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Abstract

Personalized news recommendation can help users
stay on top of the current affairs without being over-
whelmed by the endless torrents of online news.
However, the freshness or timeliness of news has
been largely ignored by current news recommen-
dation systems. In this paper, we propose a novel
approach dubbed HyperNews which explicitly mod-
els the effect of timeliness on news recommendation.
Furthermore, we introduce an auxiliary task of pre-
dicting the so-called “active-time” that users spend
on each news article. Our key finding is that it is ben-
eficial to address the problem of news recommen-
dation together with the related problem of active-
time prediction in a multi-task learning framework.
Specifically, we train a double-task deep neural net-
work (with a built-in timeliness module) to carry out
news recommendation and active-time prediction
simultaneously. To the best of our knowledge, such
a “kill-two-birds-with-one-stone” solution has sel-
dom been tried in the field of news recommendation
before. Our extensive experiments on real-life news
datasets have not only confirmed the mutual rein-
forcement of news recommendation and active-time
prediction but also demonstrated significant perfor-
mance improvements over state-of-the-art news rec-
ommendation techniques.

1 Introduction

Nowadays, with massive news aggregated from various chan-
nels every minute by online news platforms such as Google
News and Toutiao, it is impossible for users to read through
all of them [Phelan et al., 2011; Morales et al., 2012;
Okura et al., 2017; Lian et al., 2018; Wu et al., 2019c].
Therefore, personalized news recommendation, which can
help users cope with such information overload, has re-
cently become a hot research topic [Cheng et al., 2016;
Gulla et al., 2017; An et al., 2019; Zhu et al., 2019].
Basically, the core problem in news recommendation is to
learn news and user representations. The early studies in this
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area typically encode news data with static features such as the
title, content and categories of each news article. For example,
to employ the acclaimed LibFM [Rendle, 2012] that combines
the generality of feature engineering with the superiority of
factorization models for news recommendation, we could sim-
ply concatenate the news features and the user features as
inputs, and then get the corresponding click probabilities as
outputs. Specifically, the news features could consist of the
TF-IDF vectors representing the given news article’s title and
content as well the one-hot vector of its categories, while the
user features could be extracted from the past news articles
read by that particular user in the same fashion. Moreover,
both DeepFM [Guo et al., 2017] and Wide&Deep [Cheng et
al., 2016] try to further capture the higher-order interactions in
addition to the linear and pairwise ones between features. Thus
they share the same inputs as LibFM and also generate click
probabilities. Similarly, DSSM [Huang et al., 2013] projects
queries and documents into a common low-dimensional space
where the relevance of a document to the given query could
be computed by their cosine similarity score. It could also be
utilized to generate news and user representations for news
recommendations, as in LibFM. To sum up, the above meth-
ods are general-purpose recommender systems mainly using
static features; they probably would not be able to handle the
dynamics between news and users very well.

To deal with the possible drift of users’ interests, the lat-
est solutions for personalized news recommendation utilize
not only the above-mentioned static features but also the fea-
tures extracted from each user’s recently read news articles to
approximate his/her current reading interests. For example,
DKN [Wang ef al., 2018] utilizes a multi-channel and word-
entity-aligned knowledge-aware CNN which fuses semantic-
and knowledge-level representations to construct a news en-
coder, and designs an attention module to dynamically ag-
gregate a user’s history w.r.t. current candidate news articles.
NAML [Wu et al., 2019a] adaptively selects informative rep-
resentations for news and users by designing a multi-view
attentive mechanism. NPA [Wu er al., 2019b] proposes a
personalized attention network which exploits user-ID em-
beddings as queries for the word- and news-level attention
networks to realize the differentiated dynamics. LSTUR [An
et al., 2019] aims to learn long-term user representations from
the embeddings of their IDs and short-term user representa-
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Figure 1: Our proposed HyperNews model.

tions from their recently browsed news articles via a GRU
network to combine the long-term preferences and short-term
interests for better personalized recommendation. In summary,
the above relatively new approaches to news recommendation
attempt to capture users’ current interests implicitly through
their recently read news articles. However, as we will show
later, it would be even better to exploit the temporal attributes
in the news dataset and model the timeliness of news explicitly.

