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Abstract

The existence of uncoupled no-regret learning
dynamics converging to correlated equilibria in
normal-form games is a celebrated result in the
theory of multi-agent systems. Specifically, it has
been known for more than 20 years that when all
players seek to minimize their internal regret in
a repeated normal-form game, the empirical fre-
quency of play converges to a normal-form corre-
lated equilibrium. Extensive-form games general-
ize normal-form games by modeling both sequen-
tial and simultaneous moves, as well as imperfect
information. Because of the sequential nature and
the presence of private information, correlation in
extensive-form games possesses significantly dif-
ferent properties than in normal-form games. The
extensive-form correlated equilibrium (EFCE) is
the natural extensive-form counterpart to the classi-
cal notion of correlated equilibrium in normal-form
games. Compared to the latter, the constraints that
define the set of EFCE:s are significantly more com-
plex, as the correlation device (a.k.a. mediator)
must take into account the evolution of beliefs of
each player as they make observations throughout
the game. Due to this additional complexity, the
existence of uncoupled learning dynamics leading
to an EFCE has remained a challenging open re-
search question for a long time. In this article, we
settle that question by giving the first uncoupled no-
regret dynamics which provably converge to the set
of EFCEs in n-player general-sum extensive-form
games with perfect recall. We show that each iter-
ate can be computed in time polynomial in the size
of the game tree, and that, when all players play
repeatedly according to our learning dynamics, the
empirical frequency of play after 7' game repeti-
tions is guaranteed to be a O(1/+/T)-approximate
EFCE with high probability, and an EFCE almost
surely in the limit.

*The complete version of this paper won a best paper award at
NeurIPS 2020 [Celli et al., 2020]. Some of the results presented
here only appear in the full version of the paper [Farina et al., 2021].
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1 Motivation

This work studies decision-making problems in which ratio-
nal individuals interact with a centralized planner. The cen-
tralized planner cannot directly tell the individuals what to
do, but the goal of the centralized planner is to steer the in-
dividuals’ behaviors to mutually beneficial outcomes. There
are many real-world problems where we observe this type of
interaction, and this is increasingly common in the gig econ-
omy we all live in today. Think, for example, of ride-sharing
or food delivery platforms, where drivers provide services to
customers, and the whole market is centralized through a sin-
gle app that every agent connects to.

Because the individual decision makers in the system have
free will, the central planner has to take into consideration
the fact that all of the individual decision makers will act self-
ishly according to their objectives. Therefore, to get them to
behave in a certain way, the central planner must nudge them
using the right incentives. This type of soft coordination is al-
ready enough to steer the system to social welfare that would
be largely impossible in absence of a central planner, so with-
out any form of coordination between the decision makers.

The strategy that the central planner should follow when
interacting with decision makers is called a correlated equi-
librium in the game theory literature. The key feature of a
correlated equilibrium is that all the decision makers receive
the right incentives to follow the planner’s recommendations.
This means that no agent would want to do something dif-
ferent from what they are recommended to do by the central
planner. The study of this type of equilibrium goes back to the
seminal work on correlated equilibrium by Robert Aumann in
1974 [Aumann, 1974], who was later awarded a Nobel prize
in economics for his work on game-theoretic cooperation.

Since then, there has been much effort in scaling up
the computation of correlated equilibria and designing al-
gorithms guaranteeing some key properties. In particular,
a crucial property that algorithms for computing correlated
equilibria should satisfy is decentralization. This essentially
means that the behavior and incentives of each agent should
be computed independently from the other agents. The de-
centralization is fundamental for the computation to scale
well, and it allows the agents to converge to an equilibrium
point without the need for a central planner. Furthermore, de-
centralization preserves the agents’ privacy during the learn-
ing process. Indeed, agents should not need to report their
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true personal preferences back to the central planner or to
other decision makers. We also remark that decentralization
makes the algorithm robust, since it does not rely on a single
point-of-failure. A landmark result by Hart and Mas-Colell
in 2000 [Hart and Mas-Colell, 2000] showed that correlated
equilibria can be found in such a decentralized way by let-
ting all agents behave independently, according to a simple
learning rule.

