
The Successful Ingredients of Policy Gradient Algorithms

Sven Gronauer∗ , Martin Gottwald , Klaus Diepold
Technical University of Munich, Germany

{sven.gronauer, martin.gottwald, kldi}@tum.de

Abstract

Despite the sublime success in recent years, the un-
derlying mechanisms powering the advances of re-
inforcement learning are yet poorly understood. In
this paper, we identify these mechanisms - which
we call ingredients - in on-policy policy gradient
methods and empirically determine their impact on
the learning. To allow an equitable assessment,
we conduct our experiments based on a unified
and modular implementation. Our results under-
line the significance of recent algorithmic advances
and demonstrate that reaching state-of-the-art per-
formance may not need sophisticated algorithms
but can also be accomplished by the combination
of a few simple ingredients.

1 Introduction
Reinforcement learning (RL) is a data-driven paradigm that
can be leveraged to learn complex strategies for controlling
dynamical systems. RL algorithms excel at problems that can
be simulated or where exact models are known, but conven-
tional planning is not feasible, e.g. in the game of Go [Silver
et al., 2016]. Although the RL domain has witnessed sig-
nificant advances in recent years [Arulkumaran et al., 2017;
Mnih et al., 2015], the progress is aggravated by various im-
pediments. First, experiments are difficult to reproduce be-
cause numerical results are sensitive to the selection of hyper-
parameters and can vary over different random seeds [Hen-
derson et al., 2018; Islam et al., 2017]. More drastically, dif-
ferent code bases produce inconsistent results, although de-
scribing the same algorithm. Second, a major share of the
claimed performance increments in recently proposed meth-
ods is less achieved by innovative algorithmic properties but
more through clever implementation [Engstrom et al., 2020;
Tucker et al., 2018]. Third, state-of-the-art algorithms based
on neural networks can be disputed by simpler learning mod-
els. Despite their expressiveness, works demonstrated that
representations like radial basis functions or linear func-
tion mappings could achieve similar results on contemporary
benchmarks [Mania et al., 2018; Rajeswaran et al., 2017].

∗Contact Author

Until yet, it is poorly understood which underlying mecha-
nisms drive the learning of RL agents. The intricate interplay
between different algorithm components and the abundance
of adjustable parameters render it difficult to study the roots
of the recent progress. Our understanding remains opaque un-
til we assess the importance of new algorithmic innovations
through careful analysis. First works investigated the under-
lying mechanisms by conducting ablation studies in large-
scale experiments [Andrychowicz et al., 2020] or on a se-
lected subset of parameters [Engstrom et al., 2020]. To main-
tain sustainable progress, the RL community must build a
profound understanding of the ingredients and their respec-
tive proportion to the learning success, individually and as a
whole. Empirical as well as theoretical analysis about why an
algorithm surpasses the other is therefore crucial as argued by
Sigaud and Stulp [2019].

In this paper, we shed light on the components - which we
denote as ingredients - powering on-policy policy gradient al-
gorithms in continuous control problems.1 Our contribution
is two-fold: (1) we empirically study the significance of spe-
cific ingredients and show the roots of algorithmic progress
based on a modular and unified code base and (2) identify a
minimal setup of ingredients that challenges state-of-the-art
approaches while exhibiting a manageable size of algorithm
complexity. According to the principle of Occam’s Razor,2 a
simple baseline is preferable because fewer hyper-parameters
must be tuned and, thus, is easier to reproduce.

2 Related Work
A plethora of literature has emerged in recent years that crit-
icizes the reproducibility of RL. First of all, [Islam et al.,
2017] investigated the influence of hyper-parameter choices
and revealed the inherent performance variance of RL algo-
rithms. The authors objected to the under-reporting of hyper-
parameters, which are crucial for a fair comparison between
different algorithms, and provided recommendations for good
research practice. In a similar vein, [Henderson et al., 2018]

1For the supplemental materials and the implementation see:
https://github.com/SvenGronauer/successful-ingredients-paper

2We associate the minimum description length as one form of
interpretation with the principle of Occam’s Razor, which states the
trade-off between the quality of data fitting and the complexity of
the used algorithm model [Rissanen, 1978].

