
Masterarbeit

On Planar 3-SAT and its Variants

vorgelegt am

Fachbereich Mathematik und Informatik

der Freien Universität Berlin

von

Simon Tippenhauer

Matr. 4372805

betreut von

Prof. Dr. Wolfgang Mulzer

2. November 2016

Eigenständigkeitserklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine

anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Alle Stellen,

die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen wurden,

sind als solche gekennzeichnet. Die Zeichnungen oder Abbildungen sind von

mir selbst erstellt worden oder mit entsprechenden Quellennachweisen versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner Prüfungsbehörde

eingereicht worden.

Berlin, 2. November 2016

(Simon Tippenhauer)

ii

Contents

List of Figures vi

1. Introduction 1

2. Preliminary 4

2.1. Boolean Algebra and Formulas 4

2.2. Graphs . 5

2.3. Languages . 8

3. An Introduction to the Time Complexity Theory 10

3.1. Turing Machine . 11

3.2. Time Complexity . 12

3.2.1. Relationships Among Computational Models 14

3.2.2. Complexity Classes P and NP 15

3.2.3. NP–completeness and Polynomial Time Reducibility . . 18

4. Planar 3–SAT 22

4.1. Planar 3–SAT . 22

4.1.1. Rectilinear Planar 3–SAT 25

4.1.2. Application of Planar 3–SAT 31

4.1.3. Restrictions on Planar 3–SAT 32

4.2. Planar exactly 3–SAT . 33

4.3. Simple Planar 3–SAT . 33

4.4. Separable Planar 3–SAT . 34

4.5. Separable Simple Planar 3–SAT 36

4.6. Clause–Linked Planar 3–SAT 38

iii

Contents

5. Planar 1–in–3–SAT 40

5.1. Simple Planar 1–in–3–SAT . 40

5.2. Planar Positive exactly 1–in–3–SAT 41

5.3. Simple Planar Monotone exactly 3–bounded 1–in–3–SAT 45

5.4. Separable Simple Planar 1–in–3–SAT 46

6. Planar not–all–equal 3–SAT 48

6.1. Planar not–all–equal 3–SAT 48

6.2. Restricted Planar Positive not–all–equal 3–SAT 51

7. Planar Monotone 3–SAT 56

7.1. Planar Monotone 3–SAT . 56

7.2. Restricted Planar Monotone 3–SAT 57

7.3. Variable Bounded Variants of Simple Planar Monotone 3–SAT . 59

7.3.1. Simple Planar Monotone 3–bounded 3–SAT 59

7.3.2. Simple Planar Monotone exactly 3–bounded 3–SAT . . 60

7.3.3. Restricted Simple Planar Monotone [3,4]–bounded 3–SAT 62

7.3.4. Restricted Simple Planar Monotone exactly 4–bounded

3–SAT . 62

7.3.5. Simple Planar Monotone exactly 4–bounded exactly 3∗–

SAT . 63

7.3.6. Restricted Simple Planar Monotone exactly 5–bounded

exactly 3–SAT . 64

8. Variable Bounded Variants of Planar 3–SAT 66

8.1. Planar 3–bounded 3–SAT . 66

8.2. Planar exactly 3–bounded 3–SAT 67

8.3. Restricted Planar exactly 3–bounded 3–SAT 68

8.4. Simple Planar exactly 3–bounded 3–SAT 70

8.5. Simple Planar [2,3]–bounded 3–SAT 72

8.6. Simple Planar 1–negative [2,3]–bounded 3–SAT 73

8.7. Simple Planar [3,4]–bounded exactly 3–SAT 76

8.8. Simple Planar 4–bounded exactly 3–SAT 78

iv

Contents

8.9. Simple Planar 3–connected exactly 3–SAT 80

8.9.1. Simple Planar 3–connected 4–bounded exactly 3–SAT . 82

8.10. Restricted Clause–Linked Planar exactly 3–bounded 3–SAT . . . 82

9. Conclusion 84

9.1. Remarks . 84

9.2. Open Problems . 84

Appendices 87

A. List of Variants of Planar 3–SAT 87

B. Restrictions on Planar 3–SAT 89

B.1. List of Restrictions . 89

B.2. Categorization of Planar 3–SAT Variants 90

Bibliography 94

v

List of Figures

2.1. Formal specification of an undirected and directed graph. 6

2.2. A graph with a path and a cycle. 7

2.3. A planar graph and a proper vertex coloring of a graph. 8

4.1. A nonplanar embedding of a Boolean formula on a grid. 24

4.2. Elimination of an intersection with a cossover box. 25

4.3. Complete transformation of the embedding of a Boolean formula

to a planar embedding. 26

4.4. Rectilinear embedding of a planar Boolean formula φ with clauses

(¬x1 ∨ x2), (¬x1 ∨ ¬x2 ∨ x7), (x1 ∨ ¬x7), (x2 ∨ x3 ∨ x6), (¬x3 ∨
x4 ∨ ¬x5), (¬x3 ∨ ¬x4 ∨ x6), (x3 ∨ x5 ∨ x6), and (x4 ∨ x5 ∨ ¬x6). 26

4.5. Planar embedding of a associated graph. 29

4.6. A Rectilinear embedding of the associated graph of Figure 4.5. . 30

4.7. Replacement of a variable for the NP–hardness proof of Separa-

ble Planar 3–SAT . 37

5.1. Replacement of a clause for the NP–hardness proof of Simple

Planar 1–in–3–SAT. 42

5.2. Replacement of a clause by equisatisfiable clauses according to

the restrictions of Planar Positive exactly 1–in–3–SAT. 45

6.1. Transformation of a Boolean formula for the Planar Maximum

Cut problem. 50

7.1. Tranformation of a clause for the NP–hardness proof of Re-

stricted Planar Monotone 3–SAT 59

7.2. Replacement of a clause for the NP–hardness proof of Simple

Planar Monotone 3–bounded 3–SAT. 61

vi

List of Figures

8.1. Replacement of a variable–vertex for the reduction from Planar

3–SAT to Restricted Planar exactly 3–bounded 3–SAT. 69

8.2. Transformation of a Boolean formula for the NP–hardness proof

of Simple Planar exactly 3–bounded 3–SAT. 71

8.3. Planar embedding before and after the elimination of a positive

monotone clause for the NP–hardness proof of Simple Planar

1–negative [2,3]–bounded 3–SAT. 75

8.4. Rectilinear embedding of the Boolean formulas necessary for the

NP–hardness proof of Simple Planar [3,4]–bounded exactly 3–SAT. 78

vii

1. Introduction

In 1977, David Lichtenstein introduced in his master thesis [Lic77] the concept

of planar Boolean formulas. It was not until 1982 that his idea was first pub-

lished in a journal [Lic82]. The motivation was to have an easier way to prove

NP–completeness of properties for general graphs on their planar derivatives.

Previously, the common approach was to first prove the NP–completeness for

general graphs and then adjust the proof for planar graphs. This mainly involves

the construction of complicated crossover boxes where two edges intersect. With

Lichtenstein’s definition of Planar 3–SAT and its proof of NP–completeness he

accomplished a new and often easier way to show NP-completeness for proper-

ties of planar graph. It also opens the way for many variants of Planar 3–SAT

and their usefulness for the study of computational complexity.

The idea of Planar 3–SAT is to restrict 3–SAT to Boolean formulas with

some property that can be easily mapped to planar graphs. For that each Boolean

formula φ in 3–CNF is associated with a graph. This graph consists of vertices for

each variable and for each clause in φ. An edge is put between a variable-vertex

and a clause-vertex if the clause contains a literal of the variable. Additionally the

variable-vertices are connected with edges in a circular order. A formal definition

is given in Section 4.1.

Lichtenstein’s results are not just valid for Boolean formulas in 3-CNF but also

for the generalization to quantified Boolean formulas. In the Quantified Boolean

Formula problem (QBF) existential and universal quantifiers can be applied to

each variable of the formula. Thus 3–SAT is just a special case of QBF where

the Boolean formula is in 3–CNF and each variable is existentially quantified.

Besides the NP–completeness of Planar 3–SAT Lichtenstein also proved that

Planar QBF is PSPACE–complete [Lic82]. Lichtenstein also claims that it should

be possible to develop easy NP–completeness proofs for Triangulation Existence

1

1. Introduction

and Minimum Weight Triangulation. The NP–completeness of Minimum Weight

Triangulation was shown in 2008 by Mulzer and Rote with a reduction from a

variant of Planar 3–SAT, called Planar Positive exactly 1–in–3–SAT (Section

5.2). Already in 1977 the NP–completeness of Triangulation Existence was

proved by Lloyd [Llo77]. A detailed comparison between this proof and a new

proof with a reduction from Planar 3–SAT by Schulz [Sch06] in 2006 is left as

an open problem (Section 9.2).

This thesis covers a wide range of variants of Planar 3–SAT and their various

use in many fields of computer science. Based on planar versions of the well

known Boolean satisfiability problems 3–SAT, 1–in–3–SAT, and not–all–equal

3-SAT, many restricted variants where developed over the years. During the

study of these variants it turned out that the restrictions can be categorized into

four basic groups, namely restrictions on

1. the planar Boolean formula,

2. the associated graph,

3. the planar embedding of the associated graph, and

4. the satisfying assignment.

Restrictions on a planar Boolean formula φ are for example that each clause of

φ contains exactly three literals, that each variable appears a bounded number

of times, or that φ is monotone. The property that the associated graph has no

edges between the variable–vertices is an example for a restriction on the asso-

ciated graph. The planar embedding of the associated graph can be restricted

such that it is rectilinear (Section 4.1.1), or vertices are arranged in a special

way. Well known problems with restriction on the satisfying assignment are 1–

in–3–SAT and not–all–equal 3-SAT. A list of all restriction of each category

is given in Appendix B. The goal of all these restrictions is mostly to define a

variant of Planar 3–SAT that can be used to prove NP–completeness for other

related problems. Another reason is to find the tightest possible restrictions

under which a problem remains NP–complete. This can give some insights for

the distinction of problems in P and NP [HS78]. A variant of Planar 3–SAT can

be a combination of these restrictions because they are not necessarily mutually

2

1. Introduction

exclusive.

This thesis has nine chapters and two appendices, including this introduction.

A collection of definitions and terminology that is used is given in Chapter 2.

An introduction to the theory of time complexity is the topic of Chapter 3

where some definitions and terminology is added also. With this preliminaries

the detailed presentation of Planar 3–SAT and its variants begins. Each of the

following chapters is dedicated to planar versions of 3–SAT (Chapter 4) and

its main variants, namely 1–in–3–SAT (Chapter 5), and not–all–equal 3–SAT

(Chapter 6). The planar version and variants of Monotone 3–SAT are described

in the following chapter (Chapter 7). Restricted variants of Planar 3–SAT with

bounds on the number of variable appearances are presented in Chapter 8. The

proofs in these chapters are either made by the author of this thesis or they

are shown according to the proofs of the mentioned authors. The thesis is

concluded in Chapter 9, the last chapter, with some remarks and open problems

for a preview of further work.

A List of all versions and variants of Planar 3–SAT in this thesis is given

in Appendix A. The restrictions of the presented variants of Planar 3–SAT are

adduced in Appendix B, together with a categorization of these variants based

on their restrictions.

3

2. Preliminary

In this chapter definitions and terminology are given that are used throughout

this thesis.

2.1. Boolean Algebra and Formulas

Boolean algebra is a branch of algebra which is based on the truth values true

and false. The Boolean values are mostly represented by 1 and 0 respectively and

can be manipulated by Boolean operations. The negation or NOT operation,

denoted with ¬, performed on a Boolean value yields to the opposite value, i.e.

¬1 = 0 and ¬0 = 1. The conjunction or AND operation, denoted with ∧, on two
Boolean values evaluates to 1 if and only if both values are 1. The disjunction of

two Boolean values is 1 if and only if either of both values is 1. The disjunction

or OR operation is denoted with ∨. A Boolean expression is a combination of

simple statements with Boolean operations.

A Boolean formula consists of variables for Boolean values, Boolean operations

and parentheses. The use of parentheses determines the order of evaluation of

the Boolean formula. To get more readable formulas with fewer parentheses

the order of operations is defined such that negation precedes conjunction which

precedes disjunction.

Example 2.1.1 (Boolean formula).

φ = (x1 ∨ x2 ∨ ¬x2 ∧ x3) ∧ (x3 ∨ ¬x4) ∨ x4

A Boolean formula is in conjunctive normal form, or CNF, if it is a conjunction

of clauses. A clause is a disjunction of literals which can be either a variable

(positive literal) or a negated variable (negative literal). In general a clause

4

2. Preliminary

does not contain the same literal, only if it is explicitly mentioned. A common

restriction on Boolean formula in CNF is that each clause contains at most k

literals. This variant is called k–CNF. Sometimes k–CNF is denoted to Boolean

formulas with exactly k literals per clause. In this case the formulas are explicitly

denoted with exactly k–CNF.

Example 2.1.2 (Boolean formula in 2-CNF).

φ = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ x2

A clause of a Boolean formula in CNF is monotone if all its literals are positive

or negative. Furthermore a monotone clause with only negative literals is called

negative, and positive otherwise. Accordingly a monotone Boolean formula in

CNF has only monotone clauses. A special case is when the formula consists

only of positive or negative variables. Then this is called a positive respectively

negative Boolean formula.

An assignment for a Boolean formula is a mapping of values to its variables.

With such a mapping the formula can be evaluated according to the rules de-

scribed above. If the formula is satisfied, i.e. evaluates to 1, the assignment is

called satisfying and otherwise unsatisfying.

Example 2.1.3 (Satisfying and unsatisfying assignment of a Boolean formula).

φ = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ x2 (2.1)

x1 7→ 1, x2 7→ 1, x3 7→ 1

φ = (1 ∨ ¬1) ∧ (¬1 ∨ 1) ∧ 1

φ = (1 ∨ 0) ∧ (0 ∨ 1) ∧ 1

φ = 1 ∧ 1 ∧ 1

φ = 1

x1 7→ 0, x2 7→ 1, x3 7→ 0

φ = (0 ∨ ¬1) ∧ (¬0 ∨ 0) ∧ 1

φ = (0 ∨ 0) ∧ (1 ∨ 0) ∧ 1

φ = 0 ∧ 1 ∧ 1

φ = 0

2.2. Graphs

A graph is a set of points, called vertices or nodes, with edges connecting some

of the points. An edge between some vertices u and v in a graph is represented

5

2. Preliminary

by the pair (u, v). In an undirected graph the order of u and v is irrelevant,

i.e. the pairs (u, v) and (v , u) represent the same edge. In contrast to that

the order of u and v is important for a directed graph, where the pair (u, v)

represents an edge from vertex u to v , which are said to be the endpoints of the

edge. Between any pair of vertices can be at most one edge. Special variants

of graphs where more than one edge between two vertices are allowed are not

considered here.

Two vertices that are connected by an edge are called adjacent, and two

edges that have the same vertex as an endpoint are called incident. An edge is

also incident to a vertex if the vertex is an endpoint of that edge. The degree

of a vertex is defined as the number of edges incident to this vertex. The

neighborhood of a vertex is the set of adjacent vertices. The maximum degree

and minimum degree of a graph are the maximum and minimum degree of its

vertices.

If not specified whether a graph is directed or undirected it is assumed that the

graph is undirected, which is true for the majority of cases analyzed in this thesis.

A graph can be described with a diagram or more formally with a specification

of V and E (Figure 2.1).

(a) A possible diagram of the undirected
graph G1.

(b) A possible diagram of the directed
graph G2

Figure 2.1.: Formal specification of an undirected graph G1 = (V1, E1) with V1 =

{1, 2, 3, 4, 5, 6} and E1 = {(1, 3), (1, 5), (2, 3), (2, 5), (3, 6), (5, 6)},
and a directed graph G2 = (V2, E2) with V2 = {a, b, c, d, e} and
edges E2 = {(a, d), (a, f), (b, e), (d, a), (d, b), (d, e), (e, a)}.

In a graph a path is a sequence of vertices which are connected by edges. A

6

2. Preliminary

path is called simple if no vertex is repeated. If a path starts and ends with the

same vertex it is a cycle. A simple cycle has at least three vertices and repeats

only the first and last vertex. A graph is connected if there exists for every

pair of vertices a path connecting them. Furthermore a graph is k–connected

if it is connected, has more than k vertices, and remains connected when less

than k vertices are removed from the graph. Biconnectivity is equivalent to the

property of a graph being 2–connected.

Figure 2.2.: A graph with a path (2, 1, 4, 5) (orange edges) and a cycle (1, 3, 6, 1)

(blue edges).

With V the set of vertices and E the set of edges of a graph G, the graph is

denoted with G = (V, E). A plane graph is a drawing of a graph in the plane

such that no edges cross each other. This is also called the planar embedding of

the graph. A graph that has a planar embedding is called planar (Figure 2.3a).

The embedding of a graph induces for each vertex a cyclic order of the incident

edges. The set of all these cyclic orders is called a combinatorial embedding

[Dji95; MW00].

A proper vertex coloring, or just coloring, of a graph is a labeling of the vertices

with colors such that no adjacent vertices have the same color. A k–coloring is

a coloring of a graph with at most k colors.

A graph G = (V, E) is bipartite if it is possible to partition V into two subsets

U1 and U2 such that each edge of E has one endpoint in U1 and the other in

U2. In other words, there exist a 2–coloring for G. A planar bipartite graph is a

graph that is planar and bipartite.

A graph is called a split graph if the vertices can be partitioned into a clique

7

2. Preliminary

(a) Planar embedding of graph G1 in Fig-
ure 2.1a. Hence G1 is planar.

(b) A 4–coloring of the graph in Figure
2.2.

Figure 2.3.: Example for (a) a planar graph and (b) a proper vertex coloring of
a graph.

and an independent set. A clique is a subset of vertices of the graph such that

each pair of distinct vertices in the clique are adjacent. An independent set is

a subset of vertices of the graph such that any two distinct vertices from the

independent set are not adjacent, and that every vertex not in the subset are

adjacent to at least one vertex of the independent set.

A chordal graph is a graph in which every cycle of at least 4 vertices have

a chord. A chord is an edge between two vertices of the cycle that are not

adjacent to each other.

A tree is a graph that is connected and is without any cycle, i.e. every pair

of nodes is connected by an unique path. It may have a designated root node.

The nodes with degree 1, except the root, are called leaves. A branch is a path

from the root to a leaf. The depth of a node is the number of edges from that

node to the root. The height of a tree is the number of edges of a longest path

from the root to a leaf. A child of a node is an adjacent node further away from

the root. In a binary tree each node has at most two children.

2.3. Languages

A language is a set of strings. A string over an alphabet is a sequence, or

concatenation, of symbols from an alphabet. The alphabet over which the string

is defined is a non–empty finite set where the members are called symbols.

8

2. Preliminary

Example 2.3.1. The language L of binary numbers are all possible strings over

the alphabet Σ = {0, 1}, e.g. w = 0110001 is a string over Σ and an element

of L.

If w is a string over an alphabet Σ the length, denoted with |w |, is the number

of symbols it contains. The so called empty string of length zero is written ε.

9

3. An Introduction to the Time
Complexity Theory

In contrast to the computability theory, where the main question is which prob-

lems can be solved algorithmically in principle, is the motivation of the complexity

theory to categorize the problems according to the necessary effort to solve them.

In order to get a reasonable categorization some things and terminology have to

be specified first.

The focus is mainly on decision problems of the form whether a given string

w over an alphabet Σ is contained in a language L ⊆ Σ∗. For example if the

language L is the set of primes encoded as binary numbers over the alphabet

Σ = {0, 1} the decision problem for a number n ∈ Σ∗ is whether n is contained

in L or not. Algorithmically means that the problem can be solved based on a

model of computation. There are many choices for a model of computation,

e.g. random–access machine, Lambda calculus, or µ–recursive functions, but

most commonly used is the Turing machine. The goal of all these models is

to describe an abstract but also accurate model of a general purpose computer.

The categorization depends mainly on some resource which is necessary to solve

the problems with the chosen model of computation. However, which model is

chosen is only of secondary importance as will be explained later. Some typical

units of measurement is the consumed time or space (memory), or the use of

randomness, non determinism or advice, or the number of designated operations,

like the comparison of two numbers.

Further on an introduction to the time complexity of solving problems based

on variants of Turing machines is given.

10

3. An Introduction to the Time Complexity Theory

3.1. Turing Machine

The chosen model of computation is the Turing machine, proposed by Alan

Turing in 1936. It has an infinite tape used as unlimited memory with a tape

head that can read and write symbols while moving around on the tape. At the

beginning of a computation the input is written on the tape with the head over

the first symbol of the input. There is nothing else on the tape except the input.

In one step of computation the Turing machine is in a certain state and reads

the current symbol under the tape head. With this information it determines the

next state, which symbol is written on the tape, and whether the head moves

left or right to the next or previous symbol. These rules are set by the transition

function δ : Q × Γ → Q × Γ × {L,R} where Q is the set of states, Γ the tape

alphabet, and L and R indicate the direction of movement for the tape head.

The computation continues step by step until the Turing machine reaches a

designated halting state for accepting or rejecting the input, or it never halts.

