
 Robots 
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TEXT PETER HERGERSBERG

As domestic help, healthcare assistants or emergency 

response units: robots are suitable for these jobs only if they 

are capable of learning and acting independently, at least 

to a certain extent. Stefan Schaal and the members of his 

Autonomous Motion Department at the Max Planck Institute 

for Intelligent Systems in Tübingen are teaching machines 

to become flexible and autonomous.

 T  
ruth be told, Apollo doesn’t 
exactly look like a Greek 
god. With that trusting gaze 
coming from his big, round 
eyes, he’s more reminiscent 

of Shaun the Sheep than of the immor-
tal being who struck fear into the hearts 
of his foes. At best, Apollo, from the 
laboratory of the Max Planck Institute 
for Intelligent Systems, could be com-
pared to a demigod, considering that 
his upper body rests on a massive col-
umn rather than on a chiseled abdomen 
and legs. And the feats he accomplish-
es are, well, really the simplest of the 
divine exploits: if all goes well, he can 
securely grasp different objects, bal-
ance a rod on his hand or even mount 
a wheel on an axle.

That may not sound very impressive 
for a god, but the Apollo stationed in 
the laboratory of the Max Planck Insti-
tute for Intelligent Systems in Tübingen 
is a robot. And for a robot, he is actual-
ly capable of performing a surprisingly 
wide range of tasks. Perhaps most im-
portantly of all, he learns a lot – and he 
does so in a way that might one day 
enable him, or rather his two-legged 

The Director and his student: 
Apollo is one of the robots 
that Stefan Schaal and his 
team are teaching to move 
autonomously.
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negative feedback until the robot can 
perform the task correctly, which it 
then does. But watch out if something 
unexpected interrupts it. “Today’s ro-
bots are not robust,” says Stefan Schaal. 
“They have a really hard time compen-
sating for disruptions.” If a robot learned 
to grab a hammer by the handle, for ex-
ample, it would already consider it a 
disruption if it were handed the ham-
mer head first. 

“We want to achieve robustness by 
using various methods to introduce 
machine learning into the field of ro-
botics,” says Stefan Schaal, whose de-
partment focuses on perception-action-
learning loops. When a machine – 
meaning a computer, which makes up 
the brain of every robot – learns some-
thing, a software program is trained to 
perform a particular task by feeding it 
large amounts of data. By using nu-

descendants, to autonomously move 
around in unfamiliar surroundings and 
independently solve difficult tasks.

Robots need to be able to learn new 
things if, for instance, they are to serve 
as emergency response units at a dam-
aged industrial complex or rescue in-
jured persons following an accident 
and are suddenly confronted with an 
unexpected obstacle. Also as domestic 
help or even as healthcare assistants, 
robots would need to be capable of con-
tinuously adapting to new situations 
and unforeseen events.

Stefan Schaal, Director at the Max 
Planck Institute in Tübingen, and his 
team have made it their mission to help 
these mechanically engineered beings 
achieve that degree of autonomy. To 
provide an idea of how much work still 
needs to be done in this field, Stefan 
Schaal shows some video footage taken 
at the Darpa Robotics Challenge. In this 
competition, robots must drive a golf 
cart and walk across sand to reach a 
building where they must close a valve. 
What we mostly see here, however, is 
rescue machines, accompanied by hero-
ic-sounding music in the background, 
stumbling and falling down in various 
ways: as they get out of the golf cart, as 
they stagger across the sand, or as they 
attempt to push open the door and in-
stead end up losing their balance and 
falling over.

The reason most modern-day ro-
bots falter in unknown terrain is be-
cause they have a one-track mind, in 
the truest sense of the word. An indus-
trial robot that is programmed to screw 
doors onto a car chassis will execute 
that particular task perfectly – but only 
that one task, and only for a particular 
car model, at least as long as its soft-
ware is not reprogrammed to carry out 
a new command.

