
Explaining the Behaviour of Hybrid Systems with PDDL+ Planning

Diego Aineto1 , Eva Onaindia1 , Miquel Ramı́rez2 , Enrico Scala3 and Ivan Serina3

1VRAIN, Universitat Politècnica de València
2University of Melbourne

3Università degli Studi di Brescia
{dieaigar,onaindia}@upv.es, miquel.ramirez@unimelb.edu.au, {enrico.scala,ivan.serina}@unibs.it

Abstract
The aim of this work is to explain the observed
behaviour of a hybrid system (HS). The explana-
tion problem is cast as finding a trajectory of the
HS that matches some observations. By using the
formalism of hybrid automata (HA), we character-
ize the explanations as the language of a network
of HA that comprises one automaton for the HS
and another one for the observations, thus restrict-
ing the behaviour of the HS exclusively to trajec-
tories consistent with the observations. We ob-
serve that this problem corresponds to a reacha-
bility problem in model-checking, but that state-
of-the-art model checkers struggle to find concrete
trajectories. To overcome this issue we provide
a formal mapping from HA to PDDL+ and rely
on off-the-shelf automated planners. An experi-
mental analysis over domains with piece-wise con-
stant, linear and nonlinear dynamics reveals that the
proposed PDDL+ approach is much more efficient
than solving directly the explanation problem with
model-checking solvers.

1 Introduction
A hybrid system (HS) is a dynamical system that exhibits a
discrete and continuous behaviour, and captures the control
of continuously evolving physical activities typical in auto-
mated manufacturing, chemical engineering and robotics sys-
tems. A hybrid trajectory is a particular execution of the HS
that interleaves discrete and continuous behaviour. We aim to
solve the problem of finding an explanation, i.e., a hybrid tra-
jectory, for some observations of an HS. We will call this the
HS explanation (HSE hereinafter) problem. To this end, we
build on the formalism of hybrid automata (HA) to formulate
the problem and on planning technology to solve it.

The formalism of HA [Henzinger, 2000] is extensively
used in Model Checking (MC) of hybrid systems, specifi-
cally for verification of safety properties. The safety verifi-
cation problem is traditionally formulated as a reachability
analysis aimed at certifying that a trajectory that violates the
property does not exist, thereby a correspondence between
this problem and our HSE problem can be found. A common
approach is to compute a conservative over-approximation of

the reachable state space that is used to guarantee that the HS
is safe if none of the states defined as unsafe is reachable.
The issue with MC tools that use over-approximation [Hen-
zinger et al., 1997; Frehse, 2008] is that they are generally un-
able to produce a concrete trajectory, i.e., a counter-example,
for an HS that is deemed unsafe. Exceptionally, tools such
as DREACH [Kong et al., 2015] and HYCOMP [Cimatti et
al., 2015], both built on top of Satisfiability Modulo The-
ories (SMT) solvers, are able to generate counterexamples.
Another mechanism to directly seek a trajectory that vio-
lates a safety condition in an HS is falsification [Plaku et al.,
2009]. Falsification tools [Annpureddy et al., 2011; Zhang
et al., 2018] find the inputs required to steer the system to-
wards violating the property and use optimization techniques
guided by robustness metrics. They generally assume that the
system dynamics are governed by a black-box model whose
behaviour is only observed from the input signals and their
corresponding outputs via a simulator [Zutshi et al., 2014;
Corso et al., 2020]. Simulation-based techniques for falsifi-
cation, in addition, heavily rely on urgent discrete transitions,
i.e., a discrete transition is immediately taken once the con-
dition is satisfied, which makes them unsuitable for the non-
deterministic behaviour in our benchmarks.

We characterize the language of explanations through a
network of HA in parallel composition, where one automa-
ton describes the HS and the other accepts the given observa-
tions. This composition effectively restricts the trajectories of
the HS to those that are consistent with the observations. We
then formalize the HSE problem as an optimization problem
that looks over the language of explanations to find the most
suitable one. In principle, this problem can be solved as a
model checking problem but the aforementioned approaches
followed by state-of-the-art MC tools struggle to find con-
crete trajectories, or assume limited knowledge of the systems
dynamics, or only handle simple dynamics. To overcome this
limitation, we further provide a formal mapping from HA to
PDDL+ [Fox and Long, 2006], which enables the use of off-
the-shelf automated planners. AI Planning heuristics have in
the past proven very effective for finding trajectories [Wehrle
and Helmert, 2009].

The connection between HA and PDDL+ has been mainly
explored as the translation from PDDL+ planning to HA to
underpin the formal interpretation of PDDL+ semantics with
the HA formalism [Fox and Long, 2006; Bogomolov et al.,

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4567

2015]. Mapping PDDL+ into HA enables solving a hybrid
planning problem using model-checking tools. Another re-
search advocates encoding hybrid planning problems with
SMT [Bryce et al., 2015; Cashmore et al., 2020] as a way
to overcome the general limitation of PDDL+ planners to ad-
dress nonlinear changes. We exploit the reverse mapping, en-
coding the network of HA as PDDL+ planning.

Our algorithmic solution to the HSE problem comes down
to a plan recognition (PR) problem in an HS as we need to
infer the trajectory (plan) that fulfills the observations of the
HS (agent) in a continuous space. Unlike approaches to PR
that use planners [Ramı́rez and Geffner, 2009], our aim is not
goal prediction and our observations are not sub-sequences
of actions as it is commonly the case in the PR approaches.
We focus on finding the best sequence of states traversed by a
system that explains some observations [Aineto et al., 2020].