Definition 3.1.1. A Turing machine is a 7–tuple (Q,Σ,Γ, δ, q0, qaccept , qreject)

where Q,Σ,Γ are all finite sets and

• Q is the set of states,

• Σ is the input alphabet,

• Γ is the tape alphabet, where Σ ⊂ Γ and � ∈ Γ\Σ is the designated blank

symbol,

• δ : Q× Γ→ Q× Γ× {L,R} is the transition function,

• q0 ∈ Q is the start state,

• qaccept ∈ Q is the state of acceptance, and

• qreject ∈ Q is the state of rejection, where qreject 6= qaccept .

The set of strings that are accepted by a Turing machine M is the language

of M, denoted with L(M). A Turing machine M recognizes a language L if

L(M) = L, and it decides a language if it additionally halts on every input

string. In the time complexity theory only decision problems that can be decided

by a Turing machine are considered.

Remark. Some properties of Turing machines are of great importance. It is

possible to encode every Turing machine M over {0, 1}∗ such that every string

in {0, 1}∗ encodes a Turing machine, and for every Turing machine exists infinite

11

3. An Introduction to the Time Complexity Theory

many equivalent encodings. The encoding of a Turing machine is denoted with

〈M〉. There also exists a universal Turing machine that can simulate an arbitrary

Turing machine with an arbitrary input string.

Further more, the Church–Turing thesis states that the intuitive notion of

algorithms is equal to algorithms for Turing machines. That means that every

model of computation with the goal to describe the capabilities of computation

is equivalent to Turing machines.

Multi-tape Turing Machine

A multi-tape Turing machine is similar to an ordinary Turing machine except that

it has several tapes. Each tape has its own head which reads, writes, and moves

simultaneously with other tape heads in each step of computation. Furthermore,

it is possible that a head does not move in a step at all, indicated by S in the

transition function. The transition function of a multi-tape Turing machine has

the form δ : Q× Γk → Q× Γk × {L, S,R}k , where k is the number of tapes.

Nondeterministic Turing Machine

A nondeterministic Turing machine is defined like a deterministic Turing machine

except that it has two transition functions δ1 and δ2. In each step a choice is

made whether to use δ1 or δ2 for determining the next transition. All possible

computations can be seen as a tree with each path from the root to a leave as

one computation. A nondeterministic Turing machine accepts the input string

if some branch leads to the state of acceptance.

3.2. Time Complexity

The time a Turing machine needs to decide an input string equals the number

of steps for the computation. The number of necessary steps may depend on

several parameters of the input, e.g. for graph algorithms the number of vertices

and edges or the degree of the vertices. To simplify the analysis only the length

of the string representing the input is considered.

12

3. An Introduction to the Time Complexity Theory

Definition 3.2.1. Let L ⊆ Σ∗ be a language and let M be a deterministic Turing

machine that decides L. Then the running time of M to decide L is the function

T : N → N, where T (n) is the maximum number of steps necessary to decide

any input string of length n.

Definition 3.2.2. Let L ⊆ Σ∗ be a language and let M be a nondeterministic

Turing machine that decides L. Then the running time of M to decide L is the

function T : N→ N, where T (n) is the maximum number of steps necessary on

any branch of the computation tree to decide any input string of length n.

Let L be a language and let M be a Turing machine that decides L in time

T (n). The linear speed-up theorem for Turing machines states that for any

constant c > 0 there exists a Turing machine that decides L in time c · T (n) +

2n+ 2. It follows that there is no difference between the running time of c ·T (n)

and d · T (n) for some Turing machines that decide the same language, where

c 6= d , i.e. constants are of no importance.

This leads to a general definition of time complexity classes based on the

running time of deterministic and nondeterministic Turing machines.

Definition 3.2.3. Let T : N → N be a function. The time complexity class

DTIME(T (n)) is the set of all languages that can be decided by a Turing machine

with running time at most c · T (n), where c > 0 is a constant.

Definition 3.2.4. Let T : N → N be a function. The time complexity class

NTIME(T (n)) is the set of all languages that can be decided by a nondeter-

ministic Turing machine with running time at most c · T (n), where c > 0 is a

constant.

A complexity class groups problems with similar difficulty. In the time com-

plexity theory it will be studied how classes are related to each other, or what

consequences result in choosing a deterministic or nondeterministic Turing ma-

chine. An important fact is that with more time more problems can be decided

as stated in the time hierarchy theorems for deterministic and nondeterministic

Turing machines (Theorem 3.2.1 and 3.2.2).

13

3. An Introduction to the Time Complexity Theory

Definition 3.2.5. A function T : N→ N is called time–constructible if

1. T (n) ≥ n, for all n ∈ N, and
2. it exists a Turing machine MT which computes the function n → T (n) in

time T (n), where n and T (n) are encoded as binary numbers.

Theorem 3.2.1. Time Hierarchy Theorem [HS65; HS66]

Let f , g : N → N be time–constructible functions such that f (n) log f (n) =

o(g(n)). Then, DTIME(f (n)) is a proper subset of DTIME(g(n)), i.e. it exists

a problem that can be decided by a Turing machine in time T (g(n)) but not in

time T (f (n)).

Theorem 3.2.2. Nondeterministic Time Hierarchy Theorem [Coo72; SFM78;

Žák83]

Let f , g : N→ N be time–constructible functions such that f (n+ 1) = o(g(n)).

Then, NTIME(f (n)) is a proper subset of NTIME(g(n)).

So, it does matter how much time is available to solve a problem. But how

does the chosen computational model effect the time complexity of a problem?

3.2.1. Relationships Among Computational Models

In the following, the effect on the time complexity of a problem is examined when

the computational model is a single-tape, a multi-tape, or a nondeterministic

Turing machine.

Theorem 3.2.3. Let T (n) : N → N be a function, where T (n) ≥ n. Then

every T (n) time multi–tape Turing machine has an equivalent O(T 2(n)) time

single–tape Turing machine [Sip06].

Proof idea. To show that every multi–tape Turing machine has an equivalent

single–tape Turing machine it is only necessary to simulate the multi–tape Turing

machine on a single tape. This single–tape Turing machine needs O(T (n)) time

to simulate one step of the original multi–tape Turing machine. Hence, the time

complexity of the simulation is O(T 2(n)).

Theorem 3.2.4. Let T (n) : N → N be a function, where T (n) ≥ n. Then

every T (n) time nondeterministic single-tape Turing machine has an equivalent

2O(T (n)) time deterministic Turing machine [Sip06].

14

3. An Introduction to the Time Complexity Theory

Proof idea. The proof is similar to the one of Theorem 3.2.3. All possible compu-

tations of the nondeterministic Turing machine are simulated on a deterministic

Turing machine. For this, the deterministic Turing machine explores the compu-

tation tree by using a depth–first search. The input is accepted if the simulation

reaches the state of acceptance on some branch, otherwise it is rejected. By

definition of the nondeterministic Turing machine the computation tree is a bi-

nary tree of height T (n) with at most 2T (n) leafs. Each branch has a length

of at most T (n). Hence, the complexity for the simulation with a deterministic

Turing machine is O(T (n)2T (n)) = 2O(T (n)).

So, choosing a deterministic single-tape over a multi-tape Turing machine

increases the time complexity of a problem of at most a square. This means

that the difference between the time complexity of problems measured on these

computational models is at most polynomial. In comparison to this, there is a

exponential difference between the time complexity of problems measured on

deterministic and nondeterministic Turing machines.

The deterministic single-tape and multi-tape Turing machine are polynomially

equivalent, i.e. they can simulate each other with only a polynomial increase in

running time. But this is not only the case for Turing machines. It is believed

that all reasonable deterministic computational models are polynomially equiva-

lent [Sip06; AB09]. This is one reason why polynomial differences in the time

complexity of problems are considered to be insignificant and why it is consid-

ered to be irrelevant which deterministic computational model is used. Another

reason is that the difference between the growth rate of a polynomial and an ex-

ponential running time in relation to the input size is much greater than between

two polynomials.

Thus, one main distinction in the time complexity theory is the distinction

between classes of Turing machines that decide problems in polynomial and

exponential time.

3.2.2. Complexity Classes P and NP

The set of problems that are decided in polynomial time on a deterministic

single–tape Turing machine is the time complexity class P.

15

3. An Introduction to the Time Complexity Theory

Definition 3.2.6.

P =
⋃
c≥1

DTIME(nc)

The class P is a mathematically robust class because it is invariant for all com-

putational models that are polynomially equivalent to the deterministic single–

tape Turing machine. It also corresponds to problems that are considered to be

realistically solvable on a computer. Though a polynomial running time with a

high exponent is not of any practical use, but problems with such running time

are quite rare [Sip06]. The class was introduced in the mid–1960s independently

by Cobham and Edmonds [Cob64; Edm65].

An exponential running time is often the result of a brute-force strategy where

every potential solution is checked. For many interesting problems that have an

exponential running time it is not known whether there exists a polynomial time

algorithm at all. The time complexity class NP is the collection of problems that

are decided in polynomial time on a nondeterministic Turing machine.

Definition 3.2.7.

NP =
⋃
c≥1

NTIME(nc)

The time complexity class NP is, like the class P, a mathematically robust class

because all reasonable nondeterministic computational models are polynomial

equivalent [Sip06]. It was also introduced in 1965 by Edmonds [Edm65]. An

interesting fact is that a given solution for each instance of every problem in NP

can be verified in polynomial time. This fact can be used for an alternative but

equivalent characterization of NP.

Definition 3.2.8. A verifier for a language L ⊆ Σ∗ is a deterministic Turing

machine V , where

L = {w ∈ Σ∗ | V accepts 〈w, c〉 for some certificate c ∈ Σ∗, |c | ≤ |w |k , k ≥ 1 }

So, a polynomial time verifier runs in polynomial time in the length of w . A

language L is polynomially verifiable if it has a polynomial time verifier.

A verifier for a language has in addition to the input information to verify in

polynomial time whether the input is a member of the language.

16

3. An Introduction to the Time Complexity Theory

Definition 3.2.9. The complexity class NP is the set of languages that have

polynomial time verifiers.

Theorem 3.2.5. Let L ⊆ Σ∗ be a language. Then

L ∈
⋃
k≥1

NTIME(nk)⇐⇒ L has a polynomial time verifier

Proof idea. The idea is to convert the nondeterministic Turing machine M to a

polynomial time verifier V and vice versa.

“⇒” The certificate is a branch of the computation tree of M that accepts the

input. Then V simulates M with the certificate.

“⇐” M guesses the certificate and simulates the verifier V.

This alternative definition of NP is very useful to check whether a problem is

in NP because it is often much easier to describe a polynomial time verifier than

to define a polynomial nondeterministic Turing machine. It also leads to a vivid

distinction of the time complexity classes P and NP:

• P is the class of languages that can be decided quickly.

• NP is the class of languages that can be verified quickly.

Where “quickly” means in polynomial time solvable on a deterministic Turing

machine.

Even when it seems clear that nondeterministic Turing machines are much

more powerful than deterministic Turing machines there is no such proof. It is

one of the greatest unsolved problems in theoretical computer science whether

P = NP [Sip06]. One approach to answer this question came in the early 1970s

when Cook and Levin discovered independently that some problems in NP are

representatives for the complexity of the entire class [Coo71; Lev73]. These

representatives are called NP–complete.

17

3. An Introduction to the Time Complexity Theory

3.2.3. NP–completeness and Polynomial Time Reducibility

The discovery of NP–complete problems is of great importance for theoretical

and practical reasons. On the one hand it would be sufficient to show that

one NP–complete problem is in polynomial time solvable to prove that P = NP.

On the other hand it would also be enough if one of these problems cannot

be solved in polynomial time to show that P 6= NP. So computer scientists

attempting to answer the NP vs. P question can focus on these two approaches.

A practical reason of the concept of NP–completeness is that researches may

stop trying to find a polynomial time algorithm for a NP–complete problem,

even when the nonexistence is not proven. Instead, they can spend time to find

an approximation of the optimal solution or a polynomial time algorithm for a

specialized variant of the problem.

One important NP–complete problem is the satisfiability problem which is to

test whether a Boolean formula is satisfiable. Hence, it is the language of all

satisfiable Boolean formula. In the following, a problem, i.e. language, will be

defined with a high level description of the input for the algorithm (Instance)

and when the input is accepted (Question).

Definition 3.2.10. SAT (Satisfiablility Problem)

Instance: A Boolean formula φ.

Question: Is φ satisfiable?

This problem is a representative for the complexity of NP because a solution

for SAT can be efficiently used to solve every other problem in NP. The concept

of efficiently reducing a problem to another is called polynomial time reducibility.

In 1972 Karp introduced this method and showed a great variety of NP–complete

problems [Kar72].

Definition 3.2.11. Let L1, L2 be languages over the alphabets Σ∗ and Γ∗. L1

is polynomial time reducible to L2, written L1 ≤P L2, if a polynomial time

computable function f : Σ∗ → Γ∗ exists, such that for every w ∈ Σ∗,

w ∈ L1 ⇐⇒ f (w) ∈ L2.

A function f is a polynomial time computable function if a polynomial time

18

3. An Introduction to the Time Complexity Theory

deterministic Turing machine exists that computes f .

So, if a language L is polynomial time reducible to a language in P then L is

in P also.

Theorem 3.2.6. Let L1, L2 be languages.

If L1 ≤P L2 and L2 ∈ P , then L1 ∈ P .

Proof. Let Mf be the deterministic Turing machine that computes the function

f of the polynomial time reduction, and let M2 be the deterministic polynomial

time Turing machine deciding L2.

Then the Turing machine M1 decides L1 on input w as follows:

1. Run Mf on input w to compute f (w).

2. Run M2 on input f (w).

M1 accepts w ⇐⇒ M2 accepts f (w)

⇐⇒ f (w) ∈ L2

⇐⇒ w ∈ L1

M1 runs in polynomial time because the composition of polynomials is a polyno-

mial. Hence, L1 is in P.

With the concept of polynomial time reducibility NP–complete languages are

defined as follows.

Definition 3.2.12. A language L is NP–complete if

1. L is in NP, and

2. every language in NP is polynomial time reducible to L.

A problem is NP–hard if only the second property of Definition 3.2.12 is

met. Previously it was already said that SAT is a NP–complete problem. This

statement is known as the Cook–Levin theorem, with the consequence that if

SAT is in deterministic polynomial time solvable then every problem in NP is in

deterministic polynomial time solvable.

Theorem 3.2.7. SAT is NP–complete [Coo71; Lev73].

19

3. An Introduction to the Time Complexity Theory

The proof of this theorem is a good example for how the NP–completeness

of a problem is shown. In general, first it is shown that the problem is in NP

by describing a polynomial time verifier for an instance of the problem with a

suitable certificate. Second it is shown that every problem in NP is polynomial

time reducible to the problem. For SAT this can be done with a construction

of a polynomial time reduction for each problem L in NP. The reduction takes

an instance w for L and computes a Boolean formula φ that simulates the

computation on input w of the corresponding Turing machine of L. Hence

w is in L if and only if φ is satisfiable. The technical details are spared at

this point which can be found in great detail in many textbooks [Sip06; Cor+09].

Another way is to make a polynomial time reduction from a known NP–complete

problem to the problem in question. This is sufficient as stated in the following

Theorem 3.2.8.

Theorem 3.2.8. If L1 is NP–complete and L1 ≤P L2 for some L2 in NP, then

L2 is NP–complete.

Proof. Let Mg be the deterministic Turing machine for L1 ≤P L2 with the

polynomial time computable function g. For every language L in NP let Mf be

the deterministic Turing machine that computes the function f of the polynomial

time reduction from L to L1. Then g ◦ f is the polynomial time computable

function of L ≤P L2, where the deterministic Turing machine Mg◦f computes

the function for an instance w ∈ Σ∗ as follows:

1. Run Mf on input w to compute f (w).

2. Run Mg on input f (w) to compute g(f (w)).

The Turing machine Mg◦f runs in polynomial time because Mf and Mg compute

f (w) and g(f (w)) in polynomial time. Hence,

w ∈ L⇐⇒ f (w) ∈ L1 ⇐⇒ g(f (w)) = g ◦ f (w) ∈ L2.

So, to prove that a problem is NP–complete it is enough to show that the

problem is in NP and that a known NP–complete problem is polynomial time

reducible to it. Another good known and well studied computational decision

20

3. An Introduction to the Time Complexity Theory

problems that is NP–complete is 3–SAT [Cor+09]. It is like SAT only that the

Boolean formulas are in 3–CNF.

Definition 3.2.13. 3–SAT

Instance: A Boolean formula φ in 3–CNF.

Question: Is φ satisfiable?

This problem and its many variants are used as a starting point for many

reductions to show NP–completeness of other problems.

21

4. Planar 3–SAT

Since Lichtenstein‘s description of Planar 3–SAT many properties on planar

graphs were shown to be NP–complete by means of reductions from Planar

3–SAT itself or one of its many variants. Basic versions of Planar 3–SAT, where

the definition of the associated graph is adjusted a little, are often used for

restriction. The most used version for this is Simple Planar 3–SAT.

4.1. Planar 3–SAT

Let φ be a Boolean formula in 3–CNF with a set C of m clauses over the variables

X = { x1, . . . , xn }. The graph G(φ) = (V, E) is called the associated graph of

φ, where

V = X ∪ C, and

E = E1 ∪ E2 with

E1 = { (x, C) | x ∈ C or ¬x ∈ C, for x ∈ X and C ∈ C } and

E2 = { (x1, x2), (x2, x3), . . . , (xn, x1) } .

The edges of E2 describe a simple cycle with all variable–vertices. Given a

planar embedding of the associated graph the inside of this cycle will also be

denoted as the left side when describing on which side a clause lies according to

a variable–vertex. Because there is no distinction between positive and negative

literals it is not possible to derive the Boolean formula from a given associ-

ated graph. A planar Boolean formula is a Boolean formula in 3–CNF with an

associated graph that is planar.

22

4. Planar 3–SAT

Definition 4.1.1. Planar 3–SAT [Lic82]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ).

Question: Is φ satisfiable?

Theorem 4.1.1. Planar 3–SAT is NP–complete.

Proof according to [Lic82]. Given an instance for Planar 3–SAT it is in polyno-

mial time verifiable that the Boolean formula is in 3–CNF, the associated graph

is planar [HT74; WW99; BM04; HT08], and the planar embedding matches

the definition of the associated graph. The certificate is an assignment for the

Boolean formula which can be easily used to evaluate the formula in linear time

by checking that each clause evaluates to 1. Hence, Planar 3–SAT is in NP.

To show that Planar 3–SAT is NP–hard a reduction from 3–SAT is described.

The main idea for the reduction is to transform nonplanar Boolean formulas

in polynomial time into equisatisfiable planar Boolean formulas. Let φ be a

Boolean formula with m clauses and n variables for the decision problem 3–

SAT. We describe an algorithm f that transforms φ into φ′ such that they are

equisatisfiable and that the associated graph of φ′ is planar.

Let G be a grid of size 3m × 3m. This is the maximal size necessary if each

clause contains three literals. Each clause is aligned on the left border as one

vertex covering a maximum of 3 vertical adjacent grid points. The number of

grid points corresponds to the size of each clause. The vertices for the variables

are aligned on the bottom.

If the variable x occurs nx times in φ then the corresponding vertex covers

nx horizontal adjacent grid points. Every clause is then connected with the

containing variables by a horizontal and vertical line on the grid, using every

grid line just once. To fulfill the definition of the associated graph the variable–

vertices are connected in a cyclic order.

In the next step every crossing (Figure 4.2a) is eliminated by adding new

variables and clauses to build generic planar crossover boxes (Figure 4.2b) where

two lines intersect. The crossover box is just a subgraph that carries the values

of the two variables crossing free over the intersection. The underlying formula

23

4. Planar 3–SAT

Figure 4.1.: Let φ = (w ∨¬x ∨ y)∧ (¬x ∨¬y ∨ z)∧ (¬w ∨ x ∨ y) be a Boolean
formula in 3–CNF. Example for a nonplanar embedding of φ on a
grid with clauses at the left side and vertices at the bottom.

of the subgraph is the following:

(¬x2 ∨ ¬y2 ∨ α) ∧ (x2 ∨ ¬α) ∧ (x2 ∨ ¬α) (4.1)

(¬x2 ∨ y1 ∨ β) ∧ (x2 ∨ β) ∧ (¬y1 ∨ ¬β)) (4.2)

(x1 ∨ y1 ∨ γ) ∧ (¬x1 ∨ ¬γ) ∧ (¬y1 ∨ ¬γ) (4.3)

(x1 ∨ ¬y2 ∨ δ) ∧ (¬x1 ∨ ¬δ) ∧ (y2 ∨ ¬δ) (4.4)

(α ∨ δ ∨ ξ) ∧ (β ∨ γ ∨ ¬ξ) (4.5)

(¬α ∨ ¬β) ∧ (¬β ∨ ¬γ) ∧ (¬γ ∨ ¬δ) ∧ (¬δ ∨ ¬α) (4.6)

(x2 ∨ ¬x) ∧ (x ∨ ¬x2) ∧ (y2 ∨ ¬y) ∧ (y ∨ ¬y2) (4.7)

The following replacment is done for each crossing caused by edges from

two variable x and y to the corresponding clauses. Every occurrence of y or

¬y is replaced in the affected clauses with x1 or ¬x1, and analogues for y . It

can be easily verified that the formula of the subgraph is satisfiable if and only

if x1 ⇔ x and y1 ⇔ y . Each crossing is eliminated with a constant number

of new variables and clauses. It is also possible to connect all variables of the

crossover box without adding an intersection (Figure 4.2b) to fulfill the definition

of planar Boolean formulas. All new intersections that arise while connecting

all the variable–vertices in a circular order can be eliminated with the previous

24

4. Planar 3–SAT

(a) Possible intersection. (b) Crossover box eliminates the inter-
section. The variable–vertices can
be connected in a cyclic order (blue
edges).

