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Abstract

Tournaments can be used to model a variety of
practical scenarios including sports competitions
and elections. A natural notion of strength of al-
ternatives in a tournament is a generalized king: an
alternative is said to be a k-king if it can reach every
other alternative in the tournament via a directed
path of length at most k. In this paper, we provide
an almost complete characterization of the proba-
bility threshold such that all, a large number, or a
small number of alternatives are k-kings with high
probability in two random models. We show that,
perhaps surprisingly, all changes in the threshold
occur in the range of constant k, with the biggest
change being between k = 2 and k = 3. In addi-
tion, we establish an asymptotically tight bound on
the probability threshold for which all alternatives
are likely able to win a single-elimination tourna-
ment under some bracket.

1 Introduction
Social choice theory is the study of how to aggregate in-
dividual preferences and opinions of agents on a set of al-
ternatives in order to reach a collective decision. In many
practical situations, the relationship between the alternatives
is represented by a dominance relation, which specifies the
relative strength of the alternatives in any pairwise compari-
son. For example, in sports competitions the dominance rela-
tion signifies the match outcome when two players or teams
play each other, while in elections the relation represents the
pairwise majority comparisons among the candidates. The
structure consisting of the alternatives and their dominance
relation is called a tournament, and the analysis of tourna-
ment winner selection methods—also known as tournament
solutions—has received significant attention from researchers
in the past few decades [Laslier, 1997; Brandt et al., 2016;
Suksompong, 2021].

Among the vast array of tournament solutions proposed in
the literature, two of the earliest and best-known ones are the
top cycle [Good, 1971; Schwartz, 1972; Miller, 1977] and the
uncovered set [Fishburn, 1977; Miller, 1980]. An alternative
belongs to the top cycle if it can reach every other alternative

via a directed path in the tournament. Note that if the tourna-
ment contains n alternatives, any such path has length n−1 or
less (the length of a path refers to the number of edges in the
path).1 Similarly, the uncovered set—also known as the set
of kings [Maurer, 1980]—consists of the alternatives that can
reach every other alternative via a path of length at most two.
It is clear from the definitions that the uncovered set is always
a subset of the top cycle. Moreover, both tournament solu-
tions can be viewed as special cases of a generalized notion
of kings called k-kings, which correspond to the alternatives
that can reach every other alternative via a path of length at
most k. Indeed, the uncovered set is the set of 2-kings, while
the top cycle contains precisely the (n− 1)-kings.

Given that tournament solutions are meant to distinguish
the best alternatives from the rest, it is natural to ask how se-
lective each tournament solution is. Moon and Moser [1962]
and Fey [2008] addressed this question and showed that the
top cycle and the uncovered set are likely to include all al-
ternatives when the tournament is large. In particular, their
results hold under the uniform random model, wherein each
edge is oriented in one direction or the other with equal prob-
ability independently of other edges. Saile and Suksom-
pong [2020] extended these results to the generalized random
model, in which the orientation of each edge is determined by
probabilities within the range [p, 1 − p] for some parameter
p ≤ 1/2, and these probabilities may vary across edges. The
generalized random model allowed these authors to demon-
strate a difference between the two tournament solutions—
while the top cycle almost never excludes any alternative as
long as p ∈ ω(1/n), the uncovered set is likely to select all
alternatives only when p ∈ Ω(

√
log n/n), so the two thresh-

olds differ by roughly Θ(
√
n). This raises the following ques-

tion: How does the probability threshold change as we tran-
sition from k = 2 to k = n − 1? Does it already decrease
at around k =

√
n, or does it remain the same until, say,

k ≈ n/2?
In this paper, we show that, perhaps surprisingly, all of

the changes in the probability threshold occur when k is con-
stant. In fact, when k = 6, all alternatives are already likely

