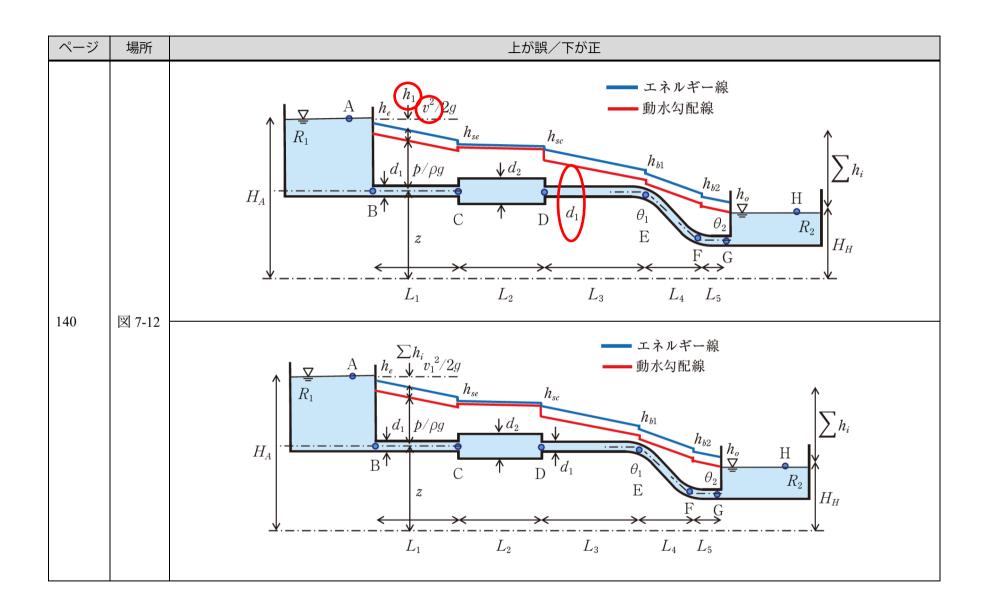
『土木の基礎固め 水理学』(2017年11月発行第1刷) 訂正表


以下の箇所に誤りがありました。お詫びして訂正いたします。

ページ	場所	誤	正
40	式 (3-3)	$\frac{1}{2}pv^2 + \rho gz + p = E$	$\frac{1}{2}\rho v^2 + \rho gz + p = E$ (ギリシア文字のロー)
60	最終行	(1) 流量は式(3-49) より,	(1) 流量は式 (3-73) より,
63	⊠ 3-22	① ② h	(管①と管②の下の断面積を定義)
72	式 (4-15)	$Q\frac{\pi d^2}{4} = v$	$Q = \frac{\pi d^2}{4} v$

ページ	場所	誤	正
124	表 6-2 一番右の列	$ \begin{array}{c} h_s < 0.34 \\ \hline 0.34 < h_s < 6.0 \\ \hline 6.0 < h_s \\ \hline \delta_s \end{array} $	$\frac{\frac{k_s}{\delta_s} < 0.34}{0.34 < \frac{k_s}{\delta_s} < 6.0}$ $\frac{6.0 < \frac{k_s}{\delta_s}}{\delta_s}$
133	図 7-5 右縦軸数値	0.002 0.0001 0.0008 0.0006 0.0004	0.002 0.001 0.0008 0.0006 0.0004
138	下から2行目	$K_{b1} = 0.131 + 0.1632(d/\gamma), K_{b2} = \left(\frac{\theta}{90}\right)^{7/2}$	$K_{b1} = 0.131 + 0.1632(d/\gamma)^{7/2}, K_{b2} = \left(\frac{\theta}{90}\right)^{1/2}$
141	1 行目 (表 7-2 の下)	図 7-12 の D 点まで	図 7-12 の D 点直後まで
141	例題 7-4 の 問題文	エネルギー補正係数 $\alpha=1.0$,, 流入口損失係数は 0.5 とする. また, $d_1=0.1$ m, $d_1=0.2$ m, $d_3=0.08$ m,, $h_1=40$ m, $h_2=20$ mとする.	エネルギー補正係数 $\alpha=1.00$,, 流入口損失係数は 5.00×10^{-1} とする。また, $d_1=1.00\times10^{-1}$ m , $d_2=2.00\times10^{-1}$ m , $d_3=8.00\times10^{-2}$ m,, $h_1=40.0$ m, $h_2=20.0$ mとする。

