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Abstract. Tide gauge (TG) records are affected by vertical
land motion (VLM), causing them to observe relative in-
stead of geocentric sea level. VLM can be estimated from
global navigation satellite system (GNSS) time series, but
only a few TGs are equipped with a GNSS receiver. Hence,
(multiple) neighboring GNSS stations can be used to esti-
mate VLM at the TG. This study compares eight approaches
to estimate VLM trends at 570 TG stations using GNSS
by taking into account all GNSS trends with an uncertainty
smaller than 1 mmyr−1 within 50 km. The range between the
methods is comparable with the formal uncertainties of the
GNSS trends. Taking the median of the surrounding GNSS
trends shows the best agreement with differenced altimetry–
tide gauge (ALT–TG) trends. An attempt is also made to im-
prove VLM trends from ALT–TG time series. Only using
highly correlated along-track altimetry and TG time series
reduces the SD of ALT–TG time series by up to 10 %. As
a result, there are spatially coherent changes in the trends,
but the reduction in the root mean square (RMS) of differ-
ences between ALT–TG and GNSS trends is insignificant.
However, setting correlation thresholds also acts like a filter
to remove problematic TG time series. This results in sets of
ALT–TG VLM trends at 344–663 TG locations, depending
on the correlation threshold. Compared to other studies, we
decrease the RMS of differences between GNSS and ALT–
TG trends (from 1.47 to 1.22 mmyr−1), while we increase
the number of locations (from 109 to 155), Depending on
the methods the mean of differences between ALT–TG and
GNSS trends vary between 0.1 and 0.2 mmyr−1. We reduce
the mean of the differences by taking into account the effect
of elastic deformation due to present-day mass redistribution.
At varying ALT–TG correlation thresholds, we provide new

sets of trends for 759 to 939 different TG stations. If both
GNSS and ALT–TG trend estimates are available, we rec-
ommend using the GNSS trend estimates because residual
ocean signals might correlate over long distances. However,
if large discrepancies (> 3 mmyr−1) between the two meth-
ods are present, local VLM differences between the TG and
the GNSS station are likely the culprit and therefore it is bet-
ter to take the ALT–TG trend estimate. GNSS estimates for
which only a single GNSS station and no ALT–TG estimate
are available might still require some inspection before they
are used in sea level studies.

1 Introduction

Tide gauges (TGs) measure local relative sea level, which
means that they are affected by geocentric sea level, but also
by vertical land motion (VLM). Knowing VLM at TGs is
essential to convert the observed sea level into a geocentric
reference frame in which satellite altimeters operate. TGs
used in sea level reconstructions also require a correction
for VLM. The mean of VLM at TGs is not equal to that of
the basin, and therefore local VLM estimates are required to
get an accurate estimate of ocean volume change. The mod-
els for large-scale VLM processes, such as glacial isostatic
adjustment (GIA) and the elastic response of the Earth due
to present-day mass redistribution, are becoming more accu-
rate. TGs are often only corrected for the GIA signal, which
typically reaches values of 10 mmyr−1 in Canada and Scan-
dinavia (Gutenberg et al., 1941). The elastic deformation due
to present-day mass redistribution is often ignored. However,
elastic deformation is becoming larger due to the increasing
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rate of Greenland’s ice mass loss and to a lesser extent other
processes. Trends at TGs are also affected by a large number
of other local signals, including water storage, post-seismic
deformation and anthropogenic activities (Hamlington et al.,
2016; Wöppelmann and Marcos, 2016). Since the local VLM
processes cannot be captured by models and the large-scale
processes contain large uncertainties, observations of VLM
at TGs are essential.

One method to estimate VLM at TGs uses geodetic
global positioning system (GPS) receivers at fixed stations
or Doppler Orbitography and Radiopositioning Integrated by
Satellite (DORIS) observations. Since many other naviga-
tion satellites are currently providing range estimates as well,
we will refer to the GPS stations as global navigation satel-
lite system (GNSS) stations. Most studies compute GNSS
VLM at TG stations from one of the datasets by the Univer-
sity of La Rochelle (ULR) (Wöppelmann et al., 2007; Pfef-
fer and Allemand, 2016; Wöppelmann et al., 2014; Wöppel-
mann and Marcos, 2016). Even though ULR contains sev-
eral GNSS solutions inland, its main focus is the coastal
zone. Currently, 754 GNSS stations are processed in the
ULR6 database. A more extensive database with approxi-
mately 14 000 GNSSs is processed by the Nevada Geode-
tic Laboratory (NGL). They use a different processing pro-
cedure to estimate trends from time series, which makes
trends less vulnerable to jumps (Blewitt et al., 2016). A sta-
tistical comparison between several GNSS solutions was re-
cently made by Santamaría-Gómez et al. (2017). They con-
cluded that the number of stations in the NGL database was
larger, but that the differences between neighboring stations
was significantly larger than the Jet Propulsion Laboratory
(JPL) and ULR6 trend estimates. They also discussed sys-
tematic errors due to differences in the origin of the refer-
ence frames, which were on the order of 0.2 mmyr−1 glob-
ally. Furthermore, they found that the local VLM uncertainty
at the tide gauge was increased by 4× 10−3 mmyr−1 per
kilometer of distance between the TG and the GNSS sta-
tion (Santamaría-Gómez et al., 2017). Most studies use the
trends of either colocated GNSS stations, the closest GNSS
station or the mean of all GNSS stations within a radius of
several tens of kilometers (Santamaría-Gómez et al., 2014;
Pfeffer and Allemand, 2016). Only Hamlington et al. (2016)
involved a more complex GNSS post-processing procedure
using NGL trends based on a combination of spatial filter-
ing, Delaunay triangulation and median weighting. One way
to quantify the accuracy of GNSS-based VLM trends at TGs
is to compute the spread of individual geocentric sea level
estimates or the spread of geocentric sea level between re-
gions (Wöppelmann and Marcos, 2016). The spread of re-
gional trends reduced from 0.9 mmyr−1 in the ULR1 solu-
tion (Wöppelmann et al., 2007) to 0.5 mmyr−1 in the ULR5
solution (Santamaría-Gómez et al., 2012; Wöppelmann et al.,
2014), which is approximately the expected residual climatic
signal. Any further improvements in the GNSS trends there-
fore require another validation technique.

A second way to observe VLM at TGs and to overcome
the limitations of a sparsely distributed GNSS network is dif-
ferencing satellite altimetry and TG time series, which we
will refer to as ALT–TG time series from here on. Initially,
the ALT–TG time series were used to monitor the stability
of satellite altimeters for the global mean sea level (GMSL)
record, which is currently guaranteed up to 0.4 mmyr−1

(Mitchum, 1998, 2000). The first study to infer VLM trends
from ALT–TG time series was Cazenave et al. (1999). Based
on the method of Mitchum (1998) they compared ALT–TG
to DORIS at six stations. Later, several studies were con-
ducted on the regional and global scale of which an overview
is given by Ostanciaux et al. (2012). The first study to es-
timate more than 100 VLM trends (Nerem and Mitchum,
2002) obtained error bars for 60 of 114 TGs smaller than
2 mmyr−1. However, they noted that the TGs should be in-
spected on a case-by-case basis to determine if the result was
truly VLM. Ostanciaux et al. (2012) increased the number of
ALT–TG VLM trend estimates sixfold to 641, but it included
some outliers with trends above 20 mmyr−1. They also made
a comparison between their study and several earlier studies.
The best agreement was found over a small set of 28 tide
gauges, for which the results of Ostanciaux et al. (2012) dif-
fered from Ray et al. (2010) by an RMS of 1.2 mmyr−1.