Furthermore, we reckon that the so-called ‘active-time’ (i.e.,
the time interval from the user’s click opening the news arti-
cle page to the user’s click closing it) attribute measures the
time spent by the user to read that particular news article, and
thus can partially reflect that user’s reading interests: ceteris
paribus, the longer the ‘active-time’ (reading time), the more
interested the user. The problem of active-time prediction is
itself meaningful for some practical applications like display
advertising and network traffic control. It also needs to model
the interaction between news articles and news consumers.
Due to the apparent correlation between the active-time pre-
diction task and the news recommendation task, we conjecture
that it would be promising to address them together.

Contributions. Motivated by the above two considerations,
we put forward a new approach to personalized news rec-
ommendation, named HyperNews, which introduces an ex-
plicit timeliness module to refine news representation, and
also an auxiliary task of active-time prediction to reinforce
news recommendation in the multi-task learning framework.
Our experiments on real-world news datasets show that Hy-
perNews outperforms state-of-the-art news recommendation
techniques. Our analysis of the experimental results confirm
that the timeliness module and the active-time prediction task
both contribute to the performance improvements.

2 Problem Statement

In the problem of personalized news recommendation, we try
to predict how likely a user will click on a previously unseen
news article based on his or her clicking history. The recently
available event-based news data (describing which user clicked

on which news article at what time and closed it at what time)
provide us with opportunities to carry out news recommen-
dation in a richer context. In particular, we would argue that
a user’s active-time on a news article could be, and probably
should be, predicted at the same time. Here, we propose a
unified model to undertake these two tasks simultaneously.

Suppose a news dataset for training consists of n instances
(X, yp, ¥), Where x is the composite feature vector repre-
senting a pair of user and news article, y,, is the binary la-
bel indicating whether the user clicked on that news article
(yp = 1) or not (y, = 0), and y; records the corresponding
active-time. Intuitively, the news recommendation task (i.e.,
estimating y,, based on x) and the active-time prediction task
(i.e., estimating y; based on x) should be correlated with each
other. Therefore, it would make perfect sense to exploit the
commonalities across these two tasks by utilizing the multi-
task learning framework: (9, ;) = DoubleT askM odel(x)
where g, is the predicted click-probability and g; is the pre-
dicted active-time. Obviously, the click-probability output
can be used to determine how highly the given news article
should be recommended to the respective user. To make the
active-time prediction task easier, we discretize the continu-
ous active-time values into discrete time interval groups (e.g.,
“15-25 seconds”), and thus convert the regression problem into
a classification problem. It turns out that such an aggressive
simplification worked really well in our experiments, suggest-
ing that a crude estimate of active-time would be good enough
for our purposes.

3 The Method: HyperNews

Fig. 1a shows the overall framework of our proposed method,
HyperNews, which can simultaneously conduct news recom-
mendation and active-time prediction in the manner of multi-
task learning. These two tasks would share the same inputs,
i.e., the attributes of news and users including ‘news-title’,
‘news-content’, ‘news-category’, ‘publish-time’, ‘click-time’,
and ‘active-time’. However, the news encoder for these two
tasks would use two different sets of learnable weights to
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combine explicit embedding and implicit embedding as they
are likely to have different impacts upon different tasks (see
Section 3.1). It is worth mentioning that for news recommen-
dation, we have designed and included a timeliness module
(see Section 3.3) in order to emphasize the impact of news
freshness (i.e., the elapsed time between the ‘publish-time’ of
the news article and the ‘click-time’ when the user clicked to
open it for reading).