ページ	場所	誤	正
142	例題 7-4 の 解答(右段)	$v_1 = 0.61627 \dots = 0.616 \text{ [m/s]}$ $v_2 = 0.15407 \dots = 0.154 \text{ [m/s]}$ $v_3 = 0.04726 \dots = 0.0473 \text{ [m/s]}$	$v_1 = 0.61609 \dots = 0.616 \text{ [m/s]}$ $v_2 = 0.15402 \dots = 0.154 \text{ [m/s]}$ $v_3 = 0.96265 \dots = 0.963 \text{ [m/s]}$
143	図表番号	☑ 7-3	表 7-3
145	例題 7-5 の 解答(右段)	$H_{l_{max}} = H - \frac{f(L_1 + L_2)}{d} \left(\frac{Q_{max}}{\pi d^2 / 4}\right)^2$	$H_{l_{-}max} = H - \frac{f(L_1 + L_2)}{d} \left(\frac{Q_{\text{max}}}{\pi d^2/4}\right)^2 \frac{1}{2g}$
147	式 (7-21b) 式 (7-21c) 式 (7-21d)	$H_{1} = H_{A} + \left(f_{1} \frac{L_{1}}{d_{1}} \frac{1}{2g} + K_{e1} + K_{j1}\right) \frac{Q_{1}^{2}}{\left(\pi d_{1}^{2} / 4\right)^{2}}$ $H_{A} = H_{2} + \left(f_{2} \frac{L_{2}}{d_{2}} \frac{1}{2g} + K_{o2} + K_{j2}\right) \frac{Q_{2}^{2}}{\left(\pi d_{2}^{2} / 4\right)^{2}}$ $H_{A} = H_{3} + \left(f_{3} \frac{L_{3}}{d_{3}} \frac{1}{2g} + K_{o3} + K_{j3}\right) \frac{Q_{3}^{2}}{\left(\pi d_{3}^{2} / 4\right)^{2}}$	$H_{1} = H_{A} + \left(f_{1} \frac{L_{1}}{d_{1}} + K_{e1} + K_{j1}\right) \frac{Q_{1}^{2}}{\left(\pi d_{1}^{2}/4\right)^{2}} \frac{1}{2g}$ $H_{A} = H_{2} + \left(f_{2} \frac{L_{2}}{d_{2}} + K_{o2} + K_{j2}\right) \frac{Q_{2}^{2}}{\left(\pi d_{2}^{2}/4\right)^{2}} \frac{1}{2g}$ $H_{A} = H_{3} + \left(f_{3} \frac{L_{3}}{d_{3}} + K_{o3} + K_{j3}\right) \frac{Q_{3}^{2}}{\left(\pi d_{3}^{2}/4\right)^{2}} \frac{1}{2g}$
148	演習問題【1】の 問題文	エネルギー補正係数 α は 1.0 ,, 流入口損失係数は 0.5 とする. また, $d_1=0.2$ m, $d_1=0.1$ m,, $h_1=40$ m, $h_2=0.1$ mとする.	エネルギー補正係数 α は 1.00 ,, 流入口損失係数は 5.00×10^{-1} とする.また, $d_1=2.00\times 10^{-1}$ m, $d_2=1.00\times 10^{-1}$ m,, $h_1=40.0$ m, $h_2=1.00\times 10^{-1}$ mとする.
172	下から9行目の式	$h_2 = -\frac{h_1}{2} \left(1 \pm \sqrt{1 + 8q^2/g{h_1}^3} \right)$	$h_2 = -\frac{h_1}{2} \left(1 \pm \sqrt{1 + 8q^2/g{h_1}^3} \right)$
225	左段下から6行目の式	$h_1 = h_f + \sum h_l$	$h_1 = h_f + \sum h_l + h_2 + \frac{{v_2}^2}{2g}$
225	左段下から5~4行目 の式	$h_1 = \frac{fL_1}{d_1} \frac{{v_1}^2}{2g} + \frac{fL_2}{d_2} \frac{{v_2}^2}{2g} + K_l \frac{{v_1}^2}{2g} + K_{sc} \frac{{v_2}^2}{2g}$	$h_1 - h_2 = \frac{fL_1}{d_1} \frac{{v_1}^2}{2g} + \frac{fL_2}{d_2} \frac{{v_2}^2}{2g} + K_l \frac{{v_1}^2}{2g} + K_{sc} \frac{{v_2}^2}{2g} + \frac{{v_2}^2}{2g}$

ページ	場所	誤	正
225	右段1行目の式	$v_{1} = \sqrt{\frac{2gh_{1}}{K_{l} + \frac{fL_{1}}{d_{1}} + K_{SC}\left(\frac{d_{1}}{d_{2}}\right)^{4} + \left(\frac{fL_{2}}{d_{2}}\right)\left(\frac{d_{1}}{d_{2}}\right)^{4}}$	$v_{1} = \sqrt{\frac{2g(h_{1} - h_{2})}{K_{l} + \frac{fL_{1}}{d_{1}} + K_{sc} \left(\frac{d_{1}}{d_{2}}\right)^{4} + \left(\frac{fL_{2}}{d_{2}}\right) \left(\frac{d_{1}}{d_{2}}\right)^{4} + \left(\frac{d_{1}}{d_{2}}\right)^{4}}}$
225	右段4行目と 5行目の式	$v_1 = 0.4289 = 0.429 \text{ [m/s]}$ $v_2 = 1.715 \dots = 1.72 \text{ [m/s]}$	$v_1 = 0.309956 = 0.310 \text{ [m/s]}$ $v_2 = 1.23982 = 1.24 \text{ [m/s]}$
227	第8章 演習問題【5】(1)の 解答	$E = h + v^2/2g = h + Q^2/2gh^2B^2$	$E = H + v^2/2g = H + Q^2/2gH^2B^2$
227	第8章 演習問題【5】(2)の 解答	$\partial E/\partial h = 1 - Q^2/gB^2h^3 = 0$	$\partial E/\partial \mathbf{H} = 1 - Q^2/gB^2\mathbf{H}^3 = 0$
227	第8章 演習問題【5】(4)の 解答	$E = h + Q^2/2gh^2B^2$	$E = H + Q^2/2gH^2B^2$

