

TESLA C2075 COMPUTING PROCESSOR BOARD

BD-05880-001_v02 | September 2011

DOCUMENT CHANGE HISTORY

BD-05880-001_v02

Version	Date	Authors	Description of Change
01	July 25, 2011	MC, SM	Initial Release
02	September 9, 2011	MC, SM	Updated "Thermal Qualification Summary" sectionUpdated Table 10 in the "Cooling Solution" Section

TABLE OF CONTENTS

Overview	
Key Features	
Computing Processor Description	
Configuration	4
Mechanical Specifications	5
PCI Express System	5
Standard I/O Connector Placement	6
DVI Connector	7
Internal Connectors and Headers	8
External PCI Express Power Connectors	8
4-Pin Fan Connector	
Power Specifications	13
Power by Rail	14
Thermal Specifications	15
Thermal Qualification Summary	
Cooling Solution	
Support Information	18
Certificates and Agencies	18
Agencies	18
languages	19

LIST OF FIGURES

Figure 1.	Tesla C2075 Block Diagram	. 3
Figure 2.	Tesla C2075 Computing Processor Board	. 5
Figure 3.	Tesla C2075 Bracket	. 6
Figure 4.	DVI-I Connector	. 7
Figure 5.	6-Pin PCI Express Power Connector	. 9
Figure 6.	8-Pin PCI Express Power Connector	10
Figure 7.	4-Pin Fan Connector	12

LIST OF TABLES

Table 1.	Board Configuration	4
Table 2.	DVI-I Connector Pinout	7
Table 3.	6-Pin PCI Express Power Connector Pinout	11
Table 4.	8-Pin PCI Express Power Connector Pinout	11
Table 5.	4 Wire Thermal Control Pinout	12
Table 6.	Configuration with External PCI Express Connectors	
Table 7.	Power by Rail	14
Table 8.	Test Setup and Configuration	
Table 9.	Sample Thermal Results and Specifications	
Table 10.	Environmental Specifications and Conditions	17
Table 11.	Languages Supported	19

OVERVIEW

The NVIDIA® Tesla™ C2075 computing processor board is a PCI Express 2.0 full-height (4.376 inches by 9.75 inches) form factor computing add-in card based on the NVIDIA Tesla T20A graphics processing unit (GPU). This board is targeted as high-performance computing (HPC) solution for PCI Express systems.

The Tesla C2075 is capable of running 515 GFLOPs per second of double precision processing performance. The Tesla C2075 and comes standard with 6 GB of GDDR5 memory.

The Tesla C2075 can be configured by the end user to enable or disable ECC or error correcting codes that can fix single-bit errors and report double-bit errors. Enabling ECC will cause some of the memory to be used for the ECC bits so the user available memory will decrease to 5.25 GB.

KEY FEATURES

GPU

- ▶ Number of processor cores: 448
- Processor core clock: 1.15 GHz
- ▶ Voltage: 887.5 mV to 975 mV
- Package size: 42.5 mm × 42.5 mm 1981-pin ball grid array (BGA)

Board

- ► Twelve layers printed circuit board (PCB)
- ▶ PCI Express Gen2 ×16 system interface
- ▶ Physical dimensions: 4.376 inches × 9.75 inches, dual slot
- ▶ Board power dissipation: less than or equal to 215 W

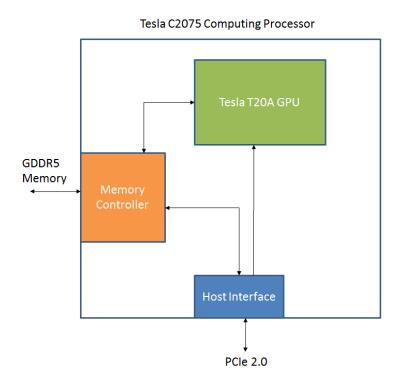
External Connectors

► Single port, dual-link DVI-I

Internal Connectors and Headers

- ▶ One 6-pin PCI Express power connector
- ▶ One 8-pin PCI Express power connector
- ▶ 4-pin fan connector

Memory


- ► Memory clock: 1.50 GHz
- ▶ Interface: 384-bit
 - 6GB
 - 24 pieces 64M × 32 GDDR5 136-pin BGA, SDRAM

BIOS

▶ 2Mbit Serial ROM

COMPUTING PROCESSOR DESCRIPTION

Figure 1 is a block diagram of the Tesla C2075 computing processor.