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2455

https://github.com/SvenGronauer/successful-ingredients-paper

emphasized the intricate interplay between hyper-parameter
selections and underlined the importance of independent ran-
dom seeds used to evaluate experiment trials. Further, Hen-
derson et al. [2018] pointed out that different code bases, al-
though describing the same underlying algorithm, can yield
inconsistent results, and they gave evidence that these per-
formance deviations can be attributed to implementation de-
tails which are often not neatly reported. Related to perfor-
mance disparities caused by different code bases, Engstrom
et al. [2020] showed that the implementation details indeed
matter. The authors investigated selected code-level ingredi-
ents, which are found only in the implementation or described
in detail in the appendices, and showed that these could be
accounted for the performance gains observed between the
TRPO and PPO algorithm. Alike, Tucker et al. [2018] ob-
served that recent advances in gradient estimation, which
were originally related to algorithmic improvements, can be
attributed to subtle implementation details.

Similar to our empirical research, Reda et al. [2020] inves-
tigated the impact of the environment design on the learned
policy performance in locomotion tasks, showing that the
problem design is at least as important as the selected algo-
rithm. Most related to our work, Andrychowicz et al. [2020]
discussed the effect of ingredients on on-policy RL algo-
rithms through the conduction of large-scale experiments.
They provided practical recommendations for high and low-
level choices and corresponding hyper-parameters values but,
in contrast to our work, conducted only ablation studies and
no incremental approach.

3 Background
We consider model-free policy gradient algorithms in con-
tinuous control problems where a policy is searched by in-
teracting with an environment with unknown dynamics. We
make use of the standard formulation for discounted infinite-
horizon Markov decision processes (MDP) which are formal-
ized by the tuple (X ,U ,P, r, γ), where X and U denote state
and action space, respectively. The system transition proba-
bility is described by P while r is the reward function and
γ denotes the discount factor. The agent’s goal is to learn a
policy π : X → P(U) that maximizes the expected return

J(π) =

∫
X
ρπ(x)

∫
U
π(u|x) r(x, u) du dx. (1)

Under the assumption of an ergodic MDP and an infinite hori-
zon, the problem is stationary and the expected policy perfor-
mance can be calculated over the un-normalized steady state
distribution ρπ(x) = γ0P (x0 = x) + γ1P (x1 = x) + . . .
under policy π. The policy πθ is represented by a neural net-
work that is parametrized by the vector θ and assumed to be at
least once differentiable. We denote the state-value function
as Vπθ

(x) = Eπθ

[∑∞
t=0 γ

tr(xt, ut) | x0 = x
]
, and similarly

Qπθ
(x, u) = Eπθ

[∑∞
t=0 γ

tr(xt, ut) | x0 = x, u0 = u
]

as
the action-value function. Policy gradient methods optimize
the learning objective by building the gradient of the expected
return with respect to the policy parameters∇θJ(πθ) and up-
date the policy parameters by taking a step along the gradient

direction. Likelihood ratio methods require a re-sampling of
data for every gradient step. To reuse generated trajectory
data over multiple iterations, importance sampling can be ap-
plied to perform updates based on a local approximation

Ĵ(πθ) = Eµ
[
πθ(u|x)

µ(u|x)
Ψ(x, u)

]
(2)

that matches J to first order. Off-policy samples can be incor-
porated under the assumption that µ(·|x) = 0⇒ πθ(·|x) = 0
for all x. However, the estimation of the policy gradient can
exhibit high variance. Thus, a reward estimator Ψ is typically
used which can be expressed by several terms as proposed
by Schulman et al. [2016] but typically takes the form of the
advantage function Aπθ

(x, u) = Qπθ
(x, u)− Vπθ

(x).

4 Methodology
In this paper, we consider on-policy gradient methods3

in continuous control domains. We take the importance-
weighted policy gradient (IWPG) objective from Eq. (2) as
the basis and systematically add ingredients to observe their
impact on the learned policy performance. We set up our ex-
periments in an incremental and modular approach such that
the influence of individual ingredients becomes transparent.
In particular, we study ingredients chronologically in three
stages:

1. Code-level ingredients are enhancements to the algo-
rithm, which are provided as supplementary details or
can only be found in the implementation. Most of these
ingredients are considered as good practices in the RL
community and are not regarded in the hyper-parameter
search, leaving their impact on the learning unexplored.

