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Multi-database studies

e Larger and more diverse populations
* More precise and generalizable findings
* Greater capture of rare exposures and outcomes
* Better suited to investigate heterogenous treatment effects
* More data for machine learning algorithms



Distributed data networks (DDNs)

Coordinating center

. 11 . 11
AO0O0O0 AO0O0O0 AO0O0O0 AO0O0O0
AO0O00 AOO0O0 AO0O00 AOO0O0
AOO0O0 AOO0O0 AOO0O0 AOO0O0




Distributed data networks (DDNs)

Coordinating center

.

|

1
o )
o | o o |
i ]

t

=

11
o | o o |
o o | | |
o | |-

t

=

11
| o o
| o o |
i | o ]

t

=




Distributed data networks (DDNs)

Coordinating center

.

\
| | |

I . NN I .
o | o | OoOoono o | o o | |
o o o | o o | | | o | o o
i { | o o | o | i | o o f |

g 8 B8 8 B



Examples of DDNs that assess the real-world effectiveness and safety of marketed medical products

w P OHDSI

=
g § CNODES

RK FOR OBSERVATIONAL DRUG EFFECT STUI

=~
health care systems
research network

P OHDSIjgs v

CNODES = Canadian Network of
Observational Drug Effect Studies
PCORnet® = National Patient-Centered
Clinical Research Network

OHDSI = Observational Health Data Sciences
and Informatics

EHDEN = European Health Data Evidence
Network

AsPEN = Asian Pharmacoepidemiology
Network




Overview

1. Definitions

2. Key activities of distributed
data networks



Measurements

1.C
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* Exposures

1
1
P * Outcomes 3. Causal inference

Analysis center * Confounders (Hypothesis testing)
! * Predictors
' \ J

4. Forecasting ﬂ
(Planning and prevention) /\

How can machine learning algorithms enhance these activities?

2. Safety signal detection
@ l:;; §§3 C;% (Hypothesis generation)
omput ing
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Computable phenotyping

* Phenotype definition: select inputs and learn how to map inputs to
phenotype status

* Information extraction: extract candidate inputs from unstructured

data (e.g., text or images)
2N

Bmo e

7]




l[dentifying anaphylaxis events from EHR data

Cross-validated AUC
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Methods for SSD using routinely
collected healthcare data

Safety signal detection (SSD) — —s

Disproportionality anabysis

PRR 9 (17.3%)

* Disproportionality analysis - .
* Bayesian Confidence Propagation Neural Network (BCPNN) cospzcpiss 131;;::

to calculate the Information Component! b 2 000

Traditional epide miological designs

* Traditional epidemiological designs s conrled s e 1549
* General propensity scores to reduce confounding ewuser cohrs o

. . - Case-crossover 3 (6.B%)

* Other innovative designs Caseperuin
Subtotal 44 (100.0%)

* E.g., training a random forest to identify drug-outcome pairs  remwaatasodston

. . . Temporal pattern discovel 10 (50.0%)

that are adverse drug reactions using features reflecting vorsmaro 6 300%
Bradford Hill causality considerations? oy base s oo
. . Sequence symmetry analysis & (100.0%)

* Information extraction —— s
* Extract mentions of adverse drug events from clinical text e .
Tree-based scan statistic 9 (100.0%)
Other designs including machine learming 13 (100.0%)
Lab results 9 (100.0%)
1Zorych et al. Stat Methods Med Res. 2013;22(1):39 Prescription only methods 5 (100.0%)

’Reps et al. ) Biomed Inform. 2015;56:356 Coste et al. Pharmacoepidemiol Drug Saf. 2023;32(1):28



Causal inference

* High-dimensional confounding adjustment

e Estimate “nuisance functions” (e.g., propensity score model and outcome
model in targeted maximum likelihood estimation)

* Prioritize or reduce dimensionality of covariates!

* Information extraction
e Extract candidate covariates from unstructured data

e Counterfactual prediction
* Predict potential outcomes for individuals under different treatments?

