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Abstract

To promote efficient interactions in dynamic and
multi-agent systems, there is much interest in tech-
niques that allow agents to represent and reason
about social norms that govern agent interactions.
Much of this work assumes that norms are pro-
vided to agents, but some work has investigated
how agents can identify the norms present in a so-
ciety through observation and experience. How-
ever, the norm-identification techniques proposed
in the literature often depend on a very specific and
domain-specific representation of norms, or require
that the possible norms can be enumerated in ad-
vance. This paper investigates the problem of iden-
tifying norm candidates from a normative language
expressed as a probabilistic context-free grammar,
using Markov Chain Monte Carlo (MCMC) search.
We apply our technique to a simulated robot manip-
ulator task and show that it allows effective identi-
fication of norms from observation.

1

The presence of social norms is a significant factor in the be-
haviour exhibited in human societies. While norms govern
the behaviour of individuals, they have the emergent effect
of making the society as a whole more predictable and effec-
tive. In multi-agent systems (MAS), software agents are often
modelled with traits borrowed from humans, and norms are
no exception. Normative agents [Andrighetto er al., 2013],
like people, have autonomy, but are equipped with compu-
tational means to reason about norms and weigh up the nor-
mative consequences of different courses of action (e.g. the
risk of being sanctioned). When norms are known to be fol-
lowed to a sufficient degree in the MAS, they can also help
predict the behaviour of other agents. Thus, when norms and
norm-aware agents are present, a multi-agent system can be
expected to operate more efficiently.

This leads to the question of how agents come to know
the norms that govern them. Early work on agent societies
mostly assumed that codification of norms would be done
by humans, as a step in the design of a society of software
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agents [Dellarocas and Klein, 2000]. The problem of norm
identification considers open multi-agent systems in which no
central authority imposes or proposes norms, and considers
how agents can identify norms that are already prevalent in
a society or group, or are exhibited by a role model, through
their own experience and/or observations of others. As agents
learn norms from each other, norms can spread and evolve in
the society [Savarimuthu and Cranefield, 2011].

A variety of techniques have been applied to this prob-
lem, including association rule-mining [Savarimuthu et al.,
2010; Savarimuthu et al., 2013], plan recognition [Oren
and Meneguzzi, 2013], Bayesian learning [Cranefield er al.,
2016], Dempster-Shafer Theory [Sarathy er al., 2017] and
inductive logic programming [Tan ef al., 2019]. Scenarios
adressed in these studies include socially disapproved be-
haviour such as littering and failure to tip in a restaurant, nor-
mative constraints governing movement on a transport net-
work, appropriate actions in a library vs. a boardroom, and a
social robotics application.

Much of this work proposes mechanisms that are specific
to a particular representation of norms and the sources of in-
formation available in the targeted application domain. How-
ever, Bayesian and Dempster-Shafer learning offer promise
as generic approaches that can be adapted to different appli-
cation domains, do not a priori limit the expressiveness of
norms, and do not impose restrictions such as reinforcement
learning’s usual Markov assumption.

Norm identification differs from the problem of norm syn-
thesis [Campos et al., 2010; Morales et al., 2013; Morales et
al., 2015], which considers the automated adaptation or de-
sign of norms for a multi-agent system, in order to suppress
undesired states. The approach aims to provide trusted ad-
visor agents or a central authority to monitor the MAS, de-
tect when norms should be changed, generate improved ones,
and broadcast these to the agents. It thus makes strong as-
sumptions about the MAS structure, which are not realistic in
open agent societies with a peer-to-peer architecture. Norm
identification is also distinct from the use of multi-agent re-
inforcement learning to learn coordinated strategies for so-
cial dilemmas [Sen and Airiau, 2007; Wang er al., 2019;
Zhang et al., 2019; Chaudhuri er al., 2019], as it aims
to identify symbolic representations for norms and is per-
formed prior to any attempt to validate the norms through the
learner’s own behaviour.
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A limitation of prior work on Bayesian norm identifica-
tion is that it requires a finite set of candidate norms to be
determined in advance [Cranefield ef al., 2016]. This limits
the expressiveness of the norm language, as recursively de-
fined terms may not appear unless a finite depth is imposed.
In this paper, we remove this restriction by adapting a tech-
nique used in program synthesis, i.e. the generation of com-
puter programs that satisfy a given specification [Gulwani ef
al., 2017], to norm identification. In particular, our work is
based on the Bayesian program synthesis method of Saad et
al. [2019], which was developed to synthesize probabilistic
programs that model observed data sets. The method mod-
ifies Markov Chain Monte Carlo search (widely used with
numeric data) to produce a posterior probability distribution
over a language generated by a probabilistic grammar.