Figure 4.2.: Example of the elimination of an intersection (Figure 4.2a) with a
crossover box (Figure 4.2b). The intersection is caused due the
edges connecting the variable–vertices of a and b with the corre-
sponding clause–vertices of C1 and C2. The following color schema
is used to simplify the identification of the clauses for the crossover
box:
(4.1) blue �, (4.2) green �, (4.3) yellow �, (4.4) orange �, (4.5)
red �, (4.6) purple �, (4.7) dark grey �.

mentioned crossover box as well (Figure 4.3).

There only can be O
(
m2
)
intersections by performing these steps. Hence the

algorithm runs in polynomial time and the size of the new but equisatisfiable

formula is polynomial in the size of the original one. It follows that the Planar

3–SAT problem is NP–hard.

Together with the property that it is in NP it is shown that Planar 3–SAT is

NP–complete.

4.1.1. Rectilinear Planar 3–SAT

Knuth and Raghunathan use a different definition of Planar 3–SAT by replacing

the definition of the associated graph [KR93]. A rectilinear embedding of a

planar Boolean formula has all variable–vertices arranged on a straight line, and

25

4. Planar 3–SAT

Figure 4.3.: Complete transformation of the embedding of a Boolean formula to
a planar embedding.

the clauses are represented as horizontal lines with at most three vertical lines,

also called legs, to there corresponding variable-vertices. The clauses can be

nested such that the graph is still planar (e.g. Figure 4.4). The edges of the

cycle through all variable-vertices is omitted but could be easily added.

Figure 4.4.: Rectilinear embedding of a planar Boolean formula φ with clauses
(¬x1∨x2), (¬x1∨¬x2∨x7), (x1∨¬x7), (x2∨x3∨x6), (¬x3∨x4∨¬x5),
(¬x3 ∨ ¬x4 ∨ x6), (x3 ∨ x5 ∨ x6), and (x4 ∨ x5 ∨ ¬x6).

Theorem 4.1.2. Let φ be a planar Boolean formula. Given a combinatorial

embedding of the associated graph G(φ) together with a cyclic order of the

variable–vertices it is always possible to arrange a rectilinear embedding of G(φ).

Proof. Let φ be a planar Boolean formula with n variables and m clauses. Let

G(φ) be the associated graph of φ with a cyclic order of the variable-vertices

x1, x2, . . . , xn.

26

4. Planar 3–SAT

To obtain the rectilinear embedding of the graph it is necessary to know how to

nest the clauses with up to three legs without causing any crossing. Therefore

a level L ∈ Z is assigned to each clause which can then be associated with

a distance to the variable-vertices. In the planar embedding of the associated

graph clauses inside the cycle of the variable–vertices are assigned with positive

integers, and clauses on the outside with negative integers. The variable–vertices

are on level 0. A clause C1 encloses another clause C2 if they are on the same

side and the leftmost and rightmost variable–vertices of C1 are surrounding the

variable–vertices of C2 on the straight line of the variable–vertices. For instance,

C7 = (¬x1 ∨ ¬x6) encloses C10 = (x3 ∨ x4 ∨ ¬x5) in example 4.1.1. If this is

ambiguous, i.e. both clauses have the same leftmost and rightmost variables,

then there are two possible cases.

The first case is that both clauses contain the same variables but different

literals, e.g. (x ∨ ¬y ∨ z) and (¬x ∨ ¬y ∨ z). This is possible because in the

associated graph there is no distinction between positive and negative variables.

The second case is when the number of containing literals differ. In both cases

the cyclic ordering of the edges at the leftmost variable–vertex breaks the tie.

That means that the clause with the leftmost edge incident to the variable–vertex

encloses the other, e.g. clause C2 encloses clause C3 in example 4.1.1.

The level of each clause is defined recursively in dependence of the enclosing

clauses. Each clause C that does not enclose any other clause is assigned with

level L(C) = 1. The level of clause C is then

L(C) = 1 +max {L(D) | D clause of φ, C encloses D } (4.8)

These assignments do not consider on which side the clauses are located. To

take that into account levels of clauses outside the variable–vertices cycle are

negated. With this information the levels for the horizontal lines representing

the clauses in the embedding are given. The vertical legs are just straight lines

from the variable–vertices in direction of the corresponding clauses until they

touch, and mark the length of the horizontal lines. Vertical lines from the same

variable–vertex are drawn side by side with a little gap between each other.

27

4. Planar 3–SAT

Lemma 4.1.3. Horizontal lines on the same level cannot overlap each other.

Proof. Suppose two horizontal lines h1 and h2 overlap each other, and let C1

and C2 be the corresponding clauses. Then there are three possibilities how they

overlap:

1. They have the same leftmost and rightmost variable–vertex.

2. One horizontal line lies completely on the other.

3. The intersection of the horizontal lines is a proper subsection of both lines,

i.e. there are points on both lines that are not contained in the intersection.

In the first case, the leftmost and rightmost edge in the combinatorial embed-

ding of one corresponding clause–vertex, say C1, have to be before and after the

edges of the other clause–vertex, say C2. Otherwise the graph cannot be planar.

Though C1 encloses C2 and therefore have by definition a higher level. Hence,

h1 and h2 are not on the same level which is a contradiction to the assumption.

For the second case assume without loss of generality that h2 lies completely

on h1. It follows that the leftmost variable–vertex for C1 is before the variable–

vertices for C2 on level 0. Analogous applies for the rightmost variable–vertex

for C1. Then by definition C1 encloses C2 and therefore L(C1) is greater than

L(C2). Hence h1 and h2 are not on the same level and cannot overlay each

other. This is a contradiction to the previous assumption.

Each clause is on a simple cycle with some edges of the variable cycle and

the edges to the clause. For the third case there have to be at least one but

not all variable-vertices of clause C2 on the cycle of C1 and vice versa. Hence,

there is at least one variable–vertex of C2 not on the cycle of C1. Because the

clause–vertex of C2 have edges to all corresponding variable–vertices there is

an intersection with the cycle of C1. But this cannot be the case because the

associated graph is planar. Thus, case three is not possible either.

Lemma 4.1.4. The vertical line from a variable–vertex to the corresponding

horizontal line does not intersect with any other line.

Proof. A vertical line cannot intersect with another vertical line because by con-

struction they are set side by side at the variable–vertex. It cannot intersect with

28

4. Planar 3–SAT

a horizontal line either because then there would be a clause on a lower level that

encloses the corresponding variable–vertex of the vertical line. But then the as-

sociated graph would be nonplanar as described in Lemma 4.1.3. Hence, no

vertical line intersects with any other line except with the corresponding horizon-

tal line.

From lemmata 4.1.3 and 4.1.4 follows that in this way a rectilinear embedding

of G(φ) can be easily drawn by giving each level an appropriate distance, and

each variable–vertex a suitable width and distance between each other.

Example 4.1.1. Let φ be a planar Boolean formula and G(φ) the associated

graph with a planar embedding as shown in Figure 4.5 of the form:

φ = (¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x6) ∧ (x2 ∨ x3 ∨ x6) ∧ (x4 ∨ ¬x6) ∧ (¬x4 ∨ x5)

∧ (x5 ∨ ¬x6) ∧ (¬x1 ∨ x6) ∧ (x1 ∨ ¬x5 ∨ x6) ∧ (x1 ∨ ¬x3) ∧ (x3 ∨ x4 ∨ x5)
(4.9)

Figure 4.5.: Planar embedding of the associated graph of φ with the indices of
the clauses according to their appearance in the formula. Clauses
C3 in orange and C7 in green are colored for easier recognition in
the rectilinear embedding of G(φ) (Figure 4.6). The blue edges
represent the cycle through all variable–vertices.

To get a rectilinear embedding of G(φ) the variable–vertices are arranged

on a straight line beginning with the x1 and ending with x6. The clauses

29

4. Planar 3–SAT

C1, C2, and C3 on the left side have level 1, and the clauses C9, and C10 on

the other side of the variable–vertices have level −1 because they are not en-

closing any other clause. From this on the levels of the other clauses are by

definition

l(C4) =1 +max{l(C5), l(C6)} = 1 +max{1, 1} = 2

l(C3) =1 +max{l(C4), l(C5), l(C6)} = 3

l(C2) =1 +max{l(C3), l(C4), l(C5), l(C6)} = 4

l(C8) =min{l(C9), l(C10)} − 1 = −2

l(C7) =min{l(C8), l(C9), l(C10)} − 1 = −3.

Given the level of each clause the rectilinear embedding of G(φ) can be drawn

like in Figure 4.6.

Figure 4.6.: Possible rectilinear embedding of G(φ). The dashed blue line for
the cycle through all variable vertices are omitted by Knuth and
Raghunathan but could be easily added. The colored lines represent
the same clauses as in figure 4.5

.

From Theorem 4.1.2 follows that it can be assumed that the associated graph

of a planar Boolean formula for Planar 3–SAT has a rectilinear embedding.

30

4. Planar 3–SAT

4.1.2. Application of Planar 3–SAT

To show NP-completeness for the Minimum Average Distance Triangulation

decision problem Kozma performed a reduction form Planar 3–SAT [Koz11].

Remark. Kozma defines a restricted variant of Planar 3–SAT, where in the

Boolean formula each variable occurs at most once in the same clause, and at

least in two clauses. These restriction can be assumed without loss of generality

[4.1.3].

Let P = {p1, p2, . . . , pn} be a set of points in the plane, and let w : P×P → R
be a semimetric weight function for edges between pairs of points in P . A

semimetric on a set S is a function, called the distance function, d : X×X → R
that satisfies the axioms d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y , and

d(x, y) = d(y , x). In contrast to a metric satisfies a semimetric not necessarily

the triangle inequality d(x, y) + d(y , z) ≥ d(x, z). For a given weight W ∗

the Minimum Average Distance Triangulation decision problem is the question

whether there exists a geometric, crossing-free graph T = (V, E) embedded on

P with weight

W (T) =
∑
(p,q)∈E

w(p, q) ≤ W ∗ .

According to Kozma the problem is similar to several other problems, such as

• the Minimum Average Distance Spanning Subgraph [JLK78] problem,

• the Minimum Average Distance Spanning Tree [Hu74] problem,

• the Wiener-index [Wie47] in chemistry,

• the Minimum Weight Triangulation [MR08] problem, and

• the Minimum Dilation Triangulation [KM05] problem,

but he has not found any fundamental connections to the Minimum Average

Distance Triangulation problem [Koz11]. The Minimum Weight Triangulation

problem is presented in more detail in Section 5.2.

31

4. Planar 3–SAT

4.1.3. Restrictions on Planar 3–SAT

There are some variants of Planar 3–SAT which are mainly defined to just show

the NP–completeness of other problems rather than focus on the study of Planar

3–SAT. Nevertheless, these variants are examples of the usefulness of Planar 3–

SAT and its high adaptability to a wide range of computational problems with

just a few restrictions on the definition of Planar 3–SAT or its variants. Some of

these restrictions on Boolean formulas can be assumed without loss of generality

others lead to new variants of Planar 3–SAT. The definition of a new variant

comes in hand with a polynomial time reduction from or to a known problem.

Transformations of Boolean Formulas

To perform a reduction from one satisfiability problem to another it is a common

proof technique to transform the given Boolean formula. These transformations

are of the kind that new variables and clauses are added to the formula, or existing

variables are replaced by new ones. Furthermore it is necessary that the given

formula is satisfiable if and only if the new formula after the transformation is

satisfiable, i.e. the formulas are equisatisfiable. For that a description or function

is given to obtain from the satisfying assignment of one formula the satisfying

assignment of the other, and vice versa.

Assumptions Without Loss of Generality

In the study of the satisfiability of Boolean formulas it is often helpful to make

some assumptions to simplify the form of the formulas. For example with these

assumptions the number of possible cases for a transformation to an equisatis-

fiable formula is reduced.

Both Literals of a Variable Occur Without loss of generality it can be assumed

that both literals of every variable appear in the Boolean formula. Suppose that

¬x does not occur in the Boolean formula. Then the variable x can be set to

1 in a possible satisfying assignment. It follows that every clause containing

x is always satisfied and hence all these clauses can be deleted. The same

32

4. Planar 3–SAT

argumentation is valid if only ¬x occurs. Then all clauses containing ¬x can be

deleted from the Boolean formula with the assignment x = 0.

No Clause Contains Both Literals of a Variable Without loss of generality

it can be assumed that no clause contains both literals of a variable. Is this the

case such clauses are always satisfied and can be deleted from the formula.

4.2. Planar exactly 3–SAT

In some cases it is easier to make a reduction from a variant of Planar 3–SAT

where are in each clause exactly three literals, e.g. to prove NP–hardness for

Simple Planar 1–in–3–SAT [5.1].

Definition 4.2.1. Planar exactly 3–SAT

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. φ is in exactly 3–CNF.

Theorem 4.2.1. Planar exactly 3–SAT is NP–complete.

Proof. The NP–completeness proof of Planar 3–SAT (Theorem 4.1.1) can be

used to show that Planar exactly 3–SAT is also NP–complete. For this the

reduction is not from 3–SAT but from 3–SAT restricted to Boolean formula in

exactly 3–CNF, which is also NP–complete [GJ79]. No other adjustments are

necessary and therefore Planar exactly 3–SAT is also NP–complete.

4.3. Simple Planar 3–SAT

Another definition of planar 3–SAT is without the necessity that the variable-

vertices are connected in a circular order.

Definition 4.3.1. Simple Planar 3–SAT

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the associated graph:

33

4. Planar 3–SAT

1. G(φ) has no edges between the variable–vertices.

Question: Is φ satisfiable?

Theorem 4.3.1. Simple Planar 3–SAT is NP–complete.

Proof. The NP-completeness of Simple Planar 3–SAT follows directly from the

proof of the NP-completeness of Planar 3–SAT. The proof is the same with the

exception that the edges between the variables are not necessary.

4.4. Separable Planar 3–SAT

Lichtenstein also introduced a variant of Planar 3–SAT to present an alterna-

tive and simpler proof to show that the Geometric Connected Dominating Set

problem is NP–complete.

Let G = (V, E) be a graph and let S be a subset of V . S is called a dominating

set if every vertex in V \S is adjacent to at least one member of S. Additionally

S is a connected dominating set if S is connected and a dominating set. The

Geometric Connected Dominating Set problem is given a graph G with vertices

representing points in the Euclidean plane and with edges between these vertices

if the distance between them is not greater than 1, and an integer k , does there

exist a connected dominating set of size k . This graph is also called unit disk

graph.

This problem is of great interest in the study of networking, e.g. finding a

virtual wireless backbone for routing in an ad-hoc network [DB97; GMM13].

Definition 4.4.1. Separable Planar 3–SAT1 [Lic82]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the associated graph:

1. At each variable–vertex all edges representing a positive literal

are incident to one side of the vertex, and all edges representing

a negative literal are incident to the other side. The separation is

according to the edges of the cycle through all variable–vertices.

Question: Is φ satisfiable?
1In the paper of Lichtenstein the problem is mentioned in Lemma 1 with no specific name.

34

4. Planar 3–SAT

Another way to look at this definition is to have a separate vertex for each

literal of a variable and an additional edge connecting the literal–vertex of this

variable. Gibson et al. and Mitchell and Packer call this variant Positive-Negative

Planar 3–SAT [Gib+08; MP09].

Theorem 4.4.1. Separable Planar 3–SAT is NP–complete.

Proof according to [Lic82]. A given Boolean formula and the embedding of the

associated graph can be verified in polynomial time to be a valid instance for

Separable Planar 3–SAT. To verify the embedding of the associated graph it is

necessary to check whether at each variable–vertex all edges incident to the same

side correspond to the same literal. In addition with a assignment of the variables

it can also be verified without greater effort that the assignment is satisfiable.

Thus a given certificate for the problem can be validated in polynomial time,

which shows that Separable Planar 3–SAT is in NP.

With a reduction from Planar 3–SAT it is shown that the problem is NP–hard.

Let I = (φ,G) be an instance for Planar 3–SAT, where φ is a planar Boolean

formula and G = (V, E) the planar embedding of the associated graph G(φ).

For the following transformation to Separable Planar 3–SAT a variable x in φ is

called invalid if the variable–vertex x has edges representing positive and negative

variables on the same side. An instance of Planar 3–SAT with no invalid vertices

in the associated graph is obviously a valid instance for Separable Planar 3–SAT.

Now, let x be an invalid variable in φ with a total of s occurrences in s clauses.

The clause–vertices in G(φ) are placed in clockwise order around x , where the

first t clause–vertices lie on the left side (e.g. Figure 4.7a).

The variable x is removed from φ and replaced by 2s − 2 new variables

x1, x2, . . . , x2s−2. Additionally φ is appended by the following clauses (x1∨¬x2)∧
(x2∨¬x3)∧· · ·∧(x2s−2∨¬x1) to force the new variables to have the same value

in a satisfying assignment. The substitution of x in the affected clauses depends

on the new embedding of G(φ).

This is done by arranging the new clause-vertices and variable-vertices as a

cycle at the place of the previous variable–vertex x . The cycle has the form that

clause Ci is associated with the clause–vertex of (x2i−1∨x2i), for i = 1, 2, . . . , t,

and with the clause–vertex of (x2i ∨ x2i+1), for i = t, t + 1, . . . , s − 1 and

x2s−1 = x1. On the variable cycle x1 is connected with the predecessor vertex of

35

4. Planar 3–SAT

the original vertex x , and x2t has an edge to the successor of x . The previous

edge form Ci to x is then replaced with an edge between the variable–vertex of

either the positive or negative variable of the associated clause. This ensures

that at each new variable–vertex all edges representing positive variables are on

one side and edges indicating negative variables are on the other side (Figure

4.7b).

Remark. If the edges of a variable–vertex x to the corresponding clause–vertices

are only on one side then the variable is replaced by 2s variables. Additionally

2s clauses (xi ∨ xi+1), and (x2s ∨ ¬x1) are appended to the formula, for i =

1, 2, . . . , 2s − 1. The vertices are then aligned on a line except the last clause–

vertex of (x2s ∨ ¬x) which is put on the opposite side.

Transforming each invalid variable of φ in this way leads to a planar Boolean

formula with an embedding according to Separable Planar 3–SAT. It is obvious

that the replacement of the invalid variables ensures equisatisfiability with the

original formula. This is because all new variables for one invalid variable have

the same value in an satisfying assignment due to the additional clauses. The

transformation can be done in polynomial time because each individual replace-

ment of a variable can be done in polynomial time and the number of variables

is linear with respect to the input size. Hence the problem is NP–hard, and

therefore NP–complete.

4.5. Separable Simple Planar 3–SAT

Separable Simple Planar 3–SAT2 introduced by Du [DKW02] is a combination

of Simple Planar 3–SAT and Separable Planar 3–SAT.

Definition 4.5.1. Separable Simple Planar 3–SAT [DKW02]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the associated graph:

2In the paper of Du, Ko, and Wang the problem is called Strongly Planar 3–SAT.

36

4. Planar 3–SAT

(a) Variable–vertex x has connections to five clause–vertices C1, . . . , C5. A green edge
indicates a positive variable and a red edge a negative variable of x in the connected
clause. The blue edges are part of the cycle of all variables in the formula.

(b) The variable–vertex x is replaced by a cycle of eight new variables–vertices
x1, x2, . . . , x8 and eight new clause–vertices. The new clauses force all xi , for
i = 1, 2, . . . , 8, to have the same value in a satisfying assignment. The clause–
vertices for C1, C2, . . . , C5 are connected to the new variable–vertices such that for
each variable–vertex all edges indicating positive variables (green edges) are on one
side and edges indicating negative variables (red edges) are on the other side. The
cycle through all variable-vertices (blue edges) connect the new variable–vertices in
a zig-zag fashion.

Figure 4.7.: Example for a replacement of a variable x in a Boolean formula
occurring in the clauses with literal x in C1, C3, C4 and with literal
¬x in C2, C5.

37

4. Planar 3–SAT

1. Each variable–vertex is replaced by two literal–vertices with an

edge connecting them, and edges to the corresponding clause–

vertices.

2. G(φ) has no other edges.

Question: Is φ satisfiable?

Theorem 4.5.1. Separable Simple Planar 3–SAT is NP–complete.

Proof. Separable Simple Planar 3–SAT is in NP because it is in linear time ver-

ifiable that the associated graph is planar, and the assignment of the certificate

for the Boolean formula is satisfiable.

With a simple reduction from Separable Planar 3–SAT (Definition 4.4.1) it is

shown that the problem is also NP–hard. Let φ be the planar Boolean formula of

an instance for Separable Planar 3–SAT. Then φ is also an instance for Separable

Simple Planar 3–SAT because the definition of the associated graph of φ fulfills

the properties for Separable Simple Planar 3–SAT by deleting the edges between

the variable–vertices, and separating them into literal–vertices with an connecting

edge. If the instance do not meet the properties of Separable Planar 3–SAT, e.g.

the variable–vertices are not on a cycle, then φ is expanded with a clause (x∧y) in

disjunctive normal form. In this way it is guaranteed that the instance is rejected

because the Boolean formula is not in 3–CNF. Obviously the reduction needs

only polynomial time. So, the problem is NP–hard and hence, NP–complete.

