negative ones. For each user, we sorted the interactions in
chronological order and treated the behaviors during one day
as a session. 2) Advertising2 is a public dataset released from
Tianchi Competition3 by Alimama, ranging from 2017-05-06
to 2017-05-12. We filter out the items or users of which the
interaction number is less than 5 and obtain 23.7 million ad
display/click records from 0.67 million users and 0.38 mil-
lion ads. The clicked and unclicked ones constitute the pos-
itive and negative samples, respectively. Following [Grbovic
and Cheng, 2018], we treated the behaviors during 30 min-
utes as a session and obtained a total of 4,914,360 sessions.
On average, each user had 7.29 session records. 3) Rec-
ommender is a sampled real-world recommendation dataset
from a well-known e-commerce platform. The dataset is col-
lected from 2019-12-01 to 2019-12-15 where each day has
10 billion display/click logs from 30 million users and 60
million items. We randomly sampled 1/100 users for exper-
iments and segmented the behaviors into sessions for each

1https://grouplens.org/datasets/movielens/1m/
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
3https://tianchi.aliyun.com/home/?lang=en-us
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user in the same way as Advertising dataset. The clicked and
unclicked items are the corresponding positive and negative
feedback for model training. On average, each user had 9.66
session interactions. The details of dataset statistics are listed
in Table 3.

Competitors. We compared our proposed FLIP learning
strategy with the following representative methods.

• OGD & OGD’ [Zinkevich, 2003]. OGD is a standard
online learning strategy by gradient descent that updates
model parameters with the most recent data samples.

• RMFX [Diaz-Aviles et al., 2012] is a modified matrix
factorization method designed for streaming social rec-
ommendation. We adopt the sampling strategy of the
paper and allow the model to update the parameters ac-
cording to the most recent session behaviors and ran-
domly sampled historical sessions from users simulta-
neously.

• SSRM [Guo et al., 2019] is a proposed streaming ses-
sion recommendation model that tackled the problem of
uncertainty of user behaviors in the session and high-
velocity nature of streaming data. The learning strategy
is also based on OGD, while an active sampling strategy
is proposed to retrieve the historical sessions for model
updates. Specifically, we compared our method with the
sampling strategy of SSRM.

Except for the compared learning strategies, the experi-
mented recommendation methods are listed as follows:

• NCF [He et al., 2017] is a matrix factorization method
that alternates the interaction strategy between user and
item by fully connected layers for high-order correla-
tions.

• DNN [Covington et al., 2016] is an extension for NCF
that involves the user’s historical behaviors by average
pooling operation.

• GRU4Rec [Hidasi et al., 2016] is a session-based rec-
ommendation method using gated recurrent neural net-
work to compress intra-session interactions. We ex-
tended it to model multi-session behaviors and explicitly
added the input of latent factors for users.

• uDin [Zhou et al., 2018] is a modified user-based atten-
tion model where the query of the attention function for
historical behaviors is the latent factor of the user rather
than the target item.

Metrics. AUC (Area Under ROC Curve) is a widely used
metric to measure the goodness of the order by ranking all
the items according to the predicted probabilities. Despite its
popularity and effectiveness, the detail ranking performance
for a specific user or session browsing is hard to reveal. [He
and McAuley, 2016; Zhou et al., 2018] proposed a variation
of user weighted AUC which measures the goodness of intra-
user order by averaging AUC over users, and we further refine
it for the session browsing. It is calculated by:

pAUC =

∑n
i=1 #displays i ×AUCi∑n

i=1 #displays i
(8)
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Figure 2: Performance comparison between FLIP variations on
NDCG@5.

where n is the number of sessions, #displays i is the num-
ber of displayed items, and AUCi is the corresponding AUC
metric of the i-th session browsing. Normalized Discounted
Cumulative Gain (NDCG@k) is also adopted here to mea-
sure the ranking performance of the clicked item at the top k
positions. Without a specific statement, the k is set to 5.

5.2 Overall Performance (RQ1)
Table 2 summarized the experimental results and we have the
following key observations: 1) Compared with existing on-
line learning methods, FLIP learning strategy achieves the
best performance in all three datasets. From the results be-
tween OGD and OGD’, it verifies the indispensable impor-
tance of modeling user latent factors explicitly and proves
the rationality of designed decoupling strategy from the la-
tent factors. Beyond that, as in RMFX and SSRM, design-
ing sampling strategies is also a feasible solution to retrace
the user preference in previous interacted sessions. However,
the learning of the intent and preference is still mixed up and
the improvements in session-based metrics are marginal. 2)
The benefits brought by decoupling the learning of user intent
and preference are versatile among our experimented recom-
mendation methods. The improvements are significant for
the user-based deep attention network (uDin) since we could
employ the intent embedding and the preference embedding
as the query to attend different information from historical
behaviors. 3) Compared with the improvements on AUC
metric that measures the overall ranking performance with-
out the distinction of users or sessions, we focus more on
session-based metrics pAUC and NDCG@5. As a whole, the
improvements on pAUC range from 0.43% to 1.49% where
the 0.3% improvements are significant due to the large scale
of the testing dataset where we could consider the whole
training set is also the testing set during the online update;
meanwhile, the NDCG@5 is improved by a large margin,
ranging from 1.02%-20.3%. 4) The extent of the improve-
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Dataset Dimension AUC pAUC NDCG@5