Our main contributions are: (a) a crisp formulation of
the HSE problem that draws on the HA formalism; (b) a
planning-based approximation to the HSE problem that ex-
ploits PDDL+ models and algorithms to scale up to large state
spaces; and (c) an experimental analysis that includes a com-
parison between our planning-based approach and MC tools.

2 Preliminaries
A hybrid automaton is formally defined as an FSM, where
states (locations) prescribe constraints over a set of variables,
and transitions are governed by ordinary differential equa-
tions. We adopt the HA formulation used in [Doyen et al.,
2018] with explicit input variables. Firstly, we introduce
some notation: X is a set of variables; Constr(X) is the
set of constraints over X defined by the Backus Naur rule
ϕ ::= θ < 0 | θ ≤ 0 | θ = 0 | θ > 0 | θ ≥ 0 | ϕ ∧ ψ,
being θ a polynomial expression overX; JϕK refers to all val-
uations of ϕ over X , and JϕKv to a particular valuation v.

The tupleH = ⟨Loc, Lab,Edg, X, U, Init, Inv,Flow, Jump,
Final⟩ defines a hybrid automaton, where:

• Loc is a set of discrete variables called locations of H .
• Lab is a set of labels.
• Edg ⊆ Loc× Loc is a set the discrete transitions.
• X = {x1, . . . , xn}, set of real-valued state variables.
• U = {u1, . . . , um}, set of real-valued input variables.
• Init : Loc → Constr(X) states the possible valuations

of X when H starts in location l, i.e., H can start in l
with an initial valuation v ∈ JInit(l)K.

• Inv : Loc → Constr(X ∪ U) is the invariant of location
l, which constrains the possible valuations of X and U
when H is at l. H can stay in l as long as the valuation
v ∈ JInv(l)K.

• Flow : Loc → Constr(Ẋ ∪ X ∪ U) specifies what dif-
ferential constraints apply on the behaviour of X when
H is at l.

• Jump : Edg → Constr(X+ ∪ X ∪ U) gives the jump
condition of edge e, often as a conjunction of a guard,
Guard : Edg → Constr(X ∪ U), and a reset constraint,
Reset(e) : Edg → Constr(X+), where variables in X+

refer to the updated values ofX after edge e is traversed.

• Final : Loc → Constr(X) is the final condition of lo-
cation l. H can only finish in l if the final valuation
v ∈ JFinal(l)K.

The semantics of H is the transition system JHK =
⟨S, S0, Sf ,Σ,→⟩; a state is a pair q = (l, v), where l ∈ Loc
and v is the valuation over X in l; S is the state space; S0 is
the set of possible initial states; Sf is the set of final states;
Σ = Lab ∪ R≥0, where R≥0 denotes duration; and → is the
transition relation that contains all tuples ((l, v), σ, (l′, v′)),
which belong to any of these two types:

• discrete transition: σ ∈ Lab, e = (l, σ, l′) ∈ Edg, and
(v, v′) ∈ JJump(e)K. These transitions have no duration
and are instantaneous.

• continuous transition: σ ∈ R≥0, l = l′, and Flow(l)
determines the evolution of X , which changes from val-
uation v to valuation v′ while remaining in location l as
long as the valuation satisfies JInv(l)K. The duration of
continuous transitions is given by σ.

A trajectory is a run of JHK defined as τ = q0σ1q1σ2
. . . σnqn or, equivalently, as τ = q0

σ1−→ q1
σ2−→ . . .

σn−−→ qn,
where q0 ∈ S0, and (qi−1, σi, qi) is a transition from →,
∀i 1 ≤ i ≤ n. We define d(qi) as the sum of the duration
for every transition between q0 and qi, and it represents the
time at which state qi is reached. If qn ∈ Sf , we say that
τ is a trajectory accepted by H . The set of all trajectories
accepted by H is the language of H , denoted as L(H).

PDDL+ (Planning Domain Definition Language) is a
high-level language to formulate planning instances that re-
quire reasoning over a mixture of discrete and continuous
variables [Fox and Long, 2006]. A PDDL+ instance is given
by the tuple Π = ⟨V, F,A, P,E, I,G⟩, where V and F are
numeric and Boolean state variables, respectively, I is the
initial state, and G is the goal condition. PDDL+ explicitly
differentiates three types of state transitions, namely, actions
A, events E and processes P . An action a ∈ A is a pair
⟨prea, effa⟩ where prea is a formula containing both propo-
sitional and numeric conditions, and effa is a set of propo-
sitional and numeric assignments that cause instantaneous
changes. The execution of an action a is decided by the plan-
ner as long as prea holds in the current state. An event e ∈ E
is structured as an action but its execution is triggered by the
satisfaction of its preconditions rather than being decided by
the planner. A process p ∈ P is a pair ⟨prep, effp⟩, where
prep has the same structure as prea, and effp only contains
continuous effects, which are time-dependent effects of the
form ẋ = ξ (ξ represents the first derivative of x w.r.t. time).

