『はじめての制御工学 改訂第2版』第1~5刷正誤表

この度は、標記書籍をお買い求めいただき誠にありがとうございました。標記書籍に誤りがありました。訂正し、深くお詫び申し上げます。

【第1~3刷】

ペー ジ数	行数	誤	正
131	8 行日 $U(s) = K_r T_r$		$u(t) = K_r T_r$
147	6行目 Kd > 2 の場合		Kd > 1 の場合
161	12 行目 (6)(1)と同じ制御対象に対し,		(6)(5)と同じ制御対象に対し,
176	9行目 $\sqrt{2}$, 2, 2, 10, 100 の場合の		$\sqrt{2}$, 2, 10, 100 の場合の
212	16~17行目	収束すば ¹⁷⁾ ,	収束すれば ¹⁷⁾ ,
222	最終行	i) C_1 ,(s) C_2 (s), C_3 (s) $\not\in$	i) $C_1(s), C_2(s), C_3(s) \not\in$
	13 行目	始めよう ³⁾	始めよう ²⁾
248	23 行目	考えよう ⁴⁾	考えよう ³⁾
240	脚注1行目	3) (13.4), (13.5) 式に	2) (13.4), (13.5) 式に
	脚注最終行	4) ここでは,	3) ここでは、
281	2~3行目	$y(t) == \mathcal{L}^{-1}\left[G(s)\frac{1}{s}\right]$	$y(t) = \mathcal{L}^{-1}\left[G(s)\frac{1}{s}\right]$
289	下から7行目 $U(s) = \frac{K_r T_s}{s}$		$U(s) = \frac{K_r T_r}{s}$
311	8 行目 $ \angle G(j\omega) = \tan^{-1} \frac{\frac{\omega}{\omega^2 + 1}}{\frac{1}{\omega^2 + 1}} = \tan^{-1} \omega $		$\angle G(j\omega) = \tan^{-1} \frac{-\frac{\omega}{\omega^2 + 1}}{\frac{1}{\omega^2 + 1}} = -\tan^{-1}\omega$
312	5 行日 $a^2 = \frac{1-x}{x}, y^2 = \frac{a^2}{(a^2)^2 + 1}$		$a^2 = \frac{1-x}{x}, y^2 = \frac{a^2}{(a^2+1)^2}$

【第1~5刷】

頁数	行数	誤	正
26	6 行目	ただし、容器の熱容量	ただし、液体の熱容量
26	7 行目	<i>k</i> [℃·J/s] または <i>k</i> [J/℃·s]	<i>k</i> [J/(s·℃)]
116	8 行目	(➡演習問題 (3)).	(➡演習問題 (2)).
255	下から 7行目	$RC\frac{\mathrm{d}h(t)}{\mathrm{d}t}+h(t)=u(t)$	$RC\frac{\mathrm{d}h(t)}{\mathrm{d}t} + h(t) = Ru(t)$
255	下から 5 行目	タンク 1 の流入流量は	タンク 2 の流入流量は