1The bound n − 1 cannot be improved. To see this, consider a
tournament with alternatives x1, . . . , xn such that xi dominates xj

if i − j ≥ 2 or j − i = 1. Alternative x1 can reach every other
alternative, but it cannot reach xn via a path of length n− 2 or less.
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Tournament solution Condorcet random model Generalized random model

k-kings

k = 2 Ω(
√

log n/n) [Saile and Suksompong, 2020] Ω(
√

log n/n) [Saile and Suksompong, 2020]

3 ≤ k ≤ 4 Ω(log n/n) (Thm. 3.1, 3.3) Ω(log n/n) (Thm. 3.1, 3.3)
k = 5 ω(1/n) (Thm. 3.4) Ω(log log n/n) (Thm. 3.8)

6 ≤ k ≤ n− 1 ω(1/n) (Thm. 3.5) ω(1/n) (Thm. 3.5)
Single-elimination winners Ω(log n/n) [Kim et al., 2017] Ω(log n/n) (Thm. 4.3)

Table 1: Summary of the bounds on the probability p at which the respective tournament solutions select all alternatives with high probability
under the corresponding random model. All bounds are asymptotically tight except the bound for k = 5 with the generalized random model,
where there is a gap between Ω(log log n/n) and ω(1/n). The results with Ω(·) hold when the associated constant term is sufficiently large.

to be k-kings provided that p ∈ ω(1/n), the same thresh-
old as k = n − 1—this significantly strengthens the re-
sult of Saile and Suksompong [2020] on the top cycle. For
k = 3 and 4, we establish an asymptotically tight bound of
p ∈ Ω(log n/n), while for k = 5 we leave the only (small)
gap between Ω(log log n/n) and ω(1/n). Besides the gen-
eralized random model, we consider a more specific model
which has nevertheless been studied in several papers called
the Condorcet random model. In this model, there is a pa-
rameter p and a linear order of alternatives from strongest to
weakest, and the probability that a stronger alternative dom-
inates a weaker one is 1 − p, independently of other pairs of
alternatives.2 For the Condorcet random model, we show that
the threshold for k = 5 is ω(1/n), whereas the thresholds for
other values of k remain tight. Our results are summarized in
Table 1 and presented in Section 3. Taken together, they re-
veal the intriguing facts that (i) the uncovered set is distinctly
more selective than k-kings for k ≥ 3; (ii) 3-kings and 4-
kings are slightly more selective than higher-order kings; and
(iii) there is virtually no difference in discriminative power
from k = 5 all the way to k = n− 1.

In addition to k-kings, we also consider the set of
single-elimination winners, which are alternatives that can
win a (balanced) single-elimination tournament under some
bracket, where the match outcomes in the single-elimination
tournament are determined according to the dominance re-
lation in the original tournament.3 Kim et al. [2017] showed
that all alternatives are likely to be single-elimination winners
in the Condorcet random model as long as p ∈ Ω(log n/n),
and this bound is tight.4 For the generalized random model,
they established an analogous statement in the range p ∈
Ω(
√

log n/n). We close this gap by proving that even for the
generalized random model, p ∈ Ω(log n/n) already suffices

2The uniform random model corresponds to taking p = 1/2. For
any p, the Condorcet random model with parameter p is a special
case of the generalized random model with the same p. Hence, a
positive result for the generalized random model carries over to the
Condorcet random model, while a negative result transfers in the
opposite direction.

3Following prior work on single-elimination tournaments, we as-
sume that the number of alternatives is a power of two.

4If p ∈ o(log n/n), the weakest alternative dominates o(log n)
alternatives in expectation; this is insufficient since winning log2 n
matches is required to win a single-elimination tournament.

for all alternatives to be single-elimination winners with high
probability; moreover, a winning bracket for each alternative
can be computed in polynomial time. Our result, which can
be found in Section 4, further lends credence to the obser-
vation that real-world tournaments can be easily manipulated
[Mattei and Walsh, 2016].