Unfortunately, the work by Hart and Mas-Colell only ap-
plies to one-shot interactions, in which each agent is supposed
to interact only once with the system. Agents are not allowed
to adjust their behavior based on their observations because
they are assumed to act simultaneously, as if it was a rock-
paper-scissor kind of interaction. Extending their decentral-
ized approach to the general case where agents act more than
once and can adjust their behavior to their observations has
been an open question since then. In our work, we close this
open problem. This result may foster future applications of
game-theoretic solution concepts to real-world decision mak-
ing, providing ways for individuals to solve hard coordination
tasks while pursuing their self-interest.

2 Games, Equilibria, and Learning Dynamics

The Nash equilibrium (NE) [Nash, 1950] is the most com-
mon notion of rationality in game theory, and its computation
in two-player zero-sum games has been the flagship compu-
tational challenge in the area at the interplay between com-
puter science and game theory (see, e.g., the landmark results
in heads-up no-limit poker, namely [Brown and Sandholm,
2018] and [Morav&ik er al., 2017]). The assumption under-
pinning NE is that the interaction among players is fully de-
centralized. Therefore, an NE is an element of the uncorre-
lated strategy space of the game, that is, a product of indepen-
dent probability distributions over actions, one per player. A
competing notion of rationality is the correlated equilibrium
(CE) proposed by [Aumann, 1974]. A CE is defined as a
probability distribution over joint action profiles—specifying
an action for each player—and it is customarily modeled via
a trusted external mediator that draws an action profile from
this distribution, and privately recommends to each player
their component. Such probability distribution is a CE if no
player has an incentive to choose an action different from the
mediator’s recommendation, because, assuming that all other
players follow their recommended action, the suggested ac-
tion is the best in expectation.

Many real-world strategic interactions involve more than
two players with arbitrary (i.e., general-sum) utilities. In
those settings, the CE is an appealing solution concept, as
it overcomes several weaknesses of the NE. First, the NE is
prone to equilibrium selection issues, raising the question as
to how players can select an equilibrium while they are as-
sumed not to be able to communicate with each other. Sec-
ond, computing an NE is computationally intractable, be-
ing PPAD-complete even in two-player games [Chen and
Deng, 2006; Daskalakis et al., 2009], whereas a CE can
be computed in polynomial time.! Third, the social wel-

'In normal-form games, a CE can be computed in polynomial
time via linear programming. In extensive-form games, the com-

fare that can be attained via an NE may be arbitrarily lower
than what can be achieved via a CE [Koutsoupias and Pa-
padimitriou, 1999; Roughgarden and Tardos, 2002; Celli and
Gatti, 2018]. Lastly, in normal-form (that is, simultaneous-
move) games, the notion of CE arises from simple uncou-
pled learning dynamics even in general-sum settings with an
arbitrary number of players. In words, these learning dy-
namics are such that each player adjusts their strategy on
the basis of their own payoff function, and on other players’
strategies, but not on the payoff functions of other players.
The existence of uncoupled dynamics enables to overcome
the—often unreasonable—assumption that players have per-
fect knowledge of other players’ objectives, while at the same
time offering a parallel, scalable avenue for finding equilib-
ria. In contrast, in the case of the NE, uncoupled learning
dynamics are only known for the two-player zero-sum set-
ting [Hart and Mas-Colell, 2000; Hart and Mas-Colell, 2003;
Cesa-Bianchi and Lugosi, 2006]. The above considerations
suggest that CE is oftentimes a better prescriptive solution
concept than NE in general-sum and multiplayer settings.