Recently, several studies have compared the GNSS trends
to those of ALT–TG globally (Santamaría-Gómez et al.,
2014; Wöppelmann and Marcos, 2016; Pfeffer and Alle-
mand, 2016). Several other studies did an equivalent com-
parison with DORIS and ALT–TG for a limited number of
stations (Cazenave et al., 1999; Nerem and Mitchum, 2002;
Ray et al., 2010). While the older studies primarily used
along-track data from the Jason (TOPEX/POSEIDON: TP,
Jason-1: J1 and Jason-2: J2) series of satellite altimeters,
the latest studies used preprocessed grids, and Wöppelmann
and Marcos (2016) made a comparison between several grid-
ded products and one along-track dataset. All recent studies
used ULR5 GNSS trends for comparison. The best results
were obtained with an interpolated altimetry grid provided
by AVISO (Pujol et al., 2016), yielding a median of differ-
ences of 0.25 mmyr−1 with an RMS of 1.47 mmyr−1 based
on a comparison at 107 locations (Wöppelmann and Marcos,
2016). It is important to note that the time series for all sites
were visually inspected, primarily to remove those with non-
linear behavior. Additionally, the corresponding correlations
between altimetry and TG time series were found to be high-
est for AVISO. Pfeffer and Allemand (2016) did not apply
visual inspection and obtained a comparable result for 113
stations (an RMS of 1.7 mmyr−1), while only incorporating
GNSS trends from stations within 10 km from the tide gauge.

This study aims to further reduce the discrepancies be-
tween GNSS and ALT–TG trends, while increasing the num-
ber of trend pairs. To do this, we will apply several steps to
improve the VLM estimates at tide gauges. First of all, the
number of reliable trend estimates is increased by using the
GNSS trends from the larger NGL database. Most TGs will
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neighbor multiple GNSS stations for which several methods
are applied to determine the best procedure. Correlations be-
tween altimetry and TG time series are exploited to reduce
residual ocean variability, which is often present in ALT–TG
time series (Vinogradov and Ponte, 2011). The reduction in
ocean variability should lead to more reliable ALT–TG VLM
trends. Correlation thresholds additionally function as a filter
to remove time series that are uncorrelated due to differences
in ocean signals, possible (undocumented) jumps in the TG
time series or interannual VLM signals that cannot be sepa-
rated from the ocean signal (Santamaría-Gómez et al., 2014).
Additionally, we address the problem of contemporary mass
redistribution on trends over different time spans using a fin-
gerprinting method.

2 Data and methods

In this section, we describe the processing procedures for de-
riving GNSS and ALT–TG VLM trends for comparison at
TG locations. First, we will address the estimation of GNSS
trends at the TG locations. The estimation of ALT–TG differ-
enced trends is discussed in several steps. We briefly discuss
the selection of the tide gauges. After that we will discuss the
altimetry processing procedures. We briefly review the Hec-
tor software (Bos et al., 2013a) for the estimation of trends
from differenced ALT–TG time series. Eventually, trend cor-
rections for contemporary mass redistribution using finger-
printing methods are described.

2.1 GNSS trends

The trend estimation at tide gauges primarily deals with two
problems. First, a trend is estimated from a GNSS time se-
ries, which contains an autocorrelated noise signal and of-
ten undocumented jumps. We use precomputed trends, of
which the procedure is briefly reviewed in Sect. 2.1.1. Sec-
ond, many GNSS stations are not directly colocated to the
TG station. Regular leveling campaigns to monitor the rel-
ative VLM between the TG and the GNSS stations are of-
ten absent. Therefore, the assumption is made that both lo-
cations are affected by the same VLM signal. When multiple
GNSS receivers are present in the vicinity of the tide gauge,
a method is required to estimate a single VLM trend from
multiple GNSS stations. This is discussed in Sect. 2.1.2.

2.1.1 GNSS trend estimation

To obtain VLM trends at TGs, often the products of the Uni-
versity of La Rochelle (ULR) are used. ULR versions 5 and
6 make use of the Create and Analyze Time Series (CATS)
software (Williams, 2008), which is able to estimate trends
and errors from time series by taking into account tempo-
rally correlated noise. It has the advantage that it computes
a more realistic trend uncertainty. The software is also able
to estimate and detect discontinuities that occur due to earth-

quakes and equipment changes. Even though a large pro-
portion of the trend estimates have formal accuracies better
than 1 mmyr−1, undetected discontinuities might bias the es-
timated trends (Gazeaux et al., 2013).

In this study the results of NGL (Blewitt et al., 2016)
are used. Blewitt et al. (2016) proposed the Median Interan-
nual Difference Adjusted for Skewness (MIDAS) approach,
which is based on the Theil–Sen estimator. The procedure es-
timates trends from couples of daily data points separated by
365 days. It then removes all estimates outside 2 SD, which
are computed by scaling the median of absolute deviation
(MAD) by 1.4826 (Wilcox, 2005) with respect to the median
of the trend couples. Afterwards, a new median is computed,
which serves as the trend estimate. Blewitt et al. (2016)
demonstrated that MIDAS has a smaller equivalent step de-
tection size than methods that include step detection, such as
those computed by CATS and used by ULR5. Besides the
advantage of detecting smaller jumps, approximately 14 000
GNSS time series are processed, which is almost 20 times
more than ULR6. Unlike Wöppelmann and Marcos (2016),
no manual screening is applied to the time series or trends.

2.1.2 Trend estimation at tide gauges

Despite several recommendations to colocate GNSS re-
ceivers with TGs, currently only a few have a record that
ensures a trend uncertainty of 1 mmyr−1 or better. There-
fore we take all stations into account that are within 50 km
from a TG, provided that the SD on the trend is lower than
1 mmyr−1 as estimated from the MIDAS algorithm. The
threshold on the SD ensures that most records containing
large nonlinear effects due to, for example, earthquakes and
water storage changes are removed from the analysis. Other
studies used ranges from 10 km (Pfeffer and Allemand, 2016)
up to 100 km (Hamlington et al., 2016). At 100 km the error
due to relative VLM trends increases substantially, on aver-
age more than 0.5 mmyr−1 (Santamaría-Gómez et al., 2017)
for the NGL estimates, while taking a range of 10 km reduces
the number of trends substantially. Therefore the range is set
to 50 km, but comparable results are found for 30 and 70 km,
yielding a different number of trends (not shown).

