Robust Adaptive Control of a Coaxial-Ducted-Fan Aircraft with Uncertainty Model
Abstract
:1. Introduction
2. System Model Description
3. Robust Adaptive Control with Uncertainty System
3.1. Control Problem Description
3.2. Model Reference Adaptive Control Based on Control Augmentation
3.3. Robust Adaptive Control with Fast Transient Response
3.4. Robust Adaptive Controller Architecture
- (1)
- The baseline control input and reference system are expressed as
- (2)
- The parameterized Algebraic Riccati Equation is solved
- (3)
- The adaptive law is computed
- (4)
- The control law is output
4. Robust Adaptive Feedback Control for Coaxial-Ducted-Fan Aircraft
4.1. Adaptive Control Law Design
4.2. Analysis of Large Uncertainty and Disturbance Conditions
5. Flight Experiment
5.1. Low-Speed Slow-Change Maneuvering Experiment
5.2. High-Speed Fast-Change Maneuvering Experiment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, C.H.; Tsai, J.; Chang, Y.T. Intelligent Path Planning for UAV Patrolling in Dynamic Environments Based on the Transformer Architecture. Electronics 2024, 13, 4716. [Google Scholar] [CrossRef]
- Liao, K.C.; Lau, J.; Hidayat, M. Aircraft Skin Damage Visual Testing System Using Lightweight Devices with YOLO: An Automated Real-Time Material Evaluation System. AI 2024, 5, 1793–1815. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, Z.; Zheng, L.; Su, Q.; Guo, Y. Autonomous UAV navigation with adaptive control based on deep reinforcement learning. Electronics 2024, 13, 2432. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Y.; Zhang, Y.; Qian, B. Strong Electromagnetic Interference and Protection in UAVs. Electronics 2024, 13, 393. [Google Scholar] [CrossRef]
- Ramamurti, R.; Sandberg, W. Computation of aerodynamic characteristics of a micro air vehicle. Fixed Flapping Wing Aerodyn. Micro Air Veh. Appl. 2001, 195, 537–555. [Google Scholar]
- Pines, D.J.; Bohorquez, F. Challenges Facing Future Micro-Air-Vehicle Development. J. Aircr. 2006, 43, 290–305. [Google Scholar] [CrossRef]
- Luo, Y.; Ai, T.; He, Y.; Zhao, Z.; Xu, B.; Qian, Y.; Peng, J.; Zhang, Y. Aerodynamic analysis on unsteady characteristics of a ducted fan hovering in ceiling effect. Eng. Appl. Comput. Fluid Mech. 2023, 17, 2196327. [Google Scholar] [CrossRef]
- Luo, Y.; Ai, T.; He, Y.; Xu, B.; Qian, Y.; Zhang, Y. Numerical investigation on unsteady characteristics of ducted fans in ground effect. Chin. J. Aeronaut. 2023, 36, 79–95. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Fan, N.; Guo, M. Flight dynamics modeling of a small ducted fan aerial vehicle based on parameter identification. Chin. J. Aeronaut. 2013, 26, 1439–1448. [Google Scholar] [CrossRef]
- Naldi, R.; Gentili, L.; Marconi, L.; Sala, A. Design and experimental validation of a nonlinear control law for a ducted-fan miniature aerial vehicle. Control Eng. Pract. 2010, 18, 747–760. [Google Scholar] [CrossRef]
- Lin, L.; Ma, Y.; Chen, W. Modelling and attitude control of novel multi-ducted-fan aerial vehicle in forward flight. Int. J. Model. Identif. Control 2019, 31, 81–93. [Google Scholar] [CrossRef]
- Pflimlin, J.M.; Binetti, P.; Soueres, P.; Hamel, T.; Trouchet, D. Modeling and attitude control analysis of a ducted-fan micro aerial vehicle. Control Eng. Pract. 2010, 18, 209–218. [Google Scholar] [CrossRef]
- Sheng, S.; Sun, C. A near-hover adaptive attitude control strategy of a ducted fan micro aerial vehicle with actuator dynamics. Appl. Sci. 2015, 5, 666–681. [Google Scholar] [CrossRef]
- Yu, Z. A Novel Tandem Ducted Fan UAV Attitude Control Based on Cascade PID Controller. In Proceedings of the 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 24–26 June 2023. [Google Scholar]
