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Abstract
We revisit the problem of learning logical theo-
ries from examples, one of the most quintessential
problems in machine learning. More specifically,
we develop an approach to learn CNF-formulae
from satisfiability. This is a setting in which the
examples correspond to partial interpretations and
an example is classified as positive when it is log-
ically consistent with the theory. We present a
novel algorithm, called Mistle - Minimal SAT The-
ory Learner, for learning such theories. The distin-
guishing features are that 1) Mistle performs pred-
icate invention and inverse resolution, 2) is based
on the MDL principle to compress the data, and
3) combines this with frequent pattern mining to
find the most interesting theories. The experiments
demonstrate that Mistle can learn CNF theories ac-
curately and works well in tasks involving com-
pression and classification.

1 Introduction
Learning propositional logical theories from examples is one
of the quintessential problems in machine learning, as it
is the setting used to introduce the notion of probably ap-
proximately correct learning [Valiant, 1984]. It is also the
most basic setting for inductive logic programming [Mug-
gleton and De Raedt, 1994] and logical and relational learn-
ing [De Raedt, 2008]. Furthermore, the problem of frequent
pattern mining, as introduced by Agrawal et al., can also be
viewed as a logical learning problem as itemsets are logical
interpretations or variable assignments.

One of the most fascinating aspects of logic learning is
predicate invention [Muggleton, 1987; Muggleton and Bun-
tine, 1988; Muggleton et al., 2014], that is, the ability to au-
tomatically introduce new predicates in the language that not
only compresses the data, but also provides insights into the
underlying regularities. Predicate invention has been studied
almost exclusively in the context of logic program induction
(using Prolog) with the early approaches of Muggleton; Mug-
gleton and Buntine relying on the Minimum Description
Length (MDL) principle [Grünwald, 2007]. This form of
predicate invention is also related to recent approaches for
pattern and itemset mining such as KRIMP [Vreeken et al.,

Key features KRIMP Mining4SAT CNF-cc Mistle
Learns from partial data 7 3 7 3
Does Predicate Invention 7 3 7 3
Generalizes a theory 7 7 7 3
Uses the MDL Principle 3 7 7 3
Learns CNF formulae 7 3 3 3
Learns a classifier 3 7 7 3

Table 1: Comparison of Mistle features with related work

2011] that identify codes to compress datasets. These ap-
proaches have been widely welcomed in the data mining liter-
ature [Smets and Vreeken, 2012; Van Leeuwen and Vreeken,
2014; Fischer and Vreeken, 2019].

We revisit these approaches and combine the above three
settings: 1) As Valiant, we focus on learning CNFs 2) as Mug-
gleton, we employ inverse resolution and MDL to invent new
predicates and, 3) as KRIMP, we use frequent pattern mining
to find the most interesting predicate definitions or codes. At
the same time, we learn from satisfiability. This means that
the examples are partial interpretations, that is, assignments
of truth-values to some of the variables. An example e is then
considered positive for a CNF theory T if T ∧ e 6|= 2, that
is, the theory with the example is satisfiable [De Raedt and
Dehaspe, 1997]. This differs from Valiant’s setting and the
typical itemset mining setting in the use of partial rather than
complete interpretations (assignments to all the variables).
Furthermore, it differs from Muggleton’s settings in that we
learn a CNF formula rather than a logic program, which are
not only more general, but also have a different semantics.

While a general framework for mining Boolean expres-
sions has been proposed [Zhao et al., 2006], most pattern
mining techniques focus on learning DNF formulae. The few
approaches that focused on learning CNF theories include
[Dries et al., 2009; Jabbour et al., 2013]. Dries et al. consider
Valiant’s k-CNF setting in their system CNF-cc and demon-
strate that k-CNF formulae can be used for a wide variety
of prediction tasks but do neither allow for partial interpreta-
tions nor consider predicate invention. Mining4SAT [Jabbour
et al., 2013] focuses only on lossless compression and does
not generalize the learned CNFs from examples.