Most studies simply average all neighboring TG trends
or take the trend from the closest station. However, many
other and possibly better techniques are possible. We com-
pare trends from several approaches in Sect. 3.1 and with
the ALT–TG trends in Sect. 3.3. In total eight different ap-
proaches are considered. The first two involve all of the
trends at neighboring GNSS stations by computing their
mean (1) and median (2). Method (1) is applied by Frederikse
et al. (2016) for regional sea level reconstructions. One of the
most frequently applied approaches uses the trend at the clos-
est station (3). It is used in two recent studies by Santamaría-
Gómez et al. (2012) and Pfeffer and Allemand (2016). We
also investigate inverse distance weighting (4) in which the
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trend dhTG
dt is estimated as

dhTG

dt
=

∑ 1
di

dhi
dt∑ 1
di

, (1)

where di and dhi
dt represent the distance to the tide gauge sta-

tion and the trend at GNSS station i. We also use the GNSS
trends based on the longest time series (5) and smallest er-
ror (6) from stations within the 50 km radius. The seventh
approach involves weighting with the variances σ 2

i of the
trends (7) such that

dhTG

dt
=

∑ 1
σ 2
i

dhi
dt∑ 1

σ 2
i

. (2)

And the last method (8) takes into account spatial de-
pendency and trend uncertainty by combining methods (4)
and (7), i.e., by weighting with the variance and with the dis-
tance so that

dhTG

dt
=

∑ 1
σ 2
i di

dhi
dt∑ 1

σ 2
i di

. (3)

Method (8) is a variant to the technique used in the altimeter
calibration study of Watson et al. (2015). Note that the uncer-
tainties range mostly between 0.7 and 1 mmyr−1 and there-
fore method (8) is more sensitive to the distance from the
TG than to the variance of the GNSS trends. The distance
weights used in methods (4) and (8) quickly decrease with
distance, effectively reducing the number of GNSS trends
involved in the estimate. In several studies the method to es-
timate VLM trends at tide gauges from GNSS is not docu-
mented.

2.2 Tide gauge time series

Monthly TG data are obtained from the PSMSL database
(Holgate et al., 2013). All time series flagged after 1993 are
removed. Any observations that are outside of 1 m from the
mean are considered outliers and removed from the data.
This number is similar to our altimetry sea level threshold
and based on the criterion used by NOAA for their global
mean sea level estimates (Masters et al., 2012). To be con-
sistent with the altimetry observations, we apply a dynamic
atmosphere correction (DAC) consisting of a low-frequency
inverse barometer correction and short-term wind and pres-
sure effects (Carrère and Lyard, 2003). Initially, we consider
all TGs with at least 10 years of valid data.

2.3 Differenced ALT–TG time series

Wöppelmann and Marcos (2016) obtained the smallest SD in
the differenced time series by averaging grid cells within 1◦

from the TG using the AVISO interpolated product. The re-
sults obtained by taking the most correlated grid point from

Table 1. List of geophysical corrections and orbits applied in this
study.

Satellite TP J1 and J2

Orbits CCI GDR-E
Ionosphere Smoothed

dual-frequency
Wet troposphere Radiometer
Dry troposphere ECMWF
Ocean tide GOT4.10
Loading tide GOT4.10
Solid Earth tide Cartwright
Sea state bias CLS
Mean sea surface DTU15
Dynamic atmosphere MOG2D

AVISO within 4◦ around the TG increased the SD. Wöp-
pelmann and Marcos (2016) obtained lower correlations by
averaging Goddard Space Flight Center (GSFC) along-track
altimetry measurements within a radius of 1◦ from the TG.
Note that the AVISO grid is constructed using correlation
radii of 50–300 km (Ducet et al., 2000) and it includes mea-
surements from all altimetry satellites, not only the Jason
series. The AVISO grid therefore effectively averages over
a much larger radius around the TG and it includes data from
more satellites. The larger uncorrelated noise using GSFC
compared to AVISO, as shown by the combination of the in-
creased RMS and the spectral index (Wöppelmann and Mar-
cos, 2016), is therefore likely an effect of the limited number
of GSFC altimetry measurements. However, using the large
effective radius of AVISO, data far away from the TG are
included, which might not correlate with the sea level sig-
nal at the TG. This can result in a remaining ocean signal
in ALT–TG time series, which contaminates the VLM trend
estimates.

To overcome the limitations of gridded products, we work
with along-track data and exploit the correlations between
sea level at the satellite measurement location and at the TG
on interannual and decadal scales by using a low-pass filter.
We start by creating sea level time series every 6.2 km along-
track using the measurements from TP, J1 and J2 from the
RADS database (Scharroo et al., 2012) between 1993 and
2015. In order to get a consistent set of altimetry observa-
tions, the same geophysical corrections are used for all satel-
lites, as given in Table 1. All time series within 250 km from
the TG are taken into account. This radius is larger than the
open ocean correlation distances used by Ducet et al. (2000)
and Roemmich and Gilson (2009), except for the equatorial
region where the correlation scales become much larger. At
distances larger than 250 km, one will still find some highly
correlated signals, but the trends caused by large-scale pro-
cesses like GIA and present-day mass redistribution will dif-
fer from those at the TGs. It also ensures that at least one
ground track of the altimeters is within the range of the tide
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Figure 1. Time series of ALT–TG differenced VLM at Winter Harbour. After averaging or weighting with the correlation a moving-average
filter is applied to visualize the remaining interannual variability. In blue: without a threshold on the correlation and without correlation
weighting. In red: with a threshold of 0.7 for the correlation and with correlation weighting. In the background are the time series without
the moving-average filter applied.
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Figure 2. VLM (mmyr−1) at TGs using the median of the neighboring trends.

gauge at the Equator. Reducing the 250 km radius leads to
a decreased number of trends.

Additionally, intermission biases between TP–J1 and J1–
J2 are removed. Ablain et al. (2015) revealed a large depen-
dence of the intermission biases on the latitude. For the J1–
J2 differences, a single polynomial is estimated through the
differences between the sea level observations of both instru-
ment such that the correction 1hsla,ib(λ) becomes

1hsla,ib(λ)= c0+ c1 · λ+ c2 · λ
2
+ c3 · λ

3
+ c4 · λ

4, (4)

with λ as the latitude of the altimetry observations. For the
TP-J1 differences, separate polynomials are estimated for
four latitude regions and the ascending and descending tracks
(Ablain et al., 2015). The values for the parameters cn are
given in Table A1. More details on the computation proce-
dure are found in Appendix A.

The Jason satellite series samples sea level every 10 days,
and hence we average three to four measurements in order

to make a first set of time series that is compatible with the
monthly TG observations. As for the case of the TG monthly
solutions, observations more than 1 m from the mean sea sur-
face are removed and the time series should have at least
10 years of valid observations. Additionally, a second set
of time series at each satellite measurement location is cre-
ated by applying a yearly moving-average filter. This second
set of altimetry time series is correlated with a yearly low-
pass-filtered version of the TG series in order to test whether
their signals match on interannual and longer timescales. The
yearly moving-average filter allows us to suppress the noise
present in individual altimetry measurements. The full pole
tide from RADS (which contains a solid Earth, loading and
ocean tide as in Desai et al., 2015) is subtracted from both
time series before correlation, whereas for the TG time se-
ries we restore the solid Earth pole tide as computed in Desai
et al. (2015). The loading tide is at its maximum only a few
millimeters, which has no significant effect on the interan-
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Figure 3. Range (mmyr−1) of VLM estimates at TGs using eight different approaches. The size of the symbols indicates the number of
GNSS trends available (with a maximum of 10).