This paper makes the following contributions. First, we
recast the method of Saad et al. as an application of the well-
known Metropolis-Hastings MCMC algorithm. We then pro-
pose a modification of the algorithm to ensure that norms
that are relevant to an observed task are favoured over irrel-
evant ones. As convergence was not addressed in the prior
work, we propose the use of a vector representation of trees

to allow the standard R convergence statistic to be applied
to MCMC search over symbolic expressions. We then eval-
uate the approach through norm identification experiments in
a simulated robot task, and find that it correctly identifies the
real norm underlying the simulated behaviour. Therefore, we
overcome the prior limitation of Bayesian norm identifica-
tion by providing a generic method that can learn norms from
a countably infinite language. Our code and supplementary
material can be found online.!

2 MCMC Sampling

Markov Chain Monte Carlo (MCMC) methods use a ran-
dom search process to sample from a probability distribution.
They are commonly used in Bayesian inference to generate
the posterior distribution of a model parameter # given an ob-
served set obs of instances of model variables, i.e. p(6]obs).
Algorithm 1 shows the Metropolis-Hastings algorithm [Gel-
man et al., 2013] that is used in this work. This creates a
“chain” of samples {6; : 1 < i < n} such that the distribu-
tion of sample values converges to p(f|obs). An initial value
6° is sampled from a selected starting distribution po(6), such
that p(0°|obs) > 0 (line 3). The chain is then generated by an
iterative process: in each iteration 4, a proposed new value 6*
is sampled from a jumping distribution J(6*|0°=') (line 5).
An acceptance rate r is then calculated (line 6) in terms of the
prior p(#), likelihood p(o0bs|f) and the jumping distribution.
The proposal 6* is chosen to be the next element of the chain
with probability min(r, 1); otherwise #* = 0~ (line 7).

In practice, after the chain is generated, an initial “warm-
up” segment is discarded to reduce the influence of the start-
ing value on the generated sample. The efficiency of the
MCMC search is greatly affected by the choice of the starting
and jumping distributions.

"https://git.io/JsVuF

119

Algorithm 1 The Metropolis-Hastings algorithm

: procedure METROPOLIS-HASTINGS(0bs, n)
1 obs: observed data; n: num. samples desired
Sample 0° ~ po(6) such that p(6°|obs) > 0
fori=1,--- ,ndo ,
Sample §* ~ J(9*|6’“1)_
. P(0"]obs)/J(07]0""T)
 p(0"obs)/J(0°-1]6%)
i)
0" = gi—1

1
2
3
4:
5.
6

with probability min(r, 1)
otherwise

~

end for
Return (6", ...,6™)
: end procedure

@0 x

3 MCMC Over a Probabilistic Grammar

MCMC search is usually applied to a numeric domain. In
contrast, Saad et al. [2019] used MCMC search to sample
from a space of symbolic expressions (programs that are gen-
erated by a grammar) given a set of data that the programs
should generate. They defined a new type of probabilistic
context-free grammar (PCFG): Tagged Probabilistic Context-
Free Grammars with Random Symbols. In these grammars,
each production rule must generate an s-expression begin-
ning with a “phrase tag” unique to that production. There is
a designated start symbol selected from the grammar’s non-
terminal symbols. A probability distribution is defined over
the production rules for each non-terminal symbol, and for
“non-recursive” rules (those with no non-terminal symbols
following the phrase tag), an s-expression is produced con-
taining the tag followed by a terminal symbol sampled from
an associated probability distribution.