2. Algorithmic ingredients lie at the heart of new algorithm
proposals and depict the core innovation. These ingredi-
ents are precisely described in theoretical terms, but the
realization may only become transparent from the pro-
vided implementation code.

3. Structural ingredients refer to choices and hyper-
parameters that describe the neural network architecture
and the optimization. We consider those ingredients that
can vary between different implementation frameworks
and are often neglected in the experimental description.

Our experiments are conducted in the procedure from
above to cope with two challenges. First, ingredients cross-
correlate, making it difficult to determine their causal direc-
tion of influence. We alleviate cross-correlations by randomly
adding ingredients and assess their impact based on the per-
formance difference, whether an ingredient is applied or not.
Second, the combination of configurations grows exponen-
tially with the number of tunable hyper-parameters. We try to
contain this through the proposed experimental structure in
three stages.

3As on-policy, we also denote policy iteration algorithms that
collect data based on the current policy and update a policy several
times by using the same data through importance weighting before
generating new data with the iterated policy. Transition samples be-
come off-policy after the first policy update but are still close to the
generating policy.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2456

Obs. Stand. Adv. Stand. Reward Scaling Gradient Scaling Entropy Bonus EN Annealing LR Annealing

−25

0

25

50

75
P

er
fo

rm
an

ce
G

ai
n

in
%

HalfCheetah

Ant

Hopper

Walker2D

Humanoid

Reacher

Pusher

Figure 1: The impact of code-level ingredients on the policy performance. The normalized scores show the relative change of the policy
performance when a particular ingredient is used. Note that these numbers are generated based on the IWPG objective without algorithmic
ingredients such as trust-regions, which are added thereafter in Experiments 5.2. The Kuka task is excluded since we were not able to improve
upon a random policy without advanced variance reduction methods.

To benchmark the performance in continuous control prob-
lems, we use the five locomotion environments HalfCheetah,
Hopper, Ant, Walker2D, and Humanoid as well as the three
robotic manipulations tasks Reacher, Pusher, and Kuka. We
measure the expected return after 107 environment interac-
tions when exploration noise is disabled. All eight tasks are
evaluated in the PyBullet physics engine [Coumans and Bai,
2016].

5 Experiments
In this section, we explain the details of our experiments and
present the results. We aligned the hyper-parameters to the
ones suggested in Henderson et al. [2018]. We applied a
single learner setup, used as discount factor γ = 0.99, col-
lected batches of size 32000 for each policy iteration, and ran
each seed over a total of 107 environment interactions. For
the neural networks, we used the same structure for both pol-
icy and value networks, i.e. multi-layer perceptrons with two
hidden layers consisting of 64 neurons each followed by tanh
non-linearities. The default optimizer was Adam [Kingma
and Ba, 2015] for the policy and value network, respectively.
Our studied ingredients are only applied to the policy network
but not to the value network. For all experiments, we per-
formed hyper-parameter grid searches to average the effect
of ingredients over a wide range of hyper-parameters (Ex-
periments 5.1) or to determine the best hyper-parameter con-
figuration (Experiments 5.2-5.4). An overview of the used
hyper-parameters and configurations is provided in the sup-
plemental.

5.1 Impact of Code-level Ingredients
Being augmentations to the algorithmic core, code-level in-
gredients are provided as supplementary details or can only
be found in implementations. Although not grounded on
theoretic insights, many code-level ingredients are used as a
heuristic on current benchmarks. We agree on these ingredi-
ents as the first stage since they can be applied to all on-policy
gradient algorithms and are leveraged in the succeeding ex-
periments. We investigated the seven following ingredients:

1. Observation Standardization. Each batch of observa-
tions is made mean-free and re-scaled to unit variance
by first subtracting the mean value and then dividing
through the standard deviation.

2. Advantage Standardization. Analogous to observation
standardization, each batch is transformed into a mean-
free and unit variance distribution.

3. Reward Scaling. The received rewards are divided by
the standard deviation of a running discounted sum of
rewards.

4. Gradient Scaling. To maintain the magnitude, parameter
gradients (as they are concatenated into a single vector)
are re-scaled if they exceed a certain threshold.