Actions are in control of the agents while P andE describe
what happens in the world when some condition is met. Pro-
cesses last for as long as their conditions are met. For exam-
ple, heating up a tank is a process which increases its temper-
ature until a max value (e.g. t = 100◦C) is reached. Events
correspond to instantaneous transitions that happen the in-
stant their conditions are met, usually transforming the state
in such a way that the conditions are no longer met. Events
are uncontrollable; in the previous example, we might con-
sider an event when the tank hits t = 100◦C, at which time
the tank turns off.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4568

We consider PDDL+ problems extended with a set C of
global constraints (propositional formulae as the ones used
in actions’ preconditions) [Scala et al., 2016]. C constrains
state trajectories to those that always satisfy the formula in C.

A PDDL+ plan is a set of timed actions, i.e., pairs from
R≥0 × A plus the ending time te ∈ R≥0. Informally speak-
ing, a plan is said to be valid iff i) the induced trajectory of
states conforming to prescribed events, processes and global
constraints, and obtained by starting from the initial state, is
such that all actions have their precondition satisfied when
they are applied, ii) the plan satisfies the goal at time te.

3 The HS Explanation Problem
The HSE problem is about finding a trajectory of an HS
that matches some observations. This problem is formu-
lated through two HA: one automaton models the behaviour
of the HS, the other one tracks the run of the HS and
checks when the produced trajectory matches the observa-
tions. We will refer to the first one as the HS automa-
ton, and to the second one as the monitor automaton. Let
H = ⟨Loc, Lab,Edg, X, Init, Inv,Flow, Jump,Final⟩ be the
HS automaton:

Definition 3.1 (Observation). An observation, z, on the be-
haviour ofH , z ∈ R≥0×Constr(X), is the pair ⟨t, ϕ⟩, where
t is a time point, and ϕ is a constraint over X .

By defining observations as constraints, ϕ is actually de-
noting a region of values, and so we can express qualitative
uncertainty in the observations and partial observability over
the state variables X . From a practical standpoint, sensors
are rarely completely accurate and the dynamics that govern
some variables in X may not be directly measurable, e.g. the
linear acceleration of an aircraft.

Example 3.2. Consider that the behaviour of an aircraft fly-
ing at a fixed altitude is modeled by the hybrid automaton
H of Figure 3. H defines three control modes or locations,
Loc = {FS,AL,AR}, representing, respectively, ’flying
straight’, ’adjusting course left’ and ’adjusting course right’.
Let X = {x, y, θ} be the set of state variables of H , where
(x, y) ∈ R2 describes the planar position, and θ is the angu-
lar orientation. Moreover, during the flying trajectory of the
aircraft, its position is observable but θ is not. Initially, the
aircraft is at position (0, 0) and pointing at a direction given
by the angle θ = 4.84. An observation of the aircraft during
flight is defined as

z = ⟨t, (cx − x)2 + (cy − y)2 ≤ r2⟩

where (cx, cy) ∈ R2 is the center of a circle of radius r ∈ R.
For instance, at time t=1, the observation is z1 = ⟨1, (5.593−
x)2 + (−19.117 − y)2 ≤ 102⟩, meaning that the position of
the aircraft is somewhere within a circular region of radius
r = 10 centered around (5.593,−19.117).

A sequence of observations is denoted as ω = (zk)
K
k=1,

where each zk is an observation as expressed in definition
3.1. Let ω be an observation sequence of the behaviour of
a system that is modeled through an HS automaton H . We
define a monitor automaton, Hω , which contains as many

locations as the number of observations in ω, aimed at de-
termining when the trajectory produced by H matches the
observations in ω. The monitor automaton Hω = ⟨Locω ,
Labω , Edgω , Xω , Uω Initω , Invω , Flowω , Jumpω , Finalω⟩ is
formalized as:

• Locω := {l0, . . . , lK}. Hω contains one location for
each observation zk ∈ ω; l0 is the initial location of Hω .

• Labω is a set of labels (labels in Hω are meaningless).
• Edgω := {(lk−1, σk, lk) | 1 ≤ k ≤ K}. Discrete transi-

tions move from one location to the next one.
• Xω := {t}. Hω explicitly models the passage of time

through the time variable t for matching purposes.
• Uω ⊆ X . The input variables of Hω are the subset of

the state variables X of H that are observable.
• Initω := {Initω(l0) := t = 0}. Time starts at t = 0.
• Invω := {Invω(lk) := t ≤ tk+1 + ∆t | 0 ≤ k ≤ K −
1}. The automaton can remain at location lk until the
last instant allowed to validate observation zk+1. Invω is
redudant with Jumpω and can be omitted.

• Flowω = {Flowω(l) := ṫ = 1 | l ∈ Locω}, meaning that
time advances normally.

• Jumpω = {Jumpω((lk−1, σk, lk)) := tk − ∆t ≤ t ≤
tk + ∆t ∧ ϕk | (lk−1, σk, lk) ∈ Edgω}. For observa-
tion zk = ⟨tk, ϕk⟩, the jump condition ensures that there
is one time point within a specified interval around tk
where the valuation of the constraint ϕk holds.

• Finalω := {Finalω(lK) := true}.

As specified in Jump, for each observation zk = ⟨tk, ϕk⟩,
we define a time window [tk −∆t, tk +∆t], being ∆t a time
precision parameter, as the interval where we accept that the
constraint ϕk can be matched. Hω models the passage of time
via the variable t, and it is constantly tracking the observable
variables of H comprised in Uω . The task of Hω is to check
that the values of Uω match the constraint ϕk within the inter-
val [tk−∆t, tk+∆t]; that is, it checks that JϕkKu holds at any
point in the interval. More specifically, Hω awaits in location
lk−1 for the input values u to match the observation zk in the
specified interval, moment at which Hω transits to location
lk. The run of JHωK produces a trajectory that traverses all
the locations in Locω . We will denote this trajectory as τω .

