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Abstract

This thesis addresses the problem of text spotting – being able to automatically
detect and recognise text in natural images. Developing text spotting systems,
systems capable of reading and therefore better interpreting the visual world, is a
challenging but wildly useful task to solve. We approach this problem by drawing
on the successful developments in machine learning, in particular deep learning and
neural networks, to present advancements using these data-driven methods.

Deep learning based models, consisting of millions of trainable parameters, re-
quire a lot of data to train effectively. To meet the requirements of these data hungry
algorithms, we present two methods of automatically generating extra training data
without any additional human interaction. The first crawls a photo sharing website
and uses a weakly-supervised existing text spotting system to harvest new data.
The second is a synthetic data generation engine, capable of generating unlimited
amounts of realistic looking text images, that can be solely relied upon for training
text recognition models. While we define these new datasets, all our methods are
also evaluated on standard public benchmark datasets.

We develop two approaches to text spotting: character-centric and word-centric.
In the character-centric approach, multiple character classifier models are developed,
reinforcing each other through a feature sharing framework. These character models
are used to generate text saliency maps to drive detection, and convolved with
detection regions to enable text recognition, producing an end-to-end system with
state-of-the-art performance. For the second, higher-level, word-centric approach to
text spotting, weak detection models are constructed to find potential instances of
words in images, which are subsequently refined and adjusted with a classifier and
deep coordinate regressor. A whole word image recognition model recognises words
from a huge dictionary of 90k words using classification, resulting in previously
unattainable levels of accuracy. The resulting end-to-end text spotting pipeline
advances the state of the art significantly and is applied to large scale video search.

While dictionary based text recognition is useful and powerful, the need for un-
constrained text recognition still prevails. We develop a two-part model for text
recognition, with the complementary parts combined in a graphical model and
trained using a structured output learning framework adapted to deep learning.
The trained recognition model is capable of accurately recognising unseen and com-
pletely random text.

Finally, we make a general contribution to improve the efficiency of convolutional
neural networks. Our low-rank approximation schemes can be utilised to greatly re-
duce the number of computations required for inference. These are applied to various
existing models, resulting in real-world speedups with negligible loss in predictive
power.
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Chapter 1

Introduction

1.1 Objective

This thesis addresses the problem of text spotting. At a high level, text spotting refers

to being able to automatically detect and recognise text in images, an algorithm that

is able to “read”. We do not impose a constraint on the type of text, or the type

of scene that should be able to be read – if a human can read it, a text spotting

system should also aim to be able to read it. This warrants the development of

general text spotting algorithms, which are not optimised for a specific domain, to

be able to handle both an image of a newspaper front page as well as a busy high

street scene, with text in the form of regular printed fonts, through to hand-written

calligraphy. The goal of this thesis is to advance the state of the art of such text

spotting algorithms.

Extracting any sort of semantic information from the raw volume of pixel values

of a digital image is not a trivial task, requiring multiple levels of feature extraction

and inference. Throughout the last few decades, a multitude of feature extraction

and inference tools have been proposed for a range of computer vision problems,

including text spotting. In this work we focus on the use of deep learning based

1



1.2. MOTIVATION AND APPLICATIONS 2

approaches for text spotting, reducing the reliance on hand-tuned image represen-

tations, showing superior performance in our application to text spotting.

The process of text spotting is mainly decomposed into two stages – text de-

tection followed by text recognition (Figure 1.1). Text detection refers to finding

and localising instances of text (for example words) from the image, correctly ignor-

ing background clutter. Text recognition refers to the visual decoding of a localised,

cropped instance of text (a word image) into the string of characters depicted. While

these two stages are not necessarily wholly distinct (i.e. the result of the text recog-

nition stage can be used to further improve the initial results of the text detection

stage), in this work and when describing previous text spotting methods we gener-

ally follow this separation. This separation makes sense computationally, since the

inference associated with detection is often very different and less computationally

expensive than that associated with recognition.

1.2 Motivation and Applications

The automatic detection and recognition of text in natural images, text spotting, is

an important challenge for visual understanding.