And even the learning robots that 
already exist can only be taught one 
task each, for example by having a hu-
man trainer take and guide the robot’s 
arm to help it carry out the desired mo-
tion, similar to what physiotherapists 
do with stroke patients in the early 
stages of rehabilitation. When the ma-
chine is then able to emulate a move-
ment on its own, it receives positive or P
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Coming to grips with it all: Jeannette Bohg teaches Apollo to plan the right way to grasp 
different objects based on visual input.
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merous photos of people taken from 
different angles and in a variety of set-
tings, for example, image recognition 
programs can be taught to reliably 
recognize faces – even when the latter 
are partially obscured or visible only in 
semi-profile.

This is the principle the researchers 
in Tübingen have been applying at their 
school for robots, which they have been 
running for almost three years now 
and which Apollo also attends. Yet the 
school could be considered more of an 
experimental educational institution 
because, unlike regular teachers, the 
Tübingen-based scientists don’t teach 
their students existing knowledge, but 
rather start by determining what and 
how robots learn best.

One of the researchers involved in 
machine education is Jeannette Bohg. 
She trains the machines’ visual percep-
tion in such a way that their visual 
sense provides them with the informa-
tion they need for planning actions in 
a sensible manner. One of the goals, for 
example, is to teach the robots to ana-
lyze an unknown setting and then 
quickly and reliably find objects they 
need to solve a particular task.

When searching for a laptop, for ex-
ample, software programs will use a 
bottom-up approach to look for con-
spicuous pixel clusters, or they will an-
alyze all objects located in a given set-
ting. However, computing all that 
information takes so much time that a 
robot can hardly complete the task 
within a reasonable period.

That is why Jeannette Bohg models 
her teaching on the top-down search 
strategy that humans use: “We know ex-
actly where to look for something and 
where not to look for it because we have 
the necessary background informa-
tion,” the researcher explains. “If we 
were looking for a laptop, for example, 
we would expect to find it on a table, 
but not on a wall.” A wall is where we 

might expect to find a clock, which, 
however, a person could also be wearing 
around his or her wrist as a watch. Look-
ing at a scene and narrowing down the 
number of locations that would be 
worth searching is helpful for a robot, 
not least because it can then approach 
those locations and examine them more 
closely – just as we humans often do.

In order to teach her mechanical 
students these human search tech-
niques, Jeannette Bohg researches the 
best way to model this human strate-
gy with software. She then trains the 
software using the tracked eye move-
ments of 15 participants who were 
asked to examine 400 pictures and 
look for a clock or a laptop, for exam-
ple. This data allows the robot to ac-
quire the experience that teaches a hu-
man where a particular object is most 
likely to occur. 

ROBOTS WORLDWIDE COULD 
SHARE THEIR KNOWLEDGE

“Following the training sessions, our 
search algorithm is already quite good 
at locating clocks and laptops,” says 
Jeannette Bohg. However, this technol-
ogy is not quite as reliable at finding in-
dividual objects as methods that ana-
lyze the whole picture. “But bear in 
mind that, when using 400 pictures, 
the data set for the training is still rath-
er limited,” says Bohg.

Collecting sufficient data and draw-
ing the right conclusion from it in or-
der to be ready for all the contingencies 
of an autonomous existence is a gener-
al problem that machines face: Gaining 
enough useful experience to allow 
them to be independent of commands 
or interventions would easily take up a 
robot’s entire lifetime, which is just as 
finite as the existence of a computer, a 
car or a human being. A single electron-
ic brain would hardly be capable of pro-
cessing such an enormous volume of 

data. “We might be able to solve this 
problem using cloud robotics,” says Ste-
fan Schaal. Similar to the way in which 
countless computers are already linked 
to solve large tasks, robots the world 
over could unite to altruistically share 
their knowledge – provided, of course, 
that their programs are compatible.

For now, each robot is left to its 
own devices to gather and process all 
the knowledge it needs to act in a half-
way independent manner – for in-
stance to correctly plan which grip to 
use when they see a particular object. 
This is another of Jeannette Bohg’s ar-
eas of research.