Remark. With the reduction from Separable Planar 3–SAT the proof of theorem

4.5.1 is simplified in contrast to the proof of Du, Ko, and Wang [DKW02]

described by Wu [Wu15]. There, a reduction from Planar 3–SAT is described

where it is necessary to use a generic crossover box to eliminate the intersections

caused by the separation of the variable–vertices.

4.6. Clause–Linked Planar 3–SAT

Definition 4.6.1. Clause–Linked Planar 3–SAT [KLN91a]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the associated graph:

38

4. Planar 3–SAT

1. G(φ) has no edges between variable–vertices.

2. The set of clauses allows a linear ordering such that G(φ) is still

planar when consecutive clause–vertices are connected with an

edge.

Question: Is φ satisfiable?

Theorem 4.6.1. Clause–Linked Planar 3–SAT is NP–complete [KLN91a].

39

5. Planar 1–in–3–SAT

1–in–3–SAT is a main variant of the satisfiability problem 3–SAT. A restricted

variant of the planar version of this problem is used to show NP–completeness

for the 3–dimensional Matching problem [DF86]. A very important result based

on a variant of 1–in–3–SAT is that the Minimum Weight Triangulation is NP–

complete [MR08]. The NP–completeness of this problem is stated as an open

problem in the influential textbook Computers and Intractability: A Guide to the

Theory of NP-completeness by Garey and Johnson [GJ79].

5.1. Simple Planar 1–in–3–SAT

Dyer and Frieze use Simple Planar 1–in–3–SAT to show that the planar ver-

sion of another well known problem [GJ79], namely the 3–dimensional Matching

problem, is also NP–complete.

Let X, Y , and Z be finite, disjoint sets, and let T be a subset of all possible

triples (x, y , z) such that x ∈ X, y ∈ Y , and z ∈ Z, and let k ≥ 0 be an

integer. A matching M is a subset of T with the property that for any two

distinct members m1 = (x1, y1, z1) and m2 = (x2, y2, z2) the inequalities x1 6= x2,

y1 6= y2, and z1 6= z2 hold. The question of 3–dimensional Matching is whether

there exists a matching of size k .

Their motivation was also to have an easier starting point to prove NP–

completeness for planar variants of general problems.

Definition 5.1.1. Simple Planar 1–in–3–SAT1 [DF86]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the associated graph:

1In the paper of Dyer and Frieze the problem is called Planar 1–in–3–SAT.

40

5. Planar 1–in–3–SAT

1. G(φ) has no edges between the variable–vertices.

Question: Is φ with the following restrictions satisfiable?

1. A clause is satisfied if exactly one literal is true.

Theorem 5.1.1. Simple Planar 1–in–3–SAT is NP–complete.

Proof. Simple Planar 1–in–3–SAT is in NP because the planar Boolean formula

and the planar embedding of the associated graph, and the validity of an assign-

ment can be verified in polynomial time.

With a quite simple reduction from Planar exactly 3–SAT (Definition 4.2.1)

it can be shown that the problem is also NP–hard. Let φ be the planar Boolean

formula of an instance for Planar exactly 3–SAT. First, eliminate the edges

between the variable–vertices of the associated graph. Then each clause C =

(l1 ∨ l2 ∨ l3) in φ is replaced by three clauses

(l1 ∨ wC ∨ xC), (¬l2 ∨ wC ∨ yC), and (¬l3 ∨ xC ∨ zC)

and new introduced variables wC , xC , yC , and zC . These new clauses are satisfied

by exactly one literal each if and only if the original clause C is satisfiable. This

can be verified by a simple truth table of the seven satisfying assignments for

C and the resulting assignment of the new variables. It is also possible to draw

the new clause–vertices at the place of the original one without breaking the

planarity constraint of the Boolean formula.

For instances that do not meet the properties of Planar exactly 3–SAT, the

Boolean formula is expanded with the clause (x ∧ y) in disjunctive normal form.

So the instance is not a member of Simple Planar 1–in–3–SAT either because

the formula is not in 3–CNF.

Because these adjustments of φ to get a equisatisfiable formula for Simple

Planar 1–in–3–SAT can be done in polynomial time (constant effort for each

clause of φ) the problem is also NP–hard, and hence NP–complete.

5.2. Planar Positive exactly 1–in–3–SAT

Let S be a point set in the plane. A triangulation of S is a maximal plane

straight–line graph whose vertex set is S, i.e. adding an additional straight–

41

5. Planar 1–in–3–SAT

(a) Clause of an instance for Simple Planar
3–SAT.

(b) Equisatisfiable clauses for Simple Pla-
nar 1–in–3–SAT.

Figure 5.1.: Replacement of a clause C = (a ∨ b ∨ c) for Simple Planar 3-SAT
with three equisatisfiable clauses C1 = (a∨w∨x), C2 = (¬b∨w∨y),
and C3 = (¬c ∨ x ∨ z) for Simple Planar 1–in–3–SAT.

line between two vertices makes the graph non–planar. For a triangulation T

the weight of T is defined as the sum of the Euclidean length of all edges in

T . Accordingly a minimum-weight triangulation of S is then a triangulation

with the minimum weight of all possible triangulations for S. Computing such

a minimum-weight triangulation of a given point set is shown to be NP–hard

by Mulzer and Rote with a reduction from Planar Positive exactly 1–in–3–SAT

[MR08].

Because of the open problem whether it is possible to compare the sums of

radicals, e.g. Euclidean distances, in polynomial time [Blö91], it is not known

whether the minimum-weight triangulation problem is in NP.

Definition 5.2.1. Planar Positive exactly 1–in–3–SAT2 [MR08; Lar92]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. φ is in exactly 3–CNF.

2. φ is positive.

• of the planar embedding of G(φ):

2In the paper of Mulzer and Rote the problem is called Positive Planar 1–in–3–SAT.

42

5. Planar 1–in–3–SAT

1. It is a rectilinear embedding.

Question: Is φ with the following restrictions satisfiable?

1. A clause is only satisfied if exactly one literal is true.

Theorem 5.2.1. Planar Positive exactly 1–in–3–SAT is NP–complete.

Proof according to [MR08]. Planar Positive exactly 1–in–3–SAT is in NP be-

cause it is in polynomial time verifiable that an instance is a positive exactly

3–CNF formula and the given embedding is rectilinear, i.e. it is a valid instance,

and that a given assignment is satisfying according to the definition of 1–in–3–

SAT, i.e. it is a valid certificate.

With a reduction from Planar 3–SAT (Definition 4.1.1) it is shown that the

problem is NP–hard. Let a planar Boolean formula φ and a rectilinear embedding

of the associated graph G(φ) be an instance of Planar 3–SAT. Without loss of

generality all clauses in φ are of size at least two [4.1.3].

In a first step, all clauses of size two are replaced in a way such that the

formula contains only clauses with three literals. Let C = (l1 ∨ l2) be a clause

with two literals. Then C is removed from the formula and replaced by two new

clauses (l1 ∨ l2 ∨ x) and (l1 ∨ l2 ∨ ¬x). After this step it is easily seen that the

old and new formula is equisatisfiable and can still be embedded in a rectilinear

fashion.

For the next steps, namely the elimination of negated variables and the trans-

formation of clauses to equisatisfiable 1–in–3–SAT clauses, two gadgets which

enforce equality and inequality of two variables are used. The inequality gadget

for two variables x and y is of the form

x 6= y ≡ (x ∨ a ∨ y) ∧ (a ∨ b ∨ c) ∧ (a ∨ c ∨ d) ∧ (b ∨ c ∨ d) (5.1)

with new introduced variables a, b, c, d . The last three clauses forces the variable

a to be set to 0 in an satisfying 1–in–3–SAT assignment. It follows that in an

satisfying assignment for this gadget either x or y is set to 1. The equality

gadget is then a combination of two inequality gadgets with an auxiliary variable

a in between to enforce equality of two variables x and y , and has the form

x = y ≡ x 6= a ∧ a 6= y . (5.2)

43

5. Planar 1–in–3–SAT

In a second step all negated variables are eliminated by an appropriate use of

the inequality gadget. Let x be a variable with negated occurrences. Then x is

replaced by a chain of variables x1.x2, . . . with alternating truth values according

to the connections in the embedding of the associated graph. In this way the

planarity of the drawing is kept and the formula is still equisatisfiable.

In the third and last step all clauses, except the clauses introduced with the

gadgets, are transformed to an equisatisfiable representation according to 1–in–

3–SAT. Let C = (x ∨ y ∨ z) be a clause with three literals. Then C is replaced

by

(x ∨ u ∨ a) ∧ (y ∨ u ∨ b) ∧ (a ∨ b ∨ q) ∧ (u = c) ∧ (d 6= z) ∧ (c ∨ d ∨ r).

(5.3)

The last three constraints can be reduced to the satisfiability of u ⇒ z . So, two

cases have to be considered. The first case is if u = 1 and hence z = 1. To get

a satisfying assignment for the other three clauses x, y , a, and b are set to 0 and

q to 1. The second case is if u = 0 for which the first three clauses are reduced

to the satisfiability of ¬a ∨ ¬b ⇔ x ∨ y with the value of z arbitrarily chosen.

Hence for all possible satisfying assignments of the original clause there exists a

valid 1–in–3–SAT assignment of the replacement.

Because of the additional clauses it is necessary to add two auxiliary variables

x ′ and z ′ together with equality gadgets for x = x ′ and z = z ′ to ensure that

the value of x and z is reachable by other clauses in the rectilinear embedding.

The variable x ′ is then placed to the left and z ′ to right of y . Then the clauses

above the variables and between x and y can be nested between x ′ and y and

clauses between y and z can correspondingly nested between y and z ′ (Figure

5.2).

All this transformations can be computed in polynomial time because there is

only a constant number of alternations for each clause necessary. Furthermore all

changes ensures a positive Boolean formula with a rectilinear embedding. Finally

both formulas are equisatisfiable according to their problem definition. Hence

Planar Positive exactly 1–in–3–SAT is NP–hard, and therefore NP–complete.

44

5. Planar 1–in–3–SAT

Figure 5.2.: Replacement of a clause (x ∨ y ∨ z) by equisatisfiable clauses ac-
cording to the restrctions of Planar Positive exactly 1–in–3–SAT
[MR08].

5.3. Simple Planar Monotone exactly 3–bounded

1–in–3–SAT

Moore and Robson show that the problem of tiling a finite region with a given

set of tiles is NP–complete even for right tromino and square tetromino on the

square lattice, or for the right tromino alone [MR01]. The NP–completeness of

the case for the right tromino alone is based on a reduction from this variant of

Simple Planar Monotone 1–in–3–SAT.

Simple Planar Monotone 1–in–3–SAT

Definition 5.3.1. Simple Planar Monotone 1–in–3–SAT3 [Lar92]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. φ is monotone.

• of the associated graph:

1. G(φ) has no edges between variable–vertices.

Question: Is φ with the following restrictions satisfiable?

1. A clause is satisfied if exactly one literal is true.

Theorem 5.3.1. Simple Planar Monotone 3–SAT is NP–complete [Lar92].

3In the paper of Laroche the problem is called Planar Monotone 1-in-3 SAT.

45

5. Planar 1–in–3–SAT

Definition and Theorem

Definition 5.3.2. Simple Planar Monotone exactly 3–bounded 1–in–3–SAT4

[MR01]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. φ is monotone

2. Each variable occurs in exactly three clauses.

• of the associated graph:

1. G(φ) has no edges between variable–vertices.

Question: Is φ with the following restrictions satisfiable?

1. A clause is satisfied if exactly on literal is true.

Theorem 5.3.2. Simple Planar Monotone exactly 3–bounded 1–in–3–SAT is

NP–complete [MR01].

Proof sketch according to [MR01]. The problem is in NP because it is in polyno-

mial time verifiable that the Boolean formula is monotone, each variable occurs

in exactly three clauses, the planar embedding matches the definition of the asso-

ciated graph, and the certificate (satisfying assignment for the Boolean formula)

is valid according to the restriction of 1–in–3–SAT. The reduction is from Simple

Planar Monotone 1–in–3–SAT (Definition 5.3.1) and proceeds in two steps. In

the first step, the Boolean formula is transformed in an equisatisfiable and still

planar formula where each variable appears at most three times. In the second

step, the formula is expanded with new clauses and auxiliary variables to get a

formula where each variable appears exactly three times.

5.4. Separable Simple Planar 1–in–3–SAT

The paper “On strongly planar 3SAT” is dedicated to prove NP–completeness

for some variants of Separable Simple Planar 3–SAT (Definition 4.5.1) [Wu15].

This variant has the restriction that a clause is only satisfied if exactly one literal

is true.
4In the paper of Moore and Robson the problem is called Cubic Planar Monotone 1–in–3 SAT.

46

5. Planar 1–in–3–SAT

Definition 5.4.1. Separable Simple Planar 1–in–3–SAT5 [Wu15]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the associated graph:

1. Each variable–vertex is replaced by two literal–vertices with an

edge connecting them, and edges to the corresponding clause–

vertices.

2. G(φ) has no other edges.

Question: Is φ with the following restrictions satifiable?

1. A clause is satisfied if exactly one literal is true.

Theorem 5.4.1. Separable Simple Planar 1–in–3–SAT is NP–complete [Wu15].

Proof according to [Wu15]. Separable Simple Planar 1–in–3–SAT is in NP be-

cause an instance and a certificate can be verified in polynomial time, i.e. the

Boolean formula is planar, the planar embedding fulfills the restrictions on the

associated graph, and the assignment is satisfying according to the 1–in–3–SAT

restriction.

The NP–hardness of this variant is shown with a reduction from Separable

Simple Planar 3–SAT (Definition 4.5.1). First, each clause is replaced in the

same way like in the NP–hardness proof for Simple Planar 1–in–3–SAT [5.1.1].

Because in this variant every variable of the Boolean formula is represented in the

associated graph with two literal–vertices, these replacements may cause some

crossings. In the next step, these crossings are eliminated with a crossover box

that fullfils the required definition for an instance of Separable Simple Planar 1–

in–3–SAT (for details see [Wu15]) and leads to an equisatisfiable planar Boolean

formula. Therefore Separable Simple Planar 3–SAT is NP–hard, and hence NP–

complete.

5In the paper of Wu the problem is called Strongly Planar 1–in–3–SAT.

47

6. Planar not–all–equal 3–SAT

The not–all-equal 3–SAT problem is one of the main variants of 3–SAT that

is used for proofs of NP–completeness. It took some time after Lichtenstein’s

presentation of Planar 3–SAT to get results of the planar version of this problem.

Variants of Planar not–all–equal 3–SAT are rarely present in the literature. This

is maybe in consequence of Planar not–all–equal 3–SAT being not NP–complete

but in P.

6.1. Planar not–all–equal 3–SAT

Surprisingly Moret has shown that Planar not–all–equal 3–SAT is in P [Mor88].

Definition 6.1.1. Planar not–all–equal 3–SAT [Mor88]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

Question: Is φ with the following restrictions satisfiable?

1. A clause is satisfied if at least one literal is true and at least one literal

is false.

Theorem 6.1.1. Planar not–all–equal 3–SAT is in P .

Moret made a reduction to the Planar Maximum Cut problem to prove that

the problem is in P [Mor88]. Let G be a planar undirected graph, and let k > 0

be an integer. The question of the Planar Maximum Cut problem is whether

there exists a partition of the vertices of G into two subsets such that the number

of edges with endpoints in both subsets is at least k . Orlova and Dorfman, and

Hadlock have shown independently [Kam12] that there exist a polynomial-time

algorithm for the planar version of Maximum Cut [OD72; Had75].

48

6. Planar not–all–equal 3–SAT

Proof according to [Mor88]. Let a planar Boolean formula φ with k clauses and

a planar embedding of the associated graph G(φ) be an instance for Planar not–

all–equal 3–SAT. Without loss of generality it can be assumed that all clauses

are of size two or three. Otherwise the formula cannot be satisfied by any

assignment because clauses of size one are never satisfiable according to the not–

all–equal restriction. To transform this instance to one for the Planar Maximum

Cut problem the following steps are performed. First each variable–vertex x is

replaced by a cycle of 2nx vertices and correspondingly 2nx edges, where nx

is the number of appearances of x in φ. If a variable appears only once then

there is just one edge connecting the variable-vertices. In this cycle alternating

vertices represent an assignment of 0 and 1 to the variable. Each clause–vertex is

replaced either with a triangle if the represented clause is of size three or with two

vertices and a connecting edge otherwise. The vertices of the clause components

are connected by an edge to the corresponding variable–vertices such that an

assignment with that value evaluates the literal to 0. The minimum number of

cut edges are set to

7k + 4t − s, (6.1)

where s is the number of variables with single occurrence, and t is the number

of clauses with exactly three literals. This completes the transformation of an

instance from Planar not–all-equal 3–SAT to Planar Maximum Cut, which can

be done in polynomial time (example Figure 6.1).

For a given satisfying assignment all literal-vertices corresponding to the value

of the assignment are put on one side of the partition together with the vertices

of the clause triangle that are satisfied by it. It follows that all

2 · 3t + 2 · 2(k − t)− s = 4k + 2t − s (6.2)

edges between a variable and its negation are cut. Furthermore all

3t + 2(k − t) = t + 2k (6.3)

edges between the clause components and the variable cycles are cut. These are

49

6. Planar not–all–equal 3–SAT

Figure 6.1.: Example of a Boolean formula φ = (¬a ∨ b) ∧ (a ∨ ¬b ∨ ¬c) with
k = 2, s = 1, t = 1 clauses and a possible transformation for the
Planar Maximum Cut problem. For a given satisfying assignment
a = 1, b = 1, c = 0 for φ the colored vertices are put in one set of
the partition and the dotted lines separate them from the other set.
There are exactly 7k+2t−s = 17 edges in the cut. The gray cycles
represent the original vertex in the associate graph. It is easily seen
that the planarity constraint is still valid after the transformation.

50

6. Planar not–all–equal 3–SAT

cut because by construction the connections represent assignments such that the

literal of the clause is not satisfied. But all clause vertices in the set are satisfied

by the assignment. Then each clause triangle adds two more edges and the other

clause components exactly one edge to the cut because it is a satisfying not–

all–equal assignment, i.e. exactly one or two literals of each clause is satisfied.

This adds

2t + (k − t) = t + k (6.4)

edges to the cut which now has exactly

(4k + 2t − s) + (t + 2k) + (t + k) = 7k + 4t − s (6.5)

edges as desired.

A solution for Planar Maximum Cut of size 11k − s − 2t yields to a satisfying

assignment for Planar not–all-equal 3–SAT. This is because it is not possible to

cut even more edges than all except one edge of each triangle component by

putting one of these vertices on one side of the partition and the other two on

the other side. Otherwise no edge of the triangle would be in the cut, hence

the solution for Maximum Cut would be smaller. So a satisfying assignment

for Planar not–all–equal 3–SAT can be computed from a solution for Planar

Maximum Cut of size 11k − s − 2t.

It follows that Planar not–all–equal 3–SAT is polynomial time reducible to

Planar Maximum Cut, and is therefore in polynomial time solvable.

Remark. Moret have made the reduction to Planar Maximum Cut only for Planar

not–all–equal 3–SAT instances where the Boolean formula has exactly three

literals per clause[Mor88].

6.2. Restricted Planar Positive not–all–equal 3–SAT

This variant of the Planar not–all–equal 3–SAT problem is not in P like the

nonrestricted version but NP–complete. Dehghan used this fact to show that a

modification of the Gap Vertex-Distinguishing Edge Coloring [TDK12] problem

51

6. Planar not–all–equal 3–SAT

is also NP–complete. The modified problem is defined as follows.

Let G = (V, E) be a graph, k be a positive integer, and f : V → {1, 2, . . . , k}
be a mapping. Then the labeling L for every vertex in V induced by f is defined

as

L(v) =


1 if the degree of v equals 0,

f (u)(u,v)∈E if the degree of v equals 1,

max(u,v)∈Ef (u)−min(u,v)∈Ef (u) otherwise.

The mapping f is called vertex–labeling by gap if no adjacent vertices have

the same label. The problem in focus of Dehghan is to decide, given a planar

bipartite graph G and an integer k = 2, whether there exists a vertex–labeling

by gap such that the induced labeling L is a proper vertex 2–coloring of G. The

NP–completeness of this problem is proved with a reduction from Restricted

Planar Positive not–all–equal 3–SAT [Deh15].

Definition 6.2.1. Restricted Planar Positive not–all-equal 3–SAT1 [Deh15]

Instance: A planar Boolean formula φ, a subset P of the variables in φ, and a

planar embedding of the associated graph G(φ), with the following prop-

erties

• of the planar Boolean formula:

1. φ is positive.

Question: Is φ with the following restrictions satisfiable?

1. A clause is satisfied if at least one literal is true and at least one literal

is false.

2. Every variable in P is assigned with true.

Theorem 6.2.1. Restricted Planar Positive not–all-equal 3–SAT is NP–complete.

Proof according to [Deh15]. The problem is in NP because, given a certificate

consisting of an assignment and the embedding of the associated graph, it can

be verified in polynomial time that the graph is planar and it is a satisfying

assignment according to the restrictions of this variant of Planar 3–SAT.
1In the paper of Dehghan the problem is called Restricted Planar Monotone Not–All-Equal
3SAT.