Ultimately, our objective is to build a network of HA in
parallel composition, N = {H,Hω}, that characterize the
set of trajectories of H that explain the observed behaviour
given by ω. For the network, we use global-time composi-
tional semantics [Henzinger, 2000] where time elapses for all
the HA in the network and for the same duration, and com-
munication is achieved through shared variables, specifically
through the variables Uω .
Definition 3.3 (Synchronized trajectory of N). A synchro-
nized trajectory of N = {H,Hω} is the pair τS = ⟨τ, τω⟩
such that τ = q0σ0 . . . qn and τω = qω0 σ

ω
0 . . . q

ω
m are con-

current local trajectories of H and Hω , respectively, and
have the same duration (d(qn) = d(qwm)). A synchronized
trajectory τS = ⟨τ, τω⟩ is accepted by N , denoted τS ∈
L(H,Hω), iff τ ∈ L(H) and τω ∈ L(Hω).

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4569

Figure 1: Explanation τ and support τω (above), and their synchro-
nization (below).

Definition 3.4 (Explanation & Support). τ ∈ L(H) is an
explanation for an observation sequence ω under H iff there
exists a support τω ∈ L(Hω) such that ⟨τ, τω⟩ ∈ L(H,Hω).
We define the language of explanations as E(H,ω) = {τ |
⟨τ, τω⟩ ∈ L(H,Hω)}.

Then, an explanation τ is the trajectory that explains the
behaviour of the hybrid system1, and a support τω is the tra-
jectory that determines when τ matches the observations.
Example 3.5. We extend the Example 3.2 of the aircraft as-
suming an observation sequence ω of the HS automaton H
(Figure 3) given by the following two observations:

z1 = ⟨1, (5.593− x)2 + (−19.117− y)2 ≤ 102⟩
z2 = ⟨2, (16.791− x)2 + (−35.595− y)2 ≤ 102⟩

Our HSE problem is to find a trajectory of the aircraft mod-
eled by H that explains ω = (z1, z2). We define a monitor
automaton Hω that contains one location for z1 and one for
z2 using time precision ∆t = 0.125. Fig. 1 shows a solution
to the problem; i.e, a synchronized trajectory ⟨τ, τω⟩ of the
network N = {H,Hω} where τ is the aircraft explanatory
trajectory for ω, and τω determines when τ matches z1 and
z2. The lower part of Fig. 1 details the synchronization of τ
and τω (only the observable variables of H , Uω = {x, y},
and the single variable t of Hω are shown). Discrete transi-
tions σω

1 and σω
2 happen at t1 = 0.88 and t2 = 1.88 when

τ validates (matches) the observations z1 and z2. ϵ tran-
sitions are ’stutters’ representing self-loops ((l, v), ϵ, (l, v))
that replicate the state of one automaton when the other per-
forms a discrete transition [Alur et al., 1995].

There may exist multiple trajectories of Hω that support
the validation of the observations by an explanation τ . For
instance, in Example 3.5, the trajectory τω = (L0, 0)

1.12−−→
(L0, 1.12)

σω
1−−→ (L1, 1.12)

0.76−−→ (L1, 1.88)
σω
2−−→ (L2, 1.88)

also synchronizes with τ . This happens because the match-
ing of an observation < tk, ϕk > can occur at any point in
the continuous time interval [tk −∆t, tk + ∆t]. We refer to
a support composed only of urgent discrete transitions, i.e.,
transitions that are immediately taken once the Jump condi-
tion is enabled, as a greedy support and denote it as τωg . The
question that arises here is whether using a greedy support

1Our notion of explanation is not to be confused with planning
explanations [Fox et al., 2017] which also account for the process
that generated the trajectory.

to match the observations of an explanation compromises the
completeness of an HSE problem. Theorem 3.7 proves this is
not the case.
Definition 3.6 (Prefix). Given two trajectories τ ′ and τ , τ ′ is
a prefix of τ , τ ′ ⊆ τ , if either they are identical, or τ ′ is a
finite sequence and τ begins with τ ′.
Theorem 3.7. Let Lg(H,H

ω) ⊆ L(H,Hω) be the subset of
synchronized trajectories formed with a greedy support τωg ,
and Eg(H,ω) = {τ | ⟨τ, τωg ⟩ ∈ Lg(H,H

ω)}. For every
τ ∈ E(H,ω) , there exists a τ ′ ∈ Eg(H,ω) such that τ ′ is a
prefix of τ .

Proof : We show that for any explanation τ in E(H,ω), it
is possible to construct a greedy trajectory τωg that supports
a prefix τ ′ ⊆ τ . Let τ be an explanation for ω = (zk)

K
k=1,

zk = ⟨tk, ϕk⟩, and Ik = [ak, bk], with tk − ∆t ≤ ak ≤
bk ≤ tk + ∆t, be all the time points at which τ matches
the observation; i.e., JϕkKu holds ∀t ∈ Ik. A greedy sup-
port τωg for τ ′ ⊆ τ is built by taking discrete transitions
((lk−1, ak), σ

ω, (lk, ak)) at time mk = max(mk−1, ak) for
1 ≤ k ≤ K. So observation zk is matched as soon as the
matching of zk−1 allows within the interval Ik = [ak, bk].