ページ	場所	上が誤/下が正						
			T					
		地点	В-	B+	C –	C+	D-	•••
		全水頭	H	$H_1 = H - h_e$	$H_2 = H_1 - h_{f1}$	$H_3 = H_2 - h_{se}$	$H_4 = H_3 - h_{f2}$	•••
		速度水頭	0	$v_1^{\ 2}/2g$	${v_1}^2/2g$	$(v_1^2)^2 2g$	${v_2}^2/2g$	•••
		損失形態	_	流入	摩擦	急拡	摩擦	•••
		損失水頭		$h_e = K_e \frac{{v_1}^2}{2g}$	$h_{f1} = \frac{f_1 L_1}{d_1} \frac{{v_1}^2}{2g}$	$h_{se} = K_{se} \frac{{v_1}^2}{2g}$	$h_{f2} = \frac{f_2 L_2}{d_2} \underbrace{v_1^2}_{2g}$	
		ピエゾ水頭	H	$H_1 - v_1^2 / 2g$	$H_2 - v_1^2 / 2g$	$H_3 - v_1^2 2g$	$H_4 - v_1^2 2g$	•••
141	表 7-2							
		地点	В-	B+	C –	C+	D-	
		全水頭	H_A	$H_1 = H - h_e$	$H_2 = H_A - h_{f1}$	$H_3 = H_2 - h_{se}$	$H_4 = H_3 - h_{f2}$	•••
		速度水頭	0	${v_1}^2/2g$	${v_1}^2/2g$	$v_2^{\ 2}/2g$	${v_2}^2/2g$	
		損失形態	_	流入	摩擦	急拡	摩擦	
		損失水頭		$h_e = K_e \frac{v_1^2}{2g}$	$h_{f1} = \frac{f_1 L_1}{d_1} \frac{{v_1}^2}{2g}$	$h_{se} = K_{se} \frac{v_1^2}{2g}$	$h_{f2} = \frac{f_2 L_2}{d_2} \frac{{v_2}^2}{2g}$	•••
		ピエゾ水頭	H_A	$H_1 - v_1^2 / 2g$	$H_2 - v_1^2 / 2g$	$H_3 - v_2^2/2g$	$H_4 - v_2^2 / 2g$	•••

ページ	場所	上が誤/下が正							
		B+	C-	C+	D+	E-	E+		
		39. 99	35. 15	35. 14	34. 82	20. 04	20.0		
		1.94×10^{-2}	1.94×10^{-2}	1.94×10^{-2}	4.73×10^{-2}	4.73×10^{-2}	4.73×10^{-2}		
		流入	摩擦	急拡	急縮	摩擦	流出		
		9.68×10^{-3}	4. 84	1.09×10^{-2}	2.17×10^{-2}	14.8	4.73×10^{-2}		
		39. 97	35. 13	35. 12	34. 77	20	20.0		
143	表 7-3								
		B+	C-	C+	D+	E-	E+		
		39. 99	35. 15	35. 14	34. 81	20. 05	20.0		
		1.93×10^{-2}	1.93×10^{-2}	1.93×10^{-2}	4.72×10^{-2}	4.72×10^{-2}	0		
		流入	摩擦	急拡	急縮	摩擦	流出		
		9.67×10^{-3}	4. 84	1.09×10^{-2}	3.31×10^{-2}	14.8	4.72×10^{-2}		
		39. 97	35. 13	35. 12	34. 76	20. 0	20.0		

ページ	場所	上が誤/下が正				
			B+	C –	C+	D-
			40. 0	39. 4	39. 3	0. 178
			4.91×10^{-3}	4.91×10^{-3}	7.86×10^{-2}	7.86×10^{-2}
			流入	摩擦	急縮	摩擦
			2.45×10^{-3}	0.614	3.38×10^{-2}	2. 34
			40. 0	39. 4	39. 3	0. 1
225	表2					
			B+	C –	C+	D-
			40. 0	39. 4	39. 4	0. 178
			4.90×10^{-3}	4.90×10^{-3}	7.83×10^{-2}	7.83×10^{-2}
			流入	摩擦	急縮	摩擦
			2.45×10^{-3}	0.612	3.37×10^{-2}	39. 2
			40. 0	39. 4	39. 3	0. 100