52

6. Planar not–all–equal 3–SAT

With a reduction from Separable Simple Planar 3–SAT (Definition 4.5.1) it

is shown that the Restricted Planar Positive not–all–equal 3–SAT problem is

NP–hard. Let φ be the Boolean formula of an instance for Separable Simple

Planar 3–SAT over n variables X = {x1, x2, . . . , xn} and with m clauses C =

{C1, C2, . . . , Cm}. This formula will be converted into an instance for Restricted

Planar Positive not–all–equal 3–SAT.

First, let P = ∅. Then φ, P and the planar embedding of the associated

graph is an instance for Restricted Planar Positive not–all–equal 3–SAT, which

is obviously equisatisfiable because P is the empty set.

Second, each clause C = (l1∨ l2∨ l3) ∈ C is replaced by two clauses (l1∨ l2∨u)

and (l3 ∨ ¬u ∨ ¬v), where u and v are new variables. Additionally v is added to

P . With this conversation the new formula and P , and the original formula are

equisatisfiable according to their problem definitions because of Lemma 6.2.2.

Lemma 6.2.2. Each replacement of a clause C = (l1 ∨ l2 ∨ l3) in Step 2 yields

a equisatisfiable formula according to the problem definitions, i.e. C is satisfied

⇐⇒ (l1 ∨ l2 ∨ u) ∧ (l3 ∨ ¬u ∨ ¬v), with v ∈ P is satisfied, where u, v are new

variables.

Proof. With a truth table it is easily seen that the formulas are equisatisfiable.

“⇒” Because v is a member of P the value of v in an satisfying assignment is

always 1.

l1 l2 l3 u (l1 ∨ l2 ∨ u) ∧ (l3 ∨ ¬u ∨ ¬v)

0 0 0 0 or 1 0

0 0 1 1 1

0 1 0 0 1

0 1 1 0 or 1 1

1 0 0 0 1

1 0 1 0 or 1 1

1 1 0 0 1

1 1 1 0 1

“⇐” A satisfying assignment for the new clauses yields a satisfying assignment

for C.

53

6. Planar not–all–equal 3–SAT

Case u = 0: Six satisfying assignments with u = 0 are possible.

(l1 ∨ l2 ∨ u) ∧ (l3 ∨ ¬u ∨ ¬v) l1 l2 l3 (l1 ∨ l2 ∨ l3)
1 0 1 0 or 1 1

1 1 0 0 or 1 1

1 1 1 0 or 1 1

Case u = 1: Five satisfying assignments with u = 1 are possible.

(l1 ∨ l2 ∨ u) ∧ (l3 ∨ ¬u ∨ ¬v) l1 l2 l3 (l1 ∨ l2 ∨ l3)
1 0 0 1 1

1 0 1 0 or 1 1

1 1 0 0 or 1 1

Hence a satisfying assignment for the previous formula yields a satisfying as-

signment for the new formula, and vice versa, and therefore the formulas are

equisatisfiable.

The new formula is still planar because all replacements are just local adjust-

ments around the old clauses which can be drawn independently of the other

parts of the graph. With this conversation the new formula with the planar em-

bedding of the associated graph and P is a valid instance for Restricted Planar

Positive not–all–equal 3–SAT except that negations are still present.

In the final step, all negation are eliminated to get a final instance of Restricted

Planar Positive not–all–equal 3–SAT. For each variable x ∈ X replace each

occurrence of ¬x in φ′ with the new variable y¬x , add to the new formula the

clauses (x ∨ y¬x ∨ px), (x ∨ y¬x ∨ qx) and (qx ∨ p′x ∨ p′′x), and add px , p′x , and

p′′x to the subset P . Because of the restrictions for a satisfying assignment of

this problem this transformation leads to an assignment such that ¬y¬x is always
equivalent to x . Accordingly the formulas are still equisatisfiable. Furthermore

the new formula is also still planar for the same reason as said in the previous

step.

The Boolean formula of an instance that have not the properties of Separable

Simple Planar 3–SAT, e.g. additional edges in the embedding of the associated

graph, is expanded by the clause (x ∧y). This ensures that the instance is either

54

6. Planar not–all–equal 3–SAT

a member of Separable Simple Planar 3–SAT nor of this variant because the

formula is not in 3–CNF.

It follows that an instance for Separable Simple Planar 3–SAT can be reduced

in polynomial time to Restricted Positive Planar not–all-equal 3–SAT because for

each clause can be replaced in polynomial time. Hence this problem is NP-hard

and therefore NP–complete.

55

7. Planar Monotone 3–SAT

Darmann, Döcker, and Dorn show NP–completeness for six variants of Planar

Monotone 3–SAT with bounded variable appearances. They assume that this

variants can be used as a starting point for reductions to prove that other decision

problems are NP–hard [DDD16]. The NP–completeness of a restricted variant

of Planar Monotone 3–SAT is shown by Berg and Khosravi [BK10]. A corollary

of this proof is that Planar Monotone 3–SAT is also NP–complete.

7.1. Planar Monotone 3–SAT

Planar Monotone 3–SAT is a restricted version of Planar 3–SAT to monotone

Boolean formulas. Because of the work of Berg and Khosravi [BK10] the NP–

completeness of this variant is easily shown.

Definition 7.1.1. Planar Monotone 3–SAT

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. φ is monotone.

Question: Is φ satisfiable?

Corollary 1 (of Theorem 7.2.1). Planar Monotone 3–SAT is NP–complete.

Proof. Planar Monotone 3–SAT is in NP because it is in polynomial time ver-

ifiable that an instance satisfies all properties of the definition, and whether a

certificate is valid.

Every instance of Restricted Planar Monotone 3–SAT (Definition 7.2.1) is

without any effort reduced to Planar Monotone 3–SAT. To ensure equisatisfi-

ability the Boolean formula of each instance that do not fulfill the properties

56

7. Planar Monotone 3–SAT

of the definition is expanded with a nonmonotone clause (x ∨ ¬y). Thus Re-

stricted Planar Monotone 3–SAT is polynomial time reducible to Planar Mono-

tone 3–SAT, and hence NP–hard. It follows that Planar Monotone 3–SAT is

NP–complete.

7.2. Restricted Planar Monotone 3–SAT

Restricted Planar Monotone 3–SAT is a variant of Planar 3–SAT with a restric-

tion to planar monotone Boolean formulas. A monotone rectilinear representa-

tion of such a formula has all negative clauses on one side of the variables and

all positive clauses on the other side.

Definition 7.2.1. Restricted Planar Monotone 3–SAT1 [BK10]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. φ is monotone.

• of the planar embedding of G(φ):

1. It is a rectilinear embedding.

2. All positive clauses are drawn on one side of the variables, and

all negative clauses are drawn on the other side.

Question: Is φ satisfiable?

Theorem 7.2.1. Restricted Planar Monotone 3–SAT is NP–complete.

Proof according to [BK10]. It is in polynomial time verifiable that the formula

is monotone, the embedding matches the definition of the associated graph, and

all positive clauses are drawn on one side of the variables and all negative clauses

are drawn on the other side. It is also in polynomial time verifiable whether a

given assignment is satisfiable. Hence Restricted Planar Monotone 3–SAT is in

NP.

To show the NP–hardness of the problem a reduction from Planar 3–SAT with

a rectilinear embedding is described [BK10]. Let φ be a planar Boolean formula

with m clauses over a set of n variables and with a rectilinear embedding. In the
1In the paper of Berg and Khosravi the problem is called Planar Monotone 3–SAT.

57

7. Planar Monotone 3–SAT

rectilinear embedding if a clause C on the positive side of the variables contains

a negated variable then this pair of clause and variable is called inconsistent. A

clause on the negative side of the variables with a positive literal is also called

inconsistent. A representation without any inconsistent pairs is a rectilinear

monotone representation. The goal is to transform φ into an equisatisfiable

monotone Boolean formula without any inconsistent pairs.

To achieve this goal new variables and clauses are introduced. Let clause C

and a negative literal ¬x be an inconsistent pair of φ, i.e. C is drawn on the

positive side of the variables but contains a negative literal. By introducing two

new variables, a and b, and a modification of φ one inconsistent pair is eliminated

as follows:

• Replace ¬x by a in clause C.

• Add the clauses (x ∨ a) ∧ (¬x ∨ ¬a) ∧ (a ∨ b) ∧ (¬a ∨ ¬b), hence a = ¬x
and b = x to φ.

• Replace x by b in each clause containing x that is placed on the positive

side of the variables and that connects x to the right of C (see Figure 7.1).

The new formula remains equisatisfiable to the original formula because the new

clauses are only satisfiable when a = ¬x and b = x , and the literal of the

inconsistent pair is replaced accordingly.

The new clauses can be squeezed into the existing rectilinear representation

without adding any crossing or violating any other constraints. Applying this

transformation on every inconsistent pair of φ we get a monotone rectilinear

representation for the Boolean formula. There are at most 3m inconsistent

pairs which lead to a new formula with at most 13m clauses and at most n+ 6m

variables. So, the transformation can be done in polynomial time and hence, the

problem is NP–hard.

It follows that Restricted Planar Monotone 3–SAT is NP–complete.

58

7. Planar Monotone 3–SAT

Figure 7.1.: Transformation of a clause C on the positive side that contains the
negated variable x . Therefore ¬x is replaced by the new variable a in
C (see orange edge). The variable a is equivalent to ¬x due the set
of new clauses. This clauses can be squeezed into the embedding
without adding any crossings. Furthermore the original value of x is
still available through the new variable b for all clauses to the right
(see blue edges).

7.3. Variable Bounded Variants of Simple Planar

Monotone 3–SAT

This section is dedicated to the paper “On planar variants of the monotone

satisfiability problem with bounded variable appearances” by Darmann, Döcker,

and Dorn [DDD16] where several variants of Simple Planar Monotone 3–SAT

are presented. All variants have in common that they are restricted to Boolean

formulas with bounds on the number of variable appearance.

7.3.1. Simple Planar Monotone 3–bounded 3–SAT

This variant is the starting point to show NP–hardness for two additional variants

of Simple Planar Monotone 3–SAT, namely Simple Planar Monotone exactly 3–

bounded 3–SAT [7.3.2] and Simple Planar Monotone exactly 4–bounded exactly

3–SAT [7.3.5]. The NP–hardness of this variant is shown with a polynomial time

reduction from Simple Planar exactly 3–bounded 3–SAT [8.4].

Definition 7.3.1. Simple Planar Monotone 3–bounded 3–SAT2 [DDD16]
2In the paper of Darmann, Döcker, and Dorn the problem is called Planar Monotone (2,3)–
SAT.

59

7. Planar Monotone 3–SAT

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula φ:

1. φ is monotone.

2. Each variable occurs in at most three clauses.

• of the associated graph:

1. G(φ) has no edges between the variable–vertices.

Question: Is φ satisfiable?

Theorem 7.3.1. Simple Planar Monotone 3–bounded 3–SAT is NP–complete.

Proof according to [DDD16]. An instance of Simple Planar Monotone 3–bounded

3–SAT can be verfied in polynomial time, i.e. that the Boolean formula is mono-

tone, each variable occurs in at most three clauses, and the embedding of the

associated graph has no edges between the variable–vertices and corresponds to

the definition of the graph. The verification of an assignment for the Boolean

formula can also be done in polynomial time. Hence Simple Planar Monotone

3–bounded 3–SAT is in NP.

Simple Planar Monotone 3–bounded 3–SAT is NP–hard because a polynomial

time reduction from Simple Planar exactly 3–bounded 3–SAT exists. If any

variable of a Boolean formula of an instance for Simple Planar exactly 3–bounded

3–SAT does not appear exactly three times, then a nonmonotone clause (x∨¬y)

is added to the formula. This ensures that such instances are not accepted by

the algorithm for Simple Planar Monotone 3–bounded 3–SAT either. Otherwise

each mixed clause C is replaced by two clauses C+ and C−, where C+ contains

all positive literals of C and a new variable aC , and C− respectively all negative

literals and ¬aC . With this replacements equisatisfiablility is preserved and it is

easy to see that new formula is still planar (See Figure 7.2).

Hence Simple Planar Monotone 3–bounded 3–SAT is NP–complete.

7.3.2. Simple Planar Monotone exactly 3–bounded 3–SAT

This variant is a restriction of Simple Planar Monotone 3–bounded 3–SAT (Def-

inition 7.3.1) such that each variable of the Boolean formula appears exactly

60

7. Planar Monotone 3–SAT

(a) Embedding of clause C = (x∨¬y ∨z). (b) Planarity preserving replacement of
clause C by C− = (¬y ∨ ¬a) and
C+ = (x ∨ z ∨ a).

Figure 7.2.: Equisatisfiable and planarity preserving replacement of a mixed
clause.

three times. The NP–completeness of this variant is a corollary of the NP–

completeness of Simple Planar Monotone 3–bounded 3–SAT (Theorem 7.3.1).

Definition 7.3.2. Simple Planar Monotone exactly 3–bounded 3–SAT3 [DDD16]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula φ:

1. φ is monotone.

2. Each variable occurs in exactly three clauses.

• of the associated graph:

1. G(φ) has no edges between the variable–vertices.

Question: Is φ satisfiable?

Corollary 2 (of Theorem 7.3.1). Simple Planar Monotone exactly 3–bounded

3–SAT is NP–complete.

Proof according to [DDD16]. This variant is in NP for the same reasons Sim-

ple Planar Monotone 3–bounded 3–SAT [7.3.1] is in NP, and because it is in

polynomial time verifiable that each variable appears exactly three times in the

Boolean formula.

Simple Planar 3–bounded 3–SAT is polynomial time reducible to this varaint

simply by adding the clauses (x ∨ ax ∨ bx), (ax ∨ bx), and (¬ax ∨ ¬bx) to the

formula for each variable x that appears only two times (ax , bx are new auxiliary

variables). It is obvious that the formula remains equisatisfiable because the

3In the paper of Darmann, Döcker, and Dorn the problem is called Planar Monotone (2,3)–
SAT-E3.

61

7. Planar Monotone 3–SAT

clauses are always satisfiable by assigning ax = 1 and bx = 0, and planar because

the new clauses and corresponding edges can be placed independently near the

variable–vertex x . Hence Simple Planar Monotone exactly 3–bounded 3–SAT is

NP–hard, and therefore NP–complete.

7.3.3. Restricted Simple Planar Monotone [3,4]–bounded 3–SAT

Definition 7.3.3. Restricted Simple Planar Monotone [3,4]–bounded 3–SAT4

[DDD16]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula φ:

1. φ is monotone.

2. Each variable occurs in at least three and at most four clauses.

3. Each variable appears negated exactly once.

4. Each clause containing three literals is positive.

• of the associated graph:

1. G(φ) has no edges between the variable–vertices.

Question: Is φ satisfiable?

Theorem 7.3.2. Restricted Simple Planar Monotone [3,4]–bounded 3–SAT is

NP–complete [DDD16].

7.3.4. Restricted Simple Planar Monotone exactly 4–bounded

3–SAT

Definition 7.3.4. Restricted Simple Planar Monotone exactly 4–bounded 3–

SAT5 [DDD16]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula φ:

1. φ is monotone.

4In the paper of Darmann, Döcker, and Dorn the problem is called Restricted Planar Monotone
(2,3)–SAT–4.

5In the paper of Darmann, Döcker, and Dorn the problem is called Restricted Planar Monotone
(2,3)–SAT–E4.

62

7. Planar Monotone 3–SAT

2. Each variable occurs in exactly four clauses.

3. Each variable appears negated exactly once.

4. Each clause containing three literals is positive.

• of the associated graph:

1. G(φ) has no edges between the variable–vertices.

Question: Is φ satisfiable?

Corollary 3 (of Theorem 7.3.2). Restricted Simple Planar Monotone exactly

4–bounded 3–SAT is NP–complete [DDD16].

7.3.5. Simple Planar Monotone exactly 4–bounded exactly 3∗–SAT

This variant is special because it explicitly allows that a literal can occur more

than once in the same clause, i.e. clauses are multi-sets (denoted with 3∗–SAT).

Definition 7.3.5. Simple Planar Monotone exactly 4–bounded exactly 3∗–SAT6

[DDD16]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. φ is in exactly 3–CNF.

2. φ is monotone.

3. A clause may contain the same literal more than once.

4. Each variable occurs in exactly four clauses.

• of the associated graph:

1. G(φ) has no edges between the variable–vertices.

Question: is φ satisfiable?

Theorem 7.3.3. Simple Planar Monotone exactly 4–bounded exactly 3∗–SAT is

NP–complete.

Proof according to [DDD16]. This variant is in NP because all properties of the

planar Boolean formula, the associated graph and the planar embedding for an

instance, and a assignment for the formula can be verified in polynomial time.

6In the paper of Darmann, Döcker, and Dorn the problem is called Planar Monotone 3–SAT∗–
E4.

63

7. Planar Monotone 3–SAT

Simple Planar Monotone exactly 4–bounded exactly 3∗–SAT is NP–hard be-

cause Simple Planar Monotone exactly 3–bounded 3–SAT (Definition 7.3.2) is

polynomial time reduciable to this variant. For the reduction it is only neces-

sary to replace each clause C = (x ∨ y) with only two literals by two clauses

(x ∨ y ∨ aC) and (¬aC ∨ ¬aC ∨ ¬aC), where aC is a new variable. Additonally,

for each variable x in the original Boolean formula the clauses (x ∨ bx ∨ cx),

(bx ∨ bx ∨ bx), and (cx ∨ cx ∨ cx) is added to the set of clauses. This ensures

that each clause contains three literals and each variable appears exactly four

times in the formula. The new formula is obviously equisatisfiable because the

new clauses are independently from the other clauses always satisfiable. An in-

valid instance of Simple Planar Monotone exactly 3–bounded 3–SAT remains

after the reduction invalid for this variant of Simple Planar Monotone 3–SAT

because if some variable appears not exactly three times, it also appears not

exactly four times in the new instance. The other properties are not effected

by this reduction. For each variable and clause is only constant effort necessary.

Hence the reduction can be done in polynomial time with respect to the input

size.

7.3.6. Restricted Simple Planar Monotone exactly 5–bounded

exactly 3–SAT

Definition 7.3.6. Restricted Simple Planar Monotone exactly 5–bounded exactly

3–SAT7 [DDD16]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. φ is in exactly 3–CNF.

2. φ is monotone.

3. Each variable occurs in exactly five clauses.

• of the associated graph:

1. G(φ) has no edges between the variable–vertices.

2. G(φ) is biconnected.

7In the paper of Darmann, Döcker, and Dorn the problem is called Planar Monotone 3–SAT∗–
E5.

64

7. Planar Monotone 3–SAT

Question: Is φ satisfiable?

Theorem 7.3.4. Restricted Simple Planar Monotone exactly 5–bounded exactly

3–SAT is NP–complete[DDD16].

65

8. Variable Bounded Variants of
Planar 3–SAT

Restricted variants of Planar 3–SAT with bounds on the number of variable

appearances are used many times. These variants are good examples for the

high adaptability of Planar 3–SAT to the needs of proving NP–hardness of many

other problems. This strategy “to massage Boolean formulas into forms more

easily reducible to the problem at hand” [Lic82] often made the NP–hardness

proof simpler.

8.1. Planar 3–bounded 3–SAT

This variant of Planar 3–SAT is the simplest version of bounding the appearance

for each variable. If each variable appears at most two times in the Boolean

formula then is the problem solvable in polynomial time [Tov84]. It is also not

possible, without loosing the property of NP–hardness, to restrict this variant

to Boolean formulas in exaclty 3–CNF because then every instance of Planar

exactly 3–bounded 3–SAT is satisfiable [Tov84].

Definition 8.1.1. Planar 3–bounded 3–SAT

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. Each variable occurs in at most three clauses.

Question: Is φ satisfiable?

Corollary 4 (of Theorem 8.3.1). Planar 3–bounded 3–SAT is NP–complete.

Proof. Planar 3–bounded 3–SAT is in NP because the validity of an instance

(Boolean formula in 3–CNF, each variable occurs in exactly three clauses), and

66

8. Variable Bounded Variants of Planar 3–SAT

a certificate (assignment of the Boolean formula) can be verified in polynomial

time.

This variant is also NP–hard because every instance of Planar exactly 3–

bounded 3–SAT (Definition 8.2.1) is with little work in polynomial time reducible

to Planar 3–bounded 3–SAT. For instances that do not meet the properties

of Planar exactly 3–bounded 3–SAT, the corresponding Boolean formula is ex-

panded with the clause (a ∧ b). So, the modified instance is not a member of

Planar 3–bounded 3–SAT either because the Boolean formula is not in 3–CNF.

Thus the variant is NP–hard, and hence NP–complete.

8.2. Planar exactly 3–bounded 3–SAT

Planar exactly 3–bounded 3–SAT is appended to the list of variants of Planar

3–SAT. The NP–completeness of this variant is a corollary of Theorem 8.3.1

which states that the restricted version is also NP–complete.

Definition 8.2.1. Planar exactly 3–bounded 3–SAT

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. Each variable occurs in exactly three clauses.

Question: Is φ satisfiable?

Corollary 5 (of Theorem 8.3.1). Planar exactly 3–bounded 3-SAT is NP–complete.