In this paper, we introduce the Mistle algorithm for learn-
ing CNFs, which combines features from related approaches
with the ability to generalize, as summarized in Table 1.
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2 Background
2.1 Logic
We briefly review propositional clausal logic. Propositional
variables, also called predicates here, are the basic building
blocks. They can be assigned the values True or False. A
literal l is a propositional variable v or its negation ¬v. A
disjunction (l1 ∨ ... ∨ ln) of literals li is a clause and a con-
junction (C1 ∧ ... ∧Ck) of clauses Cj is a clausal theory or a
CNF formula.

An interpretation is an assignment of truth values to the
propositional variables. When the mapping is available only
for a subset of the variables in a domain, it is called a partial
interpretation. An interpretation i is called a completion of a
partial interpretation e, if it has the same variable assignments
as that of e and assigns truth values to all variables in the
domain. An interpretation i satisfies a clause (l1∨...∨ln) if at
least one of the lj is true in i, and satisfies a clausal theory if it
satisfies all the clauses in that theory. A theory T is satisfiable
if there is an interpretations that satisfies it, notation T 6|= 2;
otherwise it is unsatisfiable, notation T |= 2. T is said to
satisfy a partial interpretation, e, if and only if T ∧ e 6|= 2.
It is also useful to know that for logical formulae α and β,
α |= β if and only if α ∧ ¬β |= 2.

2.2 Learning from Partial Interpretations
Partial interpretations will be used as examples in this paper.
Similar to concept-learning, we talk about theories that cover
examples. More formally, a logical theory T covers an exam-
ple e if and only if T∧e 6|= 2. Here, e corresponds to a partial
interpretation, that is, a conjunctive expression l1∧...∧lk stat-
ing which literals or variable assignments evaluate to True in
the partial interpretation e. Thus, Mistle follows the learning
from satisfiability [De Raedt and Dehaspe, 1997] setting.

Notice that T ∧ (l1 ∧ ... ∧ lk) |= 2 holds if and only if
T |= (¬l1 ∨ ...∨¬lk) holds. Thus learning from satisfiability
also corresponds to the learning from entailment setting that
is dominant in inductive logic programming. It is only that
one then learns from clauses, and that the role of the positive
and negative examples is reversed. Let us also remark that
when learning from satisfiability, it is in principle possible to
use clausal theories as examples rather than partial interpreta-
tions, which provides added expressivity. This will work with
Mistle as well except that the frequent pattern mining aspect
described in Section 6.3 will no longer apply.

It is also useful to note the connection to the multi-instance
learning setting [De Raedt, 2008]. If T does not cover a par-
tial interpretation e, then it does not cover any completion
of e. On the contrary, if e satisfies T , then there exists at least
one completion of e that is satisfied by T .

Note that when learning from satisfiability, T1 is more gen-
eral than T2 if T1 |= T2 [De Raedt and Dehaspe, 1997], which
can be used to prune and partially order the search space.

2.3 Predicate Invention
Predicate Invention is the process of automatic invention of
new predicates in order to represent any regularities found in
the data [Muggleton, 1987; De Raedt, 2008]. This is used in

Mistle and is of great importance as it allows us to compress
the theory without incurring any losses.

Example 1. Let T = (a ∨ b ∨ c ∨ d ∨ e) ∧ (a ∨ b ∨ c ∨
d ∨ f) ∧ (a ∨ b ∨ c ∨ d ∨ g). Notice that all the clauses in
T have a shared sub-clause a ∨ b ∨ c ∨ d. Thus, in order to
compress T , we can invent a new predicate z and associate it
with this sub-clause. This compresses T to a shorter theory,
T ′ = (z ∨ a ∨ b ∨ c ∨ d) ∧(¬z ∨ e) ∧ (¬z ∨ f) ∧(¬z ∨ g).