Figure 1 shows the grammar used in our norm-
identification experiment described in Section 5. We annotate
the “: :="and ‘|’ symbols with the probabilities of the associ-
ated productions. These annotations are suppressed where the
probability is 1. The meanings of the expressions generated
by this grammar are discussed later.

Saad et al. define an MCMC search over expressions,
which (although not presented that way) is a Metropolis-
Hastings algorithm with the following choices. The gram-
mar’s probabilities on production rules and non-terminal
symbol values define a prior distribution over expressions.
This is used as the MCMC starting distribution, i.e. a chain’s
start value is generated from the start symbol using weighted
random choice to select production rules and terminal sym-
bols. Ensuring that the posterior probability of this value is
non-zero (line 3) reduces to checking that the likelihood is
non-zero, as the prior has already been used to generate the
initial value and is therefore non-zero.

The jumping distribution is defined as follows:

* A node n in the current expression 6 is chosen by uni-
form random selection, with probability 1/|6| where |6
is the size of 6.

* The non-terminal symbol that was used to generate the
selected node is determined.

* A new sub-expression is randomly generated in a similar
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NORMS :055: (no-norm t)
0.25
|  (norm NORM1)
0.25
|  (norms NORM1 NORM2)
NORM1 ::% (obl COND ZONE)
0.5
| (pro ACT COL SHAPE ZONE)
NORM2 ::= (per ACT COL SHAPE PERZONE)
COND 5% (moved COL SHAPE ZONE COND)
0.6
| (next-move COL SHAPE)
PERZONE ::= (per-zone pz)
ZONE ::= (zone 2)
ACT ::= (action a)
COL ::= (colour ¢)
SHAPE ::= (shape s)
where

P(t=true) =1
P(ce{r,g,b}) =% P(c=any)=1
P(s € {triangle, square, circle}) = %
P(s=any) =1 P(a=putdown)=1

P(ze{1,2,3}) =1
P(pz€{1,2,3}) = ¢ P(pz=any)

2

Figure 1: A PCFG grammar for a language of norms

way to the initial expression, but starting with the non-
terminal identified in the previous step.

¢ ¢ is modified to create 6* by replacing the subtree at n
with the new sub-expression.

Having chosen the jumping distribution, it is necessary to
find a computationally efficient formula for the acceptance
rate 7. Saad et al. [2019] propose a computational formula for
r, and prove its correctness. In the supplementary material,
we show how this formula can be derived from line 6 in the
Metropolis-Hastings algorithm (Algorithm 1).

As we are applying MCMC-based norm identification to
a scenario in which the performance of a specific task is be-
ing observed (see Section 5), we are specifically interested in
norm expressions 6 that are relevant to the task, i.e. those for
which p(0bs|0) > p(obs|no-norm), where no-norm is the
assumption that there is no norm. Expressions that do not sat-
isfy this condition carry no explanatory power. Formally, we
are interested in the posterior with an extra task condition ¢,
i.e. p(0|obs,t).

We take the observed task executions as proxies for
knowedge of the task, and define an irrelevance relation:

irrel(9, obs) = p(obs|f) < p(obs|no-norm)
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We modify the Saad et al. definition of r as follows for a
selected o, 0 < o« < 1, where 1 is the indicator function that
maps a proposition to 0 or 1. We have added the two powers
of . Essentially, this down-scales the prior probabilities for
irrelevant expressions.

. |97L71| a]l(irrcl(&*,obs)) p(obs\&*)
|9*| q/l(irrel(0i=1,0bs)) p(obs‘aifl)

(D

It remains to define the likelihood p(o0bs|6) of the observed
data given an expression generated by the grammar. This is
domain dependent. In our case of identifying norms, it is the
likelihood of a sequence of observed agent actions given a
norm expression. We discuss this in the context of our exam-
ple norm-identification scenario in Section 5.