Proof. Planar exactly 3–bounded 3–SAT is in NP because it is in polynomial

time verifiable that an instance has the required properties, and whether a given

assignment is satisfying. It is also NP–hard because Restricted Planar exactly 3–

bounded 3–SAT (Definition 8.3.1) is with little effort polynomial time reducible

to Planar Exactly 3–bounded 3–SAT. Only instances that have not the necessary

properties of Restricted Planar 3–bounded 3–SAT, e.g. a variable appears not

exactly three time, are modified. This is done by expanding the Boolean formula

with the clause (a ∧ b) so that the formula is not in 3–CNF. Hence this variant

is NP–complete.

67

8. Variable Bounded Variants of Planar 3–SAT

8.3. Restricted Planar exactly 3–bounded 3–SAT

Maňuch and Gaur have shown the NP–completeness of a special case of the

protein chain lattice fitting problem by performing a reduction from a restricted

version of Planar 3–SAT. This variant is very similar to Simple Planar exactly 3–

bounded 3–SAT [8.4]. The algorithm for solving the protein chain lattice fitting

problem is used for computing solutions for other related problems, e.g. the

genetic protein folding algorithm [RS96].

Definition 8.3.1. Restricted Planar exactly 3–bounded 3–SAT [MG08]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. Each variable occurs in exactly three clauses, once negated and

twice not negated.

Question: Is φ satisfiable?

Theorem 8.3.1. Restricted Planar exactly 3–bounded 3–SAT is NP–complete.

Proof. The validity of an instance can be verified in polynomial time by counting

that each variable appears exactly three times (once negated, twice not negated),

checking that the formula is in 3–CNF and that the embedding is planar and

matches the definition of the associated graph. A certificate can also be verified

in polynomial time, hence Restricted Planar exactly 3–bounded 3–SAT is in NP.

A polynomial time reduction from Planar 3–SAT (Definition 4.1.1) is described

to show NP–hardness for this restricted version. Let a planar Boolean formula φ

and a planar embedding of the associated graph G(φ) be an instance for Planar

3–SAT. The transformation of φ to an equisatisfiable formula for Restricted

Planar exactly 3–bounded 3–SAT can be done in two steps.

First, each variable x of φ is replaced by k variables x1, . . . , xk , where k is the

number of appearances of x . To force that the new variables have all the same

value in an satisfying assignment the following clauses are added:

(x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ · · · ∧ (xk ∨ ¬x1)

Each appearance of x is replaced such that the associated graph is still planar

68

8. Variable Bounded Variants of Planar 3–SAT

(a) Variable–vertex before the replace-
ment.

(b) Variable–vertex is replaced by a set of
new variables and clauses.

Figure 8.1.: Example of a possible planar embedding of a Boolean formula after
replaceing a variable x of an instance for Planar 3–SAT. Equisatisfi-
ablility before (Figure 8.1a) and after (Figure 8.1b) the replacement
can be archived.

and the new variables appear exactly three times in φ (see Figure 3.2.5). This

ensures that the new and original formula are equisatisfiable.

Second, each variable that occurs only once not negated and twice negated

is replaced by its negation. This replacement has no effect on the satisfiability

of the formula.

This transformations can be done in polynomial time because the individual

transformation of each variable is done in polynomial time. So Planar 3–SAT is

polynomial time reducible to Restricted Planar exactly 3–bounded 3–SAT. Thus

this variant is NP–hard, and hence NP–complete.

Remark. This proof is a little bit different in comparison to the proof of Maňuch

and Gaur because there is no distinction between left and right clauses according

to the cycle through all variable–vertices [MG08]. Though, it is actually the

same reduction only with different labels, and a planar embedding, which make

the reduction a little bit simpler.

Akl et al. performed a reduction from this restricted version to a variant of the

uniform Covering with Variable Capacities problem with fixed facilities to prove

its NP–hardness [Akl+15].

69

8. Variable Bounded Variants of Planar 3–SAT

8.4. Simple Planar exactly 3–bounded 3–SAT

Middendorf and Pfeiffer use this variant of Simple Planar 3–SAT to prove that the

Planar Vertex-Disjoint Paths problem is NP–complete. An instance of this prob-

lem is a planar graph G = (V, E) and a set of pairs (s1, t1), (s2, t2), . . . , (sk , tk).

The question is whether there exists a set of pairwise disjoint paths between

each pair of si and ti , for i = 1, . . . , k . Two paths are called disjoint if they do

not share a vertex.

Dahlhaus et al. have used the same variant to show that a version of the

Multiterminal Cut problem is also NP–complete[Dah+94]. The Multiterminal

Cut problem is defined as follows: Let G = (V, E) be a graph with a positive

weight w(e) for each edge e ∈ E, and let T = {t1, t2, . . . , tk} be a subset of

V . The vertices in T are called terminals. The goal is to find a set of edges

E′ ⊂ E with minimum weight such that with the removal of E′ from the graph

G all terminals are separated from each other. The weight of an edge set E is

the sum of w(e) of each edge e ∈ E. For the variant of this problem there is

also given a limit B such that the weight of E′ has to be at most B, and the

graph has to be planar with a maximum vertex degree of three.

Definition 8.4.1. Simple Planar exactly 3–bounded 3–SAT [MP93; Dah+94]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph, with the following properties

• of the planar Boolean formula:

1. Each variable occurs in exactly three clauses.

• of the associated graph:

1. G(φ) has no edges between the variable–vertices.

Question: Is φ satisfiable?

Remark. The only difference between the definition of Middendorf and Pfeiffer,

and Dahlhaus et al. is that Dahlhaus et al. says precisely that for each variable

one literal occurs once and the other twice. But this can be assumed without

loss of generality [4.1.3].

Theorem 8.4.1. Simple Planar exactly 3–bounded 3–SAT is NP–complete.

Proof according to [MP93; Dah+94]. The validity of an instance can be verified

in polynomial time, i.e. each variable appears in three clauses, each clause is of

70

8. Variable Bounded Variants of Planar 3–SAT

size at most three, and the associated graph is planar. A given certificate, i.e. a

satisfying assignment, can also be verified in polynomial time. Hence this variant

is in NP.

(a) The variable-vertex x lies on the cy-
cle through all variable–vertices (blue
edges). It has edges to the corre-
sponding clause–vertices of C1, . . . , C5
where x appears in.

(b) The variable x is replaced by x1, . . . , x5
in the according clauses. Additional
clauses force all xi to have the same
value, for i = 1, . . . , 5. In the asso-
ciated graph the new clause–vertices
and variable–vertices can be drawn at
the previous place of x . Green edges
represent a not negated occurrence of
x in a clause, and red edges repre-
sent negated occurrences. This en-
sures planarity and equisatisfiability.

Figure 8.2.: Example for a transformation of a Boolean formula with a variable
x that is contained in five clauses.

To show NP–hardness a reduction from Simple Planar 3–SAT (Definition

4.3.1) is described. Let φ be a planar Boolean formula and G(φ) the simple as-

sociated graph. For every variable x let xC1, xC2, . . . , xCk be the edges between

the variable–vertex x and the clauses containing x in G(φ), where k is the num-

ber of appearances of x . With the introduction of new variables x1, x2, . . . , xk
and clauses (xk ∨ ¬x1) ∧ (x1 ∨ ¬x2) ∧ · · · ∧ (xk−1 ∨ ¬xk) every occurrence of x

or ¬x in Ci can be replaced with xi respectively ¬xi for i = 1, 2, . . . , k . The

additional clauses force every x1 to xk to have the same value, and to occur

in exactly three clauses with both literals at least once. The planarity of this

new formula φ′ can be easily maintained (Figure 8.2) and it is clear that φ′ is

satisfiable if and only if φ is satisfiable which fulfills the reduction from Simple

Planar 3–SAT to this variant.

It follows that Simple Planar exactly 3–bounded 3–SAT is NP–complete.

71

8. Variable Bounded Variants of Planar 3–SAT

8.5. Simple Planar [2,3]–bounded 3–SAT

Kobayashi, Miyamoto, and Tamaki show that the problem to decide whether a

planar graph has a k–cyclic orientation is NP–complete for every fixed k ≥ 4. For

this, they make a reduction from this variant of Simple Planar 3–SAT which is

only slightly different in comparison to Simple Planar exactly 3–bounded 3–SAT

(Definition 8.4.1).

Let G = (V, E) be an undirected graph, and let e be an edge between the

vertices u and v of G. An orientation of the edge e is a directed edge (u, v) or

(v , u). Accordingly an orientation of G is a directed graph with the vertices V

and an orientation for each edge in E. The orientation of a graph is k–cyclic,

for k ≥ 3, if the orientation of every edge belongs to a cycle of length at most

k .

Definition 8.5.1. Simple Planar [2,3]–bounded 3–SAT [KMT10]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. Each variable occurs in at least two and at most three clauses,

once negated, and once or twice not negated.

• of the associated graph:

1. G(φ) has no edges between the variable–vertices.

Question: Is φ satisfiable?

Corollary 6 (of Theorem 8.4.1). Simple Planar [2,3]–bounded 3–SAT is NP–

complete.

Proof. It is easily seen that this variant is in NP because an instance of the

problem and a certificate can be verified in polynomial time.

Because Planar 3–bounded 3–SAT (Definition 8.2.1) is NP–hard and can be

reduced in polynomial time to this version without much effort, it is also NP–

hard. This is done just by removing the edges between the variable–vertices

of the associated graph. Additionally the Boolean formula of instances that do

not have the properties of 3–bounded Planar 3–SAT, e.g. no edges between

the variable–vertices, is expanded with the clause (a ∧ b), where a, b are new

72

8. Variable Bounded Variants of Planar 3–SAT

auxiliary variables. This guarantees that the instance is not a member Simple

Planar [2,3]–bounded 3–SAT either. Hence, Simple Planar [2,3]–bounded 3–

SAT is NP–complete.

8.6. Simple Planar 1–negative [2,3]–bounded 3–SAT

Finding the metric dimension of a given graph is called the Metric Dimension

problem. The metric dimension of a graph G = (V, E) is the cardinality of a

smallest subset L of V such that every pair of vertices from V is resolved by some

vertex in L. A pair u, v ∈ V is resolved by a vertex l ∈ L, also called landmark,

if the shortest path from u to l and from v to l has not the same length. Such a

set L of landmarks that resolves all pairs of vertices from V is called a resolving

set. This problem is also known as Harary’s problem, and as the locating number

or rigidity problem which where defined independently [Dia+12] by the authors

Harary and Melter [HM67], and Slater [Sla75].

The complexity of the Metric Dimension problem for a wide range of special

graphs, e.g. general graphs [GJ79], sparse graphs[HSV10] or trees [KRR96;

Sla75; HM67], where studied in the past. Diaz et al. have shown that the planar

variant of this problem, i.e. finding the metric dimension of a given planar graph,

is NP–hard by describing a reduction from the following variant of Planar 3–SAT

[Dia+12].

Definition 8.6.1. Simple Planar 1–negative [2,3]–bounded 3–SAT1 [Dia+12]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula φ:

1. Each variable occurs in at least two and at most three clauses,

once negated, and once or twice not negated.

2. Each clause of size three contains at least one negated variable.

• of the associated graph G(φ):

1. There are no edges between the variable–vertices.

Question: Is φ satisfiable?

1In the paper of Diaz et al. the problem is called 1–Negative Planar 3–SAT.

73

8. Variable Bounded Variants of Planar 3–SAT

The original definition has an additional restriction so that each clause has two

or three distinct variables. But this is not necessary because clauses are no multi

sets, i.e. for every two literals of a clause they are not equal, and without loss

of generality it can be assumed that not both literals of a variable are contained

in the same clause [4.1.3]. Hence all clauses have only distinct variables.

Theorem 8.6.1. Simple Planar 1–negative [2,3]–bounded 3–SAT is NP–complete.

Proof according to [Dia+12]. For an instance of Simple Planar 1–negative [2,3]–

bounded 3–SAT, consisting of a planar Boolean formula and an embedding of

the associated graph, it can be verified in polynomial time that each variable

appears three times (exactly once negated and at least once not negated), every

clause contains at least one negative variable, and the embedding is planar and

matches the definition of the associated graph. Additionally the validity of a

certificate, i.e. a satisfying assignment, can also by verified in polynomial time.

Thus, Simple Planar 1–negative [2,3]–bounded 3–SAT is in NP.

To show NP-hardness a reduction from Simple Planar exactly 3–bounded 3–

SAT (Definition 8.4.1) is described. This two versions differ in that Simple

Planar 1–negative [2,3]–bounded 3–SAT is restricted to Boolean formulas where

each clause contains at least one negative variable as well. That this variant

do not bound the number of appearances for each variable to exactly three

is not of importance for the reduction because instances for exactly 3–bounded

restricted problems are also valid instances for [2,3]–bounded restricted problems.

So for the reduction only the clauses with three positive variables, i.e. positive

monotone clauses, have to be eliminated. Let C = (x∨y∨z) such a clause. Then

by replacing this clause with the two clauses D = (x ∨x ′) and C′ = (¬x ′∨y ∨z),

where x ′ is a new variable, one positive monotone clause is eliminated. To get

a satisfying assignment of the new formula from one of the original formula

the new variable x ′ have to be set to the value of ¬x only. Given a satisfying

assignment of the new formula a satisfying assignment of the original formula can

be easily derived by just dropping the new variable x ′. It follows that the formulas

are equisatisfiable. The planarity of the associated graph can be preserved by

replacing C with the clause–vertex of C′, a component of the variable–vertex of

74

8. Variable Bounded Variants of Planar 3–SAT

x ′ in line with the clause–vertex of (x ∨ x ′), and corresponding edges (Figure

8.3).

(a) Before the transformation the clause–vertex C has an edge to the variable–vertex
of x .

(b) For the transformation vC is replaced by the clause–vertex of the new clause C′ =

(x ′∨y∨z). The new vertices for the variable x ′, the clause D = (x∨x ′), and the new
edges can be embedded without causing any intersections. No further adjustments
have to be done.

Figure 8.3.: Example for a planar embedding before and after the elimination of
a positive monotone clause C = (x ∨ y ∨ z).

Performing the described transformation on every such clause leads to a equi-

satisfiable, planar Boolean formula. Each instance with a Boolean formula that

has some variable that do not appears exactly three times, i.e. is not a valid

instance for Simple Planar exactly 3–bounded 3–SAT, is alternated such that

it is not a valid instance for this variant either. This is done with an extension

of the Boolean formula with the clause (a ∧ b) (a, b new auxiliary variables)

which ensures that the formula is not in 3–CNF. Therefore such an instance is

not a member of Simple Planar 1–negative [2,3]–bounded 3–SAT either. Thus

Simple Planar 1–negative [2,3]–bounded 3–SAT is NP–hard, and hence NP–

complete.

75

8. Variable Bounded Variants of Planar 3–SAT

8.7. Simple Planar [3,4]–bounded exactly 3–SAT

Let G = (V, E) be a graph and let S be a subset of V . The subset S is called

stable or independent if its vertices are pairwise non-adjacent. S is a cutset or

separator of G if the deletion of the vertices of S from G results in a disconnected

graph. A stable cutset of a graph is a subset of vertices which is stable and also

a cutset. Le, Mosca, and Müller have shown that the Stable Cutset problem, i.e.

does there exist a stable cutset in a given graph, remains NP–complete when

restricted to subgraphs of triangulations with vertices of degree at most five

[LMM05]. For this proof they use the following variant of Simple Planar 3–SAT

[4.3].

Definition 8.7.1. Simple Planar [3,4]–bounded exactly 3–SAT2 [LMM05]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. φ is in exactly 3–CNF.

2. Each variable occurs in at least in three and at most in four

clauses.

• of the associated graph:

1. G(φ) has no edges between the variable–vertices.

Question: Is φ satisfiable?

Theorem 8.7.1. Simple Planar [3,4]–bounded exactly 3–SAT is NP–complete.

Proof. A given instance of this variant can be verified in polynomial time. For

this, it is checked that each variable appears in at least three and at most four

clauses, each clause is of size three, and the embedding of the associated graph

is planar. It is also possible to verify in polynomial time that a given assignment is

satisfying, i.e. the validity of a certificate. Hence, this variant of Planar 3–SAT

is in NP.

With a reduction from Simple Planar 4–bounded exactly 3–SAT (Definition

8.8.1) it is shown that this variant is also NP–hard. The only difference between

these problems is that by the restrictions of Le, Mosca, and Müller each variable

2In the paper of Le, Mosca, and Müller the problem is called Restricted Planar 3–SAT.

76

8. Variable Bounded Variants of Planar 3–SAT

has to appear in at least three and at most four clauses. Simple Planar 4–

bounded exactly 3–SAT has no lower bound on the number of appearances for

each variable.

Let a planar Boolean formula φ and a planar embedding of the associated

graph G(φ) be an instance for Simple Planar 4–bounded exactly 3–SAT. If an

instance do not meet the restriction of Simple Planar 4–bounded exactly 3–

SAT, e.g. a variable appears less then four times, then is the Boolean formula

of that instance expanded with the clause (a ∨ b), where a, b are new auxiliary

variables. That ensures that the instance is not valid for Simple Planar [3,4]–

bounded exactly 3–SAT either. Otherwise, for the reduction it is only necessary

to transform φ in such a way that each variable is contained in at least three

clauses. Now, for each variable x with only one occurrence in φ the Boolean

formula is expanded with

(x ∨ ax ∨ bx) ∧ (x ∨ ax ∨ cx) ∧ (x ∨ bx ∨ cx) ∧ (ax ∨ bx ∨ cx), (8.1)

where ax , bx , cx are newly introduced variables. For each variable x with only

two occurrences φ is expanded with

(x∨ax ∨dx)∧(ax ∨bx ∨cx)∧(ax ∨bx ∨dx)∧(ax ∨cx ∨dx)∧(bx ∨cx ∨dx), (8.2)

where ax , bx , cx , dx are newly introduced variables. The resulting formula is

equisatisfiable to φ because the new clauses are quasi-independent from the

other clauses. They are always satisfied by assigning true to the new variables

which leads to a remaining formula that is φ.

The resulting formula is still planar because the rectilinear embedding of (8.1)

and (8.2) is planar and can be drawn directly next to the according variable–

vertices as seen in Figure 8.4. For this a rectilinear embedding of G(φ) according

to Theorem 4.1.2 is used.

The reduction can be done in polynomial time, because the formula is ex-

panded with a constant number of clauses for each variable that appears not

exactly three time. Thus Simple Planar [3,4]-bounded exactly 3–SAT is NP–

hard, and hence NP–complete.

77

8. Variable Bounded Variants of Planar 3–SAT

(a) The variable x appears once in φ. The
formula is then expanded with (8.1)
to increase the number of clauses con-
taining x to four.

(b) Here, variable x is contained in two
clauses of φ. By adding (8.2) to the
Boolean formula x appears now four
times.

Figure 8.4.: Rectilinear embedding of the Boolean formulas (8.1) and (8.2).

8.8. Simple Planar 4–bounded exactly 3–SAT

A communication network is a set of members of the network that can commu-

nicate over communication lines connecting pairs of members. Such a network

can be represented as a graph G = (V, E) where the vertices and the edges

of G represent the members and the communication lines. Broadcasting is the

process to communicate a message originated at a set of members, also called

originators, to every member of the communication network. The broadcasting

should be achieved with as few as possible communication between the mem-

bers. The following constraints are set for the communication of members in a

communication network.

1. Each communication requires one time unit.

2. Each member can communicate with exactly one other member per time

unit.

3. Each member can communicate with adjacent members only.

The Minimum Broadcast Time problem is: Given a communication network

represented as a graph G = (V, E) and a set V0 ⊆ V of originators, what is the

minimum number of time units required for broadcasting.

Jansen and Müller have proved that variants of the Minimum Broadcast Time

problem remain NP–complete [JM95]. The variants have restrictions on the net-

work layout with a maximum broadcast time, also called deadline, of k = 2 time

78

8. Variable Bounded Variants of Planar 3–SAT

units or with only one originator. The complexity results of these variants based

on Simple Planar 4–bounded exactly 3–SAT are for network layouts of bipar-

tite planar graphs, split graphs, chordal graphs, and grid graphs with maximum

degree of at most 3, each with deadline k = 2.

Definition 8.8.1. Simple Planar 4–bounded exactly 3–SAT3 [JM95]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. φ is in exactly 3–CNF.

2. Each variable occurs in at most four clauses.

• of the associated graph:

1. G(φ) has no edges between variable–vertices.

Question: Is φ satisfiable?

Theorem 8.8.1. Simple Planar 4-bounded exactly 3–SAT is NP–complete.

Proof according to [JM95]. Let a planar Boolean formula φ in exactly 3–CNF

with an planar embedding of the associated graph G(φ) be an instance for Simple

Planar 4–bounded exactly 3–SAT. It can be verified in polynomial time that each

clause of φ has exactly three literals, each variable occurs in at most four clauses,

and the associated graph has no edges between the variable–vertices and matches

the definition of G(φ). Given an assignment for φ a verification algorithm can

easily check in polynomial time whether the given assignment is satisfiable. Thus

Simple Planar 4–bounded exactly 3–SAT is in NP.

It can be shown that the problem is also NP-hard with a polynomial time

reduction from Simple Planar 3–SAT (Definition 4.3.1). In the first step, for

every variable x that appears in nx > 3 clauses a cycle of the form

(x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ · · · ∧ (xnx ∨ ¬x1)

is added to the formula. Then for i = 1, . . . , nx the i-th occurrence of x is

replaced by xi . The cycle is a constraint so that x1 = x2 = · · · = xnx and the xi
take over the role of the original variable x .