The transformation from T to T ′ is lossless in the sense
that both theories cover exactly the same set of examples,
that is, the same set of partial interpretations over the orig-
inal variables (the variables in the dataset). Of course, when
considering also the newly introduced predicate z, the space
of possible interpretations becomes larger.

To understand how predicate invention is performed, it is
vital to look into inverse resolution. Inverse resolution refers
to inferring input clauses for resolution based upon the resol-
vent or the output clauses. Thus, it is an inverse of the process
of resolution. In Mistle, predicate invention is performed us-
ing an inverse resolution operator called W-operator, which
is delineated later in Section 4.

In the above example, the sub-clause, a∨ b∨ c∨d can also
be thought of as a pattern occurring frequently in the theory.
This consequently draws parallels to frequent itemset mining.
But predicate invention offers a logical approach to find reg-
ularities in the theory. Early predicate invention systems like
DUCE [Muggleton, 1987] and CIGOL [Muggleton and Bun-
tine, 1988] even interacted with the user and allowed the user
to name the newly invented predicate, keeping the theory easy
to understand at all stages of the algorithm.

2.4 MDL Principle
For concept learning, one could simply construct a naı̈ve, un-
compressed theory that is consistent with the data. However,
as the size of such a theory explodes for larger amounts of
data, compressing the theory is crucial. The MDL Principle
provides a formal framework for this.

Let D be the input data, T be a theory for it, and DL be a
description length measure. Then, the MDL principle states
that the best theory is the one that minimises the joint descrip-
tion length of the theory and the data, given by

DL(D,T ) = DL(T ) +DL(D|T ) (1)

The first term denotes the description length of the theory T ,
the second that of the data when it is encoded using T . This
definition of MDL is called the two-part MDL as it separately
encodes the theory and the data [Grünwald, 2007]. We define
the measure DL used by Mistle in Section 5.

3 Problem Description
By now, we are able to formalize the problem:
Given:

• a set of variables, V = {v1, v2, . . . , vm}
• a set of positive partial interpretations P

• a set of negative partial interpretations N

• a measure of description length DL
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Find: a theory T ∗ over V that minimizes DL(P ∪N,T ),

T ∗ = arg min
T

[DL(T ) +DL(P |T ) +DL(N |T )] (2)

Thus we are looking for a theory that maximally compresses
the data and classifies the examples as correctly as possible.

The first term in the right hand side aims for a simple the-
ory. The second and third terms aim for fewer errors made
by a theory in explaining the positive and negative partial in-
terpretations, respectively. In particular, DL(P |T ) measures
the encoding length of the positive examples that are not sat-
isfied in T , and DL(N |T ) that of the negative examples that
are satisfied in T . These terms are formally defined as:

DL(P |T ) = DL({p | p ∈ P, T ∧ p |= 2}) (3)
DL(N |T ) = DL({n | n ∈ N,T ∧ n 6|= 2}) (4)

Mistle addresses the above stated problem using 2 simple
steps: 1) It initializes a theory that explains the given data. 2)
It uses a set of compression operators based on inverse resolu-
tion to compress that theory as much as possible. We describe
how the theory is initialized in Section 6.1 and delineate the
compression operators used in the next section.

4 Compression Operators
We use four logical operators for compression: W -operator,
V -operator, subsumption operator, and truncation operator.
These operators are adapted from the inverse resolution oper-
ators in DUCE [Muggleton, 1987].

We use the following notation to define the operators: pred-
icates are denoted in lowercase, like a, z, and clauses are de-
noted in uppercase, likeA,B, orC. Furthermore, |B| denotes
the number of literals inB. The invented predicate is denoted
by z. We define Delta (∆) as the difference in the coverage
of the input and output sets:

∆ = (Input ∧ ¬Output) ∨ (¬Input ∧ Output)

Operations where ∆ is not satisfiable, i.e. ∆ |= 2, are called
lossless operations.