In the past, robotics researchers 
programmed robots in such a way that 
the robot would first compute which 
points of an object its fingers needed 
to touch in order to grasp it securely. 
“Researchers proceeded on the as-
sumption that the robot had internal-
ized a detailed geometric model of 
both itself and the object, allowing it 
to compute and precisely reach the 
right points on the object in order to 
grab hold of it,” explains Jeannette 
Bohg. The robot then used these mod-
els to plan how to grasp the object 
without it falling to the floor.

“But it turned out that these as-
sumptions aren’t realistic,” says Jean-
nette Bohg. Not only because a robot’s 
software doesn’t include a model for 
each and every thing it could possibly 
grasp, but also because its controls 
weren’t yet precise enough to reach the 
computed points on the object, espe-
cially since the data coming from the 
sensors it uses to control its movements 
is often incomplete and noisy. As a re-
sult, machines would often clumsily 
and unsuccessfully try to get hold of an 
object. Jeannette Bohg wants to change 
that, and once again her work takes its 
cues from humans, who are capable of 
reliably grasping even objects they have 
never seen before.

 » It would easily take a robot an entire lifetime to gain enough experience in order 

for it to become fully independent of human commands or intervention.
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The computer scientist has built up a 
database into which she entered mod-
els of more than 700 objects – from 
hammer to toy doll. In order for the ro-
bot to learn how to successfully grasp 
these objects, she simulates countless 
possible gripping techniques on her 
computer. In the process, she also takes 
into account that an object’s position 
might shift if the robot touches it with 
its fingertips first instead of with its 
palm, which might move the object as 
the robot tries to grasp it. That might 
just cause the object to slip into the ro-
bot’s hand, or it might not.

The aim is that one day, based on the 
experience the software gains from these 
simulations, robots will be able to grasp 
not only things they were taught to rec-
ognize, but also unfamiliar objects – 
even if their sensors provide them with 
only incomplete or noisy information.

Helping robots grab hold of things 
is also the goal of Ludovic Righetti, a 
Research Group Leader at the Max 
Planck Institute in Tübingen. While 
Jeannette Bohg works on teaching ro-
bots to use visual information to devel-
op a plan for grasping an unknown ob-
ject, Ludovic Righetti and his team 
approach this challenge from a differ-
ent angle: among other things, they 
teach students like Apollo to grasp ob-
jects more sensitively. The aim is for a 
robot hand to be able to grab hold of 

an object even if the hand doesn’t make 
contact at the right points.

Such actions are regulated by a feed-
back control system – a computer pro-
gram that creates a feedback loop be-
tween the information collected by the 
sensors and the motions performed by 
the actuators. In Apollo’s case, the feel-
ing of “I’ve got it” or “I didn’t get it” is 
expressed as data measured by the force 
sensors in his hand. The control unit in 
his brain translates this data into a 
command directed at the actuators in 
his fingers. The sensors then report 
whether the fingers really did end up in 
the planned location. If not, the soft-
ware corrects the robot’s motions. This 
type of control engineering is always 
based on a model that expresses the de-
sign of a robot and the interaction be-
tween its control unit and actuators as 
mathematical formulas. 

FEEDBACK CONTROL SOFTWARE 
LEARNS INDEPENDENTLY

Developing the correct model for a tin 
man or woman is in fact a highly com-
plex affair: “The physics of a robot are 
extremely nonlinear,” says Stefan 
Schaal. In other words, small deviations 
from the model’s assumptions, for ex-
ample with regard to sensor sensitivity 
or actuator force, can have dire conse-
quences. The robot might go complete-

ly haywire; in any case, it won’t do 
what it is supposed to do. The main rea-
son is because a full-body robot has 
around 40 degrees of freedom: it can 
move its various limbs with the help of 
40 independent joints.

But the actual problem doesn’t even 
lie in the physical model on which the 
robot’s controls are based; the model 
can be controlled despite any adverse 
circumstances. “I can develop a good 
model of my robot, but not of unfamil-
iar surroundings,” explains Schaal.