1E.g., Weberpals et al. Epidemiology. 2021;32(3):378
2Feuerriegel et al. Nat Med. 2024;30(4):958



Forecasting

* Prognostic algorithm: select predictors and learn how to map
predictors to prognosis

* Information extraction: extract candidate predictors from
unstructured data (e.g., text or images)

Lookback window for predictors < Time-at-risk

TIME

Index End of follow-up
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Modality of Degree of Granularity of
source data data standardization shared data
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Heterogeneity can exist in seemingly similar sites

Adults (=250y) with any diabetes (2011-2020)

Select Patient Characteristics

Age, mean (SD)
Female

Insulin use
Elixhauser comorbidity score, mean (SD)
Race

Unknown

American Indian or Alaska Native

Asian

Black or African American

Native Hawaiian or Other Pacific Islander

White

Number of hospitalizations, mean (SD)

KPWA
(N=74475)
62.8 (9.95)

36631 (49%)

17184 (23%)
3.59 (2.34)

20570 (28%)
1300 (2%)
5776 (8%)
3328 (4%)

773 (1%)

42728 (57%)

0.190 (0.60)

KPNW
(N=64231)
62.8 (9.91)

31461 (49%)

12207 (19%)
3.52 (2.28)

4168 (6%)
925 (1%)
3661 (6%)
2495 (4%)
855 (1%)
52127 (81%)
0.198 (0.62)

« KPNW: greater use of “unspecified” codes
« KPWA: greater use of specific codes

Source: Sentinel Innovation Center Methods Project (Shi et al., unpublished results)
KPWA = Kaiser Permanente Washington; KPNW = Kaiser Permanente Northwest

ICD-10 codes related to cataract (phecode 366)

Code Description Frequency Adjusted
KPWA  KPNW  Ratioe  ©value®
Any ICD-10 code related to cataract 75535 68658 1.03
E08.36 Diabetes mellitus due to underlying condition with diabetic cataract 23 0 3.10 6.12x107-03
E10.36  Type 1 diabetes mellitus with diabetic cataract 92 117 0.75 6.06x107-02
E11.36  Type 2 diabetes mellitus with diabetic cataract 3065 2996 0.96 5.88x107-01
H26.40  Unspecified secondary cataract 561 1144 0.46 1.62x107-39
H26.411 Soemmering's ring, right eye 11 1 1.79 1.26x107-01
rH26.491 Other secondary cataract, right eye 3044 771 3.67 <107-100 h
H26.492 Other secondary cataract, left eye 3129 741 3.93 <107-100
\ H26.493  Other secondary cataract, bilateral 3952 636 5.76 <107-100 y
H26.499 Other secondary cataract, unspecified eye 70 0 7.51 1.55x107-14
H26.8 Other specified cataract 526 1323 0.38 5.22x107-27
H26.9 Unspecified cataract 16704 15786 0.99 8.53x107-01
H59.021 Cataract (lens) fragments in eye following cataract surgery, right eye 47 14 2.23 1.31x107-01
H59.022 Cataract (lens) fragments in eye following cataract surgery, left eye 78 10 4.13 1.03x107-02
H59.029 Cataract (lens) fragments in eye following cataract surgery, 1 72 0.13 1.15x107-06
unspecified eye

796.1 Presence of intraocular lens 35888 44526 0.76 1.31x107-79

[ 798.41 Cataract extraction status, right eye 3950 199 17.79 <107-100

L 798.42 Cataract extraction status, left eye 3723 195 17.10 <107-100
798.49 Cataract extraction status, unspecified eye 622 112 4.87 1.15x107-33

aFrequency ratio defined as (frequency in KPWA + 10)/patient yrs in KPWA divided by (frequency in KPNW + 10)/patient yrs in KPNW;
where ratio>1 indicates stronger code endorsement at KPWA and ratio<1 indicates stronger code endorsement at KPNW.
bP-value from t-test, adjusted for person-time and baseline patient characteristics (age, sex, insulin, and Elixhauser index)



Approaches to reduce heterogeneity

» Approach 1: Fit site-specific models
e Approach 2: “Harmonize” the input data



nsupervised learning to reduce heterogeneity

Diabetes mellitus due to underlying condition with diabetic cataract

Ability of cataract codes to predict which
system an individual was from:

