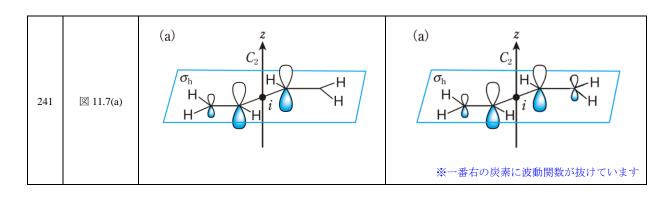
頁	行	誤	正
6	式(1.14)	$\frac{\partial^2 \psi}{\partial x^2} = \frac{k^2}{\omega^2}, \frac{\partial^2 \psi}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$	$\frac{\partial^2 \psi}{\partial x^2} = \frac{k^2}{\omega^2} \frac{\partial^2 \psi}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$
8	式(1.16)の 2 行下	ともよばれるが、現在は定義値である (16 頁参 照).	ともよばれる. ※2019 年 5 月の SI 基本単位の再定義による
9	式(1.19)の 5 行下	μ_0 は A (アンペア)の定義から決まる定義値で $\mu_0 = 4\pi \times 10^{-7}~H~m^{-1}$ $(H~m^{-1}=N~A^{-2}=Wb~A^{-1}~m^{-1})$ である.	μ_0 は以前は A(アンペア)の定義から決まる定義値 $(4\pi\times10^{-7}\mathrm{Hm^{-1}})$ であったが、現在は誤差を含む 物理量である。 $\mu_0=12.566\times10^{-7}\mathrm{Hm^{-1}}$ $(\mathrm{Hm^{-1}=NA^{-2}=WbA^{-1}m^{-1}})$ ※2019 年 5 月の SI 基本単位の再定義による
9	例題 1.4 終盤	上式を r から ∞ までの範囲で積分すると次式が得られる. $V = -\int_r^\infty F \mathrm{d}x = -\int_r^\infty \frac{kq_1q_2}{x^2} \mathrm{d}x = \frac{kq_1q_2}{r^2}$	上式を ∞ (基準値 $V=0$) から r までの範囲で積分すると次式が得られる. $V=-\int_{\infty}^{r}F\mathrm{d}x=-\int_{\infty}^{r}\frac{kq_{1}q_{2}}{x^{2}}\mathrm{d}x=\frac{kq_{1}q_{2}}{r}$
10	コラム 2つ目の式の 2行下	デバイ(P. J. W. Debye,1884~1966:1936 物)	デバイ(P. J. W. Debye,1884~1966:1 936 化)
16	式(1.24)の 次の行	定義値である μ_0 との間に式 (1.23) の関係が成立するため、 ϵ_0 も定義値となった.	削除 ※2019 年 5 月の SI 基本単位の再定義による
21	7 行目	電子の質量 m_e も決められた. $e=1.602\times10^{-19}\mathrm{C}, m_e=9.109\times10^{-31}\mathrm{kg}$	電子の質量 m_e も決められた. 現在 e は定義値で、A $(アンペア) の定義に関連する.$ $e=1.602176634\times10^{-19}\mathrm{C}, \ m_e=9.109\times10^{-31}\mathrm{kg}$ ※2019 年 5 月の SI 基本単位の再定義による
28	式(2.3)	\dots , $h = 6.626 \times 10^{-34} \text{ J s}$	···, $h = 6.62607015 \times 10^{-34} \text{ J s}$
28	式(2.3)の 1~2 行下	量子力学の基本量である.	量子力学の基本量である. 現在では定義値で、 質量の単位 (kg) の定義に関連する. ※2019 年 5 月の SI 基本単位の再定義による
36	例題 2.5 表中の べき指数	10 ⁻⁴ 10 ⁻⁵	10 ¹⁴ (7 箇所) 10 ¹³ (2 箇所)
38	2 行目	principle	princip <mark>al</mark>
39	例題 2.6 式(2)	$r = \frac{\mathcal{E}_0 h^2}{m_e e^2} n^2$	$r = \frac{\varepsilon_0 h^2}{\pi m_e e^2} n^2$
49	例題 3.1 3 行目	運度量	運 <mark>動</mark> 量

89	下から 4 行目	T, R には hyperbolic 関数が含まれているため	T,Rには正弦(sin)関数が現れるため [参考] $T = \frac{1}{1 + \frac{V^2 \sin^2(k_1 L)}{4E(E - V)}}, R = \frac{1}{1 + \frac{4E (E - V)}{V^2 \sin^2(k_1 L)}}$
98	最下行	n = 1	v = 0