W -operator Given two clauses A ∨ B and B ∨ C, which
share B, the W - operator compresses the input by invent-
ing a new predicate z and replacing the input with the output
clauses: A∨¬z, z∨B, and C ∨¬z. The intuition behind in-
venting z is that z can indicate whether B is True or False.
It is easy to see that W -operator is an inverse resolution oper-
ator as the input clauses can be inferred back from the output
clauses by resolving on ¬z. In general,

Input : (B ∨ C1) ∧ · · · ∧ (B ∨ Cn−1) ∧ (B ∨ Cn)
Output : (z ∨B) ∧ (¬z ∨ C1) ∧ · · · ∧ (¬z ∨ Cn)
∆ : 2

V -operator Given two clauses a∨B and B∨C, that share
B, the V -operator compresses the input by replacing them
with the output clauses: a ∨ B, and ¬a ∨ C. In the second
input clause, B is replaced by a single literal ¬a leading to
compression. Similar to the W -operator, the V -operator is
also an inverse resolution operator because B ∨C can be ob-
tained back from the output clauses if resolved upon a. But

unlike the W -operator, the V -operator is a generalization as
a ∧ B ∧ ¬C represents all the cases that are covered by the
input but are not covered by the output. In general,

Input : (a ∨B) ∧ (B ∨ C1) ∧ · · · ∧ (B ∨ Cn−1)
Output : (a ∨B) ∧ (¬a ∨ C1) ∧ · · · ∧ (¬a ∨ Cn−1)
∆ : a ∧B ∧ ¬(C1 ∧ C2 ∧ · · · ∧ Cn−1)

Subsumption Operator The Subsumption or S-operator,
is a trivial operator that discards all the specific clauses that
are subsumed by another clause. For example, given two
clauses, A ∨ B and B, in the input, the S-operator would
only return B (follows from (A ∨ B) ∧ B ⇐⇒ B). It is a
lossless operator and results in significant compression.

Input : B ∧ (B ∨ C1) ∧ · · · ∧ (B ∨ Cn−1)
Output : B
∆ : 2

Truncation Operator The Truncation or T -operator, trun-
cates the input clauses by retaining the shared sub-clause. For
example, if there are 2 clauses,A∨B andB∨C, in the input,
the T -operator would return the one clause, B. It is clearly a
generalization and should only be applied when it decreases
the description length, DL(D,T ).

Input : (B ∨ C1) ∧ · · · ∧ (B ∨ Cn)
Output : B
∆ : ¬B ∧ C1 ∧ C2 ∧ . . . ∧ Cn

5 MDL Encoding in Mistle
To use the MDL principle, we need to define how a theory
is encoded in Mistle. Encoding a theory means that the full
theory can be recovered from its encoded elements. Given a
theory of n clauses, T = C1 ∧ · · · ∧ Cn containing m vari-
ables, we measure the description length of T in bits (based
on Grünwald 2007):

DL(T ) = LN(m) + LN(n)

+
n∑

i=1

log2(m) +

|Ci|∑
j=1

log2(2m− 2(j − 1))

 (5)

where LN is the universal code for integers1.
LN(m) and LN(n) are the lengths of the encodings of the

number m of variables and the numnber n of clauses, respec-
tively. The sum adds, for each clause, the length log2(m) of
the encoding of the clause length, and the length of encoding
all its literals one by one (last term).

To encode the literals, we could have used a naı̈ve encoding
of
∑|Ci|

j=1 log2(2m), as there can be 2m literals in the clause
(the variables and their negations). Considering previously
encoded literals, we exploit the fact that if a ∈ Ci, then
¬a /∈ Ci (otherwise the clause is trivially satisfiable), and that
no literal can occur more than once in a clause. This removes
two possibilities of literals after sending each literal and re-
sults in a total encoding length of

∑|Ci|
j=1 log2(2m−2(j−1)).