4 Convergence Testing

When using MCMC search, it is good practice to produce
multiple chains, which can be examined visually in a trace
plot [Lee and Wagenmakers, 2014] or statistically [Gelman
et al., 2013] for evidence that the chains have converged to
the same, stationary, distribution. Techniques for doing this
with numerical data are well established. However, Saad
et al. [2019] do not address convergence testing for their
MCMC search through expressions in a language generated
by a grammar. The Gelman-Rubin convergence diagnostic
[Gelman er al., 2013] involves generating a number of in-
dependent chains from separate runs of an MCMC sampling
algorithm, starting from “overdispersed” starting values. The
first half of each chain is discarded to reduce the influence
of the starting values. Each chain is then split into two. A
comparison of the between-chain and within-chain variances

results in a statistic R that should decrease to 1 as the chain
size increases to infinity. Thus, R is computed for increas-
ingly long initial subsequences of the chains. If the value is
high, then there is reason to believe that further increasing the
chain length is worthwhile [Gelman et al., 2013].

As this diagnostic test is based on the variances of sample
sets, it is necessary to have a distance metric defined over the
sample space (symbolic expressions in our case). We adopt
the inner product on trees that underlies the tree kernel of
Collins and Duffy [2002]. This is based on a vector represen-
tation h(T") = (h1(T), ha(T), - h,(T)) where the indices
of the vector h are all the tree fragments appearing in 7', and
each element h;(T) is the number of times the tree fragment
1 appears in 7. We then define the distance between two trees
as dist(Ty,T2) = /h(Ty — Tz) - h(Ty — Tz). In practice,
we represent the tree vector for 7' as a Python Counter ob-
ject initialised with a list of all subtrees of 7', and only use
complete (non-truncated) subtrees as our tree fragments.

We also use this vector representation of expressions to
generate overdispersed starting expressions for the chains. 10
times the required number of starting expressions are ran-
domly generated, and the distances between each expres-
sion’s vector and the mean vector are calculated. The can-
didate starts are then sorted by descending order of distance,
and the top ten are chosen as the start elements of the chains.
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Figure 2: An example task to clear a region of the workspace (best
viewed in colour)

(norms
(obl (moved (colour ’any’) (shape ’circle’) (zone '2’)
(moved (colour 'g’) (shape ’square’) (zone ’2’)
(next-move (colour 'b’) (shape ’triangle’))))
(zone ’3%)
(per (action ’putdown’)
(colour ’g’) (shape ’triangle’) (per-zone ’1%)))

Figure 3: An expression generated from the grammar in Figure 1

S Example Domain

In this section we describe the simulated scenario used to
evaluate our norm identification approach. Loosely based on
the scenario of Tan et al. [2019], we consider a robot arm
given a task to clear a user-specified region of a workspace
(which may be shared with a human). Figure 2 shows an
example state of the workspace and task. The workspace
is divided into three zones (indicated by colours in the fig-
ure), numbered 1 to 3 from left to right. The workspace
contains blocks with varying shapes (square, circular or tri-
angular prisms) and colours (red, blue and green). To per-
form an instance of the task, for each block b in the region,
the robot must perform the action pickup(b) followed by
putdown (b, r) for some zone r. The order in which blocks
are moved is not specified by the task, and nor are the new
locations of the moved blocks. However, these may be con-
strained by a norm.

An agent observing one or more robots attempts to iden-
tify the norm (if any) governing the task performance, under
the assumption that the norm is generated by the grammar
in Figure 1. There is a true norm that the robots are aware
of, and that they (mostly) comply with. The proportion of
non-normative task executions is an experimental parameter,
which we assume the observer knows (or has estimated accu-
rately).

Each task execution is a sequence of pickup-putdown ac-
tion pairs: one pair for each block to be moved. The ob-
server applies the Metropolis-Hastings algorithm given the
observed task executions to produce a sample of expressions.
The frequency distribution of expressions in this sample ap-
proximates the posterior distribution over the norm language,
provided that the MCMC chains have converged to a station-
ary distribution (see Section 4). It then extracts the norm ex-
pression with the highest posterior probability, or can use the
posterior sample for posterior predictive inference.
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5.1 The Grammar for Norms

The grammar in Figure 1 generates expressions that contain
one or two norms, or an expression meaning that there is no
norm. In the one-norm case, expressions may contain an obli-
gation or a prohibition, and the two-norm case allows one of
these to be combined with a permission. We use the strong
notion of permission [Royakkers, 1997], where permissions
represent exceptions to obligations or prohibitions.