3.1 News Encoder

The news encoder (Fig. 1b) is used to learn news embedding
from various news attributes (i.e., title, content and categories).
We divide these attributes into two types: explicit information
and implicit information. The explicit information includes
the news article’s title and categories that users can see before
making their decisions to click, while the implicit informa-
tion refers to the news article’s content that a users can see
only after clicking. The reason why we differentiate them
is that they should have different effects on click-probability
and active-time. Intuitively, the explicit information would
have a greater impact on click-probability than the implicit
information. Once the embeddings of these two parts have
been obtained, an attention unit would be utilized to adaptively
learn their combinations for different tasks.

Explicit Embedding
The explicit embedding unit contains two components.

The first is to embed news titles using a typical CNN-based
model with a sequence of words as inputs. Specifically, a news
title is represented as a word embedding based matrix wy., =
[W1, W2, ..., w,] € R*" where w; € R%*! is the i-th word
of the news title, d = 100 denotes the dimension of word
embedding, and n represents the number of words. Then the
matrix wi.,, would be applied with a convolution operator via
a filter H € R**!, where | = 3 (I < n) means the window
size. For each sub-matrix w;.;4;_1, we can get a feature c; by:

ci = f(H*Wiipi—1 +0b), )]
where * is the convolution operator, b is a bias term, and f is
the ReLU activation function. With all the possible positions
of the matrix wy., crossed, we get a feature map:

T
Cc = [Cl7c27“‘7cnfl+1] ) (2)

where c¢; marks the ¢-th result of the filter H. Then we utilize a
max-pooling operation to identify its most significant feature:

s Cn—i41}- 3

Next, we take m = 200 filters with the same window sizes
(i.e., I = 3) to conduct the same operation as above, and each
filter will generate a feature. As a result, the m features are
concatenated together to finally represent the news title as:

,em) T )

The second component is to embed news categories. The
reason why we take them into consideration is that users
usually only care about the news articles within those cat-
egories of their interests and would barely click on any news
article outside. Regarding this part, the input for each cat-
egory is a unique id, which is randomly initialized with a

¢ = max{c} = max{cy, cg, - -

e, = [C1,C2, - -
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low-dimensional (e.g., 100D) vector e.. After that, a dense
layer is employed to learn the category’s hidden representation:

e/, = tanh(W,. x e. + b,), (5)

where W, and b, are learnable parameters. Since each news
article may have a different number of categories and usually
different categories have different influences, we choose the
top three most important categories and then use an attention
unit to calculate a weight for each one. The final representation
e, for news categories is the weighted sum of their hidden
representations. Note that if a news article has fewer than three
categories, we would pad the input with zero vectors. Denote
the weight of the i-th category as o, then there holds:

af =q xtanh(V. x e, +bl),(i=1,2,3), (6)

~ exp(ag) .
i = (1 =1,2,3), (7
Zj eXp(aj)
and
éczz&fe;,(zzlﬂ,?)), 3

where q., V. and b/, are the parameters of the attention unit.
In the end, the representations of news-title and news-
categories would be concatenated together, and then fed into a
one-layer fully connected neural network (FNN) to get a lower-
dimensional embedding as the representation of the explicit

information:
en, = FNN([ep; €.)). 9)

Implicit Embedding
The implicit embedding unit is to embed news content.

First, we train the LDA [Blei et al., 2003] topic model on
the whole Adressa' news dataset, based on which we could in-
fer a probabilistic representation for any news article’s content.
Let D denote the news article’s content, then the topic repre-
sentation (#dimensions=100), regarded as part of the input, is
given by:

e; = LDA(D). (10)