MovieLens

1/8 d 0.7695 0.6260 0.8148
1/4 d 0.7710 0.6282 0.8179
1/2 d 0.7682 0.6265 0.8150
1 d 0.7670 0.6261 0.8143

Advertising

1/8 d 0.6052 0.5437 0.4283
1/4 d 0.6093 0.5459 0.4415
1/2 d 0.6073 0.5450 0.4372
1 d 0.6088 0.5444 0.4309

Recommender

1/8 d 0.6715 0.5587 0.3092
1/4 d 0.6726 0.5591 0.3158
1/2 d 0.6747 0.5612 0.3295
1 d 0.6732 0.5593 0.3272

Table 4: The effects of the dimensionality of intent embedding.

ments changes among different datasets. Compared with
MovieLens dataset, Advertising and Recommender datasets
are much harder since the user browsing intent changes more
frequently on the e-commerce platform. Most of the time,
the browsing behavior in the e-commerce platform is driven
by the specific purchasing demand, which is hard to predict.
Under such circumstance, our proposed method tailored for
user intent and preference decoupling achieve a large im-
provement for these two datasets on session-based metrics,
i.e. NDCG@5.

5.3 Influence of Components (RQ2)
To help understand the functionality of each component of
our proposed learning strategy, we experiment on two vari-
ants of FLIP. 1) FLIP-Z is a simplified version that during
each session, the intent embedding is initialized by zero vec-
tor and updated in the session browsing. The preference pa-
rameters are updated after the calibration of the intent. 2)
FLIP-S is the variant that updates the intent and preference
parameters simultaneously where the intent embedding is ini-
tialized in a meta manner. Due to the limitation of space, we
only show the results of NCF model in Figure 2 and the re-
sults of the other three methods admit the same trend thus
they are omitted. We observed that the performance variation
is different among datasets. For MovieLens dataset, FLIP-S
performs slightly worse than FLIP-Z variant. Generally, user
interests in movies are evolving gradually. In FLIP-S, the
intent embedding and preference embedding are all updated
instantly with new arrival data, which caused that the learn-
ing of a relatively stable preference representation is hindered
by such instant updates. In contrast, the learning of the in-
tent is more important for Advertising and Recommendation
datasets and we observe the better performance on FLIP-S
over FLIP-Z and OGD, which further verifies the necessity
of meta-learning mechanism on session intent learning.

5.4 Influence of Hyper-parameters (RQ3)
We aim at pointing out which hyper-parameters affect our
proposed FLIP learning strategy in this section. The analyzed
hyper-parameters including the dimensionality of the intent
embedding and the update frequency δ of META-UPDATE
procedure. Specifically, we set the dimensionality of intent

Dataset δ AUC pAUC NDCG@5

MovieLens
1 week 0.7705 0.6273 0.8178
1 month 0.7710 0.6282 0.8179
1 year 0.7581 0.6235 0.8110

Advertising
30 minutes 0.6091 0.5480 0.4513

1 hour 0.6093 0.5450 0.4415
3 hours 0.6072 0.5441 0.4291

Recommender
30 minutes 0.6721 0.5608 0.3362

1 hour 0.6747 0.5612 0.3295
3 hours 0.6729 0.5593 0.3165

Table 5: The effects of the update frequency δ.

embedding as 1/8, 1/4, 1/2, and 1 proportional to that of pref-
erence embedding which we set to 64 in our experiments. As
shown in Table 4, FLIP learning strategy is effective under
different dimensionality settings. For MovieLens and Adver-
tising datasets, we observed a 1/4 dimensionality is sufficient
for learning user instant intent since MovieLens is a relatively
small dataset and the number of intra-session behaviors is rel-
atively sparse for Advertising dataset. As for Recommender
datasets, a larger-sized dimensionality could further achieve
better performance as more and more session browsing be-
haviors are introduced for model training.

Considering the characteristics of three datasets, we de-
signed different hyper-parameter settings on update fre-
quency δ of META-UPDATE procedure. As shown in Ta-
ble 5, shorter update interval can timely capture the drift of
user interests and lead to better intra-session performance.
We observed a one-month time interval is appropriate for
MovieLens dataset since user interests do not change too
much during this time. User behaviors in advertising and rec-
ommender are always high velocity and huge volume. We
find a 30-minutes or 1-hour setting is more suitable.

6 Conclusion
In this paper, we designed an online learning strategy to
decouple the learning of the user intent and preference for
online recommender systems. By abstracting each session
browsing as a meta-learning task, we realized the fast adap-
tation when learning user instant intention. The preference
learning is then conducted, accompanied by the calibrated
session behaviors. With this two-phase learning strategy, the
intent and preference factors of user representation are effec-
tively modeled and decoupled during the online learning pro-
cess. We validated the effectiveness of our proposed learning
strategy on two public datasets and a real-world online rec-
ommender system. The experimental results revealed the ad-
vantages of our proposed learning strategy over competitive
baselines.
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