Extensive-form correlated equilibrium (EFCE), introduced
by [von Stengel and Forges, 2008], is a natural extension
of the correlated equilibrium to the case of extensive-form
(that is, sequential) games. Extensive-form games generalize
normal-form games by modeling both sequential and simulta-
neous moves, as well as imperfect information. In an EFCE,
the mediator draws, before the beginning of the sequential
interaction, a recommended action for each of the possible
decision points (also known as, information sets) that players
may encounter in the game, but these recommendations are
not immediately revealed to each player. Instead, the media-
tor incrementally reveals relevant individual moves as players
reach new information sets. At any decision point, the acting
player is free to deviate from the recommended action, but
doing so comes at the cost of future recommendations, which
are no longer issued to that player if they deviate. It is up to
the mediator to make sure that the recommended behavior is
indeed an equilibrium—that is, that no player would be better
off ever deviating from following the mediator’s recommen-
dations at each information set. Compared to the constraints
that characterize the set of CEs in normal-form games, those
that define the set of EFCEs in extensive-form games are sig-
nificantly more complex. Indeed, the main challenge of the
EFCE case is that the mediator must take into account the
evolution of beliefs of each player as they make observations
throughout the game tree.

In general-sum extensive-form games with an arbitrary
number of players (including potentially the chance player
modeling exogenous stochastic events), the problem of com-
puting a feasible EFCE can be solved in polynomial time in
the size of the game tree [Huang and von Stengel, 2008] via a
variation of the Ellipsoid Against Hope algorithm [Papadim-
itriou and Roughgarden, 2008; Jiang and Leyton-Brown,
2015]. [Dudik and Gordon, 2009] provide an alternative
sampling-based algorithm to compute EFCEs. However,

putational complexity of computing a CE depends on the specific
notion of correlation that is adopted. The problem can be solved in
polynomial time for the notion studied in this article.
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their algorithm is centralized and based on MCMC sampling,
which limits its applicability on large-scale problems. In
practice, these approaches cannot scale beyond toy problems.
On the other hand, methods based on uncoupled learning dy-
namics usually work quite well in large real-world problems,
while retaining the appealing properties of uncoupled dynam-
ics that we discussed above.

3 Summary of the Contributions

We focus on the following fundamental research question: is
it possible to devise uncoupled learning dynamics that con-
verge to an EFCE? We show that the answer is positive.

In the first part of [Celli er al., 2020], we formalize the
notion of trigger regret, simplifying and extending an idea
by [Gordon et al., 2008]. Trigger regret is a notion of regret
suitable for extensive-form games that naturally expresses the
regret incurred by each player for following the recommenda-
tions issued by the EFCE mediator, instead of deviating ac-
cording to some optimal-in-hindsight strategy. Specifically,
trigger regret is a particular instantiation of the framework
known as phi-regret minimization introduced by [Stoltz and
Lugosi, 2007] building on previous work by [Greenwald and
Jafari, 2003]. In general, phi-regret minimization operates
with a notion of regret defined with respect to a given set of
linear transformations on the decision set. In order to define
trigger regret, we identify suitable linear transformations that
allow us to encode the behavior of trigger agents in the def-
inition of EFCE, which we coin canonical trigger deviation
functions. Intuitively, canonical trigger deviation functions
encode all the possible ways in which a trigger agent may de-
viate from the recommendations issued by the EFCE media-
tor, and instead start playing from that point on according to
a different strategy than the recommended one. Our core re-
sult on trigger regret is the the following: if each player plays
according to a no-trigger-regret learning algorithm, then the
empirical frequency of play approaches the set of EFCEs.

In the rest of [Celli et al., 20201, we provide an efficient
(that is, requiring time polynomial in the size of the game
tree at each iteration) algorithm that minimizes trigger regret.
The algorithm is based on the general template for construct-
ing phi-regret minimization algorithms given by [Gordon et
al., 2008], extending prior work by [Hazan and Kale, 2008].
Before one can use that template, two missing pieces need to
be solved:

1. constructing an efficient regret minimizer for the set of
all valid canonical trigger deviation functions, and

2. showing that any convex combination of canonical trig-
ger deviation functions admits a fixed point strategy, and
that such fixed point can be computed efficiently.