Second, we use doc2vec [Le and Mikolov, 2014], also trained
on Adressa, to construct another document representation (#di-
mensions=100) as:

ey = doc2vec(D). 11

Through the utilization of doc2vec, the semantic representa-
tion of news content would be further enriched. Note that
the above two steps can both be processed in advance and
therefore would not incur extra computational costs for our
model. Third, the length of news content is obviously a big
factor affecting users’ active-time on that piece of news, so
we include it as useful feature for our model. Specifically, the
raw lengths of news content would be divided into a series
of bins each with an interval of 50 words, and then similar to
word embedding, we represent each news-length-bin feature
as a low-dimensional (e.g., 100D) vector e;. It would be ran-
domly initialized and then go through a fully-connected layer
to become the final representation:

e; = tanh(Wl X e; + bl)7 (12)
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where e;, W; and b; are to-be-learned parameters.
Finally, we concatenate these three vectors and feed them
to a one-layer FNN to represent the implicit information:

ey, = FNN([es; eq; €]]). (13)

Attention Unit

Intuitively, the explicit information and the implicit informa-
tion would exert different influences on click-probability and
active-time. Therefore we introduce an attention unit to au-
tomatically learn the weights for these two different parts.
Denote the two weights as o] and o5, we have:

ol = ql x tanh(V, x ex. +b,), (14)

oy = ql x tanh(V,, x ey, + b,), (15)
and .

. i ) TR S )

exp(af) + exp(af)
where q,,, V,, and b,, are learnable parameters. Afterwards,
the news embedding is calculated as:

e =ajeyn, + ajen;,. a7

Note that in the HyperNews model, we actually would have
three different sets of values for those parameters (q,,, V,,, b,,)
which would lead to three separate news encodes e?, et and
e" for click-probability, active-time, and user representation
respectively (see Fig. 1a).

3.2 User Encoder

The user encoder is to learn a user’s feature representation
from that user’s click history. Today, there are two ways which
have been proved effective. To be specific, recurrent networks
(like GRU and LSTM) are skilled at encoding sequential data,
while attention networks may be better for distinguishing im-
portant clicked news articles from the others. Here, we choose
the second manner, because the series of recently read articles
are not a strictly continuous sequences (there could be a very
long interval between two clicks). Denote the weight of the
i-th clicked news as o', then we could arrive at:

al =ql xtanh(V, x el +by), (i =1,2,---,30), (18)

~u __exp(ey) :
i 9 ]:1727"'7307 (19)
Zj exp(ar) ( )
and
ey = E a;j‘e?7 (l: 1727"' 730)7 (20)

where q,, V,, and b, are the parameters of the attention unit
to be learned, and ey is the final user embedding. Note that
we collect a user’s 30 most recently clicked news articles to
model that user’s current interests.

3.3 Click-Probability Prediction

The freshness of a news article for a user, defined as the elapsed
time from that news article’s “publish-time’ to its ‘click-time’
by that user, is pretty important for personalized news recom-
mendation. Therefore we design a timeliness module (Fig. 1a)
to refine the embedding from the news encoder. Specifically,
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Figure 2: The distribution of events in the Adressa news dataset.

we divide the continuous time into variable-length time in-
terval bins [1h, 2h, -+ ,1d,2d,--- ,1m,2m,-- -], where h, d
and m represent hour, day and month respectively. For exam-
ple, if it is 75-minutes, we would assign it to the 2k bin and set
its id as 2. For each interval id, a low-dimensional (e.g., 200D)
vector ey could be randomly initialized and then forwarded to
a dense layer:

e} :tanh(Wf X ef +bf), 21
where ey, W and b are parameters to be learned. In what

follows, a new time-enriched news embedding for news rec-
ommendation can be reached via:

ey =e’ O, (22)
where © is the Hadamard (element-wise) multiplication oper-
ator. Finally, the click-probability (how likely a user clicks on
a news article) is calculated by the sigmoid function of the dot
product between user embedding and news embedding, i.e.,

(23)
based on which our news recommender system can recom-

mend to each user the corresponding top-% (e.g., k=20) news
articles with the highest scores.