5. Entropy Bonus Term. To promote exploration, the en-
tropy bonus term can be added to the optimization ob-
jective, which encourages uniformly distributed actions.

6. Exploration Noise Annealing. Outputs of the policy
networks typically represent the mean of a multivari-
ate Gaussian distribution. Through exploration noise an-
nealing, the entries of the covariance matrix are linearly
decreased over the training.

7. Learning Rate Annealing. The learning rate of the policy
optimizer is linearly decayed to zero over the training.

Approach. To study how code-level ingredients affect
learning, we randomly added each ingredient to the IWPG
objective from (2) by a chance of 50% in each run. We used
the random enabling to remedy cross-correlations between
the investigated ingredients. We conducted experiments over
a 4 × 4 grid of learning rate and number of policy iterations
combinations. Each combination was evaluated over 16 inde-
pendent runs, resulting in a total of 256 random seeds for each
environment. The impact of each code-level ingredients was
determined by (J+

ι − Jχ)/(J−ι − Jχ) where J+
ι denotes the

average policy performance when ingredient ι is applied, and
J−ι when ingredient ι is not used, and Jχ is the performance
of a uniform random policy χ. We used plain advantage esti-
mation Ψ = A as the reward estimator.

Results. As shown in Figure 1, observation standardization
and learning rate annealing significantly affect the learned
policy performance. Both ingredients yield in at least six
out of seven tasks performance gains, where observation
standardization yielded an average performance increase of
34.3% and learning rate annealing an improvement of 30.7%.
Reward Scaling showed in four out of five locomotion tasks
performance gains, while for Humanoid a negative score.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2457

IWPG ESC NPG TRPO PPO
0

1000

2000

3000
R

et
u

rn

HalfCheetah

IWPG ESC NPG TRPO PPO
0

1000

2000

3000

Ant

IWPG ESC NPG TRPO PPO
0

1000

2000

Hopper

IWPG ESC NPG TRPO PPO
0

1000

2000

Walker2D

IWPG ESC NPG TRPO PPO
0

1000

2000

3000

R
et

u
rn

Humanoid

IWPG ESC NPG TRPO PPO

0

10

20

Reacher

IWPG ESC NPG TRPO PPO

−150

−100

−50

0
Pusher

IWPG ESC NPG TRPO PPO

−3000

−2000

−1000

0
Kuka

Advantage

Plain

GAE

V-trace

Figure 2: Impact of the algorithmic ingredients on the policy performance. Different trust-region enforcement methods are compared condi-
tioned on the variance reduction method of the critic estimates. Only the best results obtained through grid search are depicted.

The manipulation tasks did neither profit from reward scal-
ing. The entropy bonus term had a mixed impact, showing
in Pusher and Walker gains of at least 9.7%, whereas Ant
denotes a performance loss of 11.6%. The annealing of the
exploration noise showed in four out of five tasks a negative
impact, but performance gains in Humanoid, Reacher, and
Pusher. In contrast to the former ingredients, both the scal-
ing of policy gradients and the standardization of advantages
showed on average performance losses. Note that we could
not achieve an improvement over a random policy at the Kuka
task without advanced variance reduction methods and, thus,
we excluded the Kuka environment from Figure 1. The plots
visualizing the learning curves and the numerical results of
all eight tasks can be taken from the supplemental.

5.2 Effect of Algorithmic Ingredients
In this section, we elaborate on the former experiment’s code-
level findings and endow the learning objective with algorith-
mic ingredients, which are claimed to be responsible for the
state-of-the-art achievements.

Jumps in policy parameter updates can deteriorate the
learned performance and may eventually cause policy col-
lapse [Duan et al., 2016]. However, well-chosen policy up-
dates can alleviate this issue by constraining the distance
between consecutive policy iterates through trust-region en-
forcement. We investigated the following four methods:

1. IWPG with an Early Stopping Criterion (ESC) measures
the KL divergence between consecutive policy iterates
and terminates the updates when the distance criterion is
met.

2. Natural Policy Gradient (NPG) [Kakade, 2002] regards
the curvature of the policy parameter space by approxi-
mating the Fisher information matrix. The update direc-
tion is given by the matrix-vector multiplication between
the Fisher information matrix and the policy gradient.