Table 2. Statistics of trend differences between NGL and ULR5 at 70 stations for the eight approaches.

RMS Mean Median

Approach Keyword mm yr−1 mmyr−1 mmyr−1

1 Mean 1.11 0.07 0.05
2 Median 1.05 0.12 0.03
3 Closest 1.36 0.02 0.02
4 Dist. weight 1.21 0.00 0.03
5 Longest 1.29 0.32 0.20
6 Smallest error 1.15 0.24 0.17
7 Error weight 1.11 0.08 0.02
8 Dist. and error weight 1.23 0.01 0.05

Table 3. Number of TGs at which trends are estimated from differ-
enced ALT–TG time series. The “−1.0” indicates that no correlation
threshold is set.

Threshold Number of TGs

−1.0 663
0.0 660
0.1 658
0.2 655
0.3 638
0.4 602
0.5 549
0.6 470
0.7 344

nual correlation and is therefore not restored. We also remove
residual annual and semi-annual cycles and a linear trend
before correlation because the yearly moving-average filter

has side lobes, causing these seasonal signals to be partly re-
tained. Other longer filters are considered to reduce the side
lobes, but they would introduce larger transient zones. An it-
erative procedure removes sea surface heights outside of 3
RMS up to a maximum of 10 % of the observations. The out-
lier removal is primarily implemented to remove any spuri-
ous data present in the RADS database. It is unlikely that
more than 10 % of the observations contain processing prob-
lems or outliers due to extreme events. If more observations
were discarded, high correlations might no longer represent
the corresponding ocean signal. The result is a set of cor-
relations that indicate which altimetry sea level time series
resemble the TG time series on interannual timescales and
longer.

The monthly low-pass-filtered altimetry time series are
kept if the corresponding correlations from yearly low-pass-
filtered time series are above a certain threshold. We combine
the remaining monthly altimetry time series to get one aver-
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aged altimetry time series per TG. Alternatively, we also use
the correlations as weights to get one correlation-weighted
altimetry time series per tide gauge. In this case the monthly
low-pass-filtered time series are weighted by their corre-
sponding correlation, then added together and accordingly
normalized so that the weights sum up to one. The result-
ing time series are subtracted from the TG time series if
there are at least 10 altimetry time series with a correlation
above the threshold. The resulting differenced ALT–TG time
series with less than 15 years of valid observations are fur-
ther discarded. This last requirement is due to the fact that
remaining ocean signals can still affect the estimated trends
significantly. An example of the reduction of variability due
to correlation thresholds and weighting is shown in Fig. 1.
The white noise in the unfiltered time series is reduced in the
red curve; however, the opposite might happen if the num-
ber of altimetry time series decreases. It is most important to
note that there is a strong reduction in the variance of tempo-
rally correlated residuals, represented here by the low-pass-
filtered time series. A correlated residual signal can strongly
affect the estimated trend, especially in areas with large vari-
ability due to interannual events like ENSO. Note that for the
differentiation of the time series only the solid Earth part of
the pole tide is added to the TGs, as is done in the IERS 2010
conventions (Petit and Luzum, 2010) such that the trends are
consistent with those of the GNSS data. The main differ-
ence is that the altimetry pole tide correction of Desai et al.
(2015) is computed with respect to a linearly drifting mean
pole, while in the IERS conventions the mean pole location
is modeled as a third-order polynomial. If the pole tide is
not taken into account consistently, it can introduce biases
of 0.1 mmyr−1 (Santamaría-Gómez et al., 2017). Since the
change rate of the mean pole is nonlinear, this will intro-
duce trend biases if the time spans between GNSS and al-
timetry do not match. The drift of the mean pole is caused
by the redistribution of mass in the Earth system. This is
corrected by using the mass redistribution fingerprints dis-
cussed in Sect. 2.5, which are computed using a model that
includes elastic responses and rotation changes. The drifting
mean pole is primarily captured by the C21 and S21 spherical
harmonic coefficients (Wahr et al., 2015).

2.4 Differenced ALT–TG trends

The ALT–TG time series have a monthly resolution, so they
contain fewer observations, and they exhibit substantial inter-
annual variability. These time series are therefore less suit-
able to be processed with the MIDAS algorithm used to
compute GNSS trends. For the computation of the ALT–TG
trends and the corresponding SD, we fit a power law in com-
bination with a white noise model by using the Hector soft-
ware (Bos et al., 2013b). The spectrum of the white noise is
flat, while the spectrum of power-law noise, P(f ), decays

with frequency and is given by Bos et al. (2013b):

P(f )=
1
f 2
s

σ 2

(2sin(πf/fs))2d
, (5)

where fs is the sampling frequency, σ the power-law noise
scaling factor and d links to the spectral index κ in Wöppel-
mann and Marcos (2016) by κ =−2d . The value of d af-
fects the effective number of autoregressive parameters (Bos
et al., 2013b). This is required to capture the temporal corre-
lation in the ALT–TG time series as shown by Fig. 2 in which
the low-pass-filtered time series give an idea of the memory
in the system. In order to handle several weakly nonstation-
ary ALT–TG time series we use the function “PowerlawAp-
prox”, which uses a Toeplitz approximation for power-law
noise (Bos et al., 2013a).

2.5 Contemporary mass redistribution

The trends estimated from GNSS time series are computed
over different time spans than the ALT–TG trends and will
be affected by nonlinear VLM induced by elastic deforma-
tion due to present-day ice melt and changes in land hy-
drology storage (Riva et al., 2017). To quantify those non-
linear VLM signals, the response to mass redistribution is
computed using a fingerprinting method at yearly resolution.
We take into account the loads of Greenland and Antarctica,
glacier mass loss, the effects of dam retention and hydrologi-
cal loads. A detailed description of the input loads is given in
Frederikse et al. (2016). To estimate the fingerprints of VLM,
the sea level equation is solved, including the rotational feed-
back (Farrell and Clark, 1976; Milne and Mitrovica, 1998).
Since not all load information for 2015 and 2016 is avail-
able yet, we will limit the time series of ALT–TG up to 2015.
Some GNSS trends are estimated from time series that span
beyond 2015. Therefore we linearly extrapolate the finger-
print data, if necessary, to 2015 and 2016 based on the differ-
ence between the years 2013 and 2014.

3 Results

This section first addresses the trends obtained from GNSS
stations. The averaging methods are discussed and the NGL
trends are compared to those of ULR5. Then the results
of the correlation-weighted ALT–TG trends are discussed.
These are compared to those from Wöppelmann and Marcos
(2016). After that, the GNSS and ALT–TG trends are com-
pared and optimal settings are discussed. For the comparison
we take into account the fact that both trends are not com-
puted from time series covering the same period by correct-
ing for nonlinear VLM trends estimated from fingerprints.

3.1 Direct GNSS trends

For 570 TGs at least one GNSS station is found within
a 50 km radius with an uncertainty on the trend that is below
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(a) No correlation threshold vs. weighted correlation threshold 0.7

−15 −10 −5 0 5 10 15

(b) Unweighted correlation threshold 0.0 vs. weighted correlation threshold 0.0

−15 −10 −5 0 5 10 15

Figure 4. Change in SD (mm) of the differenced time series using correlation thresholds and weighting. Note that a correlation threshold of
0.0 indicates positive correlations only.