The human invention of language, and the cognitive ability to conceptualise,

process, and communicate ideas through language, is one of the defining abilities of

our species, and is associated with the outstanding intelligence of humans [Roth and

Black, 2005]. Text, as the physical incarnation of language, is one of the basic tools

for preserving and communicating information and ideas – indeed, text systems have

been in existence for many millennia, since 6600 BC, when graphical symbols were

carved in tortoise shells [Li and Wang, 2003]. Today, much of the modern world is

designed to be interpreted through the use of labels and other textual cues, and

so text finds itself scattered throughout many images and videos, and can often be

the main semantic focus of an image. It is therefore imperative to create a visual



1.2. MOTIVATION AND APPLICATIONS 3

(a)

(b) (c)

Figure 1.1: An example illustration of text spotting applied to an image (a). The
text spotting process is decomposed in to text detection (b) which detects and lo-
calises words (word bounding boxes are shown in green), followed by text recognition
(c) which recognises the string of characters depicted in each word image.

interface with text to allow rich machine interaction with the human world.

Through the use of text spotting, we can enable automated systems to decode

the text within images and videos, allowing a greater understanding of media. This

results in a number of direct applications, with some examples given below.

Automatic Annotation. A direct use of text spotting systems is for the auto-

matic annotation of images and videos. Over the past decade, there has been an

explosion in the quantity of videos and images created and shared in digital for-

mat. For example, every day 150k hours of video are uploaded to the popular video
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sharing site Youtube and 350 million photos are uploaded to the social network

Facebook. However, most of the information contained in this data is not easily

accessible. While occasionally images and videos have associated textual metadata,

this is usually sparse or absent; as such, the vast majority of the semantic content of

images and videos can be accessed only be decoding the information directly from

the pixels. The latter is still the major bottleneck towards better and more efficient

data indexing, cataloguing, and processing. Currently, it is largely the job of human

workers to annotate the text in visual media by hand, however the use of text spot-

ting systems can greatly speed up this human annotation process, and if accurate

enough could even replace human workers altogether, greatly reducing the cost of

annotation.

Visual Media Search. A further application of being able to automatically read

the text within visual media is to allow the large scale search and retrieval of this

media. Text spotting systems can be used to build semantic representations of

images and videos, which can be indexed to allow very fast retrieval by query terms.

As an example, Chapter 8 describes our own application to allow the search of text

within large video archives.

The use of the information gleaned from text spotting systems could also be used

for more general visual search, with the text contained within an image used in con-

junction with the features of a more traditional instance search methods (e.g. Arand-

jelović and Zisserman, 2012), to allow searching the billions of consumer photos in

existence for their visual content.

Robotics and Assistive Systems. Another area where text spotting is of great

use is in robotics [Posner et al., 2010]. By being able to interpret signage with

text spotting, robots may be able to understand the environment they are in, how

they can interact with the environment, and even use the text for localisation. For

example, the indoor environments of many buildings and offices are very bare and
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Figure 1.2: Text is found in a variety of different formats and scenarios in images
and videos. The range of fonts, textures, orientations, noise, and background objects
are some of the challenges associated with text spotting. However, this is a useful
problem to solve, as often it is the text contained which captures the semantics of
an image.

repetitive, where perhaps the main discriminative factor for localisation are signs

containing different textual labels. Also when navigating the streets, a self driving

car or robot may need to read temporarily placed signs to understand the changing

rules of the road.

While text spotting can assists robots, it could also be used to assist humans.

For visually impaired people and those who can’t read a certain script (for example

when reading another language), text spotting together with a text-to-speech system

would allow a user to hear the text that appears in the world which they are unable

to see [Markoff, 2013].

1.3 Challenges and Tasks

The definition of what the term “text” encompasses is somewhat ambiguous. For

the purposes of this thesis, “text” will be defined as the visual occurrence of a collec-

tion of coincident Latin characters. While there are many cases of single character

instances of text in the world, due to the simple shapes of many characters, it can

be very difficult to differentiate between a purposeful rendering of a single character
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in the world, and a chance depiction of a character from other visual elements and

structures – e.g. “l” can seem to appear in an image from an isolated vertical bar.