The maximum difference in duration between an explana-
tion τ in E(H,ω) and its prefix τ ′ in Eg(H,ω) is bK − aK ,
which is bounded by 2∆t. Then, for a sufficiently small
∆t there is no significant difference between both languages.
Particularly, when ∆t = 0 we have E(H,ω) = Eg(H,ω)
since the explanation τ and its prefix τ ′ are identical. We can
thus assume urgent transitions for Hω , which effectively nar-
row the language of the network N = {H,Hω}, while guar-
anteeing that Eg(H,ω) contains an almost complete prefix of
any possible explanation in E(H,ω).
Definition 3.8 (HS-explanation problem). An HSE problem
is given by the tuple ⟨H,ω⟩, where H is the description of an
HA, and ω is a sequence of observations.

The solution to ⟨H,ω⟩ is defined as follows
π(H,Hω) := min

⟨q0σ1...qn,qω0 σω
1 ...qωm⟩

f(q0 . . . qn) (1)

subject to (qi, σi+1, qi+1) ∈→, 0 ≤ i < n (2)
(qωi , σ

ω
i+1, q

ω
i+1) ∈→ω, 0 ≤ i < m (3)

q0 ∈ S0, q
ω
0 ∈ Sω

0 (4)
qn ∈ Sf , q

ω
m ∈ Sω

f (5)
Problem (1)–(5) is an optimization problem over the lan-

guage of explanations L(H,Hω). Subproblem (2)–(5) is the
underlying reachability problem of searching trajectories that
belong to L(H,Hω). Solutions π(H,Hω) are synchronized
trajectories τS = ⟨τ, τω⟩ accepted by N , as ensured by con-
straints (4)–(5) that minimize a user-defined function f(·) that
measures the implausibility of an explanation.

Figure 2 illustrates graphically the HSE problem for our
aircraft example. A 100-sec trajectory (black line) represents
the original trajectory of the aircraft produced by the HS au-
tomaton H . In order to generate the observations of the air-
craft position, the original trajectory was sampled at 1-sec in-
tervals with different radius, r ∈ {5, 10, 20, 40}. The colored
lines are the trajectories that explain the observed behaviour
of the aircraft under the different values of r.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4570

Figure 2: Original trajectory (black) and explanations (colored).

4 HS Explanation as Planning
We present our proposal to approximate the solution to the
HSE problem as for equations (1)–(5) using PDDL+.
Optimization function. As commented in Def. 3.8, the
user defines a function to measure the quality of a solution. In
our approximation, we use f(τ) = |τ |, which measures the
length or number of discrete transitions of the explanation2.
Discrete transitions are the ones that truly determine the evo-
lution of the HS as the continuous transitions merely indicate
the awaiting of the system in a location. Therefore, we believe
minimizing |τ | is a reasonable proxy for more complicated
objective functions. In general, the quality of the solution is
subject to the range of values encompassed by the definition
of the observations; the smaller the region of values, the more
accurate the solution. This can be observed in Fig. 2, where
the explanation under r = 5 generates a trajectory that basi-
cally covers the original flight trajectory.
Mapping the network of HA to PDDL+. The goal is to
map the network of HA, N = {H,Hω}, into a PDDL+
planning instance Π(H,Hω) and solve it with off-the-shelf
planners. We will call π+(H,Hω) the solution returned by a
PDDL+ planner to the HSE problem. A solution π+(H,Hω)
will contain actions corresponding to discrete transitions of
JHK such that f(τ) = |τ | is minimized, and it will reach a
state satisfying the constraints in equation (5).

Let H be any hybrid automaton (either an HS or a monitor
automaton). We first describe the mapping of H to a PDDL+
problem Π(H) = ⟨V, F,A, P,E, I,G,C⟩ that preserves the
semantics of JHK:

• The state variablesX ofH map directly to numeric vari-
ables (V = X).

• The locations of H are represented using Boolean vari-
ables (F = Loc).

• A discrete transition of H is represented with a =
⟨prea, effa⟩ ∈ A, reflecting the non-determinism of H .
Jump(e) is decomposed into Guard(e), encoded in prea,
and Reset(e), encoded in effa (change to next location).

• The continuous transitions ofH that model the evolution
of X as time passes are represented with processes P ,
P = {⟨l,Flow(l)⟩ | l ∈ Loc}.

2The length of a support τω is always bounded by the K obser-
vations in ω

FS
(6)[w := 0]start

AL
(6)[w := π

10]

AR
(6)[w := −π

10]

ad
jus

t L adjust R

fly str
aig

ht

adjust R

fly straightadjust L

Figure 3: HA model of an aircraft

• I |= Init, we assume that the initial space S0 induced by
the initial condition Init of H is a singleton.

• G = lfinal. Without loss of generality, we assume there
is a single location lfinal such that Final(lfinal) = true
and Final(l) = false for all l ̸= lfinal as any HA can
be reduced to this form.

• Inv of H is represented as the global constraints C =∧
l∈Loc ¬l ∨ Inv(l): as long as H is in location l, Inv(l)

must hold (if specified). As locations are mutually ex-
clusive, only one constraint will be active in a state.