Finally, in Section 5, we move beyond the question of
when all alternatives are likely to be selected by a tourna-
ment solution, and instead ask when this is the case for a large
or small number of alternatives. For the uncovered set, even
though p ∈ Ω(

√
log n/n) is required in order for all alterna-

tives to be chosen with high probability [Saile and Suksom-
pong, 2020], we show that most of them are already likely
to be included as long as p ∈ Ω(log n/n). This threshold
is exactly where the transition occurs: if p ∈ O(log n/n),
we prove that the uncovered set almost surely contains only a
small fraction of the alternatives. Furthermore, for any k ≥ 3,
we establish that a large fraction of alternatives are likely to
be k-kings provided that p ∈ ω(1/n). These results illustrate
the probability range under which each tournament solution
is discriminative, and again exhibit a clear difference between
the uncovered set and higher-order kings.

1.1 Related Work
Tournament solutions have been extensively studied for the
past several decades; we refer to the surveys by Laslier [1997]
and Brandt et al. [2016]. There are several containment re-
lations among common tournament solutions. For example,
the Copeland set, Slater set, Markov set, and Banks set are
all contained in the uncovered set, which is in turn contained
in the top cycle—this provides a range of options in terms of
discriminative power and other properties. Even though k-
kings admit a simple and elegant definition generalizing the
top cycle as well as the uncovered set, and have attracted in-
terest from graph theorists [Petrovic and Thomassen, 1991;
Tan, 2006; Brcanov and Petrovic, 2010], as far as we know,
they have not been studied in the social choice context until
recently. Kim and Vassilevska Williams [2015] and Kim et
al. [2017] identified conditions under which a 3-king can win
a single-elimination tournament. Brill et al. [2020] showed
that computing the “margin of victory” of k-kings can be
done efficiently for k ≤ 3 but becomes NP-hard for k ≥ 4.
Brill et al. [2021] illustrated through experiments that the
margin of victory of 3-kings behaves much more similarly to
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that of the top cycle than to the corresponding notion of the
uncovered set; our results therefore complement theirs by ex-
hibiting that analogous behavior can be observed with respect
to discriminative power.

As we mentioned earlier, the study of tournament so-
lutions under the probabilistic lens was initiated by Moon
and Moser [1962], who showed that the top cycle is likely
to choose all alternatives when the tournament is generated
by the uniform random model. Fey [2008] and Scott and
Fey [2012] established the same property for the uncovered
set as well as two other tournament solutions, the Banks set
and the minimal covering set, while Fisher and Ryan [1995]
showed that the bipartisan set includes half of the alternatives
on average.5 The Condorcet random model has been ana-
lyzed, among others, by Frank [1968], Łuczak et al. [1996],
Vassilevska Williams [2010], and Kim et al. [2017], with the
last paper also proposing the generalized random model. As
Saile and Suksompong [2020] pointed out, the Condorcet ran-
dom model suffers from limitations such as using the same
probability for all pairs of alternatives (regardless of the ex-
tent to which one alternative is stronger than the other) or not
allowing for “bogey teams” (i.e., weak teams that often beat
certain stronger teams). The generalized random model only
assumes that each match is sufficiently random, and therefore
does not have these limitations.

Finally, single-elimination tournaments have constituted a
popular topic of study in the past decade; see the surveys by
Vassilevska Williams [2016] and Suksompong [2021]. In par-
ticular, even though the problem of determining whether an
alternative can win a single-elimination tournament is known
to be NP-hard [Aziz et al., 2018], a wide range of algorithmic
and complexity results have been developed by this active line
of work.

2 Preliminaries
A tournament T consists of a set V = {x1, . . . , xn} of ver-
tices, also called alternatives, and a set E of directed edges.
For any two alternatives xi, xj ∈ V , there exists either an
edge from xi to xj or an edge from xj to xi, but not both.
The edges represent a dominance relation between the alter-
natives: an edge from xi to xj means that xi dominates xj , a
relation which we denote by xi � xj . The outdegree (resp.,
indegree) of an alternative xi is the number of alternatives
that xi dominates (resp., that dominate xi). We extend the
dominance relation to sets of alternatives: for V1, V2 ⊆ V ,
we write V1 � V2 to mean that x � x′ for all x ∈ V1 and
x′ ∈ V2, and V1 � x′ to mean that x � x′ for all x ∈ V1. A
set V ′ ⊆ V is called a dominating set if for every x ∈ V \V ′,
there exists x′ ∈ V ′ such that x′ � x.