That’s why part of Righetti’s team is 
using machine learning to teach robots 
to develop a more flexible model for 
solving a particular task, such as grab-
bing hold of a cup. “This way, the robot 
learns how an action is supposed to feel 
at any given point in time – that is, 
what the force sensors in its wrists, the 
haptic sensors in its fingers, and the 
camera eyes are supposed to be register-
ing,” says Righetti. “This is a relatively 
simple form of learning.” If the grip 
turns out to be wrong, Apollo and his 
fellow students can correct it using their 
adaptive controls. “Ultimately, we hope 
to develop more general models that 
can be applied for a wide range of tasks.”

The approach used by Righetti’s 
team involves models that know, or at 
least should know, which actuator force 
leads to which movement. The re-
searchers then control the exerted force 

Affordable control: The mathematical cost function describes how well a robot balances a rod; it does so particularly well when the cost value is low. 
The cost function depends on the parameters θ1 and θ2 of the feedback control algorithm the machine uses to control its movements. When Apollo 
balances a long rod on his hand, the controller that worked well for the short rod (red dot) proves unsuitable. With the help of a learning algorithm, 
Apollo then systematically tries out new controllers (yellow dots) until he finds the one best suited for solving the new task (green dot).
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and thus the actions performed by the 
machine. Most robotics scientists, in 
contrast, currently employ control sys-
tems whose commands explicitly spec-
ify which position a robot’s hand or 
foot is supposed to assume.

While this might sound like a mere 
technical detail, it impacts the overall 
implementation: if control systems 
measure their success in terms of 
whether or not a hand reached its tar-
get position, for example, the hand 
won’t let anything – not even a human 
– stop it from carrying out its orders. If 
need be, the robot will apply even more 
force to assert itself. In the case of in-
dustrial robots, which typically use par-
ticularly high levels of force, this could 
lead to serious accidents.

If, however, the exerted force is 
regulated, the machine can be pro-
grammed to be more sensitive – an in-
dispensable prerequisite for interacting 
with humans. “Our force-controlled ro-
bots are able to act in a much more 
compliant manner without compro-
mising their precision, because we use 
controllers that are robust to imprecise 
models,” says Righetti. “This approach 
opens up a range of new possibilities 
and is sure to become more widely ad-
opted in the future.”

Another researcher working on im-
proving feedback control in robots 

with the help of machine learning is 
Sebastian Trimpe. You could say he de-
velops the class materials that help ro-
bots learn how to balance a rod, for ex-
ample, much like children learn to 
balance a stick on just one finger. “That 
is a relatively simple task,” says Trimpe. 
“But once we understand how a robot 
best learns how to solve it, we may also 
be able to teach it to learn more so-
phisticated skills.” For instance, stand-
ing and walking on unfamiliar and un-
even terrain.

ROBOT CURIOSITY IS GUIDED BY 
METHODS OF PROOF

Apollo can balance a rod thanks to his 
internal feedback control algorithm, 
which analyzes the sensor information 
that indicates the rod’s current posi-
tion and movement, and translates 
this data into control signals directed 
at the actuators. So if the rod is about 
to tilt to the right, for example, the 
controller intervenes and corrects Apol-
lo’s movement to prevent the rod from 
tipping over.

In fact, Apollo’s teacher even makes 
the task a bit more challenging by hav-
ing him first balance a shorter rod. It’s 
more difficult to balance a shorter rod 
than a longer one, because the short rod 
has less inertia and is therefore more 

likely to tip over sooner, making quick 
corrective action necessary. But Apollo 
balances the short rod with ease, even 
though his first attempts at doing the 
same with the longer rod fail miserably.

Sebastian Trimpe isn’t surprised by 
the unsuccessful attempt: The correc-
tive action needed depends on the 
length of the rod, which the controller 
takes into account. However, the re-
searchers hadn’t yet adjusted the con-
trol algorithm when they handed Apol-
lo the longer rod. This means the 
feedback control that worked fine for 
the short rod fails for the long rod, as it 
causes Apollo to move his arm much 
too abruptly.