PDDL+ events can be used, instead of actions, to encode
urgent discrete transitions. Intuitively, discrete transitions of
the HS automaton map into actions that represent the actual
control of the agent (e.g., adjusting course left); while dis-
crete transitions of the monitor automaton map into actions
(or PDDL+ events if we want a greedy support) that are only
executable when the trajectory matches with an observation.

Mapping a network N = {H,Hω} into a PDDL+ plan-
ning problem Π(H,Hω) is done by composing the ele-
ments of Π(H) and Π(Hω) via the union operator for
sets X , F , A, P and I , and via the conjunction operator
for constraints C and goal condition G. A solution plan
is a set of timed instantaneous transitions π+(H,Hω) =
({⟨t0, a0⟩, . . . , ⟨tn, an⟩}, te) such that ai ∈ A, 0 ≤ i ≤ n,
and te is the ending time of the plan. π+(H,H

ω) mod-
els the discrete transitions of both H and Hω and repre-
sents a synchronized trajectory of N = {H,Hω}. Ex-
tracting the local plans for H and Hω is a straightfor-
ward process that only requires checking whether ai be-
longs to Lab or Labω . For instance, a PDDL+ plan for
Ex. 3.5 is: {⟨0.88, validate 1⟩, ⟨0.90, adjust left⟩,
⟨1.88, validate 2⟩}, te), which includes i) the local plan
for H , ({⟨0.9, adjust left⟩}, te = 1.88), representing an
explanation τ of the HS, and ii) the local plan for Hω ,
({⟨0.88, validate 1⟩, ⟨1.88, validate 2⟩}, te = 1.88),
representing a support τw that specifies when the HS matches
the two observations. Both local plans can effectively be used
to generate a synchronized trajectory to the HSE problem.

5 Empirical Evaluation
We evaluate our approach computationally on three domains
with different types of dynamics: piece-wise constant, linear
and nonlinear. All domains feature non-deterministic (even
arbitrary) discrete mode switches.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4571

Thermostat Platoon Flight
Size HC dR HSE P HSE Pe dR HSE P HSE Pe dR HSE P HSE Pe

2 10 (0.1) 10 (0.2) 10 (0.5) 10 (0.5) 0 10 (1.1) 10 (0.6) 10 (0.3) 10 (0.6) 10 (0.5)
4 10 (0.5) 10 (0.5) 10 (0.6) 10 (0.6) 0 10 (1.0) 10 (0.6) 1 (14) 10 (2.8) 10 (0.7)
6 10 (0.7) 8 (44) 10 (0.6) 10 (0.6) 0 10 (0.7) 10 (0.6) 0 10 (1.3) 10 (0.8)
8 10 (1.3) 3 (15) 10 (0.6) 10 (0.6) 0 10 (0.8) 10 (0.6) 0 10 (1.6) 10 (0.8)

10 10 (1.6) 0 10 (0.7) 10 (0.6) 0 10 (4.3) 10 (0.7) 0 10 (17) 10 (0.8)
20 10 (11) 0 10 (1.4) 10 (0.7) 0 10 (3.9) 10 (0.9) 0 7 (74) 10 (1.3)
30 10 (60) 0 10 (3.1) 10 (1.0) 0 8 (67) 10 (1.1) 0 1 (127) 10 (1.6)
40 10 (118) 0 10 (5.2) 10 (1.1) 0 1 (191) 10 (1.4) 0 0 10 (1.9)
50 5 (261) 0 10 (8.2) 10 (1.3) 0 0 10 (1.5) 0 0 10 (2.3)
60 0 0 10 (14) 10 (1.6) 0 0 10 (1.9) 0 0 10 (3.5)
70 0 0 10 (20) 10 (1.8) 0 0 10 (2.2) 0 0 10 (4.3)
80 0 0 10 (27) 10 (1.9) 0 0 10 (2.4) 0 0 10 (5.8)
90 0 0 10 (38) 10 (2.2) 0 0 10 (2.8) 0 0 10 (9.4)

100 0 0 10 (49) 10 (2.5) 0 0 10 (3.1) 0 0 10 (14)

Table 1: Coverage and run-time results. Each entry reports the num-
ber of solved problems, and the median time in seconds for each
system. dR stands for dReach, HC for HyComp.

Thermostat (constant). This domain uses Henzinger’s
thermostat [Henzinger, 2000] hybrid automaton. The flows
are made piece-wise constant; invariants and guards leave a
window of 1ºC where the system may non-deterministically
switch modes. Temperature is the only observable variable.

Platoon (linear). This domain [Makhlouf and Kowalewski,
2014] is a staple in the linear dynamics competition for for-
mal verification of HS. The domain depicts a platoon of net-
worked vehicles following each other switching between two
discrete modes: a normal operation and a communication-
failure mode. We handle a platoon of 4 vehicles for a total of
9 continuous variables: relative distance and velocity to the
vehicle ahead, and acceleration of each vehicle save for the
leader. The observable variables are the 3 relative distances.

Flight (nonlinear). This models the domain of Ex. 3.5.
Assuming a simplified physics model that ignores wind and
gravitation, the in-flight dynamics of an aircraft can be de-
scribed by the following differential equations:

ẋ = v cos θ ẏ = v sin θ θ̇ = w (6)

where v and w are the linear and angular velocity. In our
experiments v is made constant, so w is the only control pa-
rameter (Figure 3). The flow constraints (6)[w := a] shown in
each location are abbreviations of the dynamics of equation
(6) withw replaced by the angular velocity a of the respective
location. We observe the planar coordinates (x,y).