Figure 3 shows an example expression containing an obli-
gation and a permission. The obligation contains a nested
sequence of three conditions.

The permission states that it is permitted to put green tri-
angles down in zone 1. In this case, the permission is super-
fluous. As the obligation does not apply to green triangles,
there is no restriction for the permission to override, and thus
it is logically equivalent to a single-norm expression contain-
ing only the obligation. This non-redundant version of the
expression has a higher prior probability than the redundant
version, because the latter requires applying more production
rules, each with their own probabilities to be factored into the
prior. Given that the likelihood of any observed task execu-
tion will be the same given either expression as the true norm,
the posterior probability of the non-redundant version will be
higher, and it should be preferred by any Bayesian norm iden-
tification mechanism.

If the grammar had generated a prohibition for the
first norm, rather than an obligation, it would have
the form (pro (action a) (colour c¢) (shape s) (zone
pz)). This states (unconditionallyz) that it is prohibited to
apply action a to a block of colour ¢, shape s, and zone pz
(for ‘prohibition zone’). The bottom of Figure 1 shows the
possible values for the variables a, ¢, s and pz, with their
probabilities. The specified colour, shape and (within per-
missions) zone values may be given as any, meaning there is
no constraint. Note that norms only need to govern put-down
actions, as each block is necessarily picked up immediately
before its put-down action.

The probabilites in the grammar express prior beliefs that
(a) the absence of a norm should be given a higher prior than
any other potential norm (the first production rule has prob-
ability 0.5), (b) shorter obligation conditions are more prob-
able than longer ones (note the probabilities for the rules for
the COND non-terminal symbol), and (c) generic norms are
preferred over specific ones (the any non-terminal symbol
has a higher probability than other colour, shape and zone
symbols).

5.2 Observation Likelihood

We first define the likelihood under the assumption that the
observation was norm-compliant: p(obs|d, comp). Given
an estimated proportion p,, of non-normative executions
(where an agent chooses not to be constrained by norms),
the likelihood without the assumption of compliance is then
p(0bs|8) = ppy p(obsino-norm) + (1 — pyy, ) p(0bs|d, comp)
[Cranefield et al., 2016].

’To allow experimentation with both simple and more complex
norms, we chose to only include conditions in obligations.
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The calculation of p(0bs|6,comp) is necessarily domain-
and grammar-specific. For our scenario, this is done as fol-
lows. When a set of observed task executions and a candidate
norm expression are passed to the likelihood function, for
each execution, each block b is considered in execution order.
The set of compliant zones for b to be put down in is com-
puted. In the no-norm case, there are three zones in which the
block can be put down, but if the norm expression contains
a prohibition or obligation, this may restrict the options. A
permission can override this restriction and increase the op-
tions. In the case of an obligation for which b’s colour and
shape match those specified in the obligation’s next-move
condition, it is always compliant to put the block down in
the zone specified by the obligation. However, placing it in
the other two zones is not compliant if the obligation’s se-
quence of moved expressions matches the task execution his-
tory. These considerations result in a set cm of compliant
moves. The likelihood for the observed move of b is then 0
if its destination zone is not in cm. Otherwise the likelihood
is ‘C}n‘. Finally the likelihoods for all the moves in the exe-
cution are multiplied to give the execution likelihood, and the
execution likelihoods are multiplied to give the likelihood of
the observed data. In practice, we work in log space.

6 Experiments

We first evaluated our method using the norm identifica-
tion scenario and evaluation framework of Cranefield et
al. [2016]°, to compare the performance of our method with
their application of Bayes’ Rule to maintain the odds of a fi-
nite set of norm hypotheses compared to the hypothesis that
there is no norm. Their scenario involved norm-constrained
travel tasks (specifying start and end nodes) on a directed
graph. They considered six types of norm that constrain the
sequence of nodes traversed. Instantiating these given the
graph used in their experiments (actually a tree) resulted in
1932 norms, and seven of them are chosen to be the real
norms known by the travelling agent but not the observer. Ex-
perimental settings include a probability of non-compliance
(which we, more precisely, refer to as non-normative be-
haviour in the previous section), and (high) probabilities of
norm-violating behaviour being observed, and being sanc-
tioned.