For this reason, we focus on methods for text spotting text containing more than

one character. Also, although in this thesis we limit ourselves to modelling Latin

characters, the methods described should be able to be extended to any glyph-based

text system (for example Chinese or Russian).

While the seemingly related problem of digitising text from planar, paper-based

documents, often referred to as optical character recognition (OCR), is well studied

and largely solved, general text spotting is still a challenging, unsolved problem.

When applied to natural scene images, document OCR techniques fail as they are

tuned to the largely black-and-white, line-based environment of printed documents.

The text that occurs in natural scene images is hugely variable in appearance and

layout, being drawn from a large number of fonts and styles, suffering from in-

consistent lighting, occlusions, orientations, noise, and, in addition, the presence

of background objects causes spurious false-positive detections. This places text

spotting as a separate, far more challenging problem than document OCR (which is

encompassed by text spotting itself). Figure 1.2 shows examples of the range of text

that occurs in images that should be able to be read with a text spotting system.

We now elaborate on the challenges associated with the two stages of text spotting.

Text Detection. Detecting text in natural scenes is a difficult task. Natural

scenes contain lots of different types of objects, both text and non-text objects,

which are composed of many small shapes and strokes. When looking at text and

characters, the simple shapes that represent them are actually very common in

natural scenes, and so it is very difficult to discriminate between text-like objects

in images that are due to text and those that are products of background objects

and imagery. This leads to the problem of false-positive text detection, and so a

major challenge is to correctly disambiguate background noise from true text and
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create a system with high precision. Another aspect to the problem is to ensure

that all instances of text are correctly found and localised rather than rejected as

background noise, which is especially hard when characters are occluded or imaging

noise, lighting, and texture distort their appearance. This dual problem – seeking

a system which finds all instances of text – warrants a system with high recall.

Achieving an ideal high precision, high recall text detection system is therefore a

big challenge.

Text Recognition. To perform text recognition, a system must correctly identify

the sequence of characters depicted in a word image. This is not a trivial task:

text in scenes comes from a huge variety of different fonts or is even handwritten,

so characters can look vastly different. In addition to the issue of different fonts

and visual styles, the text is rendered on different surfaces, with different textures

and colours, and can fall under varying lighting conditions across a single word or

character, creating varying visual properties and distortions to the characters. The

camera taking the image is usually not fronto-parallel with the surface the text

is rendered on, meaning there are perspective distortions, as well as rotation or

curvature to the baseline of the text, and the limit of the camera itself means text

may be blurred, noisy, and low resolution. These issues pose a significant challenge

to text recognition.

Since all characters of a word image must be correctly recognised, the error for

recognising each character is compounded – the incorrect classification of a single

character in a word will produce an incorrect recognition result. For this reason,

the problem of text recognition in natural images is sometimes simplified by util-

ising a fixed lexicon or dictionary (the terms “lexicon” and “dictionary” are used

interchangeably in this thesis). This language constrained recognition (which will

simply be referred to as constrained recognition) constitutes an easier problem as

the solution could be found by evaluating the suitability of each word in the lexicon
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exhaustively and choosing the most suitable lexicon word. Exhaustive search is not

possible when performing text recognition without a lexicon (unconstrained recog-

nition), as evaluating all possible combinations of characters and word lengths is a

combinatorially hard problem.

1.4 Contributions

In this section, we list the main contributions made in this thesis.

1. Automatically mining real-world data. We introduce a method to auto-

matically generate word and character level bounding box annotations from

photos uploaded to a photo sharing website. This system can crawl the pho-

tos of the website, and searches using a weak baseline text spotting system to

generate text annotations. These predicted annotations are compared to the

user-given metadata about the image, with matching results assumed to be

correct. This allows the generation of thousands of extra word and character

data samples for training without any human interaction. Additionally, we

also show that given only word level annotations for images, character level

annotations can be automatically generated using a word fitting algorithm and

a pre-trained character classifier. These methods are described in Section 3.2.