We computed 10 trajectories for each domain using a sim-
ulator, and extracted observation sequences by sampling the
trajectories at a fixed rate of 1sec. For each trajectory we
scale the number of observations from 2 to 100: the smallest
instance asks to find a trajectory explaining 2 observations
over 2 secs of execution while the largest 100 observations
over 100 secs of execution.

We attempt to solve the HSE problem with 3 configu-
rations: HSE MC (via Model-Checking), and 2 configura-
tions via Planning, HSE P and HSE Pe differing in how dis-
crete transitions of Hω are encoded: HSE P uses actions and
HSE Pe uses greedy supports; i.e., events. The comparison
with HSE MC aims at evaluating the usefulness of our map-
ping into planning against the long-established technique of
MC. We tested DREACH and HYCOMP, two MC tools that
are able to generate counter-examples. Encoding the HSE

problem into the MC tools simply requires defining the un-
safe condition as Finalω .

We tried different PDDL+ planners [Piotrowski et al.,
2016; Penna et al., 2009; Cashmore et al., 2020], but focused
on ENHSP [Scala et al., 2020] as it was the one giving us the
better performance with support for the dynamics of all our
domains. We ran ENHSP using the hmrp

max heuristic on top of
plain A∗ with a random tie-breaking. ENHSP is a discretiza-
tion based planner that decouples time-discretization for plan-
ning (δp) from the one of plan execution (δe) [Ramı́rez et al.,
2017]. Keeping δe small ensures that i) the generated expla-
nations remain valid and ii) far more states can match the ob-
servations. We keep δp = δe = 0.01 over all domains when
ENHSP run using HSE P, and set δp = 0.1 in Thermostat
and Platoon, and δp = 0.4 in Flight when ENHSP run with
HSE Pe. All experiments run on an Intel Core i5 3.1GHz x
4, time and memory limits set to 300s and 8GB, respectively.

Results. For each domain-configuration and problem size,
we show the number of problems solved and the median time
over successful runs (shown in parentheses in Table 1). A
problem is solved if a solution was found within a time frame
of 300s. Solutions found by HSE P and HSE Pe were val-
idated in a simulator using the plan found by ENHSP as a
controller automaton in parallel composition withH andHω .
We can observe that HYCOMP and DREACH scale up poorly
(no results of Platoon and Flight are shown for HYCOMP as
it only supports constant derivatives; 0 indicates no solution
found within the time budget). We attribute the poor perfor-
mance of DREACH to the large size of the variables domain.
HSE P, the configuration that uses actions to match observa-
tions inHω , shows better performance than the MC tools, but
still unable to solve the full suite of problems as computation
times quickly ramp up for the linear and nonlinear domains.
HSE Pe, however, solves all the problems. Indeed, HSE Pe

would be able to scale to much larger instances. The non-
linear dynamics of the Flight domain are clearly more com-
putationally expensive for the planner as evidenced by the re-
ported times and a higher difficulty to scale up. The quality of
the solutions found by both versions of HSE P are the same
for thermostat and platoon domains. HSE P slightly outper-
formed HSE Pe in the flight domain where it found solutions
up to 10% shorter in average for problem sizes 8 and 10. The
MC tools produced plans of the same size as the best plan
obtained between HSE P and HSE Pe.

6 Conclusions
This paper has shown a novel and general method to ex-
plain the observed behaviour of an HS that exhibits different
control modes. Our HSE specification uses the HA formal-
ism, which enables already existing model checking tools to
tackle the problem. We, however, propose a planning-based
approach that exploits the capabilities of heuristic PDDL+
planners to explore the state space and obtain good quality
solutions. Our empirical evaluation shows a significant in-
crease in performance with respect to model checking tools.
In light of these results, exploring the combination of PDDL+
planning with model checking to tackle falsification problems
seems to be a promising line of research.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4572

Acknowledgments
This work is supported by the Spanish MINECO project
TIN2017-88476-C2-1-R and partially supported by the EU
ICT-48 2020 project TAILOR (No. 952215). Diego Aineto
is partially supported by the FPU16/03184. Enrico Scala
and Ivan Serina are partially supported by Regione Lom-
bardia, Call Hub Ricerca e Innovazione, within the project
“MoSoRe@Unibs—Infrastrutture e servizi per la Mobilità
Sostenibile e Resiliente”, 2020–2022 and by AIPlan4EU, a
project funded by EU Horizon 2020 research and innovation
programme under GA n. 101016442 (since 2021).

References
[Aineto et al., 2020] Diego Aineto, Sergio Jimenez, and Eva

Onaindia. Observation Decoding with Sensor Models:
Recognition Tasks via Classical Planning. In ICAPS, 2020.

[Alur et al., 1995] Rajeev Alur, Costas Courcoubetis, Nico-
las Halbwachs, Thomas A. Henzinger, Pei-Hsin Ho,
Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Ser-
gio Yovine. The Algorithmic Analysis of Hybrid Systems.
Theor. Comput. Sci., 138(1):3–34, 1995.

[Annpureddy et al., 2011] Yashwanth Annpureddy, Che Liu,
Georgios Fainekos, and Sriram Sankaranarayanan. S-
taliro: A tool for temporal logic falsification for hybrid
systems. In TACAS, 2011.