Using a behavioural measure of precision and recall, sim-
ilar to that described below (but more complex due to the
presence of multiple norms), they reported the following pre-
cision P and recall R for their Bayesian norm inference
method (with standard deviation over 50 runs given in brack-
ets): P = 64.76 (12.24), R = 95.54 (7.16) for p,,,, = 0.01,
and P = 67.36 (10.12), R = 85.14(9.54) for p,, = 0.3.
These were vastly better than the results for two techniques
they evaluated that use data mining [Savarimuthu e al., 2010;
Savarimuthu et al., 2013] and plan recognition [Cranefield
et al., 2016]. Our method achieved slight better precision
and worse recall for p,, = 0.01: P 67.83(15.42),
R =89.92(10.34). For py,,, = 0.3, our approach was around
7% worse on precision and 5% worse on recall, compared

3Their code
norm-detect

is available at https://github.com/mir-pucrs/
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to their Bayesian approach, but still far better than the other
techniques.

We next applied our method to the five-block robot region-
clearing task shown in Figure 2 and the norm grammar in
Figure 1. The Bayesian approach described above cannot be
used with a complex and recursive norm language such as this
without restricting norms to a finite subset of the language.
The MCMC search technique has no such constraint. We
evaluated its performance in identifying an unknown “true
norm” that governs an observed agent’s repeated execution
of the task. We chose a single true norm expression:

[’Norms’, ['Obl’, [’Moved’, [’Colour’, ’'r’],
[’Shape’, ’any’], ['Zone’, '1’], [’Next-Move’,
[’Colour’, ’any’], [’Shape’, 'any’]]], [’Zone’,
’2’1], ['Per’, [’Action’, ’'putdown’], [’Colour’,
’any’], [’Shape’, ’square’], [’PerZone’, ’3’]1]].

This is the combination of (a) an obligation to place a
block in zone 2 if the move follows the placement of a red
block in zone I; and (b) the permission to put square blocks
in zone 3 (note that the permission partially overrides the obli-
gation).

We considered values of p,,,, between 0 and 0.55, in incre-
ments of 0.05. For each p,,,,, we ran three trials of the follow-
ing experiment. We generated a sequence of “observed” ran-
dom task executions that were intentionally compliant with
the norm with probability 1 — p,,. These executions var-
ied in terms of the order of blocks moved and the zones to
which the blocks were moved. Our Metropolis-Hastings al-
gorithm (with the modified acceptance from equation 1, and
a = 0.1) was run to generate ten chains of length 4800. Af-
ter discarding the first half of each chain, and splitting the
remaining chain into two, the chain convergence metric R
was iteratively calculated over subsequences of the resulting
20 chain segments that doubled in length until the end of the
segments. The segments were then combined to form a sam-
ple of the posterior distribution over expressions. Observa-
tion likelihoods, for each of the expressions featuring in the
chain, were calculated as part of the algorithm, and these were
combined with the expression’s prior probabilities (from the
grammar) to calculate the (log) posterior probabilities. These
were stored along with the expressions in the posterior sam-
ple. Thus, our approach allows selecting candidate norms
either through their frequency in the posterior sample or by
using their posterior probabilities.

Figure 4 shows the log posterior of expressions in the pos-
terior sample, and their rank by frequency, for all trials, plot-
ted against p,,,,. The subplots use shapes to distinguish differ-
ent trials. In the top plot, pink shapes show the maximum log
posterior within the posterior sample for that trial, and green
ones show the log posterior of the true norm. Green above
pink for the same shape indicates that the true norm was not
within the posterior sample. Pink above green occurs in some
cases where p,,,, > 0.25. This indicates that an expression
in the sample has a posterior higher than the true norm, and
therefore is a better explanation of the observed behaviour
due to the high rates of non-normative behaviour. In all such
cases, this expression was the “No-norm” expression.
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Figure 4: Expression log posteriors and ranks by frequency within
the posterior sample