1 mmyr−1. The VLM for these TGs is shown in Fig. 2 using
the median of the surrounding GNSS stations in case there
are multiple trends available. The signature of GIA domi-
nates the signal on large scales and is primarily visible in
Scandinavia and Canada. In Alaska there might be a signif-
icant contribution of present-day ice mass loss. If GIA is
removed the VLM signals typically range between −3 and
3 mmyr−1 (Wöppelmann and Marcos, 2016), with a few ex-
ceptions.

Even though the large-scale GIA process appears to be
captured properly, regional VLM has a large effect on the

GNSS trends. In Fig. 3 the differences between the lowest
and highest VLM estimate from the eight methods discussed
in Sect. 2.1.2 are shown. The extreme values primarily re-
sulted from the “mean”, “median” and “inverse distance”
methods (not shown). The figure shows that the range is gen-
erally higher when more GNSS trends are available. In par-
ticular the seismically active zones like the US West Coast
show a larger range. The range of solutions, when consid-
ering all TGs with at least two GNSS trends, has a mean
of 0.92 mmyr−1 with 25th and 75th percentiles of 0.38 and
1.20 mmyr−1. In the case that at least three available GNSS
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Figure 5. Time series of ALT–TG differenced VLM at the Llandudno (UK) TG. A moving-average filter is applied to visualize the interannual
variability. In blue: with a threshold of 0.0 for the correlation, but without correlation weighting. In red: with a threshold of 0.0 for the
correlation and with correlation weighting. In the background are the time series without a moving-average filter applied.

trends are considered, the mean of the differences rises to
1.09 mmyr−1 and the 25th and 75th percentiles to 0.56 and
1.34 mmyr−1. Since we only considered GNSS trends with
a maximum SD of 1 mmyr−1, this implies that a significant
contribution of kilometer-scale VLM variations is present
along the West Coast of the US, where the difference be-
tween methods is often larger than 1 mmyr−1. Note that the
range of individual GNSS trends is on average even larger
than the range between methods. Santamaría-Gómez et al.
(2017) estimated the global numbers for the impact of spatial
variations in VLM at 30 and 100 km of separation to be 0.2
and 0.5 mmyr−1. On the coasts of Europe and North Amer-
ica where most tide gauges are located, these numbers are
substantially larger; i.e., even the range between methods is
on average larger than 1 mmyr−1. The differences between
methods are often comparable in size to the VLM signal, es-
pecially after the GIA is removed.

Wöppelmann and Marcos (2016) show that a comparison
between their ALT–TG trends and their GNSS trends yields
an RMS of 1.47 mmyr−1. They use visual inspection to re-
move tide gauges when clear nonlinear effects or discontinu-
ities were present. In Table 2 a comparison is made between
the eight different approaches and the GNSS trends of Wöp-
pelmann and Marcos (2016) that were used in the aforemen-
tioned comparison with ALT–TG trends at 70 locations. The
values show that a substantial fraction of the RMS between
GNSS and ALT–TG trends can be explained by different
GNSS averaging and processing methods. Using the closest
station (approach 3) yields an RMS of 1.36 mmyr−1, which
is comparable in magnitude to the RMS between GNSS and
ALT–TG trends found by Wöppelmann and Marcos (2016).
Note that we remove all NGL GNSS trends with an uncer-
tainty larger than 1 mmyr−1 and therefore colocated stations
are sometimes removed. The closest GNSS station in our
selection is therefore not always the same as the one used
by Wöppelmann and Marcos (2016). The best comparison is
found with the median (approach 2), even though the RMS of
differences is still above 1 mmyr−1. Since the closest station
method depends on a single station, there is a larger chance
that some outliers are present, which substantially increases

the RMS of differences. For the closest station method three
trend differences larger than 3 mmyr−1 are found, whereas
only one is found for the median method.

3.2 Differenced ALT–TG trends

Using correlation thresholds, we try to minimize the residual
ocean signal in ALT–TG time series. Additionally, it will fil-
ter problematic stations when no correlation between TG and
altimetry observations is found. A higher threshold therefore
reduces the number of ALT–TG trends. Table 3 shows the
reduction of the differenced VLM trends when the correla-
tion threshold increases. After a correlation threshold of 0.4,
the number of observations drops substantially. At a thresh-
old of 0.7, the number of TGs for which a trend is com-
puted is only half of that without a threshold. The remain-
ing trends are generally more reliable for two reasons: VLM
time series that exhibit relatively large residual ocean signals
are removed, and TG time series that contain large jumps
due to unidentified reasons (e.g., earthquakes or equipment
changes) are removed.

In order to show that the method decreases the oceanic
signal, we compare the SD reduction by using correlation
thresholds and weighting (Fig. 4). The plot in Fig. 4a shows
the comparison between the SD of the differenced time se-
ries using no correlation threshold and the time series us-
ing a threshold of 0.7 together with a correlation weighting.
The mean reduction in SD is 3.9 mm, whereas the mean SD
is 37 mm. The change in SDs at several locations are co-
herent, which is expected because the sea level fluctuations
along continental slopes are coherent (Hughes and Meridith,
2006). Substantial reductions in SD are apparent on both
North American coasts, in Japan and in Northern Europe.
Vinogradov and Ponte (2011) had already observed large dis-
crepancies in interannual ocean signals between TGs and al-
timetry in North America and in Japan. This suggests that our
technique is capable of reducing these ocean signals, which
is confirmed by the change in the median of the spectral in-
dices, κ , as discussed in Sect. 2.4. The median of the spectral
indices changes from −0.63 to −0.57, which indicates that
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(a) No correlation threshold

−4 −2 0 2 4

(b) Correlation threshold 0.7

−4 −2 0 2 4

−1.0 −0.5 0.0 0.5 1.0

(c) Differences between (a) and (b)

Figure 6. ALT–TG trends (mm yr−1) estimated using no threshold (a), with a correlation threshold and correlation weighting (b) and the
difference between them (c).
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Figure 7. RMS (mmyr−1) of differences between GNSS and ALT–
TG VLM trends. The “W” indicates weighting by correlation. The
“−1.0” indicates that no correlation threshold is set. The numbers
of the y axis refer to the approaches used to combine the GNSS
trends as described in Sect. 2.1.2.

the autocorrelation in the residuals decreased. The Winter
Harbour (Canada) VLM time series (Fig. 1) shows a typical
example in which the correlated noise is reduced. However,
there are several locations where the SD increases substan-
tially. Most of them are sporadic, but in a few locations, like
in the UK and France, there is a coherent increase.

Similar patterns of SD decrease, albeit reduced in mag-
nitude, are observed for the unweighted against the weighted
VLM time series with a correlation threshold of 0.0 (Fig. 4b),
i.e., when only positively correlated altimetry time series are
taken into account. Instead of 344 VLM trends, as for the
comparison discussed above, 660 trends are compared. The
mean reduction of the SD is 1.4 mm, whereas the mean SD
is 38 mm. The strong reduction of the SD at the southeast
side of Australia is notable. In the UK and France an in-
crease in SD is present again. In most cases an increase in
white noise, likely due to the decreased effective number of
altimetry measurements, is responsible for the higher SD, as
demonstrated in Fig. 5 for a VLM time series at Llandudno,
UK. In most cases of an increasing SD, the correlated ocean
signals are still reduced or remain approximately equal.