- Spaulding, C.; Mansur, M.; Tischler, M.; Hess, R.; Franklin, J. Nonlinear inversion control for a ducted fan UAV. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, San Francisco, CA, USA, 15–18 August 2005. [Google Scholar]
- Sharifzadeh, F.; Naghash, A. Controller Design for a Ducted Fan MAV Using Dynamic Inversion Method in Lateral Motion. Modares Mech. Eng. 2019, 19, 1559–1571. [Google Scholar]
- Hess, R.A.; Bakhtiari-Nejad, M. Sliding-mode control applied of a nonlinear model of an unmanned aerial vehicle. J. Guid. Control Dyn. 2008, 31, 1163–1166. [Google Scholar] [CrossRef]
- Ren, X.L.; Wang, C.H.; Yi, G.X. Attitude Control for Ducted Fan UAV Based on Sliding Mode Adaptive Algorithm. Appl. Mech. Mater. 2014, 513, 3915–3918. [Google Scholar] [CrossRef]
- Skogestad, S.; Postlethwaite, I. Multivariate Feedback Control: Analysis and Design; Xi’an Jiaotong University Press: Xi’an, China, 2011. [Google Scholar]
- Fethalla, N.; Saad, M.; Michalska, H.; Ghommam, J. Robust observer-based dynamic sliding mode controller for a quadrotor UAV. IEEE Access 2018, 6, 45846–45859. [Google Scholar] [CrossRef]
- Sun, S.; Wang, X.; Chu, Q.; de Visser, C. Incremental nonlinear fault-tolerant control of a quadrotor with complete loss of two opposing rotors. IEEE Trans. Robot. 2020, 37, 116–130. [Google Scholar] [CrossRef]
- Sankaranarayanan, V.N.; Satpute, S.; Nikolakopoulos, G. Adaptive robust control for quadrotors with unknown time-varying delays and uncertainties in dynamics. Drones 2022, 6, 220. [Google Scholar] [CrossRef]
- Shi, Y.; Tuan, H.D.; Apkarian, P. Nonconvex spectral optimization algorithms for reduced-order LPV-LFT controllers. Int. J. Robust Nonlinear Control 2017, 27, 4421–4442. [Google Scholar] [CrossRef]
- Li, M.; Li, G.; Zhong, M. A data driven fault detection and isolation scheme for UAV flight control system. In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 June 2016. [Google Scholar]
- Tran, T.T.; Ge, S.S.; He, W. Adaptive control of a quadrotor aerial vehicle with input constraints and uncertain parameters. Int. J. Control 2018, 91, 1140–1160. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, B.; Zheng, Z. Robust adaptive control for a quadrotor UAV with uncertain aerodynamic parameters. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 8313–8326. [Google Scholar] [CrossRef]
- Islam, S.; Liu, P.X.; El Saddik, A. Robust control of four-rotor unmanned aerial vehicle with disturbance uncertainty. IEEE Trans. Ind. Electron. 2014, 62, 1563–1571. [Google Scholar] [CrossRef]
- Sheng, S.; Sun, C.; Zhao, H. Indirect adaptive attitude control for a ducted fan vertical takeoff and landing microaerial vehicle. Math. Probl. Eng. 2015, 2015, 135489. [Google Scholar] [CrossRef]
- Lee, B.Y.; Lee, H.I.; Tahk, M.J. Analysis of adaptive control using on-line neural networks for a quadrotor UAV. In Proceedings of the 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013), Gwangju, Republic of Korea, 20–23 October 2013. [Google Scholar]
- Lewis, F.L. L 1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation. IEEE Control Syst. Mag. 2011, 31, 112–114. [Google Scholar]
- Fan, W.; Xiang, C.; Xu, B. Modelling, attitude controller design and flight experiments of a novel micro-ducted-fan aircraft. Adv. Mech. Eng. 2018, 10, 1687814018765569. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiang, C.; Xu, B.; Wang, Y.; Wang, X. Design and implementation of a novel aerial manipulator with tandem ducted fans. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018. [Google Scholar]
- Han, H.; Xiang, C.; Xu, B.; Yu, Y. Aerodynamic performance and analysis of a hovering micro-scale shrouded rotor in confined environment. Adv. Mech. Eng. 2019, 11, 1687814018823327. [Google Scholar] [CrossRef]
- Ai, T.; Fan, W.; Xu, B.; Xiang, C.; Zhang, Y.; Zhao, Z. Aerodynamic analysis and modeling of coaxial ducted fan aircraft with the ceiling effect. Eng. Appl. Comput. Fluid Mech. 2021, 15, 1563–1584. [Google Scholar] [CrossRef]