We solve the first point by exploiting the non-trivial combina-
torial structures of the set of canonical trigger deviation func-
tions, and the second point by giving an efficient incremental
procedure to compute the fixed point strategy in a top-down
traversal of the game tree. Our resulting algorithm mini-
mizes trigger regret, guaranteeing O(+/T) trigger regret with
high probability after 7" iterations and requiring time poly-
nomial in the size of the game tree at each iteration. Thus,

when all players play according to the uncoupled learning dy-
namics defined by our algorithm, the empirical frequency of
play after T game repetitions is proven to be a O(1/v/T)-
approximate EFCE with high probability, and an EFCE al-
most surely in the limit. These results generalize the seminal
work by [Hart and Mas-Colell, 2000] to the extensive-form
game case via a simple and natural framework.

4 Related Works

The study of adaptive procedures leading to a CE dates back
to at least the seminal works by [Foster and Vohra, 19971, [Fu-
denberg and Levine, 1995; Fudenberg and Levine, 1999],
and [Hart and Mas-Colell, 2000; Hart and Mas-Colell, 2001];
see also the monograph by [Fudenberg and Levine, 1998]. In
particular, the work by [Hart and Mas-Colell, 2000] proves
that simple dynamics based on the notion of internal regret
converge to a CE in normal-form games. The strategy that the
authors introduce—the so-called regret matching—is concep-
tually simple, and guarantees that if all players follow this
strategy, then the empirical frequency of play converges to
the set of CEs (see also [Cahn, 2004]). Other works describe
extensions to the models studied in the aforementioned pa-
pers. For example, [Stoltz and Lugosi, 2007] describe an
adaptive procedure converging to a CE in games with an infi-
nite, but compact, set of actions, while [Kakade et al., 2003]
consider efficient algorithms for computing correlated equi-
libria in graphical games.

In more recent years, a growing effort has been devoted
to understanding the relationships between no-regret learn-
ing dynamics and equilibria in extensive-form games. These
games pose additional challenges when compared to normal-
form games, due to their sequential nature and the pres-
ence of imperfect information. While in two-player zero-
sum extensive-form games it is widely known that no-regret
learning dynamics converge to an NE—with the counter-
factual regret minimization (CFR) algorithm and its vari-
ations being the state of the art for equilibrium finding
in such games [Zinkevich et al., 2008; Tammelin, 2014;
Tammelin et al., 2015; Lanctot et al., 2009; Brown and Sand-
holm, 2019]—the general case is less understood. [Celli et
al., 2019] provide some variations of the classical CFR algo-
rithm for n-player general-sum extensive-form games, show-
ing that they provably converge to a normal-form coarse cor-
related equilibrium, which is based on a form of correlation
that is less appealing than that of EFCE in sequential games.

Finally, we mention relevant literature subsequent to the
conference version of this article. In a recent paper, [Mor-
rill et al., 2020] conduct a study of different forms of corre-
lation in extensive-form games, defining a taxonomy of so-
lution concepts. Each of their solution concepts is attained
by a particular set of no-regret learning dynamics, which is
obtained by instantiating the phi-regret minimization frame-
work [Greenwald and Jafari, 2003; Stoltz and Lugosi, 2007;
Gordon et al., 2008] with a suitably-defined deviation func-
tion. As part of their analysis, [Morrill et al., 2020] investi-
gate some properties of the well-established CFR regret min-
imization algorithm [Zinkevich et al., 2008] applied to n-
player general-sum extensive-form games, establishing that it
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is hindsight-rational with respect to a specific set of deviation
functions, which the authors coin blind counterfactual devi-
ations. Moreover, in a very recent working paper, [Morrill
et al., 2021] extend their prior work [Morrill et al., 2020] by
identifying a general class of deviations—called behavioral
deviations—that induce equilibria that can be found through
uncoupled no-regret learning dynamics.
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