
Lua on NetBSD
Scripting Operating Systems with Lua

Lourival Vieira Neto <lneto@NetBSD.org>BSDCon Brazil
October/2015

mailto:lneto@NetBSD.org


“Any sufficiently complicated C or Fortran 
program contains an ad hoc, informally-specified, 
bug-ridden, slow implementation of half of 
Common Lisp.”

Greenspun’s tenth rule



“Any sufficiently complicated C or Fortran 
program contains an ad hoc, informally-specified, 
bug-ridden, slow implementation of half of 
Common Lisp a good scripting language.”

Ierusalimschy’s first Greenspun’s tenth rule



Topics

❏ Introduction
❏ Scriptable Operating System

❏ Example
❏ Packet Filter Scripting

❏ Why Lua?
❏ Kernel-scripting Environment

❏ lua(4)
❏ Conclusions



Introduction



Scriptable Operating System

The combination of extensible 
operating systems with extension 
scripting languages.



Scriptable Operating System

❏ Motivation
❏ Flexibility

❏ Meet new user requirements
❏ Configuration of kernel subsystems

❏ Easy development
❏ Allow application developers to customize the 

kernel

❏ Prototyping
❏ Add new features



Scriptable Operating System

❏ Key idea 
❏ OS kernel scripting with Lua

❏ Halfway between..
❏ Kernel parameters and kernel modules

❏ Halfway between..
❏ Domain-specific and system languages



Scriptable Operating System

❏ Two ways of scripting 
❏ Extending (a scripting language)

❏ kernel as a library
❏ Lua calls kernel

❏ Embedding (a scripting language)
❏ kernel as a framework

❏ kernel calls Lua



Use Cases

❏ Embedding
❏ Packet filtering
❏ Device drivers
❏ Process scheduling

❏ Extending
❏ Web servers
❏ File systems
❏ Network protocols



Example



Packet Filter Scripting

❏ Motivation
❏ Deep packet inspection

❏ Traffic shaping
❏ Intrusion detection/prevention

❏ New features
❏ Port knocking
❏ Protocols
❏ Port stealthing



SSH Version



SSH Version

1. local data = require'data'
2.
3. function filter(pkt)
4.   -- convert packet data to string
5.   local str = tostring(pkt)
6.
7.   -- pattern to capture the software version
8.   local pattern = 'SSH%-[^-%G]+%-([^-%G]+)'
9.

10.   -- get the software version
11.   local software_version = str:match(pattern)
12.
13.   if software_version == 'OpenSSH_6.4' then
14.     -- reject the packet
15.     return false
16.   end
17.
18.   -- accept the packet
19.   return true
20. end



SSH Version

❏ No measurable overhead 
❏ 96 Mbps on both cases (on 100 Mbps virtual 

NIC)
❏ Binding

❏ 217 lines of C code
❏ Script (ssh.lua)

❏ 22 lines of Lua code



NPF

❏ The NetBSD Packet Filter
❏ Layers 3 and 4
❏ Stateful
❏ IPv4 and IPv6
❏ Extensible

❏ Rule procedures



NPFLua

❏ Binds NPF to Lua
❏ Kernel module + parser module

❏ Rule procedure
#npf.conf
procedure "lua_filter" {
  lua: call filter
}

group default {
  pass in all apply "lua_filter"
}

❏ Script loading
luactl load npf ./filter.lua



Why Lua?



Why Lua?

❏ Extensible extension language
❏ Embeddable and extensible
❏ C library

❏ Almost freestanding
❏ Small footprint

❏ has 240 KB on -current (amd64)

❏ Fast
❏ MIT license



Why Lua?

❏ Safety features
❏ Automatic memory management
❏ Protected call
❏ Fully isolated states
❏ Cap the number of executed instructions



Why not .... ?

❏ Python
❏ has 2.21 MB on Ubuntu 10.10 (amd64)

❏ Perl
❏ has 1.17 MB on Ubuntu 10.10 (amd64)

❏ Also..
❏ OS-dependent code
❏ Hard to embed1

1. twistedmatrix.com/users/glyph/rant/extendit.html

 

https://twistedmatrix.com/users/glyph/rant/extendit.html


Kernel-scripting Environment: lua(4)



Brief History

❏ 2008 - Lunatik/Linux
❏ 2010 - Lunatik/NetBSD

❏ Google Summer of Code
❏ Kernel-embedded Lua (mainly)

❏ 2013 - Lua(4)
❏ New infrastructure (Marc Balmer)

❏ 2014 - NPFLua
❏ 2015 - Ported Lua Test Suite

❏ Google Summer of Code (Guilherme Salazar)



Lua(4)

❏ Kernel-embedded Lua
❏ has no floating-point numbers

❏ User Interface
❏ luactl

❏ Kernel Programming Interface
❏ sys/lua.h



Operation Overview



Conclusions



Conclusions
❏ General-purpose and full-fledged programming language for 

scripting kernels
❏ e.g., pattern matching, hash table

❏ First to provide scripting both by extending and embedding an 
interpreter

❏ Part of the official NetBSD distribution
❏ Impact

❏  A. Graf. PacketScript—a Lua Scripting Engine for in-Kernel Packet. 
Processing. Master’s thesis, Computer Science Department, University of 
Basel, July 2010.

❏  M. Grawinkel, T. Suss, G. Best, I. Popov, and A. Brinkmann. Towards 
Dynamic Scripted pNFS Layouts. In High Performance Computing, 
Networking, Storage and Analysis (SCC), 2012 SC Companion:, pages 13–17. 
IEEE, 2012.

❏ A. Cagney. What happens when a DWARF and a daemon start dancing by 
the light of the silvery moon? BSDCan 2015 (Talk).

❏ A. Koomsin and Y. Shinjo. lua_syscall: Specializing Operating System Kernels 
by Using the Lua Language. 6th ACM SIGOPS Asia-Pacific Workshop on 
Systems (APSys 2015) (Poster).

❏  K. Rytarowski. Moduły Dynamiczne w Kernelu NetBSD. Programista. 
5/2015 (Polish Magazine).

❏ A. Koomsin, Y. Shinjo. Running Application Specific Kernel Code by a Just-
in-Time Compiler. 8th ACM PLOS 2015.



Questions and Answers

Contact Information
❏ Lourival Vieira Neto

<lneto@NetBSD.org>

❏ Questions?

More Information
❏ L. Vieira Neto, R. Ierusalimschy, A. L. de Moura and M. Balmer. 

Scriptable Operating Systems with Lua. Dynamic Languages 
Symposium 2014. URL netbsd.org/~lneto/dls14.pdf.

mailto:lneto@NetBSD.org
http://netbsd.org/~lneto/dls14.pdf


System Memory Binding: Luadata



Luadata

❏ Regular Lua library
❏ Kernel and user space

❏ Binds system memory
❏ Memory block (pointer + size)
❏ mbuf

❏ Safe
❏ Boundary verification

❏ Packed data
❏ Declarative layouts



Luadata

❏ Other features
❏ Bit fields
❏ String fields and conversion
❏ Segments (data decomposition)
❏ Endianness conversion



RTP Encoding

1. local rtp = {
2.   version    = {0, 2},
3.   extension  = {3, 1},
4.   csrc_count = {4, 4},
5.   marker     = {8, 1},
6.   type       = {9, 7}
7. }
8.
9. -- apply RTP header layout in the payload

10. pld:layout(rtp)
11.
12. -- if packet is encoded using H.263
13. if pld.type == 34 then
14.   -- reject the packet
15.   return false
16. end