1LN(x) = log2(2.865064) + log2(x) + log2(log2(x)) + . . .
(Referred from Equation 3.12 in [Grünwald, 2007]).
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DL - Component Value Length (bits)
# of unique predicates 5 LN(5)

# of clauses in T 1 LN(1)
# of literals in 1st clause 3 log2(5)
1st literal of 1st clause c log2(10)
2nd literal of 1st clause d log2(8)
3rd literal of 1st clause e log2(6)

Table 2: Steps to encode a theory, T = (c ∨ d ∨ e) on the variables,
{a, b, c, d, e}. We get DL(T ) = 18.1 bits from the right column.

Algorithm 1 Mistle
Input : D = {P , N} - (Sets of partial interpretations)
Output: A minimal CNF theory, T , for input data, D.

1: T = ¬(
∨

n∈N n)
2: while True do
3: T ′ = compress(T )
4: if DL(D, resolve(T ′)) < DL(D,T ′)

then T ′ = resolve(T ′)
5: if T ′ == T then break else T = T ′

6: end while
7: prune(T )
8: return T

The error terms DL(P |T ) and DL(N |T ) are encoded in
the same way as DL(T ). Table 2 provides an example.

6 Algorithm
As mentioned in the Section 3, the main idea behind Mis-
tle is initializing the theory and compressing it to its mini-
mum description length using the W , V , S, and T operators.
The algorithm, as described in Algorithm 1, can be broken
down into the four parts: 1) Initialize the theory [line 1].
2) Compress the theory iteratively [line 3]. 3) Resolve the
theory after each compression step, only in case this leads
to a shorter description length [line 4]. 4) Prune the theory
[line 7]: Remove those clauses from T that do not increase
DL(D,T ). Let us elucidate these components below.

6.1 Initializing the Theory
To initialize a theory, two natural starting points are a theory
that precisely describes the positives, or a theory that pre-
cisely describes the negation of the negatives. In Mistle, we
initialize the theory T using the latter:

T = ¬

( ∨
n ∈ N

n

)
(6)

This is because this theory can be directly written as a CNF
by pushing the negation inside. The compression operators
in Mistle can be directly applied on CNFs. But starting from
the conjunction of the positives would yield a DNF and it
is computationally expensive (co-NP-hard) to rewrite DNFs
into CNFs, hence our choice of describing the negatives.

As T is the most specific theory, we traverse the space of all
theories in a monotonic way, from the most specific to more

Algorithm 2 compress(T )

1: F = mine(T )
2: while F 6= φ do
3: C = F.pop()
4: O = find all the operations that can be applied on C
5: op∗ = arg minop∈ODL(D, (T \ C) ∪ op(C))
6: if DL(D, (T \ C) ∪ op∗(C)) < DL(D,T ) then
7: T = (T \ C) ∪ op∗(C)
8: Update F w.r.t C and op∗(C)
9: end if

10: end while
11: return T

general. It keeps the search process simple, systematic and
efficient. So, Mistle does not require compression operators
that specialize and can only use those that generalize.

6.2 Compressing the Theory - compress(T )
Compression, described in Algorithm 2, is the most impor-
tant component of Mistle. It starts with searching for a set of
clauses, that contain a shared sub-clause, i.e., all the clauses
in C ⊆ T that share a common set of literals. The set of shared
sub-clauses is stored in F [line 1]. This step is performed us-
ing frequent itemset mining, and is explained in Section 6.3.
For each C [line 3], Mistle identifies a set of all the possible
operations,O, that can be applied on C to compress it [line 4].
FromO, Mistle selects an operation that decreasesDL(D,T )
the most w.r.t the data D = {P,N} [line 5].

6.3 Mining Frequent Itemsets - mine(T )
To compress the theory T , Mistle needs to identify a set of
clauses in T that it could compress using the compression
operators. This is done by mining frequent closed itemsets
using the DCI Closed algorithm [Lucchese et al., 2004].