“Instead of programming a new al-
gorithm for each new rod, we adjusted 
the control software to allow it to learn 
independently,” says Sebastian Trimpe. 
With the help of machine learning, 
the robot can therefore autonomously 
adapt to a new situation without this 
being preprogrammed into its system. 
In control engineering, a domain of 
classical engineering, this is a relative-
ly new approach.

Furthermore, the researchers have 
programmed instructions that train 
Apollo to independently learn the best 
controller in as few attempts as possi-
ble. “The algorithm automatically sug-
gests the controller that offers the great-

FOCUS_Robotics

 » Robotics must not follow just one single path when developing autonomous 

machines designed to serve as household assistants or emergency response units.

A sure footing: Ludovic Righetti’s team has optimized Hermes’ controls so that the robot quickly corrects its posture when it has lost 
its balance. This prevents the robot from falling down even if it is pushed or is standing on shaky ground.
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est learning effect,” explains Trimpe. In 
the early stages of the learning process, 
these could be controllers that differ 
significantly from the original control-
ler. That’s why Apollo’s second and 
third attempts at balancing the rod ap-
pear even clumsier than the first, which 
doesn’t faze the robot. After that, how-
ever, the learning curve rises steeply.

“In contrast to typical machine 
learning applications, such as image 
recognition, for example, learning in 
robotics is a dynamic problem,” says 
Trimpe. The data set the software uses 
to recognize faces doesn’t change. A ro-
bot, on the other hand, constantly 
gathers new information and gains new 
experience as it moves through and in-
teracts with the world around it. That’s 
why learning should be a lifelong pro-
cess for a robot. Yet that very goal puts 
it in a predicament time and again.

“In order to learn new things or im-
prove, the robot must try out new be-

haviors,” says Trimpe. That can also 
mean that it performs more poorly for 
a period of time. To prevent the robot 
from getting up to nonsense or even be-
coming damaged in the event of a fall, 
the researchers must integrate guaran-
tees into the learning algorithm. Using 
mathematical proof techniques, they 
guide the robot’s curiosity to ensure 
that the behavior it learns is not only 
flexible, but also sensible and robust.

In an effort to make a robot’s con-
trols more robust, meaning less prone 
to failure, Ludovic Righetti focuses on 
more than just the machines’ ability to 
learn. His work is a prime example of 
modern robotics not pursuing just one 
single path in developing machines 
that could one day serve as domestic 
help or emergency response units.

POSTURE CORRECTED IN JUST 
A FEW MILLISECONDS

“We want to take the approach in 
which a robot develops models based 
on experience, and combine it with 
a different control engineering ap-
proach,” says Righetti. He and his team 
program the flexibility needed to quick-
ly correct the robot’s posture directly 
into the algorithms of the control unit 
that creates the feedback loop between 
the sensor data and the commands for 
the actuators. Whether or not this re-
sults in a sensible action, such as grab-
bing hold of a cup or balancing on 
shaky ground, can, from a control en-
gineering point of view, be formulated 
as a mathematical optimization prob-
lem, the solution to which identifies 
the most suitable controller for the par-
ticular task at hand.

A controller can often be optimized 
before the robot is put into operation. 
When that is not the case due to unfore-
seen circumstances – for example, if the 

robot trips or is pushed – the controller 
must be improved mid-action, for ex-
ample while the robot is walking. “We 
have developed strong algorithms for 
this purpose,” says Ludovic Righetti.

Not only do the methods reliably 
compute how the controller must be ad-
justed to accommodate for unexpected 
events, but the software is also very fast 
– an absolute must, especially if the ro-
bot is to walk across uneven terrain. “In 
that type of situation, the robot has 
only a few milliseconds to correct its 
posture once it starts losing its balance,” 
says Ludovic Righetti. If the robot fails 
to do so, it will fall to the ground.