3In the paper of Jansen and Müller the problem is called Planar 3,4–SAT.

79

8. Variable Bounded Variants of Planar 3–SAT

In the second, step every clause c with only two literals is expanded with a

new literal ¬x which is forced to be 0 by a set of clauses.

1. (¬ai ∨ bi ∨ di) ∧ (¬ai ∨ ¬bi ∨ ci) ∧ (¬bi ∨ ¬ci ∨ di) for i = 1, 2, 3.

2. (x ∨ ai ∨ di) for i = 1, 2, 3.

3. (¬d1 ∨ ¬d2 ∨ ¬d3).
It can easily be shown with a proof by contradiction that ¬x = 0, with the result

that the new and old formula are equisatisfiable. The new clauses can be added

to φ so that the associated graph is still planar [JM95]. This technique can be

used twice to transform a single literal into a clause with exactly three literals.

It takes only polynomial time to transform φ into an instance φ′ for Simple

Planar 4–bounded exactly 3–SAT because each clause and each variable is only

handled once with a polynomial amount of effort. Furthermore φ and φ′ are

equisatisfiable because the new clauses can be satisfied independently and they

are forcing the additional literals of some clauses to be 0. Hence Simple Planar

4–bounded exactly 3–SAT is NP-hard, and therefore NP–complete.

8.9. Simple Planar 3–connected exactly 3–SAT

Kratochvíl shows NP-hardness for String Graph Recognition [Kra91] with a re-

duction from Abstract Topological Graph Realizability (AT–graph Realizability).

This problem is NP–hard because this variant of Simple Planar 3–SAT is polyno-

mial time reducible to AT–graph Realizability. Though, at that time it was not

proved that Simple Planar 3–SAT is NP–hard [Kra94]. But the NP–hardness of

this problem is a corollary of Kratochvíl’s later proof that a restricted version of

this is NP–hard [Kra94].

A graph G is a string graph if and only if there exists a set R of curves in the

plane, the so called strings, such that the intersection graph of R is isomorphic

to G. The intersection graph I(R) of these strings has a vertex for each string,

and an edge between two vertices if the representing strings have a non-empty

intersection. The String Graph Recognition problem is whether a given graph G

is a string graph.

A graph G with a given embedding in the plane is called a topological graph

[KLN91b] and is denoted by GT . An abstract topological graph is a tuple of a

80

8. Variable Bounded Variants of Planar 3–SAT

graph G and a set of intersections I of the edges of G. Such a graph (G, I)

is realizable if there exists a topological layout GT of G where the intersection

graph I(GT) is equal to the set of intersections I.
Hence, an instance of the Abstract Topological Graph Realizability problem

is an abstract topological graph (G, I) and the question is whether (G, I) is

realizable.

Only in 2003 Schaefer, Sedgwick, and Štefankovič showed that Abstract

Topological Graph Realizability problem is in NP [SSŠ03] and therefore is NP–

complete.

Definition 8.9.1. Simple Planar 3–connected exactly 3–SAT4 [Kra91]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. φ is in exactly 3–CNF.

• of the associated graph:

1. G(φ) has no edges between the variable–vertices.

2. G(φ) is 3–connected.

Question: Is φ satisfiable?

Corollary 7 (of Theorem 8.9.1). Simple Planar 3–connected exactly 3–SAT is

NP–complete.

Proof. An instance of Simple Planar 3–connected exactly 3–SAT is in polynomial

time verifiable, i.e. the Boolean formula is in exactly 3–CNF, and the embedding

of the associated graph is planar, matches the definition and is 3–connected5.

An assignment for the Boolean formula is checked in polynomial time whether

it is satisfying. Hence this variant is in NP.

Each instance of 4–bounded Simple Planar 3–connected exactly 3–SAT (Def-

inition 8.9.2) is an instance of this variant as well. Further, the Boolean formula

of every instance with some variable that occurs more than 4 times is appended

by the clauses (a∨ b), where a and b are new variables. In this way it is ensured

that the transformed instance for Simple Planar 3–connected exactly 3–SAT is

4In the paper of Kratochvíl the problem is called Planar 3–connected 3–SAT.
53–connectivity can be tested in linear time[Sch11].

81

8. Variable Bounded Variants of Planar 3–SAT

also not accepted because the Boolean formula is either in exactly 3–CNF nor

the associated graph is 3–connected. Thus the restricted version is polynomial

time reducible to this variant. Hence Simple Planar 3–connected exactly 3–SAT

is NP–hard, and therefore NP–complete.

8.9.1. Simple Planar 3–connected 4–bounded exactly 3–SAT

Definition 8.9.2. Simple Planar 3–connected 4–bounded exactly 3–SAT6 [Kra94]

Instance: A planar Boolean formula φ and a planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. φ is in exactly 3–CNF.

2. Each variable occurs in at most 4 clauses.

• of the associated graph:

1. G(φ) has no edges between the variable–vertices.

2. G(φ) is 3–connected.

Question: Is φ satisfiable?

Theorem 8.9.1. Simple Planar 3–connected 4–bounded exactly 3–SAT is NP–

complete [Kra94].

8.10. Restricted Clause–Linked Planar exactly

3–bounded 3–SAT

Definition 8.10.1. Restricted Clause–Linked Planar exactly 3–bounded 3–SAT7

[Fel+95]

Instance: A planar Boolean formula φ and planar embedding of the associated

graph G(φ), with the following properties

• of the planar Boolean formula:

1. Each clause of size three is positive.

6In the paper of Kratochvíl the problem is called 4–Bounded Planar 3–connected 3–SAT.
7In the paper of Fellows et al. the problem is called Restricted Clause–Linked Planar 3–SAT.

82

8. Variable Bounded Variants of Planar 3–SAT

2. Each variable occurs in exactly three clauses, once negated and

twice not negated.

• of the associated graph:

1. G(φ) has no edges between variable–vertices.

2. The set of clauses allows a linear ordering such that G(φ) is still

planar when consecutive clause–vertices are connected with an

edge.

Question: Is φ satisfiable?

Theorem 8.10.1. Restricted Clause–Linked Planar exactly 3–bounded 3–SAT is

NP–complete [Fel+95].

83

9. Conclusion

9.1. Remarks

Some problems, e.g. Clause–Linked Planar 3–SAT (Definition 4.6.1), are men-

tioned only with their definition and complexity. In this way it is possible to

obtain a comprehensive picture of the wide variety of Planar 3–SAT, even when

they are not described as detailed as the other problems.

9.2. Open Problems

There are some interesting problems that remain open. One of these is a de-

tailed comparison between NP-hardness proofs for properties of planar graphs

using Planar 3–SAT (or some variant) and another known NP–hard problem.

A good candidate for this comparison is the Triangulation Existence Problem.

An instance of this problem is a geometric graph G = (V, E) and the ques-

tion is whether a triangulation T = (V, ET ⊆ E) exists. In 1977 Lloyd showed

the NP–hardness of the Triangulation Existence Problem with a reduction from

SAT for Boolean formula in conjunctive normal form [Llo77]. According to

Schulz the construction for the NP–hardness proof is easier with a reduction

from Simple Planar 3-SAT [Sch06]. The new proof is presented alongside with

a similar proof showing the NP–completeness of the Pseudo–Triangulations Ex-

istence Problem [Sch06]. A polygon with exactly three convex corners is called

a pseudo–triangle, and a pseudo-triangulation is a planar partition of a point set

into pseudo-triangles. Other good candidates are Planar Node Cover, Planar

Directed Hamiltonian Circuits, and Geometric Connected Dominating Set with

alternative proofs given by Lichtenstein [Lic82].

It is not clear whether Planar 3–SAT and Simple Planar 3–SAT are the same

problem, i.e. if the definition and properties of the associated graph are inter-

84

9. Conclusion

changeable. The main difference between the two problems is, that for Planar

3–SAT a circular order of the variable–vertices is necessary such that consecu-

tive vertices are connected by an edge. Whereas for Simple Planar 3–SAT such

an ordering is not necessary which may lead to Boolean formula that have a

planar embedding according to Simple Planar 3–SAT but not to Planar 3–SAT.

In contrast to that it is shown in Chapter 4 that the definition and properties of

the associated graph of Planar 3–SAT and Rectilinear Planar 3–SAT are inter-

changeable (Theorem 4.1.2).

In 1978, Schaefer showed that the problem of deciding whether a propositional

formula in CNF is satisfiable is either in P or NP–complete [Sch78]. Later, when

a classification of different problems in P were developed Schaefer’s dichotomy

theorem was refined by Allender et al. [All+09]. The refinement takes into ac-

count that if AC0 isomorphisms are considered then the Boolean Constraint

Satisfaction Problem (Boolean CSP) can be classified according to the com-

plexity classes NP, P, ⊕L, NL, and L. This dichotomy theorem is also valid for

planar Boolean formulas but an open problem is whether it is possible to extend

the result for this special group. One general approach makes Dvořák and Kupec

with a partial classification of the complexity of Planar Boolean CSP [DK15].

A similar approach could be to close some more gaps (more than in this thesis

are already closed) between the variants, e.g. if a variant is NP–complete for

monotone Boolean formula, is a variant with the same restriction except that

the Boolean formula is positive also NP–complete? Many problems are variants

of Simple Planar 3–SAT but not necessarily for Planar 3–SAT too. Studying

the same restrictions for Planar 3–SAT as well could give some insights into

the previous mentioned open question whether Planar 3–SAT and Simple Planar

3–SAT are the same problem or not.

85

Appendices

86

A. List of Variants of Planar 3–SAT

All variants of PLANAR 3–SAT in this thesis are here listed in order of their

appearance. New variants are marked with ν.

1. 4.1.1 - Planar 3–SAT

2. 4.1.1 - Rectilinear Planar 3–SAT

3. 4.2.1 - Planar exactly 3–SATν

4. 4.3.1 - Simple Planar 3–SATν

5. 4.4.1 - Separable Planar 3–SAT

6. 4.5.1 - Separable Simple Planar 3–SAT

7. 4.6.1 - Clause–Linked Planar 3-SAT

8. 5.1.1 - Simple Planar 1–in–3–SAT

9. 5.2.1 - Planar Positive exactly 1–in–3–SAT

10. 5.3.1 - Simple Planar Monotone 1–in–3–SAT

11. 5.3.2 - Simple Planar Monotone exactly 3–bounded 1–in–3–SAT

12. 5.4.1 - Separable Simple Planar 1–in–3–SAT

13. 6.1.1 - Planar not–all–equal 3–SAT

14. 6.2.1 - Restricted Planar Positive not–all–equal 3–SAT

15. 7.1.1 - Planar Monotone 3–SATν

16. 7.2.1 - Restricted Planar Monotone 3–SAT

17. 7.3.1 - Simple Planar 3–bounded Monotone 3–SAT

18. 7.3.2 - Simple Planar Monotone exactly 3–bounded 3–SAT

87

A. List of Variants of Planar 3–SAT

19. 7.3.3 - Restricted Simple Planar Monotone [3,4]–bounded 3–SAT

20. 7.3.4 - Restricted Simple Planar Monotone exactly 4–bounded 3–SAT

21. 7.3.5 - Simple Planar Monotone exactly 4–bounded exactly 3∗–SAT

22. 7.3.6 - Restricted Simple Planar Monotone exactly 5–bounded exactly 3–

SAT

23. 8.1.1 - Planar 3–bounded 3–SATν

24. 8.2.1 - Planar exactly 3–bounded 3–SATν

25. 8.3.1 - Restricted Planar exactly 3–bounded 3–SAT

26. 8.4.1 - Simple Planar exactly 3–bounded 3–SAT

27. 8.5.1 - Simple Planar [2,3]–bounded 3–SAT

28. 8.6.1 - Simple Planar [2,3]–bounded 1–negative 3–SAT

29. 8.7.1 - Simple Planar [3,4]–bounded exactly 3–SAT

30. 8.8.1 - Simple Planar 4–bounded exactly 3–SAT

31. 8.9.1 - Simple Planar 3–connected exactly 3–SAT

32. 8.9.2 - Simple Planar 3–connected 4–bounded exactly 3–SAT

33. 8.10.1 - Restricted Clause–Linked exactly 3–bounded Planar 3–SAT

88

B. Restrictions on Planar 3–SAT

B.1. List of Restrictions

Let φ be a planar Boolean formula with a planar embedding of the associated

graph G(φ). Then the following restriction can be put on an instance for Planar

3–SAT.

1. Restrictions on the planar Boolean formula:

a) φ is in exactly 3–CNF.

b) φ is monotone.

c) φ is positive (respectivly negative).

d) Each variable appears negated exactly once.

e) Bounded variable appearances:

i. Each variable occurs in at least two and at most three clauses,

once negated, and once or twice not negated.

ii. Each variable occurs in at most three clauses.

iii. Each variable occurs in exactly three clauses.

iv. Each variable occurs in exactly three clauses, once negated and

twice not negated.

v. Each variable occurs in at least three and at most four clauses.

vi. Each variable occurs in at most four clauses.

vii. Each variable occurs in exactly four clauses.

viii. Each variable occurs in exactly five clauses.

f) Each clause with three literals is positive.

g) Each clause with three literals contains at least one negated variable.

h) A clause may contain the same literal more than once.

2. Restrictions on the associated graph:

a) G(φ) has no edges between the variable–vertices.

89

B. Restrictions on Planar 3–SAT

b) G(φ) is biconnected.

c) G(φ) is 3–connected.

d) At each variable–vertex all edges representing a positive literal are

incident to one side of the vertex, and all edges representing a negative

literal are incident to the other side. The separation is according to

the edges of the cycle through all variable–vertices.

e) The set of clauses allows a linear ordering such that G(φ) is still planar

when consecutive clause–vertices are connected with an edge.

3. Restrictions on the planar embedding of G(φ):

a) It is a rectilinear embedding1.

b) All positive clauses are drawn on one side of the variables, and all

negative negative clauses are drawn on the other side

4. Restrictions on the satisfying assignment:

a) A clause is satisfied if exactly one literal is true.

b) A clause is satisfied if at least one literal is true and at least one literal

is false.

c) Let P be a subset of variables in φ. Each variable in P is assigned

with true.

B.2. Categorization of Planar 3–SAT Variants

Each of the presented variants of Planar 3–SAT can be put in some categories

for possible restrictions. The category for restrictions on the planar Boolean

formula is dominated by variants with bounded variable appearances. The re-

striction on the associated graph for Simple Planar versions is the restriction

for most variants in this category. Restrictions on the planar embedding of the

associated graph have only two problems, though a rectilinear embedding is no

restriction at all (See Theorem 4.1.2). So, Restricted Planar Monotone 3–SAT

(Definition 7.2.1) is the only proper member of this category. The reason for

such a small number of variants in this category is not clear. One possibility

could be that in practice variants of Simple Planar versions are capable enough.

This impression is supported by the great presence of nineteen Simple Planar

1A rectilinear embedding is only an assumption and not a restriction (See Theorem 4.1.2)

90

B. Restrictions on Planar 3–SAT

versions against all thirty-three presented variants in this thesis. The category

for restrictions on the satisfying assignment can be partitioned into two sets,

that is in variants for Planar 1–in–3–SAT and Planar not–all–equal 3–SAT. Only

one variant, namely Restricted Planar Positive not–all–equal 3–SAT (Definition

6.2.1), has additionally a special restriction on the satisfying assignment such

that each element of a subset of variables in the Boolean formula have to be

assigned with true.

1. Restrictions on the planar Boolean formula:

• Planar exactly 3–SAT [4.2]

• Planar Positive exactly 1–in–3–SAT [5.2.1]

• Simple Planar Monotone 1–in–3–SAT [5.3.1]

• Simple Planar Monotone exactly 3–bounded 1–in–3–SAT [5.3.2]

• Restricted Planar Positive not–all–equal 3–SAT [6.2.1]

• Planar Monotone 3–SAT [7.1.1]

• Restricted Planar Monotone 3–SAT [7.2.1]

• Simple Planar Monotone 3–bounded 3–SAT [7.3.1]

• Simple Planar Monotone exactly 3–bounded 3–SAT [7.3.2]

• Restricted Simple Planar Monotone [3, 4]–bounded 3–SAT [7.3.3]

• Restricted Simple Planar Monotone exactly 4–bounded 3–SAT [7.3.4]

• Simple Planar Monotone exactly 4–bounded exactly 3∗–SAT [7.3.5]

• Restricted Simple Planar Monotone exactly 5–bounded exactly 3–SAT

[7.3.6]

• Planar 3–bounded 3–SAT [8.1.1]

• Planar exactly 3–bounded 3–SAT [8.2.1]

• Restricted Planar exactly 3–bounded 3–SAT [8.3.1]

• Simple Planar exactly 3-bounded 3–SAT [8.4.1]

• Simple Planar [2, 3]–bounded 3–SAT [8.5.1]

• Simple Planar 1–negative [2, 3]–bounded 3–SAT [8.6.1]

• Simple Planar exactly [3, 4]–bounded 3–SAT [8.7.1]

• Simple Planar 4–bounded exactly 3–SAT [8.8.1]

• Simple Planar 3–connected exactly 3–SAT [8.9.1]

• Simple Planar 3–connected 4–bounded exactly 3–SAT [8.9.2]

• Restricted Clause–Linked exactly 3–bounded Planar 3–SAT [8.10.1]

91

B. Restrictions on Planar 3–SAT

2. Restrictions on the associated graph:

• Simple Planar 3–SAT [4.3.1]

• Separable Planar 3–SAT [4.4.1]

• Separable Simple Planar 3–SAT [4.5.1]

• Clause–Linked Planar 3–SAT [4.6.1]

• Simple Planar 1–in–3–SAT [5.1.1]

• Planar Positive exactly 1–in–3–SAT [5.2.1]

• Simple Planar Monotone 1–in–3–SAT [5.3.1]

• Simple Planar Monotone exactly 3–bounded 1–in–3–SAT [5.3.2]

• Separable Simple Planar 1–in–3–SAT [5.4.1]

• Restricted Planar Monotone 3–SAT [7.2.1]

• Simple Planar Monotone 3–bounded 3–SAT [7.3.1]

• Simple Planar Monotone exactly 3–bounded 3–SAT [7.3.2]

• Restricted Simple Planar Monotone [3, 4]–bounded 3–SAT [7.3.3]

• Restricted Simple Planar Monotone exactly 4–bounded 3–SAT [7.3.4]

• Simple Planar Monotone exactly 4–bounded exactly 3∗–SAT [7.3.5]

• Restricted Simple Planar Monotone exactly 5–bounded exactly 3–SAT

[7.3.6]

• Simple Planar exactly 3-bounded 3–SAT [8.4.1]

• Simple Planar [2, 3]–bounded 3–SAT [8.5.1]

• Simple Planar 1–negative [2, 3]–bounded 3–SAT [8.6.1]

• Simple Planar [3, 4]–bounded exactly 3–SAT [8.7.1]

• 4–bounded Simple Planar exactly 3–SAT [8.8.1]

• Simple Planar 3–connected exactly 3–SAT [8.9.1]

• Simple Planar 3–connected 4–bounded exactly 3–SAT [8.9.2]

• Restricted Clause–Linked exactly 3–bounded Planar 3–SAT [8.10.1]

3. Restrictions on the planar embedding of G(φ):

• Planar Positive exactly 1–in–3–SAT [5.2.1]

• Restricted Planar Monotone 3–SAT [7.2.1]

4. Restrictions on the satisfying assignment:

• Simple Planar 1–in–3–SAT [5.1.1]

• Planar Positive exactly 1–in–3–SAT [5.2.1]

• Simple Planar Monotone 1–in–3–SAT [5.3.1]

92

B. Restrictions on Planar 3–SAT

• Simple Planar Monotone exactly 3–bounded 1–in–3–SAT [5.3.2]

• Separable Simple Planar 1–in–3–SAT [5.4.1]

• Planar not–all–equal 3–SAT [6.1.1]

• Restricted Planar Positive not–all–equal 3–SAT [6.2.1]

93

Bibliography

[AB09] S. Arora and B. Barak. Computational complexity: a modern ap-

proach. Cambridge University Press, 2009.

[Akl+15] S. Akl, R. Benkoczi, D. R. Gaur, H. Hassanein, S. Hossain, and M.

Thom. “On a class of covering problems with variable capacities in

wireless networks”. In: Theoretical Computer Science 575 (2015).

Special Issue on Algorithms and Computation, pp. 42–55. DOI: 10.

1016/j.tcs.2014.10.044.

[All+09] E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer.

“The Complexity of Satisfiability Problems: Refining Schaefer’s The-

orem”. In: J. Comput. Syst. Sci. 75.4 (June 2009), pp. 245–254.

[BK10] M. Berg and A. Khosravi. “Computing and Combinatorics: 16th An-

nual International Conference, COCOON 2010, Nha Trang, Viet-

nam, July 19-21, 2010. Proceedings”. In: ed. by M. T. Thai and S.

Sahni. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. Chap. Op-

timal Binary Space Partitions in the Plane, pp. 216–225. DOI: 10.

1007/978-3-642-14031-0_25.

[Blö91] J. Blömer. “Computing sums of radicals in polynomial time”. In:

Foundations of Computer Science, 1991. Proceedings., 32nd Annual

Symposium on. IEEE. 1991, pp. 670–677.

