File:LRO WAC South Pole Mosaic.jpg

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Original file(6,082 × 6,082 pixels, file size: 10.84 MB, MIME type: image/jpeg)

Summary

LROC Wide Angle Camera (WAC) mosaic of the lunar South Pole region, width ~600 km (372 miles). The lunar South Pole is one of the most compelling places in the entire Solar System. This region of the Moon is important for both lunar scientists and engineers planning future human exploration. The towering massifs of the South Pole-Aitken Basin can be accessed, and these massifs contain impact melt that will allow scientists to unambiguously determine the age of this huge basin. Furthermore, permanently shadowed craters may harbor reservoirs of ices and other volatile compounds that could serve as a tremendously valuable resource for future explorers. Additionally, these volatile deposits could contain a priceless record of water composition dating back to the beginning of our Solar System, an incomparable dataset for astrobiology investigations. Finally, a few mountain peaks near the pole (just west and east of the rim Shackleton crater) are illuminated for extended periods of time, providing the near-constant solar power that would be required for the economical operation of a permanent lunar outpost.

Licensing

Lua error in package.lua at line 80: module 'strict' not found.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current09:50, 3 January 2017Thumbnail for version as of 09:50, 3 January 20176,082 × 6,082 (10.84 MB)127.0.0.1 (talk)LROC Wide Angle Camera (WAC) mosaic of the lunar South Pole region, width ~600 km (372 miles). The lunar South Pole is one of the most compelling places in the entire Solar System. This region of the Moon is important for both lunar scientists and engineers planning future human exploration. The towering massifs of the South Pole-Aitken Basin can be accessed, and these massifs contain impact melt that will allow scientists to unambiguously determine the age of this huge basin. Furthermore, permanently shadowed craters may harbor reservoirs of ices and other volatile compounds that could serve as a tremendously valuable resource for future explorers. Additionally, these volatile deposits could contain a priceless record of water composition dating back to the beginning of our Solar System, an incomparable dataset for astrobiology investigations. Finally, a few mountain peaks near the pole (just west and east of the rim Shackleton crater) are illuminated for extended periods of time, providing the near-constant solar power that would be required for the economical operation of a permanent lunar outpost.
  • You cannot overwrite this file.