Righetti and his team use Hermes as 
proof of how well a machine is capable 
of using its control system to maintain 
its balance. In a way, Hermes is Apollo’s 
counterpart, as he consists of only a 
lower body and two legs. And there is a 
good reason why he has only two legs: 
while a robot does in fact have a more 
secure footing with four or more legs or 
even wheels, there are many obstacles 
that it can overcome only by climbing 
over them using two legs and two arms. 

Stefan Schaal and Ludovic Righetti 
experiment with the two-legged Hermes 
at the University of Southern Califor-
nia, where they both conducted re-
search before joining the Max Planck 
Institute in Tübingen. When the re-
searchers throw Hermes out of balance 
by pushing him, for example, he cor-
rects his posture using distinctly hu-
man-like movements.

The new control system is catching 
on: “The same techniques are now be-
ing used with many robots,” says 
Righetti. The mechanism will also help 
the newest addition to the Tübingen-
based institute’s Mount Olympus main-
tain her balance: Athena, the first robot 
to fly from the US to Germany while 
sitting in a normal passenger seat. She, 

FOCUS_Robotics

A Goddess in Chucks: Athena uses hydraulics to move her limbs when handling 
a tool or walking. She may not have a head, but she’s wearing trendy sneakers.
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GLOSSARY

Machine learning: Using large amounts of data, a software program learns examples 
of a particular type of task and can subsequently carry out this task in a general manner. 
A large number of pictures in which faces are specially indicated, for example, tell a 
software program which features are essential for facial recognition. The program is 
then able to identify faces on pictures it has never seen before.

Feedback control: When a machine uses data collected by sensors to issue a command for 
a certain action to be performed, and when it uses this sensor data to monitor the execution 
of the command and, if necessary, correct the action being carried out, this is known as a 
feedback control system. Open-loop control systems don’t include this feedback function.

TO THE POINT
●   Modern-day robots aren’t yet capable of flexibly adapting to new tasks and 

unexpected situations. Moreover, they are prone to error.

●   Using machine learning and other methods, Max Planck researchers in Tübingen 
aim to teach robots to perform such tasks as quickly and reliably finding objects 
in unfamiliar settings, securely grasping previously unknown objects and indepen-
dently learning the most suitable control system for solving new tasks.

●   In order to help robots gain a surer footing and a more stable gait, the researchers 
also program the controls in such a way that the machines continuously optimize 
their actions and thus react to disruptions or unforeseen events.

too, doesn’t quite live up to the expec-
tations associated with the goddess af-
ter whom she was named. Her bulky 
torso, strong arms, hydraulics tubes 
and machine head, which she doesn’t 
even always wear, make her about as 
graceful as a transformer. But at least 
she has both arms and legs.

The research conducted by Ludovic 
Righetti and his team will now focus 
on identifying the best way for Athena 
to coordinate her limbs while attempt-
ing to solve several tasks simultane-
ously. They also seek to answer the 
question as to how she sets the right 
priorities when trying to grasp an ob-
ject while walking or standing on un-
even ground. After all, the machine 
initially doesn’t know that it’s more 
important to stay upright than to un-
conditionally try to grab the object in 
front of it. A robotic assistant is suit-
able for day-to-day tasks only if it is ca-
pable of making sensible decisions. 

It will take some time before robots 
are independent enough to be able, for 
instance, to help people in need, as the 
field of robotics still needs to make sig-
nificant adjustments to many points in 
the perception-learning-action loop. 

That’s why Stefan Schaal doesn’t be-
lieve that, 30 years from now, we will 
be cared for by beings made of tin, plas-
tic and electronic components – not 
only owing to technological issues, but 
also because of society’s possible reluc-

Robotics necessitates mathematics: Ludovic Righetti (left) and Sebastian Trimpe discuss the control algorithms 
that help Apollo and his fellow students learn to act autonomously and flexibly.
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tance to accept it. “But I hope I live to 
see the day when robots help us with 
our domestic chores, even if only by 
picking up a book when told to do so 
because we can’t bend down anymore,” 
says the scientist.                                