3. Trust-region Policy Optimization (TRPO) [Schulman et
al., 2015] optimizes over a surrogate function, which
matches the original objective to first order. In contrast
to NPG, TRPO explicitly regards the KL divergence be-
tween policy iterates by performing a backtracking line
search until the distance criterion is fulfilled.

4. Proximal Policy Optimization (PPO) [Schulman et al.,
2017] utilizes clipped probability ratios to maintain the
step size in the parameter space. The resulting surrogate
objective is then optimized to first order.

Low variance critic estimates are considered as crucial
component for good policy performance [Peters and Schaal,
2008]. In our experiments we studied three techniques for the
Variance Reduction of Critic Estimations:

1. Plain Advantage Estimation is used as baseline where
the advantages are determined by A(xt, ut) =
r(xt, ut) + γVπ(xt+1)− Vπ(xt).

2. Generalized Advantage Estimation (GAE) [Schulman et
al., 2016] aims to reduce variance in critic estimates at
the cost of introducing bias. Advantages are calculated
by the weighted sum A(xt, ut) =

∑n−1
k=0(λγ)k δt+k

of temporal differences δt+k = r(xt+k, ut+k) +
γVπ(xt+k+1) − Vπ(xt+k). The scalar λ governs the
trade-off between variance and bias.

3. V-trace [Espeholt et al., 2018] was introduced to account
for off-policy critic updates in distributed architectures
to compensate policy lags. Updates follow A(xt, ut) =
r(xt, ut) + γv(xt+1)− V (xt) while the values become
v(xt) = V (xt) +

∑t+n−1
s=t γs−t

(∏s−1
i=t ci

)
δsV .

Approach. We continued to apply observation standardiza-
tion and linear learning rate decay as default code-level in-
gredients. Reward scaling was added only to the locomo-
tion tasks but not to the manipulation tasks. The experiments
were run over all possible combinations of trust-region en-
forcement and variance reduction methods. We conducted a
grid search over learning rates and numbers of policy itera-
tions and determined the best configuration according to the
highest mean(J) − std(J) averaged over four independent
seeds (see detailed hyper-parameters in the supplemental). As
a reference for comparison, we used the plain IWPG objective
from Experiments 5.1 which makes no use of a trust-region
enforcement and uses plain advantage estimation.
Results. Figure 2 indicates that low variance critic esti-
mates significantly boost the policy performance. In par-
ticular, for complex domains such as Humanoid and Kuka,

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2458

0 1000 2000 3000
Return

0.00

0.25

0.50

0.75

1.00
C

D
F

Optimizer

SGD

Adam

RMSprop

0 1000 2000 3000
Return

Initialization

Kaiming

Glorot

Orthogonal

0 1000 2000 3000
Return

Parameter Sharing

True

False

0 1000 2000 3000
Return

Adam Epsilon

10−8

10−7

10−6

10−5

Figure 3: The CDF line plot of the policy performance smoothed over 64 independent seeds for each configuration in the Ant environment.

all tested algorithms could not accomplish high returns with
plain advantage estimates. The combination of PPO and GAE
showed the best results, scoring in three out of eight tasks
the highest performance. Even when plain advantage esti-
mation is used, PPO showed the most robust results across
all tasks. Surprisingly and despite its simplicity, the IWPG
algorithm performed without trust-region enforcement only
slightly worse than its counterparts but necessitated the use
of GAE or V-trace. ESC adds an early stopping criterion to
IWPG which resulted in a more stable learning and overall
small performance gains. This underlines the importance of
constraining step sizes in the parameter space. The learning
curves of all eight environments can be found in the supple-
mental material.

5.3 Study of Structural Ingredients
In this part, we analyze the effect of structural ingredients
on the learned performance that can vary between different
software frameworks. Some might be neglected in the exper-
imental description and can only be found in the implemen-
tation. We investigated the following four ingredients:

1. Optimizer. Besides Adam, we investigated Stochastic
Gradient Descent (SGD) and RMSprop as optimizers for
the policy network.

2. Initialization scheme. We compared Kaiming Uniform,
Glorot, and Orthogonal which determine the initial val-
ues of the neural network weights. The bias parameters
were initialized as zero vectors.