Before harmonization: cv-AUC of 0.72
After harmonization: cv-AUC of 0.59

E08.36
Soemmering's ring, right eye
H26.411
Other secondary cataract, unspecified eye Cataract (lens) fragments in eye following cataract surgery, unspecified eye
126499 @ H59.029
Cataract (lens) fragments in eye following cataract surgery, right eye % Cataract (lens) fragments in eye following cataract surgery, right eye
H59.021 ™ H59.021
Cataract (lens) fragments in eye following cataract surgery, left eye Cataract (lens) fragments in eye following cataract surgery, left eye
159,022 @ ® 150022
Type 1 diabetes mellitus with diabetic cataract ° \. Type 1 diabetes mellitus with diabetic cataract
E10.36 E10.36
Type 2 diabetes mellitus with diabetic cataract ° Py Type 2 diabetes mellitus with diabetic cataract
El1.36 E11.36
Unspecified secondary cataract '\ %. Unspecified secondary cataract
E26.40 = E26.40
Other secondary cataract, right eye S ™ Other secondary cataract, right eye
H26.491 / H26.491
Other secondary cataract, left eye Other secondary cataract, left eye
. H26.4§2 ° H26.492 < .
Other secondary cataract, bilateral =3 <=_ 0 Other secondary cataract, bilateral
H26.493 < 7 — H26.493
Other specified C(:Ia,;gcg Y Q}. gtvltgelg specified cataract
Unspecified ca}t;’rzcgt [} =) Eg;p;uﬁed cataract
Presence of mtraocula; éeé}: [ ® ;rgeéselnce of intraocular lens
Cataract extraction status, right eye t Cataract extraction status, right eye
798.41 798.41
Cataract extraction status, lzes;i,: ° ® g;?zﬂ:t extraction status, left eye
Cataract extraction status, unspecified eye [} [5) Cataract extraction status, unspecified eye
798.49 79849

@ KPWA @ KPNW

»
>

Direction of harmo

Blue lines = top mapping (code at KPNW with largest similarity)
Orange dashed lines = 2nd top mapping (code at KPNW with 2nd largest similarity)

Source: Sentinel Innovation Center Methods Project (Shi et al., unpublished results)
KPWA = Kaiser Permanente Washington; KPNW = Kaiser Permanente Northwest

nization (KPWA to KPNW)
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Modality of Degree of Granularity of
source data data standardization shared data

1 — Base case

2 — Less standardized
data available

3 — More complex data

Structured data only Common data model for

Structured data only

Structured and

all inputs

No common data model

for some inputs

No common data model

Individual-level data for
all sites

Individual-level data for
all sites

Individual-level data for

modalities used

unstructured data

for some inputs

all sites

Creates challenges for feature engineering

Modality of
source data

Degree of data
standardization

Granularity of
shared data

Structured data

WPy

o
i
Unstructured data
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Common data model

&

Individual-level

No common data model

SR

Summary-level



Unavailable structured and
unstructured clinical data in the
Sentinel Common Data Model
were among the top reasons
new drug safety concerns could
not be evaluated in the FDA’s
Active Risk Identification and
Analysis (ARIA) system.

Maro et al. Clin Pharmacol Ther. 2023;114(4):815

1 3

Table 4 Reasons for determinations of ARIA insufficiency

Reasons for insufficiency

Number of
determinations

Example

Direction of future development

Insufficient supplemental structured clinical 89 Lack of laboratory, imaging, or  Addressable with the addition of EHR data
data vital signs data elements into ARIA®®-3%
Inahbility of ARIA tools to perform required 82 Insufficient signal identification  ARIA has integrated signal identification
analysis tool abilities (Figure 1)'51%
Study requires data elements captured in 73 Lack of radiology or pathology Addressable with development of feature
unstructured clinical data, such as findings in notes engineering capabilities to extract and
clinical notes structure these data®’
Absence of validated code algorithm T2 Mo gold-standard chart review Sentinel has performed several gold
was performed for outcome of standard chart validations®®*? but these
interest require substantial resources. Efforts
underway to investigate rapid silver
standard reviews.
|dentification of clinical concepts with 60 Codes do not exist for concept Potentially addressable with added
available code algorithms/terminologies or validated performance EHR elements but if outcome is not
is not possible or inadequate characteristics are inadequate  well-defined or new {e.g., long COVID),
there may be substantial hurdles to
identification
Inadequate sample size 57 Low uptake of drug Mon-actionable as ARIA is the largest
systemn of its kind
Requires linkage to additional data source 52 Inahility to ascertain cause of Additional linkages are possible with
that is unavailable death significant financial resources
Insufficient observation time available 44 Inability to follow patients Actionable with substantial further
across healthcare plans or research and development and resolution
systems of data governance issues™
Insufficient mother-infant linkage 24 Lack of ability to connect Resolved with 2018 integration of Mother-
mothers and infants Infant Linkage table®
Insufficient inpatient data 18 Inahility to access granular Resolved with partnerships with inpatient
inpatient pharmacy information  healthcare systemsm
Inahility to identify over-the-counter 8 Overthe-counter medication use  Inherent limitation of both claims and EHR
medication use not captured data
Insufficient race capture of information on 3 Race is not well-captured FDA is working with Data Partners to
race understand approaches for better capture
of this data
Insufficient representation of the population 1 Limited generalizability based on  Sentinel added Medicare data in 2018