Tesla C2075 Block Diagram Figure 1.

CONFIGURATION

There is one configuration available (Table 1) for the Tesla C2075 board.

Board Configuration Table 1.

Specification	Description
Generic SKU reference	900-21030-0020-100
Chip	Tesla T20A GPU
Package size GPU	42.5 mm x 42.5 mm
Processor clock	1.15 GHz
Memory clock	1.50 GHz
Memory size	6 GB
Memory I/O	384-bit GDDR5
Memory configuration	24 pcs 64M × 32 GDDR5 SDRAM
External connectors	Single port, dual-link DVI-I
Internal connectors and headers	-8-pin PCI Express power connector -6-pin PCI Express power connector -4-pin fan connector
Board power	< = 215 W
Thermal cooling solution	Custom active fan sink

MECHANICAL SPECIFICATIONS

PCI EXPRESS SYSTEM

The Tesla C2075 computing processor board (Figure 2) conforms to the PCI Express full height (4.376 inches by 9.75 inches) form factor.

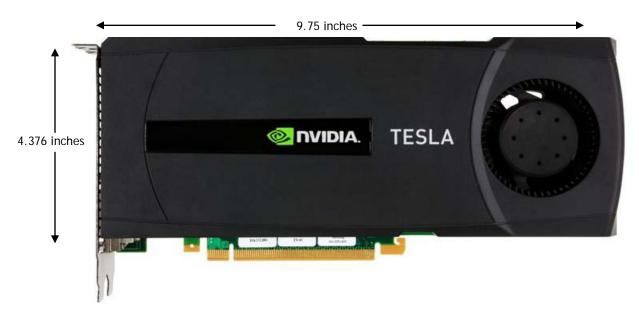


Figure 2. Tesla C2075 Computing Processor Board

STANDARD I/O CONNECTOR PLACEMENT

As shown in Figure 3, the Tesla C2075 includes a single, dual-link DVI-I connector.

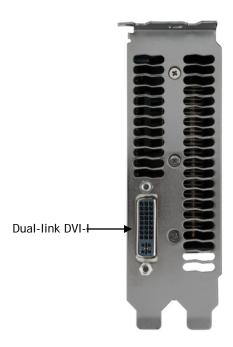


Figure 3. Tesla C2075 Bracket

DVI CONNECTOR

The Tesla C2075 computing processor board supports a dual-link DVI-I combined analog and digital interface described in Table 2.

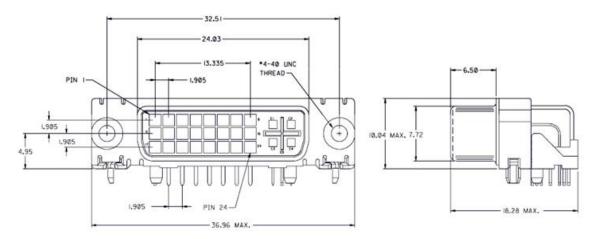


Figure 4. **DVI-I Connector**

Table 2. **DVI-I Connector Pinout**

Pin	Signal	Pin	Signal
1	TMDS data 2-	13	TMDS data 3+
2	TMDS data 2+	14	+5VDC power
3	TMDS data 2/4 shield	15	Ground (Return for +5)
4	TMDS data 4-	16	Hot plug detected
5	TMDS data 4+	17	TMDS data 0-
6	DDC clock	18	TMDS data 0+
7	DDC data	19	TMDS data 0/5 shield
8	Analog vertical sync	20	TMDS data 5-
9	TMDS data 1-	21	TMDS data 5+
10	TMDS data 1+	22	TMDS clock shield
11	TMDS data 1/3 shield	23	TMDS clock+
12	TMDS data 3-	24	TMDS clock-
C1	Analog red	C4	Analog horizontal sync
C2	Analog green	C5	Analog ground
C3	Analog blue		(RGB return)

INTERNAL CONNECTORS AND HEADERS

The Tesla C2075 module supports the following internal connectors and headers.

