KIUED 5 J 2T (CAUIR T B 1= b DE %1l

Palgol:JTER E{FAHD S I WIBDISH o

Palgol: a high-level domain-specific language Aﬁi—ﬁq:#{b
for vertex-centric graph processing — |:l|:|

= ¥ (Yongzhe ZHANG) #J m_E (Hsiang-Shang KO) #B #&/T (Zhenjiang HU)

JE S EAE]T S TR & (£? Pregel = BSP + Vertex-Centric Approach 1w N

- processors | N
Graph algorithms are represented as Bulk-Synchronous - high scalability
the iterative execution of the same |] |] H Parallel (BSP) model - universality
piece of code on every vertex. \ ~~ Sy

(AEL: OV N messages @ messages - message-passing is hard
Pregel: A synchronous vertex-centric compute() - vertices have to maintain

vertex-centric

graph processing framework. ~ BSP superstep computation complicated states
BERTT I
HEIBFEEE AV E—HEUTEREARLI ITOTSAZBRITDIEZTETDLDIC
Palgol: a domain-specific language Strength of Palgol ngtyef("scﬁgg“hfoamood Example: pointer-jumping
with remote access capabilities Patttz // P[u]: store u’s parent id
: matching
- Chain access (new feature) pointer // enter vertex-centric mode
- for u in V
- umpin
Remote writes (enhanced. feature) Label[P[u]] T] ping /7 PIP[ull -» chain access
- Neighborhood aggregation Label[Q[ul] == ’b’ P[ul := P[P[u]] if EP][P[uJJ[!? 1;][111)
P{u]l] := PLPlu
let t = [Ple.ref] | e <- Nbr[u]] pattern d ¥ remote end
matching p writing until fix[P] // fixed-point
Extending Green-Marl and Fregel’s P Q “Q Palgol = iteration Constructd |
- - + vertex-centric mode
declarative programming models P[P[u]] == P[u] P[P[u]] <?= Q[u] + remote accese

RS

Palgol THEpk L7 00 S % PregelI\Zia 9 B
Key technique: compiling general chain access Application: the pointer-jumping technique

(a useful graph transformation used in S-V, MSF and so on)

Logic system for handling P[P [P[P[u]]]]:

. : . Given a forest where each vertex initially knows its
1. Vu.K,u every vertex u knows its own 1dent1f1er U barent, how to let every vertex point to its root?
2. Yu.K, Plu]| every vertex u knows its local f1e1d P

3. (\V’u.Kw(u) e(u)) A (Vu.K w(u) Y o(u)) = Vu.K phase 1 phaseZ phase 3
we can make every v(u) know e(u) by ~
letting every w(u) send e(u) to v(u)
Step 1: u knows u ——> message passing @ ‘ @
U knows Plu] - - - 2 logical inference

\\ o all vertices constantly fmd their “grandparents”
Step 2: ~ . Plu| knows u _
> P[u] knows P[P[u]] Performance Evaluation
/ \ o We compare Palgol with hand-coded Pregel
Step 3: u knows P|P ~-_._ P|Plu]| knows u programs on real-world graphs
=3 P|P|ul]] knows P*|u] . .
- - Minimum spanning forest (MSF)
Step 4: 1 knows P4 [fl] - the derivation of - Strongly connected component (SCC)
- chanaccessPIP[P[Plulll]l - S-V connected component algorithm (S-V)
A backtracking algorithm with memoization for SCC S-V MSF

finding a solution with minimum number of steps -0.66% —1.58% | -2.53% — 6.37% | -4.17% — 6.42%

NI I B85 : &8 #5'T (Zhenjiang HU) EIIEHRSHRA BHSF—EFIFrHSHRR ©

Email : hu@nii.ac.jp https://bitbucket.org/zyz915/palgol ﬁ’ N