A theory can be considered as a set of clauses and a clause
can be represented as a set of literals. For a frequent itemset
mining system, the input is the theory, T . The transactions
are the clauses that occur in T . The items and itemsets are
the literals and sub-clauses, respectively. The idea is to mine
frequent itemsets over all the clauses in T . Let each itemset
be a sub-clause of l literals and be shared by a set ofm clauses
in T . Then once all the itemsets are mined, these itemsets are
sorted in decreasing order based on the following criteria:

1. (l− 1)(m− 1)− 2: this is the literal reduction achieved
by applying the W -operator. It is chosen as a heuris-
tic for the possible description length reduction that can
be achieved. The W -operator is chosen as it is always
applicable on a mined itemset.

2. l, the length of the itemset
3. m, the frequency of the itemset

6.4 Resolving the Theory - resolve(T )
In Algorithm 2, lines 5 and 6 choose the operator that de-
creases the description length the most. While this guaran-
tees that each step can only decrease the description length,
applying many operations might actually make a previous op-
eration compress less. In our case, a T -operation can affect
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the compression of an early W -operation. Recall that the W -
operator can decrease the description length if the invented
predicate z is used in many clauses. But, if a T -operation
deletes a clause in which a predicate, invented by a previous
W -operation, was used, the compression of thatW -operation
decreases. Eventually, this can lead to a negative compres-
sion of thisW -operation: it actually increased the description
length. So, we need to reverse this W -operation by resolving
the output clauses upon the newly invented predicate z.

This resolving step is executed in the following manner:
1) While executing a T -operation in line 3 of Algorithm 1,
all the invented predicates that were contained in the clauses
deleted by T -operation are cached. 2) In line 4, for every
such invented predicate, the W -operation that invented that
predicate is resolved back to see if the description length de-
creases further. 3) In case if the description length decreases,
then that W -operation is reversed in the theory.

6.5 Pruning the Theory - prune(T )
We prune the learned theory to remove any clauses whose
removal decrease the description length. This pruning opera-
tion removes clauses that tend to over-fit the data and unnec-
essarily increase the description length. Pruning is applied as
a post-processing step in Algorithm 1 and not as an operator
in Algorithm 2 because of its computational cost. Indeed, the
pruning operation loops over all clauses of the theory, deletes
them and computes the new description length. Computing
this length is costly as it requires checking whether the exam-
ples are satisfiable. Pruning as a post-processing step has also
been used in other MDL-based approaches such as KRIMP.

7 Experiments
Our experimental evaluation compares Mistle against the re-
lated approaches KRIMP [Vreeken et al., 2011], Mining4SAT
[Jabbour et al., 2013] and CNF-cc5 [Dries et al., 2009]. As
Mining4SAT and KRIMP only use lossless operations, we
consider two versions of Mistle: Mistle-Lossy is the full ver-
sion of the algorithm, while Mistle-Lossless only uses loss-
less operations, i.e., operations in line 5 of Algorithm 2 are
considered only if their ∆ is unsatisfiable. We consider the
tasks of compression and classification, and the following
questions:

7.1 How Accurately Can Mistle Learn a Theory?
When the actual theory is known in a domain, the accuracy
can be simply defined as the percentage of all complete in-
terpretations that are either satisfied by both theories, or not
satisfied by both the theories, i.e.:

Accuracy(T, T ∗) =
1

2m
|{ω | [(T ∧ ω |= 2)

∧ (T ∗ ∧ ω |= 2)] ∨ [(T ∧ ω 6|= 2) ∧ (T ∗ ∧ ω 6|= 2)]}|
where T and T ∗ are the learned and actual theories over m
variables, respectively and ω belongs to the set of all possible
2m interpretations. We use artificially generated actual the-
ories and randomly generate data based on those theories to
test the accuracy 2. To randomly generate the actual theory

2Because the actual theory is usually unknown in real data.