3.4 Active-Time Prediction

Making very precise estimations of active-time is challenging,
but actually it may not be really necessary. For example,
whether a user has spent 50 seconds or 60 seconds on a news
article probably would not make much difference. Therefore
we convert the continuous time regression task into a discrete
time interval classification task. In what follows, we plot
“the number of events (#events) vs. active-time” of the whole
Adressa dataset in Fig. 2a and find that it is a long-tailed
distribution; then we partition the active-time range [5, 205]
equally into 20 time interval bins (Fig. 2b). The reasons
why we conduct this division are twofold: (1) the events of
active-time in the range of [5,205] account for about 90%
of the cases; (2) the active-time values fewer than 5 seconds
are probably anomalies. Note that the 20 time intervals are
numbered 1,2, - - - , 20 as class labels.

In the end, we combine the news embedding and user em-
bedding as er = [e;; ey], and then utilize a softmax classifier
to calculate the probabilities over the 20 time intervals:

¥ = softmax(W; X er + by), (24)
where W, and by are the classifier’s parameters. Afterwards,

we conduct active-time prediction by selecting the most likely
time interval corresponding to the largest element of y,.

¥p = sigmoid(ef; x ey),
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3.5 Model Training

Similar to Ref. [Zhu er al., 2019], we also regard the observed
click events as positive samples and unobserved ones as neg-
ative samples. In what follows, we denote a training sample
as X = ({x1, "+ ,X},Xr41,¥p, ¥t), Where {xy,---,%,}
represents the r news articles recently read by the user, x,.41
is the candidate news article, y, is the click label (1 for clicked
and 0 otherwise), y; is the active-time label (a one-hot vector
for the time interval id; invalid for negative samples). The
output of our double-task HyperNews model would include
both ¥, and y,: their respective loss functions are as follows:

L,=- { Z yp log(¥p) + Z (1 —yp)log((1— yp))} )
Xest

XeS—
(25)
and

L =- Z yt log(yt),
XeS*

(26)

where ST and S~ are the set of positive samples and the set of
negative samples respectively, while S* is the set of positive
samples with the active-time attribute.

As Fig. 2b clearly says, the active-time prediction task is
probably susceptible to severe class imbalance. Therefore we
adjust each class’s weight based on its effective size [Cui et al.,
2019]. Specifically, the effective size of a class is defined as:

E,=(0-p8")/1-8), @7

where m is the actual number of samples in the class, and 3 is
a hyperparameter whose value is usually close to 1 (e.g., 0.99,
0.999, etc.). Accordingly, the class-balanced variant of L; can
be written as:

Y IOg(yt)a (28)

Xes Myt

where my,, is the actual number of samples in class y;.
Taking both L,, (Eq. (25)) and L; (Eq. (28)) into considera-
tion, the overall loss function to minimize is:

L=L,+ AL, (29)

where ) is a non-negative parameter to balance the importance
of news recommendation and active-time prediction.

During training, we apply two regularization techniques,
dropout (rate=0.5) and batch normalization, on the fully-
connected layers to avoid overfitting. The popular Adam
optimizer (with learning rate=1e-6) is employed. The batch
size has been set to 400, while the number of epochs for con-
vergence has been set to 20.

4 Experiments

In this section, we examine the effectiveness of HyperNews
by comparing it with several competitive baselines.

4.1 Datasets

Adressa' [Gulla et al., 2017] is an event-based real-life news
data collection that contains a large number of Norwegian

"http://reclab.idi.ntnu.no/dataset/

Number | Adressa-lweek | Adressa-4week
#users 601,215 1,540,168
#news-articles 17,692 37,067
#words-per-title 6.63 6.50
#words-per-content 552.15 530.86
#categories 245 252
#events 3,123,261 11,584,797
#events-with-‘active-time’ 1,062,793 3,951,288

Table 1: The descriptive statistics of our datasets.

news articles in conjunction with their readers. In our ex-
periments, we represent each news reading event by its most
important attributes: ‘user-id’, ‘news-id’, ‘news-title’, ‘news-
content’, ‘news-category’, ‘publish-time’, ‘click-time’, and
‘active-time’. Among them, the three temporal attributes —
‘publish-time’, ‘click-time’, and ‘active-time’ — have not ever
been considered in previous news recommendation studies,
but we have found that they could be exploited for more ac-
curate modeling of the interaction between users and news
articles.