We can now define the key notions of this paper.

• For any integer k ≥ 2, an alternative is said to be a k-
king if it can reach every other alternative via a directed
path of length at most k.

5Brandt et al. [2018] showed that any tournament solution that
satisfies an attractive property called stability, including the top cy-
cle, the minimal covering set, and the bipartisan set, must choose at
least half of the alternatives on average.

• Suppose that n = 2r for some nonnegative integer r.
An alternative is said to be a single-elimination winner
if it wins a (balanced) single-elimination tournament un-
der some bracket, where the outcome of each match is
determined according to the dominance relation.6

We will consider two random models for generating tour-
naments. In the Condorcet random model, there is a param-
eter 0 ≤ p ≤ 1/2. For i < j, alternative xj dominates
xi with probability p (so xi dominates xj with probability
1 − p), independently of other pairs of alternatives. In the
generalized random model, there is a parameter pi,j for each
pair i 6= j, where pi,j + pj,i = 1. For any pair i, j, alter-
native xi dominates xj with probability pi,j , independently
of other pairs. We will generally allow each probability pi,j
to be chosen from the range [p, 1 − p] for a given parame-
ter 0 ≤ p ≤ 1/2. Before a tournament is generated from
the generalized random model, the expected outdegree of xi
is defined as

∑
j 6=i pi,j . Following standard terminology in

probability theory, we say that an event whose probability de-
pends on n occurs “with high probability” if the probability
that it occurs approaches 1 as n→∞.

We now list two well-known probabilistic statements that
will be used multiple times in this paper. The first statement
provides an upper bound on the probability that a sum of in-
dependent random variables is far from its expectation.
Lemma 2.1 (Chernoff bound). Let X1, . . . , Xk be indepen-
dent random variables taking values in [0, 1], and let X :=
X1 + · · ·+Xk. Then, for any δ ∈ [0, 1],

Pr[X ≥ (1 + δ)E[X]] ≤ exp

(
−δ2E[X]

3

)
and

Pr[X ≤ (1− δ)E[X]] ≤ exp

(
−δ2E[X]

2

)
.

The second statement is a simple upper bound on the ex-
pression 1 + x.
Lemma 2.2. For every real number x, we have 1 + x ≤ ex.

We end this section with a lemma on the degree of alterna-
tives in a tournament.
Lemma 2.3. Let 1 ≤ r ≤ n. For any tournament T , the
average outdegree and the average indegree of the alterna-
tives in any subset of size r are at least (r − 1)/2. Similarly,
the average expected outdegree of the alternatives in such a
subset is at least (r − 1)/2.

Proof. We prove the statement for the average outdegree; the
proofs for the average indegree as well as the average ex-
pected outdegree are similar. In a subset of alternatives of
size r, there are a total of r(r − 1)/2 edges. Hence, the sum
of the outdegrees of the r alternatives is at least r(r − 1)/2,
implying that their average is at least (r − 1)/2.

Unless a base is explicitly specified, log refers to the nat-
ural logarithm. All omitted proofs can be found in the full
version of our paper [Manurangsi and Suksompong, 2021].

6See, e.g., [Aziz et al., 2018] for formal definitions.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

330



3 Generalized Kings
Recall the result of Saile and Suksompong [2020] that in the
generalized random model, all alternatives are 2-kings (i.e.,
belong to the uncovered set) with high probability only if p ∈
Ω(
√

log n/n). For our first result, we show that 3-kings are
not as selective: even when p ∈ Ω(log n/n), it is already
likely that none of the alternatives is excluded by this set.
Theorem 3.1. Assume that a tournament T is generated ac-
cording to the generalized random model, and that pi,j ∈
[30 log n/n, 1− 30 log n/n] for all i 6= j. Then with high
probability, all alternatives in T are 3-kings.