Figure 6 shows the VLM trends estimated from the ALT–
TG time series using no correlation threshold and a thresh-
old of 0.7. A comparison of Figs. 2 and 6 reveals that the
Indian Ocean and the southern Pacific Ocean are sampled
better using ALT–TG instead of GNSS trends. If the corre-
lation threshold is set to 0.7, the number of trend estimates
decreases, which particularly impacts the number of trend
estimates at TGs in South America and Africa. Hence, for
regional reconstructions, a careful choice should be made for
the correlation threshold.

Compared with the GNSS trends, the neighboring ALTG–
TG trends show more variation, which is especially true for
the UK and Japan. It is difficult to say whether this is a true
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Figure 8. Histogram of GNSS and ALT–TG trend differences. In
blue are the results without any correlation threshold and in red with
a correlation threshold of 0.7 and correlation weighting.

VLM signal, but it is important to note that many GNSS
stations are placed on bedrock, which exhibits more stable
trends than the coastal locations of tide gauges. Secondly,
the GNSS trends with an uncertainty larger than 1 mmyr−1

are removed, which reduces the variability. Of the 663 ALT–
TG trends, 293 (44 %) have a trend uncertainty smaller than
1 mmyr−1. Therefore larger spatial trend variability can also
be induced by remaining ocean signals in the VLM time se-
ries. In Fig. 6b showing the 0.7 threshold trends, the num-
ber of trends is reduced due to the correlation threshold. It
removes most tide gauges in the highly variable regions pre-
viously mentioned and the neighboring differences are there-
fore less erratic; 284 out of 344 trends (83 %) have a trend
uncertainty smaller than 1 mmyr−1 using the 0.7 correlation
threshold.

The results of applying correlation weighting and thresh-
olding are shown Fig. 6c. Two spots of coherent changes in
the trends can be clearly identified: in Norway the trends
increased by approximately 1 mmyr−1, while on the East
Coast of the US the opposite happens. These spots exhibit
longshore coherent sea level signals that are not found in the
open ocean (Calafat et al., 2013; Andres et al., 2013). Note
that both locations also exhibit a strong reduction in standard
deviation (Fig. 4). Coherent changes are also present around
Denmark. Other regions where substantial reductions in the
SD are found do not experience coherent changes in trends.

3.3 GNSS vs. ALT–TG trends

In this section the VLM trends from GNSS using the eight
approaches as described in Sect. 2.1.2 are compared with
the differenced ALT–TG VLM trends using various correla-
tion thresholds. Based on the intercomparison we determine
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Table 4. Statistics of the differences between the median of the GNSS trends (approach 2) and the ALT–TG trends for various correlation
thresholds. The “W” indicates that the altimetry time series are weighted by the correlation. The row “W&M” shows the comparison with
Wöppelmann and Marcos (2016) trends. The column “NoT” indicates the number of TGs for which trend estimates are computed. On the
left side of the table all stations are taken into account, and on the right side only stations are taken into account for which a solution exists
for all correlation thresholds (including those from W&M).

All Same

Correlation RMS Mean Median NoT RMS Mean Median NoT

mmyr−1 mmyr−1 mmyr−1 mmyr−1 mmyr−1 mmyr−1

−1.0 2.141 −0.241 −0.107 294 1.234 −0.167 −0.099 137
0.0 2.108 −0.248 −0.101 294 1.226 −0.175 −0.068 137

0.0 W 2.103 −0.250 −0.036 294 1.219 −0.172 −0.056 137
0.1 2.113 −0.258 −0.096 293 1.219 −0.174 −0.074 137

0.1 W 2.108 −0.260 −0.043 292 1.218 −0.170 −0.045 137
0.2 2.082 −0.233 −0.073 292 1.217 −0.163 −0.074 137

0.2 W 2.080 −0.234 −0.015 292 1.216 −0.168 −0.042 137
0.3 1.986 −0.152 0.047 283 1.221 −0.157 −0.066 137

0.3 W 1.991 −0.157 0.056 283 1.217 −0.165 −0.044 137
0.4 1.695 −0.106 0.065 264 1.223 −0.152 −0.050 137

0.4 W 1.696 −0.112 0.071 264 1.218 −0.158 −0.041 137
0.5 1.554 −0.086 0.044 239 1.220 −0.153 −0.058 137

0.5 W 1.552 −0.087 0.056 239 1.217 −0.155 −0.067 137
0.6 1.417 −0.093 −0.065 204 1.209 −0.155 −0.087 137

0.6 W 1.416 −0.093 −0.083 204 1.208 −0.156 −0.094 137
0.7 1.220 −0.142 −0.123 155 1.206 −0.140 −0.060 137

0.7 W 1.220 −0.144 −0.124 155 1.206 −0.142 −0.074 137
W&M 1.658 −0.177 −0.050 211 1.328 −0.101 0.020 137

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Figure 9. Trend differences (mm yr−1) between the GNSS and ALT–TG time spans induced by nonlinear VLM due to present-day mass
redistribution.

the best solution for the GNSS approach and the correlation
thresholds for altimetry. Additionally, a comparison is made
with Wöppelmann and Marcos (2016). We also investigate
the effect of present-day mass redistribution on the differ-

ence in trends due to varying time spans of the GNSS and
the ALT–TG methods.

Figure 7 shows the RMS of trend differences between var-
ious GNSS combination methods and correlation thresholds
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for ALT–TG. The RMS of trend differences is computed at
155 TG stations for which all solutions are available. The
colors exhibit small differences horizontally and large differ-
ences vertically, indicating that the GNSS method is more
important in reducing the RMS. The difference between the
method with the lowest RMS of differences, which is ob-
tained by taking the median of the GNSS trends (2), and
the method with the highest RMS, which uses the closest
GNSS station (3), is approximately 0.12 mmyr−1. Hamling-
ton et al. (2016) computed VLM trends at TG locations by
using a complex filtering procedure that also implicitly takes
into account the median of the GNSS trends. Next to taking
the median of the GNSS trends, taking the mean (1) within
the 50 km radius and using variance weighting (7) also yields
substantially lower RMS differences than the other five meth-
ods. However, the median method performs slightly better.
The median method is also less sensitive to large values
caused by GNSS trends with larger uncertainties (for which
the mean method is sensitive) and less sensitive to outliers
caused by large local VLM differences (for which the vari-
ance weighting method is sensitive).

In Table 4 we analyze the results for different correlation
thresholds in more detail by comparing them to the GNSS
trends based on the median method. On the left side of the
table the RMS, mean and median are shown for all VLM es-
timates available for each correlation threshold. Setting no
correlation thresholds yields trend estimates at 294 TGs for
comparison, while setting a threshold at 0.7 leaves only 155.
While the number of trends decreases, the RMS decreases
as well, indicating that the correlation thresholds can serve
as a selection procedure that filters out outliers. This is con-
firmed by Fig. 8, in which we see the decrease in the number
of available trends, but also the removal of the outliers. If the
threshold is set to 0.7 only three discrepancies in trends larger
than 3 mmyr−1 are found. Note that the reduction in RMS is
not only caused by the removal of problematic ALT–TG time
series. Large earthquakes, for example, might induce jumps
or nonlinear behavior in both the TG and GNSS time series,
so the larger range in Fig. 8 for no correlation threshold may
be partly attributed to problematic GNSS trends. In the last
row the Wöppelmann and Marcos (2016) trends are com-
pared with our GNSS trends. There is a similar RMS with
the 0.4–0.5 correlation threshold trends, but it is computed
with a substantially smaller number of trends.