- ▶ 8-pin PCI Express power connector
- ▶ 6-pin PCI Express power connectors
- ▶ 4-pin fan connector

External PCI Express Power Connectors

The Tesla C2075 computing processor board is a performance-optimized, high-end product and utilizes power from the PCI Express connector as well as external power connectors. The board can be used in two different ways.

- Dual 6-pin PCI Express power connectors or
- ▶ One 8-pin PCI Express power connector

Figure 5 and Figure 6 show the specifications and Table 3 and Table 4 show the pinouts for the 6-pin and 8-pin PCI Express power connectors.

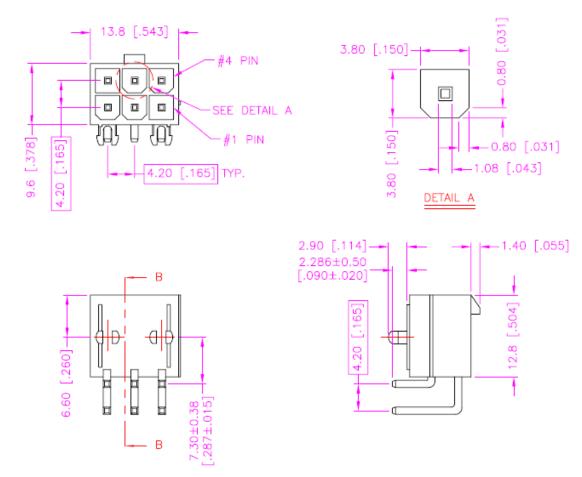


Figure 5. 6-Pin PCI Express Power Connector

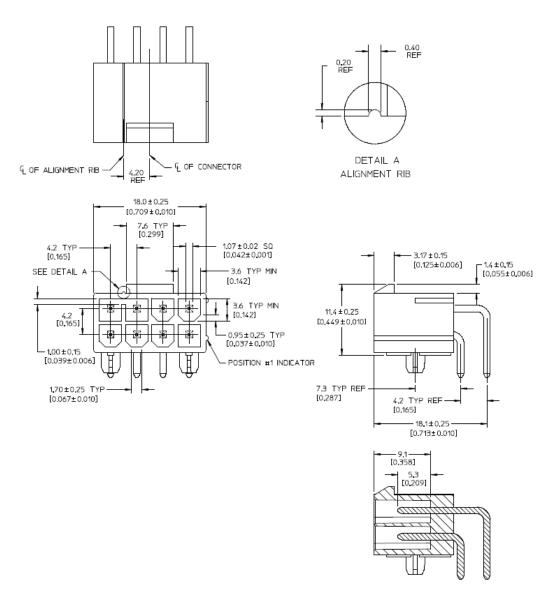
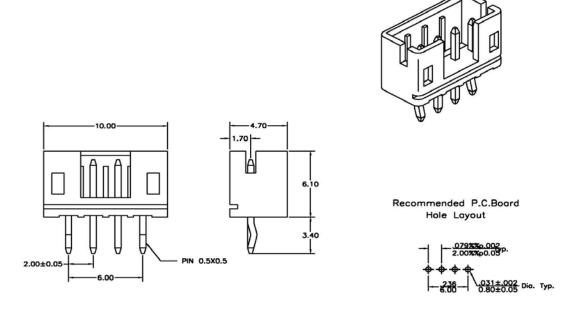


Figure 6. 8-Pin PCI Express Power Connector

6-Pin PCI Express Power Connector Pinout Table 3.