To prove this theorem, we establish a rather general lemma
on the probability of one set dominating another, which will
also be useful in our analysis of 5-kings later.
Lemma 3.2. Let T0 be a tournament consisting
of n0 alternatives V0 := {x1, . . . , xn0}, and let

q1,1, q1,2, . . . , qn0,1, qn0,2 ∈
[
10λ
n0
, 1
]

for some 1 ≤ λ ≤ n0

10 .
Suppose that we randomly create a set S1 by including each
alternative xi independently with probability qi,1, and a
set S2 by including each alternative xi independently with
probability qi,2. Then, Pr[S1 ∩S2 = ∅ and S1 � S2] ≤ e−λ.

Lemma 3.2 allows for a short proof of Theorem 3.1.

Proof of Theorem 3.1. Fix a pair of distinct alternatives
xi, xj . We first bound the probability that xj cannot reach
xi via a directed path of length at most three.

Consider the tournament T 0 defined by restricting T to
V 0 := V \ {xi, xj}. Let S1 denote the set of alternatives
in V 0 that dominate xi with respect to T , and let S2 denote
the set of alternatives in V 0 that are dominated by xj with re-
spect to T . Notice that if S1 ∩ S2 6= ∅ or S1 6� S2, then there
is a path of length at most three from xj to xi. Furthermore,
from the assumption of the theorem, each alternative belongs
to each of S1 and S2 independently with probability at least
30 log n
n , which is at least 25 log n

|V 0| for any sufficiently large n.
As a result, we may apply Lemma 3.2 with λ = 2.5 log n,
which gives

Pr[there is no path of length at most three from xj to xi]
≤ Pr[S1 ∩ S2 = ∅ and S1 � S2]

≤ e−λ = 1/n2.5.

Finally, applying the union bound over all (ordered) pairs
of alternatives xi 6= xj , the probability that some alterna-
tive cannot reach some other alternative via a directed path of
length at most three is no more than 1/n0.5, which converges
to 0 as n goes to infinity.

Next, we show that in the Condorcet random model, if p ∈
Θ(log n/n) and the associated constant is low enough, there
is likely to be an alternative that is not a 4-king. Combined
with Theorem 3.1, this implies that the bound Θ(log n/n) is
asymptotically tight for both 3- and 4-kings in both random
models that we consider.
Theorem 3.3. Assume that a tournament T is generated
according to the Condorcet random model, and that p ≤
0.1 log n/n. Then with high probability, there exists an al-
ternative in T that is not a 4-king.

Our results so far demonstrate that k-kings for any k ≥ 3
are much closer to the top cycle (i.e., (n−1)-kings) than to the
uncovered set (i.e., 2-kings) in terms of discriminative power.
In the remainder of this section, we show that there is virtually
no difference in selectiveness between k-kings for k ≥ 6 and
the top cycle. We begin by showing that in the Condorcet ran-
dom model, all alternatives are likely to be 5-kings provided
that p ∈ ω(1/n)—this gives a complete characterization of
the probability threshold for the Condorcet random model.
Theorem 3.4. Assume that a tournament T is generated
according to the Condorcet random model, and that p ∈
ω(1/n). Then with high probability, all alternatives in T are
5-kings.

For the generalized random model, we show that as long as
p ∈ ω(1/n), all alternatives are likely to be 6-kings.
Theorem 3.5. Assume that a tournament T is generated ac-
cording to the generalized random model, and that pi,j ∈
ω(1/n) for all i 6= j. Then with high probability, all alterna-
tives in T are 6-kings.

In light of Theorem 3.5, the only remaining gap in our
probability threshold characterization is for 5-kings in the
generalized random model. We conjecture that the true
threshold is ω(1/n), but our proof of Theorem 3.4 relies
on the ordering of the alternatives in the Condorcet random
model and cannot be easily extended. Instead, we present
a slightly weaker bound of Ω(log log n/n)—this shows that
5-kings are closer to 6-kings than to 4-kings with respect to
selective power. To establish this bound, we need a lemma on
generalized dominating sets.
Definition 3.6. Given a positive integer r, a set of alternatives
D is said to be an r-dominating set of a tournament T if every
alternative x /∈ D is dominated by at least r alternatives inD.
Lemma 3.7. For any tournament T and any positive inte-
ger r, there exists an r-dominating set of T of size at most
rdlog2 ne.