On the right side of the table, we only included TGs for
which all solutions are available, which reduces the number
from 155 to 137 because W&M trends are also considered
for comparison. The RMS of differences for 155 stations is
only slightly larger as shown in Table 5. Note that the RMS
of the residuals using ALT–TG from W&M is 0.14 mmyr−1

lower than those in the study of Wöppelmann and Marcos
(2016) and about 0.4 mmyr−1 less than in Pfeffer and Alle-
mand (2016), who incorporated only 109 and 113 stations,
respectively. This is a consequence of the combined use of
the median of the NGL trends and selection based on cor-

relation. Our altimetry solutions further decrease the RMS
by another 0.1 mmyr−1 compared to W&M, even when no
threshold on the correlation is set. In the study of Wöppel-
mann and Marcos (2016), the along-track altimetry ALT–TG
trends performed worse than the AVISO results. The reason
for this discrepancy could be the latitudinal intermission bias
or the small radius around the TG used in that study for in-
cluding altimetry measurements.

Increasing the correlation threshold only slightly reduces
the RMS between GNSS and ALT–TG trends and the ad-
ditional weighting has a neglectable effect on the RMS.
As mentioned before, the threshold increase and correlation
weighting generally reduced the SD (Fig. 4) of the ALT–TG
time series and Fig. 6 shows coherent changes in trend. Addi-
tionally, the NGL and ULR trends showed an RMS of differ-
ences and range between the GNSS approaches of more than
a millimeter. We argue that the absence of a clear improve-
ment or a change in RMS due to correlation thresholds is
a result of the relatively large noise in the GNSS trends. The
histogram in Fig. 8 shows that for 155 stations, only three dis-
crepancies are larger than 3 mmyr−1. For these TGs (located
at Galveston and Eureka in the US and the Cocos Islands in
Australia) we find that the neighboring GNSS stations are
located at the other side of lagoons or on different islands.
Therefore the likely cause of the largest discrepancies is not
the ALT–TG trend, but local VLM differences between the
GNSS stations and the TG.

The third column of Table 4 shows that the mean is in all
cases negative; i.e., the GNSS trends are larger than those of
ALT–TG. Trends obtained with correlations of−1.0, 0.0, 0.1
and 0.2 are barely statistically different from zero based on
a 95 % confidence level, while the others are not. The 95 %
confidence level is taken as 2 times the SD of the mean of the
residual trends

(
σn√
N

, where N is the number of trends and
σn the SD of the residual trends). In the right “mean” column
for the 137 stations, the means are statistically insignificantly
different from zero at the 95 % confidence level, whereas at
a 90 % confidence level several are not. The medians in both
columns are closer to zero and deviate up to 0.2 mmyr−1

from the mean, which indicates a slightly skewed distribu-
tion.

There is a nonlinear VLM signal due to present-day mass
loss in both GNSS and ALT–TG trends and since they cover
different time spans this causes small systematic differences
between trends. Due to the inhomogeneous distribution of
the TGs and the spatial signal of nonlinear VLM, this af-
fects not only the mean, but also the skewness of the distri-
bution. In Fig. 9 the trend differences between the GNSS and
ALT–TG methods are visualized for all 294 stations. Most of
the negative differences in trends are observed in Europe and
parts of North America, while positive differences in trends
are observed in Australia. In Europe there is an uplift due
to present-day mass loss, which increases over the last few
years. Since the GNSS time series are generally shorter, they
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Table 5. Statistics of ALT–TG trend differences with the median GNSS approach for various correlation settings after applying a correction
for nonlinear VLM.

NoT: 155 NoT: 137

Correlation RMS Mean Median RMS Mean Median

mmyr−1 mmyr−1 mmyr−1 mmyr−1 mmyr−1 mmyr−1

−1.0 1.231 −0.102 −0.039 1.223 −0.100 0.030
0.0 1.225 −0.109 −0.027 1.215 −0.108 0.031
0.0 1.223 −0.106 0.016 1.209 −0.105 0.048
0.1 1.220 −0.107 −0.014 1.208 −0.107 0.034
0.1 1.222 −0.104 0.003 1.208 −0.104 0.072
0.2 1.220 −0.099 0.016 1.207 −0.096 0.027
0.2 1.221 −0.101 −0.001 1.206 −0.101 0.059
0.3 1.223 −0.091 0.011 1.211 −0.090 0.018
0.3 1.221 −0.098 −0.001 1.207 −0.098 0.036
0.4 1.226 −0.087 0.011 1.214 −0.085 0.021
0.4 1.223 −0.092 0.008 1.209 −0.091 0.037
0.5 1.225 −0.088 0.020 1.212 −0.086 0.042
0.5 1.222 −0.090 0.027 1.208 −0.088 0.045
0.6 1.222 −0.087 −0.007 1.202 −0.088 0.018
0.6 1.222 −0.087 −0.006 1.201 −0.089 0.028
0.7 1.220 −0.071 0.021 1.202 −0.073 0.037
0.7 1.219 −0.074 0.012 1.201 −0.075 0.036

measure a larger uplift signal. By subtracting the present-day
VLM that GNSS observes from altimetry observations, we
obtain negative signals in Europe.

We applied a correction for the effect of present-day mass
loss to the trends for the 155 stations for which a trend is
found with all methods in Table 5. Similarly, this is done for
the 137 stations so that the results are comparable with Ta-
ble 4. There is no significant reduction in RMS. The max-
imal deviation of the median from zero is 0.06 mmyr−1

for the 155 stations and maximally 0.07 mmyr−1 for the
137 stations, which is a reduction with respect to the val-
ues listed in Table 4. The mean is also reduced to approx-
imately −0.1 mmyr−1, which is statistically equal to zero.
This result is at the level of the noise in the determination
of the ITRF origin (Santamaría-Gómez et al., 2017) and it is
smaller than the 0.4 mmyr−1 to which global mean sea level
trends from altimetry are guaranteed (Mitchum, 2000). Un-
less it is proven that the altimeters are more stable and the
uncertainties in the ITRF origin are reduced, a mean of trend
differences closer to zero cannot be expected.

4 Conclusions

We presented new ways to estimate VLM at TGs from
GNSS and differenced ALT–TG time series. A comparison
is made between eight different methods to obtain VLM at
the TG from NGL GNSS trends. The range of the trends be-
tween the approaches is at the same level as the SDs of the
GNSS trends, with a mean of 0.92 mmyr−1 and a median

of 0.71 mmyr−1. A comparison with the estimates of ULR5
(Wöppelmann and Marcos, 2016) at 70 stations yielded an
RMS of at least 1.05 mmyr−1. A comparison with ALT–TG
showed that using the median of all neighboring GNSSs pro-
vided the best results.