- Fan, W.; Xiang, C.; Najjaran, H.; Wang, X.; Xu, B. Mixed adaptive control architecture for a novel coaxial-ducted-fan aircraft under time-varying uncertainties. Aerosp. Sci. Technol. 2018, 76, 141–154. [Google Scholar] [CrossRef]
- Wang, X.; Xiang, C.; Xu, B.; Najjaran, H. Robust and adaptive control of a novel ducted fan vehicle in the presence of actuator uncertainties and saturation. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017. [Google Scholar]
- Cai, G.; Chen, B.M.; Lee, T.H.; Lum, K.Y. Comprehensive nonlinear modeling of an unmanned-aerial-vehicle helicopter. In Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008. [Google Scholar]
- Chamberlain, C. System Identification, State Estimation, and Control of Unmanned Aircrafts; Brigham Young University: Provo, UT, USA, 2011. [Google Scholar]
- Wang, X.; Xiang, C.; Xu, B.; Fan, W. System identification and robust stabilization using structured controller for a novel ducted fan flying robot. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 197–214. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, B.; Xiang, C.; Fan, W.; Ai, T. Flight and interaction control of an innovative ducted fan aerial manipulator. Sensors 2020, 20, 3019. [Google Scholar] [CrossRef] [PubMed]
- Lavretsky, E. Robust and adaptive control methods for aerial vehicles. In Handbook of Unmanned Aerial Vehicles; Springer: New York, NY, USA, 2015; pp. 675–710. [Google Scholar]
- Haddad, W.M.; Chellaboina, V.S. Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Eugene, L.; Kevin, W.; Howe, D. Robust and Adaptive Control with Aerospace Applications; Springer: London, UK, 2013. [Google Scholar]
- Luenberger, D.G. Observing the state of a linear system. IEEE Trans. Mil. Electron. 1964, 8, 74–80. [Google Scholar] [CrossRef]
- Kevorkian, J.K.; Cole, J.D. Multiple Scale and Singular Perturbation Methods; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Bensoussan, A.; Lions, J.L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures; American Mathematical Soc.: Providence, RI, USA, 2011. [Google Scholar]
Parameter | Physical Description | Value |
---|---|---|
mb | Total robot mass | 4.6 kg |
pcd | Distance between duct center and CG of vehicle | 0.32 m |
D | Duct diameter | 0.33 m |
n | Blade number of each propeller | 5 |
c | Blade chord length | 0.0027 m |
θ0 | Attack angle at the root of blade | 35 deg |
θtw | Torsion rate of blade | 18 deg |
Blade tip clearance | 0.001 m |
Reference Command | Baseline Control Error | Robust Adaptive Control Error |
---|---|---|
uref | 0.2602 m/s | 0.2351 m/s |
vref | 0.3148 m/s | 0.2837 m/s |
wref | 0.2427 m/s | 0.2272 m/s |
ψref | 1.1083 deg | 1.0107 deg |
Reference Command | Baseline Control Error | Robust Adaptive Control Error |
---|---|---|
uref | 1.039 m/s | 0.749 m/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, T.; Luo, Y.; Zeng, D.; Hu, Y.; Liang, C.; Pan, F. Robust Adaptive Control of a Coaxial-Ducted-Fan Aircraft with Uncertainty Model. Electronics 2025, 14, 170. https://doi.org/10.3390/electronics14010170
Ai T, Luo Y, Zeng D, Hu Y, Liang C, Pan F. Robust Adaptive Control of a Coaxial-Ducted-Fan Aircraft with Uncertainty Model. Electronics. 2025; 14(1):170. https://doi.org/10.3390/electronics14010170
Chicago/Turabian StyleAi, Tianfu, Yiwei Luo, Dequan Zeng, Yiming Hu, Chengcheng Liang, and Feige Pan. 2025. "Robust Adaptive Control of a Coaxial-Ducted-Fan Aircraft with Uncertainty Model" Electronics 14, no. 1: 170. https://doi.org/10.3390/electronics14010170
APA StyleAi, T., Luo, Y., Zeng, D., Hu, Y., Liang, C., & Pan, F. (2025). Robust Adaptive Control of a Coaxial-Ducted-Fan Aircraft with Uncertainty Model. Electronics, 14(1), 170. https://doi.org/10.3390/electronics14010170