講談社 1ページ

頁数	行数	誤	正
278	11 行目	$H(s) = \frac{K(ds+k)}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{2\zeta\omega_n s + \omega_n^2}{\omega_n^2 (s^2 + 2\zeta\omega_n s + \omega_n^2)}$	$H(s) = \frac{K\omega_n^2 (ds + k)}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{2\zeta\omega_n s + \omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
278	下から 7 行目	$f_g\left(t ight) = \mathcal{L}^{-1}\left[rac{m_s g\left(2\zeta\omega_n s + \omega_n^2 ight)}{\omega_n^2 s\left(s^2 + 2\zeta\omega_n s + \omega_n^2 ight)} ight]$	$f_g\left(t ight) = \mathcal{L}^{-1}\left[rac{m_s g\left(2\zeta\omega_n s + \omega_n^2 ight)}{s\left(s^2 + 2\zeta\omega_n s + \omega_n^2 ight)} ight]$
279	1~8 行目	$\begin{split} f_{g}\left(t\right) &= \mathcal{L}^{-1} \left[\frac{m_{s}g\left(2\zeta\omega_{s}s + \omega_{s}^{2}\right)}{\sigma_{s}^{2}s\left(s^{2} + 2\zeta\omega_{s}s + \omega_{s}^{2}\right)} \right] \\ &= \mathcal{L}^{-1} \left[\frac{m_{s}g}{\sigma_{s}^{2}} \left(\frac{1}{s} + \frac{\zeta - j\sqrt{1 - \zeta^{2}}}{2j\sqrt{1 - \zeta^{2}}} + \frac{1}{s + \zeta\omega_{s} - j\sqrt{1 - \zeta^{2}}\omega_{s}} \right. \right. \\ &\qquad \left \frac{\zeta + j\sqrt{1 - \zeta^{2}}}{2j\sqrt{1 - \zeta^{2}}} + \frac{1}{s + \zeta\omega_{s} + j\sqrt{1 - \zeta^{2}}\omega_{s}} \right] \\ &= \frac{m_{s}g}{\sigma_{s}^{2}} \left[1 + \frac{\zeta - j\sqrt{1 - \zeta^{2}}}{2j\sqrt{1 - \zeta^{2}}} e^{-(\omega_{m} + l - \zeta^{2}\omega_{m})} - \frac{\zeta + j\sqrt{1 - \zeta^{2}}}{2j\sqrt{1 - \zeta^{2}}} e^{-(\omega_{m} + l - \zeta^{2}\omega_{m})} \right] \\ &= \frac{m_{s}g}{\sigma_{s}^{2}} \left[1 + e^{-\omega_{s}t} \left[\frac{\zeta (e^{j\sqrt{1 - \zeta^{2}}\omega_{s}t - e^{-j\sqrt{1 - \zeta^{2}}\omega_{s}t}}}{2j\sqrt{1 - \zeta^{2}}} - \frac{j\sqrt{1 - \zeta^{2}}\left(e^{j\sqrt{1 - \zeta^{2}}\varepsilon^{2}t + e^{-j\sqrt{1 - \zeta^{2}}\omega_{s}t}}\right)}{2j\sqrt{1 - \zeta^{2}}} \right] \\ &= \frac{m_{s}g}{\sigma_{s}^{2}} \left[1 + e^{-\omega_{s}t} \left(\frac{\zeta}{\sqrt{1 - \zeta^{2}}} \sin(\sqrt{1 - \zeta^{2}}\omega_{s}t - \cos\sqrt{1 - \zeta^{2}}\omega_{s}t} \right) \right] \\ &= \frac{m_{s}g}{\sigma_{s}^{2}} \left[1 + \frac{e^{-\omega_{s}t}}{\sqrt{1 - \zeta^{2}}} \sin(\sqrt{1 - \zeta^{2}}\omega_{s}t - \phi) \right], \phi = \tan^{-1}\frac{\sqrt{1 - \zeta^{2}}}{\zeta} \end{split}$	$\begin{split} f_g\left(t\right) &= \mathcal{L}^{-1} \left[\frac{m_s g\left(2\zeta o_s s + o_s^2\right)}{s\left(s^2 + 2\zeta o_s s + o_s^2\right)} \right] \\ &= \mathcal{L}^{-1} \left[m_s g\left(\frac{1}{s} + \frac{\zeta - j\sqrt{1 - \zeta^2}}{2j\sqrt{1 - \zeta^2}} \frac{1}{s + \zeta o_s - j\sqrt{1 - \zeta^2} o_s} \right. \right. \\ &\qquad \left \frac{\zeta + j\sqrt{1 - \zeta^2}}{2j\sqrt{1 - \zeta^2}} \frac{1}{s + \zeta o_s + j\sqrt{1 - \zeta^2} o_s} \right] \\ &= m_t g\left\{ 1 + \frac{\zeta - j\sqrt{1 - \zeta^2}}{2j\sqrt{1 - \zeta^2}} e^{-(\delta o_s - j\sqrt{1 - \zeta^2} o_s)} - \frac{\zeta + j\sqrt{1 - \zeta^2}}{2j\sqrt{1 - \zeta^2}} e^{-(\delta o_s + j\sqrt{1 - \zeta^2} o_s)} \right\} \\ &= m_t g\left\{ 1 + e^{-\zeta o_s t} \left\{ \frac{\zeta \left(e^{\sqrt{1 - \zeta^2} o_s t} - e^{-j\sqrt{1 - \zeta^2} o_s t}\right)}{2j\sqrt{1 - \zeta^2}} - \frac{j\sqrt{1 - \zeta^2} \left(e^{j\sqrt{1 - \zeta^2} o_s} - e^{-j\sqrt{1 - \zeta^2} o_s t}\right)}{2j\sqrt{1 - \zeta^2}} \right] \\ &= m_t g\left\{ 1 + e^{-\zeta o_s t} \left(\frac{\zeta}{\sqrt{1 - \zeta^2}} \sin\sqrt{1 - \zeta^2} o_s t - \cos\sqrt{1 - \zeta^2} o_s t \right) \right\} \\ &= m_t g\left\{ 1 + e^{-\zeta o_s t} \left(\frac{\zeta}{\sqrt{1 - \zeta^2}} \sin\sqrt{1 - \zeta^2} o_s t - \cos\sqrt{1 - \zeta^2} o_s t \right) \right\} \\ &= m_t g\left\{ 1 + \frac{e^{-\zeta o_s t}}{\sqrt{1 - \zeta^2}} \sin\left(\sqrt{1 - \zeta^2} o_s t - o_s \sqrt{1 - \zeta^2} o_s t \right) \right\} \\ &= m_t g\left\{ 1 + \frac{e^{-\zeta o_s t}}{\sqrt{1 - \zeta^2}} \sin\left(\sqrt{1 - \zeta^2} o_s t - o_s \sqrt{1 - \zeta^2} o_s t \right) \right\} \end{aligned}$
282	4 行目	$= \mathcal{L}^{-1} \left[\frac{1}{s} + \frac{1}{5(s-3)} + \frac{9}{5(s+2)} - \frac{1}{s+3} \right]$ $= 1 + \frac{1}{5} e^{3t} + \frac{9}{5} e^{-2t} - e^{-3t}$	$= \mathcal{L}^{-1} \left[-\frac{1}{s} + \frac{1}{5(s-3)} + \frac{9}{5(s+2)} - \frac{1}{s+3} \right]$ $= -1 + \frac{1}{5} e^{3t} + \frac{9}{5} e^{-2t} - e^{-3t}$
314	下から 7 行目	= (s+1)(s+1)(s+6) + (s+1)(s+3)s	= (s + 1)(s + 2)(s + 6) + (s + 1)(s + 3)s

講談社 2 ページ [2020 年 7 月 3 日作成]