Pin Number	Description
1	+12 V
2	+12 V
3	+12 V
4	GND
5	Sense
6	GND


8-Pin PCI Express Power Connector Pinout Table 4.

Pin Number	Description
1	+12 V
2	+12 V
3	+12 V
4	Sense1
5	GND
6	Sense0
7	GND
8	GND

4-Pin Fan Connector

The Tesla C2075 computing processor board uses a 4-pin fan to control the fan speed of the thermal solution. The details of the connector (P/N: PH-T-4) are given in Figure 7. This part is a 2.0 mm (0.079") pitch disconnectable connector.

Table 5 lists the pin assignments for this connector.

Tolerance: ±0.25mm

Specifications:

- * Current Rating : 2A AC, DC * Voltage Rating : 250V AC, DC
- * Temperature Range : -40°C to +105°C
- * Contact Resistance : Initial Value/10 mΩ Max.

 After Environmental Testing
- /20 m Ω Max. * Insulation Resistance : 1000 M Ω Min.
- * Withstand Voltage : 1500 VAC/Minute
- * RoHs compliant.

Features:

- Wafer
- * Model No. : PH-T-4
- * Circuits : 4
- Material : Post : Brass Tin/Plated
 - Base : Nylon 66, UL94V-0
- * P.C.Board Thickness: 1.6mm(.063")

Figure 7. 4-Pin Fan Connector

Table 5. 4 Wire Thermal Control Pinout

Pin Number	Description
1	+12 V
2	+12 V
3	+12 V
4	Sense1

POWER SPECIFICATIONS

The Tesla C2075 computing processor is a performance-optimized, high-end board solution. Power is taken from the PCI Express host bus as well as the 8-pin and the 6-pin PCI Express power connectors.

Without auxiliary power provided to the Tesla C2075 computing processor board, the board will boot at reduced power and functionality and LED lights on the board will light up as listed in Table 6. This table outlines the different possible scenarios as well as the resulting behaviors.

Configuration with External PCI Express Connectors Table 6.

8-Pin Power Connector	6-Pin Power Connector	Result
Connected (either 8-pin or 6- pin)	Connected	Full power - LED light on the bracket is GREEN by default
8-pin connected	Not connected	Full power - LED light on the bracket is GREEN by default
6-pin connected	Not connected	LED light is RED - board will display warning banner to the user
Not connected	Connected	LED light is RED - board will display warning banner to the user
Not connected	Not connected	LED light is RED - board will display warning banner to the user

POWER BY RAIL

Table 7 lists the power by rail numbers for the Tesla C2075 computing processor board. Power by rail measurements are worst case scenarios per rail while maximum TDP power is based on our worst case power application.

Table 7. Power by Rail

PEX12V	PEX3V3	EXT12V (6-Pin)	EXT12V (8-Pin)	Total Board Power
<= 36 W	< = 3 W	< = 78 W	< = 106 W	Less than or equal to 215 W

THERMAL SPECIFICATIONS

THERMAL QUALIFICATION SUMMARY

The information contained in this summary report is intended to provide users of the Tesla C2075 computing processor with thermal information necessary to assist in thermal management efforts. This information is not intended to provide a specific thermal management solution. However, it does show an approach that result in the reliable operation of the Tesla C2075.

Note: The ambient air temperature around the inlet of the GPU fan should never exceed 45 °C.

The product and cooling solutions used are:

- ▶ Device product: Tesla C2075 computing processor board
- ► Thermal test application: DGEMM
- ▶ Result Under the operating described in the following tables, the Tesla C2075 passed thermal qualification.
- ▶ As previously reported, the Tesla C2075 draws a maximum of 215 W using DGEMM as the TDP application. In cases where an application draws more than 215 W, the Tesla C2075 will cap power usage at 225 W in all cases.

Test Setup and Configuration Table 8.