[BM04] J. M. Boyer and W. J. Myrvold. “On the Cutting Edge: Simplified

O(n) Planarity by Edge Addition”. In: Journal of Graph Algorithms

and Applications 8.3 (2004), pp. 241–273. DOI: 10.7155/jgaa.

00091.

94

http://dx.doi.org/10.1016/j.tcs.2014.10.044
http://dx.doi.org/10.1016/j.tcs.2014.10.044
http://dx.doi.org/10.1007/978-3-642-14031-0_25
http://dx.doi.org/10.1007/978-3-642-14031-0_25
http://dx.doi.org/10.7155/jgaa.00091
http://dx.doi.org/10.7155/jgaa.00091

Bibliography

[Cob64] A. Cobham. “The Intrinsic Computational Difficulty of Functions, Y.

Bar-Hillel”. In: Proceedings of the 1964 Congress on Logic, Method-

ology and Philosophy of Science. 1964.

[Coo71] S. A. Cook. “The Complexity of Theorem-proving Procedures”. In:

Proceedings of the Third Annual ACM Symposium on Theory of

Computing. STOC ’71. Shaker Heights, Ohio, USA: ACM, 1971,

pp. 151–158. DOI: 10.1145/800157.805047.

[Coo72] S. A. Cook. “A Hierarchy for Nondeterministic Time Complexity”.

In: Proceedings of the Fourth Annual ACM Symposium on Theory

of Computing. STOC ’72. Denver, Colorado, USA: ACM, 1972,

pp. 187–192. DOI: 10.1145/800152.804913.

[Cor+09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-

duction to Algorithms. Cambridge, Massachusetts: The MIT Press,

2009.

[Dah+94] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour,

and M. Yannakakis. “The Complexity of Multiterminal Cuts”. In:

SIAM Journal on Computing 23 (1994), pp. 864–894.

[DB97] B. Das and V. Bharghavan. “Routing in ad-hoc networks using mini-

mum connected dominating sets”. In: Communications, 1997. ICC’97

Montreal, Towards the Knowledge Millennium. 1997 IEEE Interna-

tional Conference on. Vol. 1. IEEE. 1997, pp. 376–380.

[DDD16] A. Darmann, J. Döcker, and B. Dorn. “On planar variants of the

monotone satisfiability problem with bounded variable appearances”.

In: CoRR abs/1604.05588 (2016).

[Deh15] A. Dehghan. “On strongly planar not-all-equal 3SAT”. In: Journal

of Combinatorial Optimization (2015), pp. 1–4. DOI: 10.1007/

s10878-015-9894-6.

[DF86] M. Dyer and A. Frieze. “Planar 3DM is NP-complete”. In: Journal

of Algorithms 7.2 (1986), pp. 174–184. DOI: 10 . 1016 / 0196 -

6774(86)90002-7.

95

http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.1145/800152.804913
http://dx.doi.org/10.1007/s10878-015-9894-6
http://dx.doi.org/10.1007/s10878-015-9894-6
http://dx.doi.org/10.1016/0196-6774(86)90002-7
http://dx.doi.org/10.1016/0196-6774(86)90002-7

Bibliography

[Dia+12] J. Diaz, O. Pottonen, M. Serna, and E. J. van Leeuwen. “On the

Complexity of Metric Dimension”. In: Proceedings of the 20th Annual

European Conference on Algorithms. ESA’12. Ljubljana, Slovenia:

Springer-Verlag, 2012, pp. 419–430. DOI: 10.1007/978-3-642-

33090-2_37.

[Dji95] H. N. Djidjev. “On drawing a graph convexly in the plane (extended

abstract)”. In: Graph Drawing: DIMACS International Workshop, GD

’94 Princeton, New Jersey, USA, October 10–12, 1994 Proceedings.

Ed. by R. Tamassia and I. G. Tollis. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1995, pp. 76–83. DOI: 10.1007/3-540-58950-

3_358.

[DK15] Z. Dvořák and M. Kupec. “On Planar Boolean CSP”. In: Automata,

Languages, and Programming: 42nd International Colloquium, ICALP

2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I. Ed. by

M. M. Halldórsson, K. Iwama, N. Kobayashi, and B. Speckmann.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 432–443.

DOI: 10.1007/978-3-662-47672-7_35.

[DKW02] D.-Z. Du, K. Ko, and J. Wang. Introduction to Computational Com-

plexity Theory. Chinese. High Education Publisher, Beijing, 2002.

[Edm65] J. Edmonds. “Paths, Trees, and Flows”. In: Canadian Journal of

Mathematics 17 (1965), pp. 449–467. DOI: 10.4153/CJM-1965-

045-4.

[Fel+95] M. R. Fellows, J. Kratochvil, M. Middendorf, and F. Pfeiffer. “The

complexity of induced minors and related problems”. In: Algorithmica

13.3 (1995), pp. 266–282. DOI: 10.1007/BF01190507.

[Gib+08] M. Gibson, G. Kanade, E. Krohn, I. A. Pirwani, and K. Varadarajan.

“Algorithm Theory – SWAT 2008: 11th Scandinavian Workshop on

Algorithm Theory, Gothenburg, Sweden, July 2-4, 2008. Proceed-

ings”. In: ed. by J. Gudmundsson. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2008. Chap. On Metric Clustering to Minimize the Sum

of Radii, pp. 282–293. DOI: 10.1007/978-3-540-69903-3_26.

96

http://dx.doi.org/10.1007/978-3-642-33090-2_37
http://dx.doi.org/10.1007/978-3-642-33090-2_37
http://dx.doi.org/10.1007/3-540-58950-3_358
http://dx.doi.org/10.1007/3-540-58950-3_358
http://dx.doi.org/10.1007/978-3-662-47672-7_35
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.1007/BF01190507
http://dx.doi.org/10.1007/978-3-540-69903-3_26

Bibliography

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-completeness. 1979.

[GMM13] L. Guibas, N. Milosavljević, and A. Motskin. “Connected dominating

sets on dynamic geometric graphs”. In: Computational Geometry

46.2 (2013), pp. 160–172.

[Had75] F. Hadlock. “Finding a Maximum Cut of a Planar Graph in Polyno-

mial Time”. In: SIAM Journal on Computing 4.3 (1975), pp. 221–

225. DOI: 10.1137/0204019.

[HM67] F. Harary and R. Melter. “The metric dimension of a graph”. In: Ars

Combinatoria 2 (1967), pp. 191–195.

[HS65] J. Hartmanis and R. E. Stearns. “On the computational complex-

ity of algorithms”. In: Transactions of the American Mathematical

Society 117 (1965), pp. 285–306.

[HS66] F. C. Hennie and R. E. Stearns. “Two-Tape Simulation of Multitape

Turing Machines”. In: J. ACM 13.4 (Oct. 1966), pp. 533–546. DOI:

10.1145/321356.321362.

[HS78] E. Horowitz and S. Sahni. Fundamentals of computer algorithms.

Computer Science Press, 1978.

[HSV10] M. Hauptmann, R. Schmied, and C. Viehmann. “On approximation

complexity of metric dimension problem”. In: International Workshop

on Combinatorial Algorithms. Springer. 2010, pp. 136–139.

[HT08] B. Haeupler and R. E. Tarjan. “Planarity Algorithms via PQ-Trees

(Extended Abstract)”. In: Electronic Notes in Discrete Mathematics

31 (2008), pp. 143–149. DOI: 10.1016/j.endm.2008.06.029.

[HT74] J. Hopcroft and R. Tarjan. “Efficient Planarity Testing”. In: J. ACM

21.4 (Oct. 1974), pp. 549–568. DOI: 10.1145/321850.321852.

[Hu74] T. C. Hu. “Optimum communication spanning trees”. In: SIAM Jour-

nal on Computing 3.3 (1974), pp. 188–195.

[JLK78] D. S. Johnson, J. K. Lenstra, and A. Kan. “The complexity of the

network design problem”. In: Networks 8.4 (1978), pp. 279–285.

97

http://dx.doi.org/10.1137/0204019
http://dx.doi.org/10.1145/321356.321362
http://dx.doi.org/10.1016/j.endm.2008.06.029
http://dx.doi.org/10.1145/321850.321852

Bibliography

[JM95] K. Jansen and H. Müller. “The minimum broadcast time problem

for several processor networks”. In: Theoretical Computer Science

147.1–2 (1995), pp. 69–85. DOI: 10.1016/0304-3975(94)00230-

G.

[Kam12] M. Kamiński. “MAX-CUT and containment relations in graphs”. In:

Theoretical Computer Science 438 (2012), pp. 89–95. DOI: 10.

1016/j.tcs.2012.02.036.

[Kar72] R. M. Karp. “Reducibility among combinatorial problems”. In: Com-

plexity of computer computations. Springer, 1972, pp. 85–103.

[KLN91a] J. Kratochvíl, A. Lubiw, and J. Nešetřil. “Noncrossing Subgraphs

in Topological Layouts”. In: SIAM Journal on Discrete Mathematics

4.2 (1991), pp. 223–244. DOI: 10.1137/0404022.

[KLN91b] J. Kratochvíl, A. Lubiw, and J. Nešetřil. “Noncrossing Subgraphs

in Topological Layouts”. In: SIAM Journal on Discrete Mathematics

4.2 (1991), pp. 223–244. DOI: 10.1137/0404022.

[KM05] C. Knauer and W. Mulzer. “Minimum dilation triangulations”. In:

(2005).

[KMT10] Y. Kobayashi, Y. Miyamoto, and H. Tamaki. “Algorithms and Com-

putation: 21st International Symposium, ISAAC 2010, Jeju, Korea,

December 15-17, 2010, Proceedings, Part II”. In: ed. by O. Cheong,

K.-Y. Chwa, and K. Park. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2010. Chap. k-cyclic Orientations of Graphs, pp. 73–84. DOI:

10.1007/978-3-642-17514-5_7.

[Koz11] L. Kozma. “Minimum Average Distance Triangulations”. In: CoRR

abs/1112.1828 (2011).

[KR93] D. E. Knuth and A. Raghunathan. “The problem of compatible rep-

resentatives”. In: eprint arXiv:cs/9301116 (June 1993).

[Kra91] J. Kratochvíl. “String graphs. II. recognizing string graphs is NP-

hard”. In: Journal of Combinatorial Theory, Series B 52.1 (1991),

pp. 67–78. DOI: 10.1016/0095-8956(91)90091-W.

98

http://dx.doi.org/10.1016/0304-3975(94)00230-G
http://dx.doi.org/10.1016/0304-3975(94)00230-G
http://dx.doi.org/10.1016/j.tcs.2012.02.036
http://dx.doi.org/10.1016/j.tcs.2012.02.036
http://dx.doi.org/10.1137/0404022
http://dx.doi.org/10.1137/0404022
http://dx.doi.org/10.1007/978-3-642-17514-5_7
http://dx.doi.org/10.1016/0095-8956(91)90091-W

Bibliography

[Kra94] J. Kratochvíl. “A special planar satisfiability problem and a conse-

quence of its NP-completeness”. In: Discrete Applied Mathematics

52.3 (1994), pp. 233–252. DOI: 10.1016/0166-218X(94)90143-

0.

[KRR96] S. Khuller, B. Raghavachari, and A. Rosenfeld. “Landmarks in graphs”.

In: Discrete Applied Mathematics 70.3 (1996), pp. 217–229. DOI:

10.1016/0166-218X(95)00106-2.

[Lar92] P. Laroche. “Planar 1-in-3 satisfiablility is NP-complete”. In: Comptes

Rendus de I Académie des Sciences (Jan. 1992).

[Lev73] L. A. Levin. “Universal Sequential Search Problems”. Russian. In:

Probl. Peredachi Inf. 9 (3 1973), pp. 115–116.

[Lic77] D. Lichtenstein. A technique for proving NP- completeness results

on planar graphs. 1977., 1977.

[Lic82] D. Lichtenstein. “Planar Formulae and Their Uses”. In: SIAM J.

Comput. 11.2 (1982), pp. 329–343.

[Llo77] E. L. Lloyd. “On triangulations of a set of points in the plane”. In:

Foundations of Computer Science, 1977., 18th Annual Symposium

on. Oct. 1977, pp. 228–240. DOI: 10.1109/SFCS.1977.21.

[LMM05] V. B. Le, R. Mosca, and H. Müller. “Graph-Theoretic Concepts in

Computer Science: 31st International Workshop, WG 2005, Metz,

France, June 23-25, 2005, Revised Selected Papers”. In: ed. by

D. Kratsch. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.

Chap. On Stable Cutsets in Claw-Free Graphs and Planar Graphs,

pp. 163–174. DOI: 10.1007/11604686_15.

[MG08] J. Maňuch and D. R. Gaur. “Fitting Protein Chains to Cubic Lattice

is NP-complete”. In: Journal of Bioinformatics and Computational

Biology 06.01 (2008), pp. 93–106. DOI: 10.1142/S0219720008003308.

[Mor88] B. M. E. Moret. “Planar NAE3SAT is in P”. In: j-SIGACT 19.2 (June

1988), pp. 51–54.

[MP09] J. S. B. Mitchell and E. Packer. On Non-crossing (Projected) Span-

ning Trees of 3D point sets. 2009.

99

http://dx.doi.org/10.1016/0166-218X(94)90143-0
http://dx.doi.org/10.1016/0166-218X(94)90143-0
http://dx.doi.org/10.1016/0166-218X(95)00106-2
http://dx.doi.org/10.1109/SFCS.1977.21
http://dx.doi.org/10.1007/11604686_15
http://dx.doi.org/10.1142/S0219720008003308

Bibliography

[MP93] M. Middendorf and F. Pfeiffer. “On the complexity of the disjoint

paths problem”. In: Combinatorica 13.1 (1993), pp. 97–107. DOI:

10.1007/BF01202792.

[MR01] C. Moore and J. M. Robson. “Hard Tiling Problems with Simple

Tiles”. In: Discrete Comput. Geom. 26.4 (Jan. 2001), pp. 573–590.

DOI: 10.1007/s00454-001-0047-6.

[MR08] W. Mulzer and G. Rote. “Minimum-weight Triangulation is NP-

hard”. In: J. ACM 55.2 (May 2008), 11:1–11:29. DOI: 10.1145/

1346330.1346336.

[MW00] P. Mutzel and R. Weiskircher. “Computing Optimal Embeddings for

Planar Graphs”. In: Computing and Combinatorics: 6th Annual Inter-

national Conference, COCOON 2000 Sydney, Australia, July 26–28,

2000 Proceedings. Ed. by D.-Z. Du, P. Eades, V. Estivill-Castro, X.

Lin, and A. Sharma. Berlin, Heidelberg: Springer Berlin Heidelberg,

2000, pp. 95–104. DOI: 10.1007/3-540-44968-X_10.

[OD72] G. Orlova and Y. Dorfman. “Finding the Maximum Cut in a Graph”.

In: engineering cybernetics. Vol. 10. 1972, pp. 502–506.

[RS96] A. A. Rabow and H. A. Scheraga. “Improved genetic algorithm for

the protein folding problem by use of a Cartesian combination oper-

ator”. In: Protein Science 5.9 (1996), pp. 1800–1815.

[Sch06] A. Schulz. “The Existence of a Pseudo-triangulation in a given Geo-

metric Graph”. In: Proceedings of the 22nd European Workshop on

Computational Geometry. Mar. 2006, pp. 17–20.

[Sch11] J. M. Schmidt. “Structure and Constructions of 3–ConnectedGraphs”.

dissertation. Freie Universität Berlin, 2011.

[Sch78] T. J. Schaefer. “The Complexity of Satisfiability Problems”. In: Pro-

ceedings of the Tenth Annual ACM Symposium on Theory of Com-

puting. STOC ’78. San Diego, California, USA: ACM, 1978, pp. 216–

226. DOI: 10.1145/800133.804350.

100

http://dx.doi.org/10.1007/BF01202792
http://dx.doi.org/10.1007/s00454-001-0047-6
http://dx.doi.org/10.1145/1346330.1346336
http://dx.doi.org/10.1145/1346330.1346336
http://dx.doi.org/10.1007/3-540-44968-X_10
http://dx.doi.org/10.1145/800133.804350

Bibliography

[SFM78] J. I. Seiferas, M. J. Fischer, and A. R. Meyer. “Separating Nonde-

terministic Time Complexity Classes”. In: J. ACM 25.1 (Jan. 1978),

pp. 146–167. DOI: 10.1145/322047.322061.

[Sip06] M. Sipser. Introduction to the Theory of Computation. Vol. 2. Thom-

son Course Technology Boston, 2006.

[Sla75] P. J. Slater. “Leaves of trees”. In: Congr. Numer 14.549-559 (1975),

p. 37.

[SSŠ03] M. Schaefer, E. Sedgwick, and D. Štefankovič. “Recognizing string

graphs in NP”. In: Journal of Computer and System Sciences 67.2

(2003). Special Issue on STOC 2002, pp. 365–380. DOI: 10.1016/

S0022-0000(03)00045-X.

[TDK12] M. A. Tahraoui, E. Duchêne, and H. Kheddouci. “Gap vertex-distinguishing

edge colorings of graphs”. In: Discrete Mathematics 312.20 (2012),

pp. 3011–3025.

[Tov84] C. A. Tovey. “A simplified NP-complete satisfiability problem”. In:

Discrete Applied Mathematics 8.1 (1984), pp. 85–89. DOI: 10.

1016/0166-218X(84)90081-7.

[Wie47] H. Wiener. “Structural determination of paraffin boiling points”. In:

Journal of the American Chemical Society 69.1 (1947), pp. 17–20.

[Wu15] L. Wu. “On strongly planar 3SAT”. In: Journal of Combinatorial

Optimization (2015), pp. 1–6. DOI: 10.1007/s10878-015-9878-

6.

[WW99] S. Wei-Kuan and H. Wen-Lian. “A new planarity test”. In: Theoretical

Computer Science 223.1 (1999), pp. 179–191. DOI: 10 . 1016 /

S0304-3975(98)00120-0.

[Žák83] S. Žák. “A Turing machine time hierarchy”. In: Theoretical Computer

Science 26.3 (1983), pp. 327–333. DOI: 10.1016/0304-3975(83)

90015-4.

101

http://dx.doi.org/10.1145/322047.322061
http://dx.doi.org/10.1016/S0022-0000(03)00045-X
http://dx.doi.org/10.1016/S0022-0000(03)00045-X
http://dx.doi.org/10.1016/0166-218X(84)90081-7
http://dx.doi.org/10.1016/0166-218X(84)90081-7
http://dx.doi.org/10.1007/s10878-015-9878-6
http://dx.doi.org/10.1007/s10878-015-9878-6
http://dx.doi.org/10.1016/S0304-3975(98)00120-0
http://dx.doi.org/10.1016/S0304-3975(98)00120-0
http://dx.doi.org/10.1016/0304-3975(83)90015-4
http://dx.doi.org/10.1016/0304-3975(83)90015-4

	List of Figures
	Introduction
	Preliminary
	Boolean Algebra and Formulas
	Graphs
	Languages

	An Introduction to the Time Complexity Theory
	Turing Machine
	Time Complexity
	Relationships Among Computational Models
	Complexity Classes P and NP
	NP–completeness and Polynomial Time Reducibility

	Planar 3–SAT
	Planar 3–SAT
	Rectilinear Planar 3–SAT
	Application of Planar 3–SAT
	Restrictions on Planar 3–SAT

	Planar exactly 3–SAT
	Simple Planar 3–SAT
	Separable Planar 3–SAT
	Separable Simple Planar 3–SAT
	Clause–Linked Planar 3–SAT

	Planar 1–in–3–SAT
	Simple Planar 1–in–3–SAT
	Planar Positive exactly 1–in–3–SAT
	Simple Planar Monotone exactly 3–bounded 1–in–3–SAT
	Separable Simple Planar 1–in–3–SAT

	Planar not–all–equal 3–SAT
	Planar not–all–equal 3–SAT
	Restricted Planar Positive not–all–equal 3–SAT

	Planar Monotone 3–SAT
	Planar Monotone 3–SAT
	Restricted Planar Monotone 3–SAT
	Variable Bounded Variants of Simple Planar Monotone 3–SAT
	Simple Planar Monotone 3–bounded 3–SAT
	Simple Planar Monotone exactly 3–bounded 3–SAT
	Restricted Simple Planar Monotone [3,4]–bounded 3–SAT
	Restricted Simple Planar Monotone exactly 4–bounded 3–SAT
	Simple Planar Monotone exactly 4–bounded exactly 3*–SAT
	Restricted Simple Planar Monotone exactly 5–bounded exactly 3–SAT

	Variable Bounded Variants of Planar 3–SAT
	Planar 3–bounded 3–SAT
	Planar exactly 3–bounded 3–SAT
	Restricted Planar exactly 3–bounded 3–SAT
	Simple Planar exactly 3–bounded 3–SAT
	Simple Planar [2,3]–bounded 3–SAT
	Simple Planar 1–negative [2,3]–bounded 3–SAT
	Simple Planar [3,4]–bounded exactly 3–SAT
	Simple Planar 4–bounded exactly 3–SAT
	Simple Planar 3–connected exactly 3–SAT
	Simple Planar 3–connected 4–bounded exactly 3–SAT

	Restricted Clause–Linked Planar exactly 3–bounded 3–SAT

	Conclusion
	Remarks
	Open Problems

	Appendices
	List of Variants of Planar 3–SAT
	Restrictions on Planar 3–SAT
	List of Restrictions
	Categorization of Planar 3–SAT Variants

	Bibliography