101	図 5.6	$ \begin{array}{c cccc} 10 & - & & - & (2,3) \\ 9 & - & & - & (1,3) \end{array} $	10 - (3,1)(1,3) - (2,3) - (1,3) 8 - (2,2)
103	例題 5.11 解の式	$E = \frac{h^2}{8mL^2} =$	$E = \frac{h^2}{8mL^2} (n_1^2 + n_2^2 + n_3^2) =$
106	青い枠内 4 行目	$\psi(\theta+2n\pi)=A\mathrm{e}^{\mathrm{i}k(\theta+2n\pi)}+B\mathrm{e}^{-\mathrm{i}k(\theta+2n\pi)}=\psi(\theta)\mathrm{e}^{\mathrm{i}k2n\pi}$ となるので,周期的境界条件が成立するためには $\mathrm{e}^{\mathrm{i}k2n\pi}=1$	$A\mathrm{e}^{\mathrm{i}k heta}(1-\mathrm{e}^{\mathrm{i}k2n\pi})+B\mathrm{e}^{-\mathrm{i}k heta}(1-\mathrm{e}^{-\mathrm{i}k2n\pi})=0$ となるので、周期的境界条件が成立するためには $\mathrm{e}^{\pm\mathrm{i}k2n\pi}=1$
112	10 行目		
131	6.2.3 項 1 行目	方位角 θ	天頂角 θ
117	式(6.1)	$\left[-\frac{\hbar^2}{2\mu} \nabla^2 - \frac{Ze^2}{4\pi\varepsilon_0} \right] \psi(\mathbf{r}) = E\psi(\mathbf{r})$	$\left[-\frac{\hbar^2}{2\mu} \nabla^2 - \frac{Ze^2}{4\pi\varepsilon_0 r} \right] \psi(r) = E\psi(r)$
147	6 行目	$\Psi(r_1)(r_2) = \varphi(r_1)\varphi(r_2)$ で近似し、	$\Psi(r_1,r_2)=\varphi(r_1)\varphi(r_2)$ で近似し、
154	例題 7.4 の 4 行上	(spin-orbit interation)	(spin-orbit interaction)
155	1 行目	励起状態 1s²2s²2p ⁶ 3s¹3p¹	励起状態 1s²2s²2p ⁶ 3s ⁰ 3p ¹
179	図中 (2 箇所)	$\sqrt{\left(\frac{\alpha_{\rm A}-\alpha_{\rm B}}{2}\right)+\beta^2}$	$\sqrt{\left(\frac{\alpha_{\rm A}-\alpha_{\rm B}}{2}\right)^2+\beta^2}$
200	式(9.22)	$\begin{vmatrix} \alpha - E & \beta & 0 & 0 & 0 & \beta \\ \beta & \alpha - E & \beta & 0 & 0 & 0 \\ 0 & \beta & \alpha - E & 0 & 0 & 0 \\ 0 & 0 & \beta & \alpha - E & \beta & 0 \\ 0 & 0 & 0 & \beta & \alpha - E & \beta \\ \beta & 0 & 0 & 0 & \beta & \alpha - E \end{vmatrix}$	$\begin{vmatrix} \alpha - E & \beta & 0 & 0 & 0 & \beta \\ \beta & \alpha - E & \beta & 0 & 0 & 0 \\ 0 & \beta & \alpha - E & \beta & 0 & 0 \\ 0 & 0 & \beta & \alpha - E & \beta & 0 \\ 0 & 0 & 0 & \beta & \alpha - E & \beta \\ \beta & 0 & 0 & 0 & \beta & \alpha - E \end{vmatrix}$
208	式(10.3)の 3 行下	$k=1.3806 \!\!\times\! 10^{-23}\mathrm{JK^{-1}}$ と決定され,ボルツマン定数と名づけられた.	$k=1.380649 \times 10^{-23} \mathrm{J K^{-1}}$ と決定され、ボルツマン定数と名づけられた.現在では定義値で、温度(K)の定義に関連する. ※2019 年 5 月の SI 基本単位の再定義による
231	式(11.5)	$c = v\lambda$	$c= u\lambda$ $※「ブイ」ではなく「ニュー」です$



[2021年10月5日作成]