3. Parameter Sharing. Accelerating the learning of repre-
sentation features, parameters can be shared and updated
by both policy and value network.

4. Adam Epsilon. A term added to the denominator of the
update step to improve the numerical stability of Adam.

Approach. Continuing the stage-wise analysis, we built on
the findings from previous experiments and used IWPG with
observation standardization and learning rate annealing as
well as reward scaling (only for locomotion tasks) as code-
level ingredients and applied GAE for variance reduction. We
performed a grid search over 4 × 4 combinations of policy
learning rate and number of training iterations and accumu-
lated the scores as cumulative distribution functions (CDF)
over four independent seeds, resulting in 64 independent runs
for each environment (see Figure 3).

Results. The scores for the optimizer vary from environ-
ment to environment. RMSprop showed across all environ-
ments the best average CDF score and was the most ro-
bust choice over the grid search, whereas Adam yielded the
highest performing configuration. The weight initialization
scheme showed in Ant, Humanoid, and Kuka large impacts,
whereas in other tasks negligible effects. Overall, the Kaim-
ing Uniform scheme yielded the most robust scores. The
parameter sharing of two hidden layers between the policy
and value network resulted in all tasks to worse performance
scores than separated networks, except for the Pusher envi-
ronment. Surprisingly, the ε term added to the denominator
of Adam’s policy updates showed an influence on the learn-
ing, where ε ∈ {10−8, 10−5} yielded the best average perfor-
mance scores across all tasks. The plots for all eight environ-
ments are provided in the supplemental materials.

5.4 Identifying the Minimal Setup
The second objective of our paper is to find a minimal con-
figuration that can challenge state-of-the-art RL algorithms.
We inferred from our previous findings and used the IWPG
objective with standardized observations, learning rate an-
nealing and GAE as the minimal setup. Reward scaling was
applied in the locomotion tasks but not in the manipulation
tasks. We tested both RMSprop and Adam as policy optimiz-
ers and applied the Kaiming initialization scheme. To vali-
date the reliability of our results, we benchmarked the iden-
tified setup against the popular OpenAI Baselines repository
[Dhariwal et al., 2017]. For each algorithm, we conducted a
grid search over different learning rates, the number of policy
iterations and trust-region sizes, while fixing the other hyper-
parameters such as the batch size of generated trajectories,
networks architectures for policy and value network, etc. We
depict the best score averaged over four independent seeds for
each code base in Figure 4. The results show that our identi-
fied setup of ingredients can keep up with the state-of-the-art
algorithms TRPO and PPO.

6 Discussion
Our experiments showed that observation standardization is
crucial for good policy performance, which was also reported
in Andrychowicz et al. [2020] and Engstrom et al. [2020].
The only task that did not profit was Reacher. We suppose
that this is due to the well-designed observation space with
small magnitudes and that random exploration already dis-
covers the state space sufficiently well. The second essen-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2459

0

1000

2000
R

et
u

rn

HalfCheetah

0

1000

2000

3000

Ant

0

1000

2000

Hopper

0

500

1000

Walker2D

0

50

100

Humanoid

0

10

20

Reacher

−150

−100

−50

0
Pusher

−2000

−1000

0
Kuka

IWPG + RMSprop (Ours)

IWPG + Adam (Ours)

TRPO (Dhariwal et al.)

PPO (Dhariwal etl al.)

Figure 4: Comparison between our identified minimal setup of ingredients and the two algorithms TRPO and PPO from the OpenAI’s
Baselines repository. All algorithms use the same default hyper-parameters and the best scores are determined through grid search.