of interest

commercial claims data

and Medicaid in 2022

ARIA, Active Risk Identification and Analysis; COVID, coronavirus disease; EHR, electronic health record; FOA, US Food and Drug Administration.



When desired information is outside the CDM

e Approach 1: Standardize the unstandardized information
* |nvest time and resources upfront

* Some considerations:
* How easily can the information be added?
 How frequently will the information be used?
 How urgently is the information required?



The Sentinel Common Data Model over time

Latest version (SCDM v8.2.0)

Patient ID Patient ID Patient ID Patient ID Patient ID Patient ID
Enrollment Start " . Encounter ID & Encounter ID & Encounter ID &
e End Dates Birth Date Provider ID pd pand
Medial Sex Dispensing Date Service Date(s) Provider ID Provider ID
Caverage
Drug Coverage Postal Code Rx Facility ID Service Datels) Service Date(s)
Medical Record Diagnosis Code Procedure Code
Availability Race Rx Code Type Ete. &Type &Type
Principal Discharge
Ete. Days Supply Diagnosis Ete.
Amount
Dispensed

Inpatient Inpatient
Pharmacy Transfusion

Patient ID Patient ID Patient ID Patient ID Patient ID
Death Date Cause of Death Vaccination Date ‘ Encounter ID Encounter ID
o Rx Administration Transfusion
Date Imputed Flag Source Admission Date s A 1D
Vaccine Code & National Drug Code ||| Administration Start
Source Confidence Type (NDC) & End Date & Time
Transfusion Product
Confidence Etc Provider RxID ston
Ete Etc. Route Blood Type
Dose Etc
Etc.

Patient ID

Encounter ID
Provider ID
Order Date

Rx

Days Supply

Rx Route of
Delivery

Etc.

Patient ID

Result & Specimen
Collection Dates
Test Type, Immediacy &

tion
Logical Observation

Identifiers Names
and Codes (LOINC®)

Etc.

Mother-Infant Feature
Linkage Data Engineering Data
Feature
Engineering
Mother ID Facility ID Provider ID Patient ID
- Provider Specialty &

Mather Birth Date Facility Location Specialty Code Type Encounter ID
Encounter ID & Type Feature ID
Mother Admi Feature

Discharge Date
Child ID FE Code Type

Childbirth Date

Mother-Infant Match

Etc.

Patient ID

Measurement Date
& Time

Height & Weight

Diastolic & Systolic
BP

Tobacco Use & Type

Etc.

https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model

= ]

ient-Reported Measures (PRM) Data
PRM Survey
Response

Measure ID | Patient ID
Survey ID Encounter ID
Question ID Measure ID
Etc. Survey ID
Question ID
Response Text
Etc.

*The State Vaccine table has not been in use since SCDM v6.0.

Added State Vaccine Table*;
Converted Laboratory Table
into Laboratory Results Table

7.1.0:
Expanded Laboratory
Results Table: COVID-19
Diagnostic Test Results

10: 40: 8.0:
Sentinel Expanded Added
Common Enrollment, 6.0: Prescribing,

Data Model Demographic, Added Inpatient Facility, and
(SCDM) and Laboratory Pharmacy and Inpatient Provider
published Results Table Transfusion Tables Tables

2011 2015

2010 2013 2016

2.0: 5.0:

Added Expanded Laboratory
Laboratory Results Table; Shifted
and Vitals Laboratory Results

Tables Guidance into Separate

Documentation

https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model#enhancements-to-

sentinel-common-data-model

2018 2022

2020

7.0: 8.1.0:

Added Mother-
Infant Linkage
Table

82
Increased Capture
of Enrollment
Data; Improved
Capture of Race &
Ethnicity Data;
Increased Capture
of Death and
Cause of Death;
Added Feature
Engineering Table

2023

Added Patient-Reported
Measures Tables



The Sentinel Common Data Model over time

Latest version (SCDM v8.2.0)

Mother-Infant Feature
Linkage Data Engineering Data
Feature
Engineering
Patient ID Patient ID Patient ID Patient ID Patient ID Patient ID Patient ID Mother ID Facility ID Provider ID Patient ID
- = 3.0: 7.1.0: 82
E":’é‘ﬂ"fg:f::" Birth Date Provider ID E"‘“‘}'\"':; D& E"W‘}Tz & E"‘“}"‘::e’ & Encounter ID Mother Birth Date Facility Location ;:Ii:?vrvscp::wp: Encounter ID Added State Vaccine Table*; Expanded Laboratory Increased Capture
Medical Converted Laboratory Table Results Table: COVID-19 of Enrollment
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https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model *The State Vaccine table has not been in use since SCDM v6.0. https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model#enhancements-to-

sentinel-common-data-model



The Sentinel Common Data Model over time

Latest version (SCDM v8.2.0)

Mother-
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Patient ID Patient ID Patient ID Patient ID Patient ID Patient ID Patient ID Mother ID Facility ID Provider ID Patient ID
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PRM Survey
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Response Text
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*The State Vaccine table has not been in use since SCDM v6.0.
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Observational Medical Outcomes Partnership

(OMOP) Common

Data Model

Latest version (OMOP CDM v5.4)
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When desired information is outside the CDM

e Approach 2: Do a site-specific analysis (using a common protocol)

* May be especially preferred when:
* Desired information captured only at some sites
* Added value of desired information for the model is uncertain
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Training models with only summary-level data

* Approach 1: Collaboratively train a global model (federated learning)

1 2 3 4
Distribute Global Train with Local Send Local Aggregate Local
Model Data Models to Server Models

w7 D D N K
¥\ A N
8 @

Repeat Until Training Complete

Key
Aggregation Server
Training Node

> Model Aggregation

AN Weight/Gradient

Rieke et al. NPJ Digit Med. 2020;3:119 Exchange



Training models with only summary-level data

* Approach 1: Collaboratively train a global model (federated learning)

Advantages Disadvantages

* Train more robust and generalizable models by * Privacy leakage concerns
using data from multiple sites e Coordination and implementation challenges
(e.g., hardware and infrastructure requirements,
communication costs)
* Global model may not converge or perform well if
data across sites are too heterogeneous
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Training models with only summary-level data

e Approach 2: Train a local model independently at each site

Advantages Disadvantages

» Can be easily externally validated in other sites?! * Does not harness the full potential of the network
* Do not have to use the same inputs as other sites to train more robust and generalizable models
* Transportability of local models can be improved

using simpler federated learning approaches?

IReps et al. BMC Med Res Methodol. 2020;20(1):102.
2Reps et al. BMC Med Inform Decis Mak. 2022;22(1):142
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Choice of approach is a balancing act

Privacy

Performance

Degree of
heterogeneity
across sites

Sample size

at each site
Purpose of the

machine learning
model

Price



Other benefits of machine learning in DDNs

_ Single database Distributed data network

Generalizability External validation of External validation of models can be
models is rare and slow done more quickly and easily

Transparency Less impetus to document High transparency required to enable
finer-grain details data partners to replicate process

Interpretability Less impetus to interpret  Unusual or discrepant results across

and explain model outputs data partners require ability to
interpret and explain model outputs



Conclusions

* Many opportunities exist for machine learning to enhance the activities of
DDNs for post-market medical product surveillance.

* The diverse and siloed storage of data in DDNs create unique challenges
for applying machine learning.

 Various approaches can be considered to address these challenges.

* Rapid rise of LLMs and generative Al may accelerate the ability of DDNs to
address some challenges (e.g., incorporate information from unstructured
data into the CDM), but may also raise new challenges and considerations.

* Machine learning will continue to play an important role in advancing the
capabilities of DDNs for post-market surveillance in the years to come.
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enhance the activities of DDNs for post-market
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