Two editions of Adressa dataset, dubbed Adressa-Iweek
and Adressa-4week, have been constructed, which correspond
to the first 1 week’s and the first 4 weeks’ news consumption
event-logs, respectively. For Adressa-1week, we take the first
six days’ events to train predictive models and the last day’s
events to test their performance; while for Adressa-4week,
we take the first three weeks’ events as the training set and
the last week’s events as the test set. Table 1 shows some
characteristics of these two datasets.

4.2 Competitors and Metrics

To evaluate the performance of our HyperNews, several state-
of-the-art competitors have been invited for comparison, in-
cluding LibFM? [Rendle, 2012], DeepFM? [Guo et al., 2017,
Wide&Deep* [Cheng et al., 2016], DSSM? [Huang et al.,
20131, LSTUR® [An et al., 2019], and DAN’ [Zhu et al.,
2019]. Moreover, to verify the usefulness of multi-task
learning in our application, we construct two single-task edi-
tions of HyperNews by removing some parts of the model:
(1) HyperNewsnoprea)y Which is a single-task news recommen-
dation model without the active-time prediction component,
and (2) HyperNewsorecomy Which is a single-task active-
time prediction model without the news recommendation com-
ponent.

We have made the source code of HyperNews and also the
processed datasets for our experiments available online®.

Regarding the performance measures, we employ the popu-
lar AUC [Fawcett, 2006] and F} [Li et al., 2008] metrics for
news recommendation, and just F} for active-time prediction.

Zhttps://github.com/srendle/libfm
3https://github.com/ChenglongChen/tensorflow-DeepFM
*https://github.com/kaitolucifer/wide-and-deep-learning-keras
Shttps://github.com/InsaneLife/dssm

®The source code is kindly provided by the authors.
"https://github.com/zhugiannan/dan-for-news-recommendation
8https://github.com/penghll/Hypernews
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Method Adressa-1week Adressa-4week
AUC Fi AUC Fi
LibFM 0.7025 0.6953 | 0.6781 0.6594
DeepFM 0.7358 0.7288 | 0.7054 0.6821
Wide&Deep 0.7415 0.7244 | 0.7133  0.6909
DSSM 0.7511  0.7232 | 0.7269 0.6932
LSTUR 0.8077 0.7558 | 0.7725 0.7261
DAN 0.8234 0.7676 | 0.7864 0.7397
HyperNewswopreay | 0.8377  0.7798 | 0.7913  0.7452
HyperNews 0.8661 0.8027 | 0.8264 0.7754

Table 2: News recommendation performance (AUC and F?).

Method | Adressa-Iweek | Adressa-4week
HyperNewsxorecom) 0.8398 0.7843
HyperNews 0.8946 0.8590

Table 3: Active-time prediction performance (F1).

4.3 Settings

There are two groups of competitors: general-purpose rec-
ommender systems (LibFM, DeepFM, DSSM, Wide&Deep)
and news-oriented recommender systems (LSTUR, DAN). In
accordance with the widely-adopted settings in Refs. [An et
al., 2019; Zhu et al., 2019], for the former group, we just
take the concatenation of news title, content and categories
as input features; whereas for the latter group, we adopt the
configurations as described in each method’s corresponding
paper. The baseline methods’ parameters have been tuned
on Adressa-Iweek to get competitive performances and then
applied to both datasets. In the same way, the parameters of
HyperNews are configured as A = 0.8 and # = 0.99999 (see
Section 4.5).