tial ingredient is learning rate annealing. We utilized a lin-
ear decay scheme which showed in all tasks performance
gains. Our conclusion is similar to the one of Andrychow-
icz et al. [2020], who noticed on average small gains while
using GAE. Our extended analysis showed performance in-
creases independent from the applied advantage estimation
technique. The decay of the learning rate reduces the step
size in the policy parameter space towards the end of learn-
ing, eventually promoting the convergence to better local so-
lutions. Reward scaling was found to be beneficial by En-
gstrom et al. [2020] but showed in our experiments only im-
provements in the locomotion tasks. We claim that reward
scaling can be omitted when environments exhibit dense re-
wards with well-scaled magnitudes. An additional entropy
bonus usage showed mixed outcomes, being preferable in en-
vironments with more unstable dynamics such as Hopper,
Walker, and Pusher over tasks with more stable dynamics
such as HalfCheetah and Ant. In contrast, the standardization
of advantages yielded performance losses in all except one
environment, which was not investigated but used by default
in Engstrom et al. [2020]. Our extended analysis showed that
advantage standardization yields profits when no reward scal-
ing is applied but reduces performance when both are applied.
We recommend to exclusively use the one or the other, where
reward scaling is preferable. We noticed that gradient scaling
hindered learning on average. Since Adam is in-variant to
gradient magnitudes [Kingma and Ba, 2015], we assume that
the non-linear operation of gradient scaling disturbs Adam’s
internal updates.

Our investigation of algorithmic ingredients showed that
those are necessary to reach state-of-the-art results. In fact,
variance reduction techniques for critic estimates deliver sig-
nificant performance increases. A similar assertion can be
made for trust-region enforcement methods, which helped to
improve the policy performance and the robustness towards
the hyper-parameter selection in all tasks, but had less effect
on the learning performance than variance reduction tech-
niques.

Regarding the structural ingredients, we did not find
parameter-sharing useful similar to the results of Andrychow-
icz et al. [2020]. However, the choice of the optimizer and
the weight initialization scheme had an impact, while other
works reported no performance difference [Andrychowicz et
al., 2020]. Our experiments showed that RMSprop is more
robust over a variety of hyper-parameters than Adam.

Overall, the preceding discussion points to a broader prob-
lem of RL algorithms: numerical sensitivity. Many ingredi-
ents aim to improve learning stability through standardized

inputs and regression targets. Many of the discussed ingre-
dients may be obsolete for algorithms if the environment is
already well-specified in terms of input-output range and tai-
lored to the peculiarities of neural networks. This suggests
that environment specifics also matter and demands the prac-
titioner’s carefulness already during the problem design.

7 Conclusion
In this work, we took a step towards a transparent approach
that investigates the inner workings of on-policy policy gra-
dient algorithms. We studied algorithm ingredients in a mod-
ular and incremental approach and empirically assessed their
contribution to the learning. We found that only a subset of
such ingredients is necessary to achieve state-of-the-art re-
sults on contemporary benchmarks. Further, we confirmed
that recent algorithmic advances such as the variance reduc-
tion methods of critic estimates are essential to obtain good
policy performance. To this end, we identified a minimum
setup of algorithm ingredients that can confront state-of-the-
art RL algorithms while promising better reproducibility due
to less algorithm complexity.

Our paper shows that simple algorithms can also perform
well and may not be limited to the currently benchmark-
driven development of new algorithms. For a steady progress,
we suggest that new RL proposals should be assessed on a
unified implementation with a modular structure. Otherwise,
side-effects such as code-level ingredients may be account-
able for the claimed performance gains. Further works on this
topic may investigate off-policy algorithms and test a broader
range of tasks in both continuous and discrete state spaces.

Acknowledgments
We thank Matthias Kissel and appreciate the support of
the Federal Ministry of Education and Research who spon-
sored this project under the funding code 01IS17049 and
the Deutsche Forschungsgemeinschaft (DFG) through TUM
International Graduate School of Science and Engineering
(IGSSE), GSC 81.

References
[Andrychowicz et al., 2020] Marcin Andrychowicz, Anton

Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin,
Raphael Marinier, L’eonard Hussenot, Matthieu Geist,
Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and
Olivier Bachem. What matters in on-policy reinforce-
ment learning? a large-scale empirical study. ArXiv,
abs/2006.05990, 2020.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2460

[Arulkumaran et al., 2017] K. Arulkumaran, M. P. Deisen-
roth, M. Brundage, and A. A. Bharath. Deep reinforce-
ment learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, Nov 2017.

[Coumans and Bai, 2016] Erwin Coumans and Yunfei Bai.
Pybullet, a python module for physics simulation for
games, robotics and machine learning. http://pybullet.org,
2016. Accessed: 2021-05-23.