[Bogomolov et al., 2015] Sergiy Bogomolov, Daniele Mag-
azzeni, Stefano Minopoli, and Martin Wehrle. PDDL+
planning with hybrid automata: Foundations of translat-
ing must behavior. In ICAPS, 2015.

[Bryce et al., 2015] Daniel Bryce, Sicun Gao, David J.
Musliner, and Robert P. Goldman. SMT-based nonlinear
PDDL+ planning. In AAAI, 2015.

[Cashmore et al., 2020] Michael Cashmore, Daniele Maga-
zzeni, and Parisa Zehtabi. Planning for hybrid systems via
satisfiability modulo theories. J. Artif. Intell. Res., 67:235–
283, 2020.

[Cimatti et al., 2015] Alessandro Cimatti, Alberto Griggio,
Sergio Mover, and Stefano Tonetta. HyComp: An SMT-
Based Model Checker for Hybrid Systems. In TACAS,
2015.

[Corso et al., 2020] Anthony Corso, Robert J Moss, Mark
Koren, Ritchie Lee, and Mykel J Kochenderfer. A sur-
vey of algorithms for black-box safety validation. arXiv
preprint arXiv:2005.02979, 2020.

[Doyen et al., 2018] Laurent Doyen, Goran Frehse,
George J. Pappas, and André Platzer. Verification of
Hybrid Systems. In Handbook of Model Checking, pages
1047–1110. Springer, 2018.

[Fox and Long, 2006] Maria Fox and Derek Long. Mod-
elling mixed discrete-continuous domains for planning. J.
Artif. Intell. Res., 27:235–297, 2006.

[Fox et al., 2017] Maria Fox, Derek Long, and Daniele Mag-
azzeni. Explainable planning. CoRR, abs/1709.10256,
2017.

[Frehse, 2008] Goran Frehse. PHAVer: algorithmic verifi-
cation of hybrid systems past hytech. Int. J. Softw. Tools
Technol. Transf., 10(3):263–279, 2008.

[Henzinger et al., 1997] Thomas A. Henzinger, Pei-Hsin
Ho, and Howard Wong-Toi. HYTECH: A model checker
for hybrid systems. Int. J. Softw. Tools Technol. Transf.,
1(1-2):110–122, 1997.

[Henzinger, 2000] Thomas A. Henzinger. The Theory of Hy-
brid Automata. In Verification of Digital and Hybrid Sys-
tems, pages 265–292. Springer Berlin Heidelberg, 2000.

[Kong et al., 2015] Soonho Kong, Sicun Gao, Wei Chen, and
Edmund M. Clarke. dReach: δ-Reachability Analysis for
Hybrid Systems. In TACAS, 2015.

[Makhlouf and Kowalewski, 2014] Ibtissem Ben Makhlouf
and Stefan Kowalewski. Networked cooperative platoon
of vehicles for testing methods and verification tools. In
ARCH@ CPSWeek, 2014.

[Penna et al., 2009] Giuseppe Della Penna, Daniele Maga-
zzeni, Fabio Mercorio, and Benedetto Intrigila. UPMur-
phi: A Tool for Universal Planning on PDDL+ Problems.
In ICAPS, 2009.

[Piotrowski et al., 2016] Wiktor Mateusz Piotrowski, Maria
Fox, Derek Long, Daniele Magazzeni, and Fabio Merco-
rio. Heuristic planning for hybrid systems. In AAAI, 2016.

[Plaku et al., 2009] Erion Plaku, Lydia E. Kavraki, and
Moshe Y. Vardi. Hybrid systems: from verification to
falsification by combining motion planning and discrete
search. Formal Methods Syst. Des., 34(2):157–182, 2009.

[Ramı́rez and Geffner, 2009] Miquel Ramı́rez and Hector
Geffner. Plan Recognition as Planning. In IJCAI, 2009.

[Ramı́rez et al., 2017] Miquel Ramı́rez, Enrico Scala, Patrik
Haslum, and Sylvie Thiébaux. Numerical integration and
dynamic discretization in heuristic search planning over
hybrid domains. CoRR, abs/1703.04232, 2017.

[Scala et al., 2016] Enrico Scala, Patrik Haslum, Sylvie
Thiébaux, and Miquel Ramı́rez. Interval-based relaxation
for general numeric planning. In ECAI, 2016.

[Scala et al., 2020] Enrico Scala, Alessandro Saetti, Ivan Se-
rina, and Alfonso Emilio Gerevini. Search-guidance
mechanisms for numeric planning through subgoaling re-
laxation. In ICAPS, 2020.

[Wehrle and Helmert, 2009] Martin Wehrle and Malte
Helmert. The Causal Graph Revisited for Directed Model
Checking. In SAS, 2009.

[Zhang et al., 2018] Zhenya Zhang, Gidon Ernst, Sean Sed-
wards, Paolo Arcaini, and Ichiro Hasuo. Two-layered fal-
sification of hybrid systems guided by monte carlo tree
search. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2894–2905, 2018.

[Zutshi et al., 2014] Aditya Zutshi, Jyotirmoy V. Deshmukh,
Sriram Sankaranarayanan, and James Kapinski. Multiple
shooting, CEGAR-based falsification for hybrid systems.
In EMSOFT, 2014.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4573

	Introduction
	Preliminaries
	The HS Explanation Problem
	HS Explanation as Planning
	Empirical Evaluation
	Conclusions