4.4 Results

Table 2 shows the AUC' and F scores of different news rec-
ommendation methods. Clearly, our multi-task learning ap-
proach — the complete HyperNews system — defeats all the
other competitors, which confirms its high effectiveness. It
can be observed that the news-oriented models (LSTUR, DAN,
and HyperNews) can usually achieve higher scores than the
general-purpose models (LibFM, DeepFM, Wide&Deep, and
DSSM), probably because the former only resort to basic fea-
tures (like title, content, categories) but ignore task-specific
information utilized in the latter . Moreover, the double-task
HyperNews model exhibits a substantial performance gain
over the single-task HyperNewsopreq) model, which tells us
that the active-time prediction task does help the news rec-
ommendation task through their joint learning of the neural
network.

In addition, the results of active-time prediction are shown
in Table 3. The F} scores of the double-task HyperNews
model are significantly higher than those of the single-task
HyperNewsxorecom) model, which suggests that the news rec-
ommendation task could reinforce the active-time prediction
task as well.
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Figure 3: HyperNews with various A or 3 values on Adressa-1week.
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Figure 4: HyperNews with/without the timeliness module.

4.5 Hyperparameter Analysis

HyperNews contains two hyperparameters: A that controls
the balance between news recommendation and active-time
prediction, and J that is used to calculate each class’s effective
size. Keeping 5 = 0.99999 fixed, we vary A from 0 to 5 and
plot the experimental results in Fig. 3a. It can be seen that
on Adressa-1week, no matter what task it is and which metric
is adopted, A = 0.8 always leads to the best performance.
Similarly, keeping A = 0.8 fixed, Fig. 3b reveals that when
B = 0.99999, HyperNews yields the best results for both
tasks in terms of both metrics. Note that when 5 = 0, Eq. (28)
would be equal to Eq. (26).

4.6 Ablation Study

Fig. 4 compares the complete HyperNews system with the
ablated version of HyperNews without the timeliness module.
It is clear that on both datasets, for both tasks, under both
performance measures, the complete HyperNews outperforms
the ablated HyperNews consistently and substantially. This
confirms the critical contribution of the timeliness module.

5 Conclusion

This paper investigates the usefulness of temporal attributes
to news recommendation, which has been neglected before.
Specifically, we propose a novel deep neural network model
named HyperNews which includes a timeliness module and
utilizes a multi-task learning framework (to conduct news
recommendation and active-time prediction simultaneously).
Our extensive experiments on real-life news datasets have
confirmed that the explicit timeliness module and the auxiliary
active-time prediction task do benefit news recommendation
greatly and thus enable HyperNews to beat a number of state-
of-the-art news recommendation techniques.



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

References

[An eral., 2019] Mingxiao An, Fangzhao Wu, Chuhan Wu,
Kun Zhang, Zheng Liu, and Xing Xie. Neural news recom-
mendation with long- and short-term user representations.
In Proceedings of the 57th Conference of the Association
for Computational Linguistics, pages 336-345, 2019.

[Blei et al., 2003] David M. Blei, Andrew Y. Ng, and
Michael 1. Jordan. Latent dirichlet allocation. Journal
of Machine Learning Research, 3:993-1022, 2003.

[Cheng et al., 2016] HengTze Cheng, Levent Koc, Jeremiah
Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir,
Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain,
Xiaobing Liu, and Hemal Shah. Wide & deep learning for
recommender systems. In Proceedings of the 1st Workshop
on Deep Learning for Recommender Systems, pages 710,
2016.

[Cui et al., 2019] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang
Song, and Serge J. Belongie. Class-balanced loss based
on effective number of samples. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 9268—
9277, 2019.

[Fawcett, 2006] Tom Fawcett. An introduction to ROC anal-
ysis. Pattern Recognition Letters, 27(8):861-874, 2006.

[Gulla et al., 2017] Jon Atle Gulla, Lemei Zhang, Peng Liu,
Ozlem Ozgobek, and Xiaomeng Su. The adressa dataset for
news recommendation. In Proceedings of the International
Conference on Web Intelligence, pages 1042—1048, 2017.

[Guo et al., 2017] Huifeng Guo, Ruiming Tang, Yunming Ye,
Zhenguo Li, and Xiugiang He. DeepFM: A factorization
machine based neural network for CTR prediction. In Pro-
ceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, pages 1725-1731, 2017.