[Dhariwal et al., 2017] Prafulla Dhariwal, Christopher
Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor,
Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017. Accessed:
2021-05-30.

[Duan et al., 2016] Yan Duan, Xi Chen, Rein Houthooft,
John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In Pro-
ceedings of the 33rd International Conference on Inter-
national Conference on Machine Learning, pages 1329–
1338, 2016.

[Engstrom et al., 2020] Logan Engstrom, Andrew Ilyas,
Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters
in deep rl: A case study on ppo and trpo. In International
Conference on Learning Representations, 2020.

[Espeholt et al., 2018] Lasse Espeholt, Hubert Soyer, Rémi
Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning,
Shane Legg, and Koray Kavukcuoglu. IMPALA: scal-
able distributed deep-rl with importance weighted actor-
learner architectures. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80, pages
1406–1415. PMLR, 2018.

[Henderson et al., 2018] Peter Henderson, Riashat Islam,
Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Pro-
ceedings of the Thirty-Second AAAI Conference on Artifi-
cial Intelligence, pages 3207–3214. AAAI Press, 2018.

[Islam et al., 2017] Riashat Islam, Peter Henderson, Maziar
Gomrokchi, and Doina Precup. Reproducibility of bench-
marked deep reinforcement learning tasks for continuous
control. CoRR, abs/1708.04133, 2017.

[Kakade, 2002] Sham M Kakade. A natural policy gradient.
In Advances in Neural Information Processing Systems 14,
pages 1531–1538. MIT Press, 2002.

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, 2015.

[Mania et al., 2018] Horia Mania, Aurelia Guy, and Ben-
jamin Recht. Simple random search of static linear policies
is competitive for reinforcement learning. In Advances in
Neural Information Processing Systems 31, pages 1800–
1809. Curran Associates, Inc., 2018.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-

mare, Alex Graves, Martin Riedmiller, Andreas K. Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Has-
sabis. Human-level control through deep reinforcement
learning. Nature, 518:529 EP –, 02 2015.

[Peters and Schaal, 2008] Jan Peters and Stefan Schaal. Re-
inforcement learning of motor skills with policy gradients.
Neural Networks, 21(4):682 – 697, 2008. Robotics and
Neuroscience.

[Rajeswaran et al., 2017] Aravind Rajeswaran, Kendall
Lowrey, Emanuel V. Todorov, and Sham M Kakade.
Towards generalization and simplicity in continuous
control. In Advances in Neural Information Processing
Systems 30, pages 6550–6561. Curran Associates, Inc.,
2017.

[Reda et al., 2020] Daniele Reda, Tianxin Tao, and Michiel
van de Panne. Learning to locomote: Understanding how
environment design matters for deep reinforcement learn-
ing. In Motion, Interaction and Games, MIG ’20, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

[Rissanen, 1978] J. Rissanen. Modeling by shortest data de-
scription. Automatica, 14(5):465 – 471, 1978.

[Schulman et al., 2015] John Schulman, Sergey Levine,
Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, volume 37,
pages 1889–1897. PMLR, 2015.

[Schulman et al., 2016] John Schulman, Philipp Moritz,
Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advan-
tage estimation. In Proceedings of the International Con-
ference on Learning Representations, 2016.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347,
2017.

[Sigaud and Stulp, 2019] Olivier Sigaud and Freek Stulp.
Policy search in continuous action domains: An overview.
Neural Networks, 113:28 – 40, 2019.

[Silver et al., 2016] David Silver, Aja Huang, Chris J. Mad-
dison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Ve-
davyas Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mas-
tering the game of go with deep neural networks and tree
search. Nature, 529(7587):484–489, 2016.

[Tucker et al., 2018] George Tucker, Surya Bhupatiraju,
Shixiang Gu, Richard Turner, Zoubin Ghahramani, and
Sergey Levine. The mirage of action-dependent baselines
in reinforcement learning. In Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80,
pages 5015–5024. PMLR, 2018.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2461

http://pybullet.org
https://github.com/openai/baselines

	Introduction
	Related Work
	Background
	Methodology
	Experiments
	Impact of Code-level Ingredients
	Effect of Algorithmic Ingredients
	Study of Structural Ingredients
	Identifying the Minimal Setup

	Discussion
	Conclusion