Proof. Let us start with D = ∅ and repeat the following pro-
cedure r times: find a minimum dominating set S of the
restriction of T on V \ D, and update D to D ∪ S. It is
clear that the final set D is an r-dominating set of T . Fur-
thermore, it is well-known [Megiddo and Vishkin, 1988, Fact
2.5] that any tournament has a dominating set of size at most
dlog2 ne, which implies that the final set D is of size at most
rdlog2 ne.

We are now ready to establish our result on 5-kings.
Theorem 3.8. Assume that a tournament T is generated ac-
cording to the generalized random model, and that pi,j ∈
[50(log log n)/n, 1− 50(log log n)/n] for all i 6= j. Then
with high probability, all alternatives in T are 5-kings.

Proof. Define a tournament T ′ on alternatives x1, . . . , xn so
that for each pair i 6= j, we have xi � xj if pi,j > 1/2.
Then, our tournament T is generated by reversing the edges
of T ′ so that the edge between xi and xj is reversed with
probability qi,j := min{pi,j , 1− pi,j} ≤ 1/2, independently
of other edges. For each alternative x, let I(x) denote the set
of alternatives that dominate x in T ′.
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Let r = d1.1 log2 ne, and let D and Dinv be a minimum
r-dominating set of the tournament T ′ and its “inverse” con-
structed by reversing all edges in T ′, respectively. From
Lemma 3.7, we have |D|, |Dinv| ≤ rdlog2 ne, which is at
most 2.3(log n)2 for any sufficiently large n.

We define the following three events in T :

• E1: For every xm 6∈ D, there exists xi ∈ D such that
xi � xm.

• E2: For every x` 6∈ Dinv, there exists xj ∈ Dinv such
that x` � xj .

• E3: For every xi ∈ D and xj ∈ Dinv, there exists a
directed path of length at most three from xj to xi.

Similarly to the proof of Theorem 3.4, when E1, E2, and E3

all occur, every alternative is a 5-king. As a result, it suf-
fices to show that each of the three events occurs with high
probability.

For E1, we have

Pr[¬E1] = Pr[∃xm 6∈ D, ∀xi ∈ D,xm � xi]

≤
∑
xm 6∈D

Pr[∀xi ∈ D,xm � xi]

≤
∑
xm 6∈D

Pr[∀xi ∈ D ∩ I(xm), xm � xi]

=
∑
xm 6∈D

∏
xi∈D∩I(xm)

Pr[xm � xi]

=
∑
xm 6∈D

∏
xi∈D∩I(xm)

qi,m

≤
∑
xm 6∈D

(1/2)|D∩I(xm)|

≤
∑
xm 6∈D

(1/2)r

≤
∑
xm 6∈D

1/n1.1

∈ o(1),

where the first inequality follows the union bound and the
fourth inequality from the fact that D is an r-dominating set
in T ′. An analogous argument shows thatE2 also occurs with
high probability.

Finally, consider E3. Since both D and Dinv are of size
O((log n)2), by the union bound, it suffices to show that for
each fixed pair xi ∈ D and xj ∈ Dinv, a path of length at most
three from xj to xi exists with probability 1− o(1/(log n)4).

To prove this, consider the tournament T 0 defined by re-
stricting T to V 0 := V \ (D ∪Dinv). Let S1 denote the set of
alternatives in V 0 that dominate xi with respect to T , and let
S2 denote the set of alternatives in V 0 that are dominated by
xj with respect to T . Notice that if S1 ∩ S2 6= ∅ or S1 6� S2,
then there is a path of length at most three from xj to xi.
Furthermore, from the assumption of the theorem, each alter-
native belongs to each of S1 and S2 independently with prob-
ability at least 50 log log n

n , which is at least 45 log log n
|V 0| for any

sufficiently large n. As a result, we may apply Lemma 3.2

with λ = 4.5 log log n, which gives

Pr[there is no path of length at most three from xj to xi]
≤ Pr[S1 ∩ S2 = ∅ and S1 � S2]

≤ e−λ

= 1/(log n)4.5

∈ o(1/(log n)4),

which concludes our proof.