T ∗ of m variables: 1) we first randomly select the number of
its clauses uniformly between 2 to min(10,m). 2) For each
clause ci, we choose ki uniformly between 1 tom as the num-
ber of its literals. 3) Lastly, we randomly sample ki variables
without replacement and assign them a negative sign with the
probability of 0.5. We then generate a dataset of P (positives)
andN (negatives) based on whether a randomly sampled par-
tial interpretation is satisfied by T ∗. The number of clauses
in the actual theory is restricted to 10 so we could sample suf-
ficient size of P and N . To account for the cases where the
size of P and N may not be balanced, Mistle learns 2 theo-
ries: T+ = Mistle(P,N) and T− = Mistle(N,P ) and selects
the one which has the minimum description length.

100 300 500
Number of examples

0.8

0.9

1.0

Ac
cu

ra
cy

0 0.25 0.5
Missingness Parameter

4 8 12 16
Number of variables

Figure 1: Experiment 1: Mistle accurately learns actual theories.

Figure 1 plots the mean accuracy for 100 generated the-
ories and the shaded area represents the standard deviation
around the mean. We individually vary 3 parameters: the
number of examples, missingness parameter, and the number
of variables, which have the default values of 400, 0.1 and
14 respectively. The missingness parameter is defined as the
probability of not observing a literal in the data. For example,
a missingness parameter of 0.1 implies that each literal in the
data goes missing independently with a probability of 0.1.

The default parameters are chosen to test Mistle in a chal-
lenging and interesting setting. Using 400 examples corre-
sponds to 2.5% of all the 214 possibilities. A missingness
parameter of 0.1 tests Mistle in a non-trivial amount of noise.

It is interesting to note that in the middle plot, Mistle learns
more accurate theories when the missingness is high. This is
expected, as a negative partial interpretation provides more
information than a complete interpretation: all completions
of a negative partial interpretation are also negative. Overall,
the results of this experiment validate that Mistle performs
well by learning a close to perfect CNF theory in many cases.

7.2 How Much Can Mistle Compress?
We compare Mistle against both the systems that perform
compression - Mining4SAT and KRIMP. For this experiment,
we use the UCI datasets [Coenen, 2003; Dua and Graff,
2017]. If a dataset has more than two classes, the most fre-
quent class is chosen to be the positive class and the remain-
ing classes are binned together as the negative class. Since
Mining4SAT inputs a CNF theory and compresses it using op-
erators similar to the W and S operators, we convert P and
N into their respective CNFs based on Equation 6 to input to
Mining4SAT: TP = ¬

(∨
p ∈ P p

)
and TN = ¬

(∨
n ∈ N n

)
.

KRIMP, on the other hand, is capable of directly taking the
data as an input and compressing it. The minimum support
threshold used for KRIMP and Mistle is chosen in such a way
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Datasets
Minimum Exp 2: Compression Exp 3: Classification Accuracy
Support Mining4SAT KRIMP Mistle - Mistle - KRIMP Mistle - Mistle -

Threshold Lossless Lossy Lossless Lossy
Iris-17 1 7.8 53.2 75.1 99.3 99.3 98.7 100.0
Iris-18 1 6.7 50.4 73.6 95.1 95.3 88.0 90.7
Iris-19 1 6.7 50.6 73.6 94.6 96.0 94.0 91.3
Glass 1 8.8 28.9 42.0 84.6 74.8 71.0 75.7
Wine 2 10.7 21.6 23.9 95.7 89.9 60.1 83.7
Ecoli 1 37.1 59.9 79.7 96.2 93.4 94.6 78.0

Hepatitis 38 35.6 36.5 64.7 86.0 83.2 78.7 74.8
Heart 9 31.4 42.3 49.6 81.0 77.6 61.7 72.6

Dermatology 2 20.9 45.9 50.7 93.4 91.5 70.8 90.4
Auto 13 27.0 23.4 59.6 82.5 84.4 71.7 80.5

