The Fractional Hilbert Transform of Generalized Functions
Abstract
:1. Introduction
2. Preliminaries
Boehmian Space
- ;
- ;
- ;
- If and then
- If ;
- If and then
- ;
- .
3. Results
3.1. Convolutional Structure for Fractional Hilbert Transform
3.2. Abstract Construction of Boehmians
- , ;
- , for some ;
- , .
- By using Fubini’s theorem, we can writeSince , then
- Thus, .
- Since , thenHence,This completes the proof. □
3.3. Fractional Hilbert Transform on Boehmians
- If then .
- is well-defined.
- is a continuous linear map.
- is an injective map.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FHT | Fractional Hilbert transform |
References
- Mikusinski, P. Convergence of Boehmians. Jpn. J. Math. New Ser. 1983, 9, 159–179. [Google Scholar] [CrossRef] [Green Version]
- Boehme, T.K. The support of Mikusiński operators. Trans. Am. Math. Soc. 1973, 176, 319–334. [Google Scholar]
- Al-Omari, S.K.Q.; Kılıçman, A. Note on Boehmians for class of optical Fresnel wavelet transforms. J. Funct. Spaces Appl. 2012, 2012, 405368. [Google Scholar] [CrossRef] [Green Version]
- Al-Omari, S.K.Q.; Kılıçman, A. An estimate of Sumudu transforms for Boehmians. Adv. Differ. Equ. 2013, 2013, 77. [Google Scholar] [CrossRef] [Green Version]
- Al-Omari, S.K.Q. An extension of certain integral transform to a space of Boehmians. J. Assoc. Arab. Univ. Basic Appl. Sci. 2015, 17, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Al-Omari, S.K.Q.; Agarwal, P. Some general properties of a fractional Sumudu transform in the class of Boehmians. Kuwait J. Sci. 2016, 43, 16–30. [Google Scholar]
- Karunakaran, V.; Kalpakam, N.V. Hilbert transform for Boehmians. Integral Transform. Spec. Funct. 2000, 9, 19–36. [Google Scholar] [CrossRef]
- Karunakaran, V.; Roopkumar, R. Boehmians and their Hilbert transforms. Integral Transform. Spec. Funct. 2002, 13, 131–141. [Google Scholar] [CrossRef]
- Loonker, D.; Banerji, P.K. Natural transform for distribution and Boehmian spaces. Math. Eng. Sci. Aerosp. (MESA) 2013, 4, 69–76. [Google Scholar]
- Roopkumar, R. Stieltjes transform for Boehmians. Integral Transform. Spec. Funct. 2007, 18, 845–853. [Google Scholar] [CrossRef]
- Roopkumar, R. Mellin transform for Boehmians. Bull. Inst. Math. New Ser. 2009, 4, 75–96. [Google Scholar]
- Roopkumar, R. Quaternionic Fractional Fourier Transform for Boehmians. Ukr. Math. J. 2020, 72, 942–952. [Google Scholar] [CrossRef]
- Zayed, A.I. Fractional Fourier transform of generalized functions. Integral Transform. Spec. Funct. 1998, 7, 299–312. [Google Scholar]
- Al-Omari, S.K.Q.; Baleanu, D. Quaternion Fourier integral operators for spaces of generalized quaternions. Math. Methods Appl. Sci. 2018, 41, 9477–9484. [Google Scholar] [CrossRef]
- Al-Omari, S.K.Q. Estimates and properties of certain q-Mellin transform on generalized q-calculus theory. Adv. Differ. Equ. 2021, 2021, 233. [Google Scholar]
- Al-Omari, S.K.Q. q-Analogues and properties of the Laplace-type integral operator in the quantum calculus theory. J. Inequal. Appl. 2020, 2020, 203. [Google Scholar] [CrossRef]
- Al-Omari, S.K.Q. Some remarks on short-time Fourier integral operators and classes of rapidly decaying functions. Math. Methods Appl. Sci. 2019, 42, 5354–5361. [Google Scholar] [CrossRef]
- Cusmariu, A. Fractional analytic signals. Signal Process. 2002, 82, 267–272. [Google Scholar] [CrossRef]
- Lohmann, A.W.; Mendlovic, D.; Zalevsky, Z. Fractional hilbert transform. Opt. Lett. 1996, 21, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Zayed, A.I. Hilbert transform associated with the fractional Fourier transform. IEEE Signal Process. Lett. 1998, 5, 206–208. [Google Scholar] [CrossRef]
- Abdullah, N.; Iqbal, S.; Khalid, A.; Al Johani, A.S.; Khan, I.; Rehman, A.; Andualem, M. The Fractional Hilbert Transform on the Real Line. Math. Probl. Eng. 2022, 2022, 5027907. [Google Scholar] [CrossRef]
- Davis, J.A.; McNamara, D.E.; Cottrell, D.M. Analysis of the fractional Hilbert transform. Appl. Opt. 1998, 37, 6911–6913. [Google Scholar] [CrossRef]
- Deng, L.; Hou, Z.; Liu, H.; Sun, Z. A fractional hilbert transform order optimization algorithm based DE for bearing health monitoring. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 2183–2186. [Google Scholar]
- Lohmann, A.W.; Tepichin, E.; Ramirez, J.G. Optical implementation of the fractional Hilbert transform for two-dimensional objects. Appl. Opt. 1997, 36, 6620–6626. [Google Scholar] [CrossRef]
- Sharma, N. Design of fractional hilbert transform (π/4). In Proceedings of the 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; pp. 1182–1184. [Google Scholar]
- Al-Omari, S.K.Q. A fractional Fourier integral operator and its extension to classes of function spaces. Adv. Differ. Equ. 2018, 2018, 195. [Google Scholar] [CrossRef]
- Rudin, W. Real and Complex Analysis; Mathematics Series; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Zayed, A.I. Handbook of Function and Generalized Function Transformations; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, N.; Iqbal, S. The Fractional Hilbert Transform of Generalized Functions. Symmetry 2022, 14, 2096. https://doi.org/10.3390/sym14102096
Abdullah N, Iqbal S. The Fractional Hilbert Transform of Generalized Functions. Symmetry. 2022; 14(10):2096. https://doi.org/10.3390/sym14102096
Chicago/Turabian StyleAbdullah, Naheed, and Saleem Iqbal. 2022. "The Fractional Hilbert Transform of Generalized Functions" Symmetry 14, no. 10: 2096. https://doi.org/10.3390/sym14102096
APA StyleAbdullah, N., & Iqbal, S. (2022). The Fractional Hilbert Transform of Generalized Functions. Symmetry, 14(10), 2096. https://doi.org/10.3390/sym14102096