4 Single-Elimination Winners
In this section, we consider single-elimination winners and
derive a tight bound of Ω(log n/n) for the generalized ran-
dom model, thereby strengthening the bound Ω(

√
log n/n)

of Kim et al. [2017] and matching their bound for the Con-
dorcet random model. As in previous work on this subject,
we assume for simplicity that n = 2r for some positive inte-
ger r, so r = log2 n. In order to construct a winning bracket,
a useful notion is that of a “superking”, introduced by Vas-
silevska Williams [2010].

Definition 4.1. Given a tournament T , an alternative x is said
to be a superking if for every alternative x′ such that x′ � x,
there exist at least log2 n alternatives x′′ such that x � x′′

and x′′ � x′.
Lemma 4.2 (Vassilevska Williams [2010]). In any tourna-
ment, every superking is a single-elimination winner, and its
winning bracket can be computed in polynomial time.

Before we proceed to our result, let us briefly recap the
proofs of the two aforementioned results by Kim et al. [2017],
and explain why they cannot be used to establish our de-
sired strengthening. In order to show that all alternatives are
single-elimination winners with high probability when p ∈
Ω(
√

log n/n), these authors showed that all alternatives are
likely to be superkings in this range; it is not difficult to verify
that this condition no longer holds when p ∈ o(

√
log n/n).

For the Ω(log n/n) bound in the Condorcet random model,
they argued that the weakest alternative x is likely to domi-
nate one of the top n/6 alternatives, and constructed a win-
ning bracket for this latter alternative y among the top half
of the alternatives, so that x can play y in the final round and
win the single-elimination tournament. Since there is no clear
notion of strength in the generalized random model (indeed,
all alternatives may be roughly equally strong, with no linear
order), this approach also does not work for our purpose.

At a high level, our proof proceeds by choosing r = log2 n
alternatives that our desired winning alternative x dominates.
In order to ensure that x can play against these alternatives
in the r rounds, we partition the r alternatives along with the
remaining alternatives into subsets of size 1, 2, . . . , 2r−1, so
that the r alternatives are superkings in the respective sub-
tournament and can therefore win a single-elimination tour-
nament with respect to their subset by Lemma 4.2.

Theorem 4.3. Assume that a tournament T is generated ac-
cording to the generalized random model, and that pi,j ∈
[80 log n/n, 1− 80 log n/n] for all i 6= j. Then with high
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probability, all alternatives in T are single-elimination win-
ners, and a winning bracket of each alternative can be com-
puted in polynomial time.

5 Number of Kings
So far, we have addressed the question of when each tourna-
ment solution is likely to select all alternatives, i.e., the case
where the solution is decidedly not useful. In this section, we
move beyond this question (which is also the focus of several
previous works) and ask when a small or large number of al-
ternatives are chosen. Our first result shows that even though
p ∈ Ω(

√
log n/n) is required for the uncovered set to choose

all alternatives with high probability [Saile and Suksompong,
2020], the smaller threshold of p ∈ Ω(log n/n) suffices in
order for most of the alternatives to be included.
Theorem 5.1. Assume that a tournament T is generated ac-
cording to the generalized random model, and that pi,j ∈
[50 log n/n, 1− 50 log n/n] for all i 6= j. Then with high
probability, at least 0.9n alternatives in T are 2-kings.

Proof. Assume without loss of generality that the alternatives
before the tournament T is generated are x1, . . . , xn in non-
increasing order of expected outdegree. Let r = d0.9ne, and
consider any 1 ≤ i ≤ r. We will show that the probability
that xi is a 2-king in T is at least 1 − o(1/n). The union
bound then implies that with high probability, at least 0.9n
alternatives in T are 2-kings.