HorseColic 12 17.3 27.0 77.2 86.0 76.6 75.5 83.4
Pima 1 44.2 65.0 84.3 90.8 71.1 68.4 58.2

TicTacToe 7 5.4 37.0 24.9 99.6 87.7 65.3 100.0
Ionoshpere 88 22.7 17.2 58.7 93.1 90.3 64.7 89.5

Flare 1 38.7 61.9 79.2 99.2 75.9. 47.2 84.0
CylBands 211 20.0 26.3 53.0 67.6 73.0 58.5 58.5

Led 1 42.8 75.8 96.3 98.9 94.9 79.7 89.1
Mean 22.6 42.5 62.7 90.8 85.6 73.4 82.4

Table 3: Performance of Mistle over compression and classification (Compression and accuracy are in %)

that it mines at least 10000 patterns, when so many frequent
patterns exist. The compression measure used here is similar
to the one used by Jabbour et al. and Vreeken et al.:

Compression(D,T ) = 1− DL(D,T )

DL(D)

The results, plotted in Table 3, conclude that Mistle, even
in the lossless case, compresses much more than Mining4SAT
and KRIMP as it uses a wider set of compression operators.

As the theories we obtained using CNF-cc5 [Dries et al.,
2009] were typically at least two orders of magnitude larger
than those of Mistle and did not compress the data, we do not
provide further details on this approach.

7.3 How Well Can Mistle Classify?
To test whether Mistle’s theories are not only highly com-
pressed but also accurate, we compare Mistle with KRIMP
on a classification task, using 10 fold cross-validation on the
UCI datasets. Mistle learns both T+ and T− and then uses the
theory with the minimum description length w.r.t the data.

Table 3 shows that Mistle is not as accurate as KRIMP.
The difference is largely due to the two datasets, Pima and
CylBands. Without these two data-sets Mistle scores a mean
accuracy of 85.04%, which is competitive with state-of-the-
art pattern mining techniques to perform classification. Note
that, on the TicTacToe dataset, Mistle achieves 100% accuracy
as it learns all the 8 ways (representing it in 8 clauses of 3
literals each) in which a game can be won. This experiment
shows that the additional compression that Mistle obtains may
come – for some datasets – with a slightly increased error-
rate. However, the much more compressed theories are more
explainable and provide more actionable insights. Whether
this is important or not will depend on the application.
Implementation Mistle is written in Python 3.7 and uses
SPMF library [Fournier-Viger et al., 2016] for closed fre-
quent itemset mining and PicoSAT library [Biere, 2008] for

SAT solving. Experiment 1 is run on Intel i5 (2.3Ghz; 16Gb
RAM) while experiments 2 and 3 are run on Intel i7 (3.4 GHz;
16Gb RAM). For Experiment 2, the average runtime of Min-
ing4SAT, KRIMP, Mistle-Lossless, and Mistle-Lossy is 5, 7,
28, and 5 seconds respectively. For experiment 3, the aver-
age runtime of KRIMP, Mistle-Lossless, and Mistle-Lossy is
19, 162, and 48 seconds respectively. On average, Mistle is
slightly slower than KRIMP, which is implemented in C++.

8 Conclusions
We introduced the Mistle algorithm for learning CNFs, whose
key features are denoted in the Table 1. The experiments us-
ing both real and artificial datasets cover a wide range of tasks
and compare with related works. Mistle is best at learning
small human-understandable logical theories in real domains.
Our experiments demonstrate that Mistle can learn CNF the-
ories quite accurately and learns highly compressed theories.

More generally, we show that learning CNF theories is bet-
ter with regard to compression that the state-of-the-art system
(KRIMP) for mining sets of itemsets which are similar to the
DNF mining techniques. We hope that this work can lead
to further research in the domain of CNF theory learning and
predicate invention, and can be extended into first order logic.
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