For the ALT–TG trends we used along-track data from the
Jason series of altimeters. At every 6 km along-track data
were stacked to create time series. The time series were low-
pass filtered with a moving-average filter of 1 year and cor-
related with low-pass-filtered TG time series. An average
or weighted monthly time series for altimetry was created
by taking into account only the time series corresponding
to correlations above a threshold. The TG time series were
subtracted from the average of monthly low-pass-filtered al-
timetry time series to create a ALT–TG time series. Using the
Hector software between 344 and 663 trends were computed
from the ALT–TG time series, depending on the correlation
threshold set.

The SD of the ALT–TG time series was reduced on av-
erage by approximately 10 % when a correlation threshold
of 0.7 was used. Spatially coherent differences in trends be-
tween various thresholds are observed on the East Coast of
the US and in Norway. We argue that residual interannual
ocean variability in ALT–TG time series can locally induce
VLM trend biases, especially when time series are short.
For 155 stations globally distributed, increasing the corre-
lation threshold does not significantly affect the RMS of
differences between GNSS and ALT–TG trends. However,
the correlation threshold also works as a selection proce-
dure. When considering 294 VLM estimates from GNSS and
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ALT–TG at the same TGs for comparison, with no thresh-
old the RMS of differences was 2.14 mmyr−1, whereas an
RMS of 1.22 mmyr−1 was reached using 155 stations and
a threshold of 0.7. This is a substantial improvement with re-
spect to the 1.47 mmyr−1 RMS of Wöppelmann and Marcos
(2016) at 109 TGs, the best result so far. Note that increasing
the threshold considerably reduces the number of time series
in the Southern Hemisphere and therefore other thresholds
might be better depending on the purpose.

The comparison with tide gauges also reveals that the
trends from ALT–TG are biased low (similar to Wöppel-
mann and Marcos, 2016), even though this is barely signif-
icant. Using mass redistribution fingerprints, a correction is
applied for trend differences caused by nonlinear behavior of
present-day mass changes. The RMS of differences is barely
affected, but the mean of differences is changed from about
−0.2 to −0.1 mmyr−1, which is now statistically insignifi-
cant.

The trends in this publication (median GNSS and ALT–
TG for all correlations) are provided in the Supplement.
The ALT–TG trends are accompanied by errors bars com-
puted using the Hector software. The provided uncertain-
ties for the GNSS use the MAD from the median of the
trends within 50 km scaled by 1.4826 (Wilcox, 2005). If
only a single GNSS station is present, the MIDAS uncer-
tainty is provided. If two GNSS stations are present and
both trends are statistically equal, it takes the square root
of the mean of the GNSS variances to avoid very small er-
ror bars. When no correlation threshold is used 663 ALT–TG
and 570 GNSS trends are available at 939 different TGs. By
setting the correlation threshold to 0.7, the number of TGs

for which a trend is estimated decreases to 759. Depending
on the application, the value of the threshold can be varied
to find an optimum between the reliability and the number
of TGs for which a trend is estimated. If both GNSS and
ALT–TG trends are available, we recommend using GNSS
trends because of correlated residual ocean signals between
various ALT–TG time series. However, if a large discrep-
ancy (> 3 mmyr−1) is found between the GNSS and ALT–
TG trends, we recommend using the ALT–TG trend because
the culprit is likely local VLM differences between the TG
and the GNSS stations. The GNSS–ALT–TG histogram for
no correlation threshold reveals large discrepancies between
the two methods of up to 10 mmyr−1. While the problems
with ALT–TG trends are mostly resolved by setting a higher
threshold, the GNSS trends might still require some inspec-
tion before they are used in sea level studies. A faster prac-
tice is to use trend uncertainties that carry information about
the linearity of the trends, and when the MAD is used as de-
scribed above, also information about local VLM variability.
However, when only one GNSS station is present the infor-
mation about local VLM variations is absent.

Data availability. The MIDAS GNSS trends are obtained from
the Nevada Geodetic Laboratory (NGL; http://geodesy.unr.edu/
PlugNPlayPortal.php, Blewitt et al., 2016). The altimetry data are
obtained from the Radar Altimetry Database System (RADS; http:
//rads.tudelft.nl/rads/data/authentication.cgi, Scharroo et al., 2012).
Permanent Service for Mean Sea Level (PSMSL), 2017, “Tide
Gauge Data” are available at http://www.psmsl.org/data/obtaining/
(retrieved 1 November 2016, Holgate et al., 2013).
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Appendix A: Intermission biases

The latitude-dependent intermission biases are computed
from 1/8◦ latitudinally averaged sea surface height differ-
ences between TOPEX/POSEIDON and Jason-1 (TP–J1)
and Jason-1 and Jason-2 (J1–J2). For the TP–J1 bias four
separate polygons are estimated for ascending tracks and four
for the descending tracks, while for J1–J2 a single polygon
is estimated. Depending on the geophysical corrections and
the processing of the altimetry data, not all parameters are
statistically different from zero based on the variances of the
residuals. However, to be consistent with the study of Ablain
et al. (2015), we maintain the polygons as such.

Table A1. Values for the parameters of the latitudinal intermission bias correction. These numbers are added to the sea surface height
anomalies of the respective satellites. “TP asc.” and “TP desc.” indicate the function variables that should be added to the ascending and
descending tracks, respectively, of TOPEX/POSEIDON using Eq. (4). J2 indicates the function variables to be used for Jason-2.

TP asc. TP desc. Jason-2

Parameter Lat (deg) Value Lat (deg) Value Lat (deg) Value

c0 (mm) (−66.2,−1.5) 80.3 (−66.2,−1.5) 77.3 (−66.2,66.2) 98.1
c1 (mm deg−1) −2.3× 10−1

−1.7× 10−1
−9.3× 10−2

c2 (mm deg−2) −1.1× 10−2 1.2× 10−3 3.8× 10−3

c3 (mm deg−3) −3.0× 10−4 2.9× 10−4 8.4× 10−7

c4 (mm deg−4) −2.4× 10−6 3.8× 10−6
−7.6× 10−7

c0 (mm) (−1.5,0.2) 83.8 (−1.5,1.3) 79.9
c1 (mm deg−1) 1.3 2.4
c2 (mm deg−2) −1.3 5.2× 10−1

c3 (mm deg−3) −5.3× 10−1

c4 (mm deg−4)

c0 (mm) (0.2,4) 84.9 (1.3,4) 73.3
c1 (mm deg−1) −8.0× 10−1 13.7
c2 (mm deg−2) −8.6× 10−1

−5.1
c3 (mm deg−3) 1.5×10−1 4.9× 10−1

c4 (mm deg−4)

c0 (mm) (4,66.2) 72.9 (4,66.2) 75.8
c1 (mm deg−1) 8.1×10−1 7.9× 10−1

c2 (mm deg−2) −2.8× 10−2
−3.3× 10−2

c3 (mm deg−3) 3.4×10−4 6.4× 10−4

c4 (mm deg−4) −1.1× 10−6 3.9× 10−6
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The Supplement related to this article is available online
at https://doi.org/10.5194/os-14-187-2018-supplement.
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