To show that Pr[xi is a 2-king in T ] is at least 1− o(1/n),
the union bound again implies that it suffices to prove that
Pr[there is no path of length at most two from xi to xj ] is at
most o(1/n2) for each alternative xj 6= xi.

We henceforth fix 1 ≤ i ≤ r and xj 6= xi. By Lemma 2.3
on xi, xi+1, . . . , xn, the expected outdegree of xi is at least
(n−i)/2, which is at least 0.045n for any sufficiently large n.
As a result, for large enough n, we have

Pr[there is no path of length at most two from xi to xj ]
= Pr[xj � xi] · Pr[∀k /∈ {i, j}, xk � xi or xj � xk]

= (1− pi,j) ·
∏

k/∈{i,j}

Pr[xk � xi or xj � xk]

= (1− pi,j) ·
∏

k/∈{i,j}

(1− pi,kpk,j)

≤ exp(−pi,j) ·
∏

k/∈{i,j}

exp(−pi,kpk,j)

≤ exp

(
−50 log n

n
· pi,j

)
·
∏

k/∈{i,j}

exp

(
−50 log n

n
pi,k

)

= exp

−50 log n

n

∑
k 6=i

pi,k


≤ exp

(
−50 log n

n
· 0.045n

)
= 1/n2.25

∈ o(1/n2).

We use Lemma 2.2 for the first inequality, and the assumption
that the expected outdegree of xi is at least 0.045n for the last
inequality. This concludes our proof.

Our next result establishes the asymptotic tightness of the
threshold in Theorem 5.1.

Theorem 5.2. Assume that a tournament T is generated
according to the Condorcet random model, and that p ≤
0.1 log n/n. Then with high probability, at most

√
n log n al-

ternatives in T are 2-kings.

Finally, we show that as long as p ∈ ω(1/n), a large num-
ber of alternatives are already likely to be 3-kings (and there-
fore k-kings for every k ≥ 3). This bound is again tight:
when p ∈ O(1/n) and the tournament is generated from the
Condorcet random model, there is at least a constant probabil-
ity that the strongest alternative dominates all remaining al-
ternatives (in which case it is the only k-king for each k ≥ 2).

Theorem 5.3. Assume that a tournament T is generated ac-
cording to the generalized random model, and that pi,j ∈
ω(1/n) for all i 6= j. Then with high probability, at least
0.9n alternatives in T are 3-kings.

6 Concluding Remarks
In this paper, we have extensively investigated the behavior
of generalized kings and single-elimination winners in ran-
dom tournaments in view of their discriminative power. Our
results reveal surprisingly clear distinctions between the un-
covered set and k-kings for k ≥ 3, and illustrate why ma-
nipulating a single-elimination tournament is often possible
in practice despite the problem being NP-hard. All of the
bounds that we obtained are asymptotically tight except for
the bound for 5-kings in the generalized random model (The-
orem 3.8); one could try to close this gap.

An exciting future direction in our view is to study k-kings
and single-elimination winners with respect to axiomatic and
computational properties, as is commonly done for other tour-
nament solutions [Laslier, 1997; Brandt et al., 2016]. For
example, the uncovered set is known to be the finest tour-
nament solution satisfying Condorcet consistency, neutrality,
and expansion [Moulin, 1986]. Which axioms does the set of
3-kings satisfy, and can we characterize it by a collection of
axioms? One could also study the relationship between these
tournament solutions and traditional ones—this was partially
done by Kim et al. [2017], who showed for instance that
any alternative in the Copeland set or the Slater set can al-
ways win a single-elimination tournament. Another possi-
ble avenue is to extend our results to other stochastic models
for tournaments—several interesting models have been stud-
ied experimentally by Brandt and Seedig [2016] and Brill et
al. [2021]. Such questions illustrate the richness of tourna-
ments and probabilistic models, which we expect to give rise
to further fruitful research.
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