Pnn  precision recall Pnn  precision recall
0.00 0.920 0.974 0.30 0.898 0.974
0.05 0.896 0.974 0.35 0.773 0.878
0.10 0.977 0.977 0.40 0.894 0.909
0.15 0.919 0.941 0.45 0.815 0.938
0.20 0.976 0.977 0.50 0.881 0.924
0.25 0.839 0.939 0.55 0.816 0.938

Table 1: Precision and recall for the most frequent norm in the pos-
terior, averaged over three trials

The lower plot shows the rank in the posterior sample of the
true norm and the highest ranked equivalent norm (if present).
For higher values of p,,,, some trials found neither the true
norm nor an equivalent one. The variation in rank across tri-
als increases with p,,,,, showing that selecting a norm by log
posterior rather than by rank in the sample, is a better ap-
proach in these cases.

We now consider the precision and recall of the identified
norm, when selected by frequency rank. We do not use a stan-
dard definition of these concepts based on a simple identity
test between true and identified expressions. This is because,
given a particular task, two or more norm expressions may
be equivalent in terms of the constraints they apply to execu-
tions of the task. For example, consider a prohibition against
putting down green squares in zone 1. For the task in Fig-
ure 2, the logically more general prohibition against putting
down any green block in zone 1 is, in fact, equivalent to the
former expression, because the only green block to be moved
is square. Therefore, we use behavioural interpretations of
precision and recall [Cranefield ef al., 2016]. These measure
how well an agent governed by the candidate norm can gen-
erate task executions that are compliant with the true norm
expression. We generated two sets of 100,000 random norm-
compliant task executions: for the true norm and the candi-
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date norm expression. We treated the former set as it were the
complete set of true-norm-compliant executions when count-
ing ‘true’ and ‘false’ positives in the latter set. Note that as
we did not generate all possible true-norm-compliant task ex-
ecutions, the results give approximations to the behavioural
precision and recall.

Table 1 shows precision and recall for different values of
Pnn, assuming that the most frequent norm in the posterior
sample is used to govern the observer’s own behaviour. Even
though the most frequent norm may not be the true norm,
or even an equivalent, high precision and recall are seen in
almost all cases.

Finally, we consider the convergence of the chains in each
experiment. We find that, on average across the trials and

values of p,,, the R statistic increased from 1.05 to 1.24
(rather than decreasing towards 1) as the initial segments of
the chains evaluated increased in length from 50 to 1200.
There were no notable differences across the cases. This indi-
cates a lack of convergence, and points to a possible need for
longer chains. However, if the aim of the observer is solely
to adopt the expression with the highest log posterior prob-
ability as the norm, rather than create an accurate posterior
sample to use for posterior predictive inference, then the use
of multiple MCMC chains is a successful search mechanism.

7 Conclusion

This paper presents an adaptation of the prior work of Saad et
al. [2019] to the problem of norm identification from obser-
vations. We have presented their method as an application of
the Metropolis-Hastings algorithm, and modified it to favour
norms that are relevant to the task being observed. We also
highlighted the importance of analysing the convergence of
the MCMC chains generated (not considered, to our knowl-
edge, in prior research on MCMC search over symbolic ex-
pressions). We propose the use of a vector representation of
trees, based on the tree kernel of Collins and Duffy [2002], to

define a metric over expressions and allow the R convergence
statistic to be applied in our work. Unlike previous work on
Bayesian methods in norm identification, our approach does
not require selecting a pre-determined finite set of candidate
norms. The recursive norm language may be defined to al-
low arbitrarily complex norms, as illustrated by the obligation
norms used in this work.

Our experiments showed that for our experimental sce-
nario, when the probability of non-normative behaviour does
not exceed 0.25, MCMC search allowed the true norm expres-
sion, or an equivalent one, to be identified as the expression
with the highest log posterior probability. Norm identifica-
tion based on the most frequent expression in the posterior
sample can also be a successful means of generating compli-
ant behaviour, based on our precision and recall results, even
if the identified norm is not the true one.

Futher research is needed on improving the efficiency of
MCMC search for norms, and determining an R threshold for
“good enough” convergence. It would also be useful to inves-
tigate other forms of probabilistic grammar that are more apt
for encoding norms, and to adapt the approach used in this
paper for incremental learning.
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