System Part	Configuration
PC	Motherboard attached to a chassis frame - entire unit placed in an acrylic box
Motherboard	GIGABYTE EX58-UD3R / Intel x58 SBIOS: F1
Power supply	SliverStone SST-ST1500 1500 W
CPU	Intel Core i7 965 at 3.20 GHZ
SDRAM	DDR3 1600 MHz 12 GB (3 x 4 GB)
PC operating system	Linux Cent operating system 64-bit
GPU computing processing board	Tesla C2075
BIOS	70.10.46.00.05
Display driver	270.41.26
GPU	Tesla T20A
Clock speed	1.15 GHz (core) 1500 MHz (mclk)

Sample Thermal Results and Specifications Table 9.

Test Application	T _{junction} (°C)*	T _A (°C)**
Test 1: Dgemm	93	44.9
GPU junction maximum temperature specification under any operating conditions	Thermal slowdown: 100	At any ambient temperature
	Thermal shutdown: 105	

Junction temperature is reported by NVIDIA thermal sensor
 ** Ambient air temperature - average of 3 sensors positioned at the inlet to the GPU fan

COOLING SOLUTION

NVIDIA will utilize a Cooler Master active fan sink to cool the GPU, memories and power components. For environmental specifications refer to Table 10.

Environmental Specifications and Conditions Table 10.

Specifications	Conditions	
Acoustic noise	25 to 37 dB A	
Storage temperature	-40 °C to 75 °C	
Storage humidity	5% to 95% RH	

SUPPORT INFORMATION

CERTIFICATES AND AGENCIES

Agencies

- ▶ Australian Communications Authority and Radio Spectrum Management Group of New Zealand (C-Tick)
- ▶ Bureau of Standards, Metrology, and Inspection (BSMI)
- ► Conformité Européenne (CE)
- ► Federal Communications Commission (FCC)
- ► Industry Canada Interference-Causing Equipment Standard (ICES)
- ► Korean Communications Commission (KCC)
- ▶ Underwriters Laboratories (cUL)
- ► Voluntary Control Council for Interference (VCCI)

LANGUAGES

Languages Supported Table 11.

	Windows XP	Windows Vista	Windows 7
English (US)	Х	Х	Х
English (UK)	Х	Х	Х
Arabic	Х	Х	Х
Chinese, Simplified	Х	Х	Х
Chinese, Traditional	Х	Х	Х
Czech	Х	Х	Х
Danish	Х	Х	Х
Dutch	Х	Х	Х
Finnish	Х	Х	Х
French	Х	Х	Х
French (Canada)	Х	Х	Х
German	Х	Х	Х
Greek	Х	Х	Х
Hebrew	Х	Х	Х
Hungarian	Х	Х	Х
Italian	Х	Х	Х
Japanese	Х	Х	Х
Korean	Х	Х	Х
Norwegian	х	х	х
Portuguese (Brazil)	Х	Х	Х
Portuguese (European/Iberian)	Х	Х	Х
Russian	Х	Х	Х
Slovak	Х	Х	Х
Slovenian	Х	Х	Х
Spanish	Х	Х	Х
Swedish	Х	Х	Х
Thai	Х	Х	Х
Turkish	Х	Х	Х

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication of otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA Corporation products are not authorized as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

ROVI Compliance Statement

NVIDIA Products that support Rovi Corporation's Revision 7.1.L1 Anti-Copy Process (ACP) encoding technology can only be sold or distributed to buyers with a valid and existing authorization from ROVI to purchase and incorporate the device into buyer's products.

This device is protected by U.S. patent numbers 6,516,132; 5,583,936; 6,836,549; 7,050,698; and 7,492,896 and other intellectual property rights. The use of ROVI Corporation's copy protection technology in the device must be authorized by ROVI Corporation and is intended for home and other limited pay-per-view uses only, unless otherwise authorized in writing by ROVI Corporation. Reverse engineering or disassembly is prohibited.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA nForce, and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2011 NVIDIA Corporation. All rights reserved.