[Huang et al., 2013] Po-Sen Huang, Xiaodong He, Jianfeng
Gao, Li Deng, Alex Acero, and Larry P. Heck. Learn-
ing deep structured semantic models for web search using
clickthrough data. In The 22nd ACM International Confer-
ence on Information and Knowledge Management, pages
2333-2338, 2013.

[Le and Mikolov, 2014] Quoc V. Le and Tomas Mikolov. Dis-
tributed representations of sentences and documents. In
Proceedings of the 31th International Conference on Ma-
chine Learning, pages 1188-1196, 2014.

[Li et al., 2008] Xiao Li, Ye-Yi Wang, and Alex Acero.
Learning query intent from regularized click graphs. In
Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information

Retrieval, pages 339-346, 2008.

[Lian et al., 2018] Jianxun Lian, Fuzheng Zhang, Xing Xie,
and Guangzhong Sun. Towards better representation
learning for personalized news recommendation: a multi-
channel deep fusion approach. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial
Intelligence, pages 3805-3811, 2018.

3493

[Morales et al., 2012] Gianmarco De Francisci Morales, Aris-
tides Gionis, and Claudio Lucchese. From chatter to head-
lines: harnessing the real-time web for personalized news
recommendation. In Proceedings of the Fifth International
Conference on Web Search and Web Data Mining, pages
153-162, 2012.

[Okura et al., 2017] Shumpei Okura, Yukihiro Tagami,
Shingo Ono, and Akira Tajima. Embedding-based news
recommendation for millions of users. In Proceedings
of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1933-1942,
2017.

[Phelan et al., 2011] Owen Phelan, Kevin McCarthy, Mike
Bennett, and Barry Smyth. Terms of a feather: Content-
based news recommendation and discovery using twitter.
In Advances in Information Retrieval-33rd European Con-
ference on IR Research, pages 448—459, 2011.

[Rendle, 2012] Steffen Rendle. Factorization machines with
libfm. ACM Transactions on Intelligent Systems and Tech-
nology, 3(3):57:1-57:22, 2012.

[Wang et al., 2018] Hongwei Wang, Fuzheng Zhang, Xing
Xie, and Minyi Guo. DKN: deep knowledge-aware network
for news recommendation. In Proceedings of the 2018
World Wide Web Conference on World Wide Web, pages
1835-1844, 2018.

[Wu et al., 2019a] Chuhan Wu, Fangzhao Wu, Mingxiao An,
Jiangiang Huang, Yongfeng Huang, and Xing Xie. Neural
news recommendation with attentive multi-view learning.
In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, pages 3863-3869,
2019.

[Wu et al., 2019b] Chuhan Wu, Fangzhao Wu, Mingxiao An,
Jiangiang Huang, Yongfeng Huang, and Xing Xie. NPA:
neural news recommendation with personalized attention.
In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages
2576-2584, 2019.

[Wu er al., 2019¢c] Chuhan Wu, Fangzhao Wu, Mingxiao An,
Yongfeng Huang, and Xing Xie. Neural news recommenda-
tion with topic-aware news representation. In Proceedings
of the 57th Conference of the Association for Computa-
tional Linguistics, pages 1154-1159, 2019.

[Zhu et al., 2019] Qianan Zhu, Xiaofei Zhou, Zeliang Song,
Jianlong Tan, and Li Guo. DAN: deep attention neural
network for news recommendation. In The Thirty-Third
AAAI Conference on Artificial Intelligence, pages 5973—
5980, 2019.



	Introduction
	Problem Statement
	The Method: HyperNews
	News Encoder
	Explicit Embedding
	Implicit Embedding
	Attention Unit

	User Encoder
	Click-Probability Prediction
	Active-Time Prediction
	Model Training

	Experiments
	Datasets
	Competitors and Metrics
	Settings
	Results
	Hyperparameter Analysis
	Ablation Study

	Conclusion