2. Synthetic data generation engine. In Section 3.3 we present our synthetic

data generator. This method renders realistic looking word image samples of

words from a dictionary or completely random strings. The process uses a

multitude of pre-defined probability distributions which are sampled to govern

the rendering of different fonts, character layouts, 3D projections, noise, and

blending with natural images. This results in word image samples that are

realistic enough to be used for training word recognition systems for real-

world text recognition. This process is a major contribution in enabling the
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training of the large text recognition models in Chapter 5 and Chapter 6, by

generating huge synthetic training datasets of millions of word images.

3. Feature learning for character-centric text spotting. We show that

convolutional neural networks (a machine learning framework introduced in

Section 2.1) can be trained very effectively for character recognition and de-

tection. We learn a set of visual features for text by sharing features between

different classification tasks, allowing the data and labels for the different tasks

to be combined in order to learn a more highly discriminative set of features.

The resulting classifiers using these features achieve state-of-the-art results on

standard character recognition benchmarks. This is described in Chapter 4,

along with an end-to-end text spotting system based on these classifiers. This

end-to-end system uses a binary text/no-text classifier to drive text detection,

and the integration of multiple character classifiers and a bigram classifier to

create a lexically constrained text recognition method.

4. Word region proposal based text detection. A new approach to text

detection is proposed in Chapter 5. Fast region proposal methods are used

to generate proposal word detections. This gives very high recall but also

produces many false-positive detections. The false-positives are filtered with a

subsequent classifier, and the remaining detections fine-tuned in a regression

framework. The advantage of this method over previous detection methods is

the ability to achieve much higher recall while maintaining high recall.

5. Dictionary constrained text recognition. Using the data generated by

the synthetic text engine from Section 3.3, we propose a new method for text

recognition in Section 5.4. This involves training a deep convolutional neural

network for word classification, classifying the input, a whole word image,

into a huge dictionary of 90k English words. The recognition accuracy of this
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system is shown to be far higher than previous methods. It is combined with

the new text detection method described in the previous paragraph to create

an end-to-end text spotting system that performs exceptionally well. The

complete system is given in Chapter 5.

6. Unconstrained text recognition. In Chapter 6 we seek to remove the

constraint on text recognition of having a fixed dictionary of words that can be

recognised. Two convolutional neural network models are defined, both taking

the whole word image as input, but one predicting the sequence of characters

in the image directly, and the other predicting the presence of character N-

grams in the image. We show that while these can be used alone for text

recognition, combining them and jointly training this formulation results in

more accurate text recognition, and does not rely on a dictionary, lexicon, or

language model for accurate prediction.

7. Speeding up convolutional neural networks. We also depart from the

text spotting problem and explore a method for speeding up convolutional

neural networks, a large source of computational complexity within our text

spotting algorithms. We show that we can use low rank approximations to-

gether with a mathematical trick to efficiently compute convolutions with sep-

arable kernels in order to gain large speedups in processing with minimal losses

in accuracy. We describe this contribution in Chapter 7 and show that this

general method can be applied to the character classifiers of Chapter 4 very

effectively.

8. Searching for text in video. Chapter 8 gives an example application of

text spotting for visual media search. Thousands of hours of video footage is

processed by the text spotting system introduced in Chapter 5 and indexed,

allowing the millions of frames of video to be instantly searched for a user-given
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query. The resulting application displays the accurate and scalable nature of

our text spotting algorithm, as well as its usefulness for video retrieval.

1.5 Publications

This section gives a list of the publications that contain the content of this thesis.

Published

• ECCV 2014, Jaderberg et al., 2014a – This paper covers the end-to-

end text spotting system described in Chapter 4, as well as the data mining

methods from Section 3.2.

• BMVC 2014, Jaderberg et al., 2014c – This paper contains the speedup

framework that is presented in Chapter 7.

• NIPS Deep Learning Workshop 2014, Jaderberg et al., 2014b – This

paper first introduces our synthetic data engine (Section 3.3) as well as the

dictionary constrained text recognition method from Section 5.4, the char-

acter sequence model (Section 6.1.1), and the N-gram detection model (Sec-

tion 6.1.2).

• IJCV May 2015: Jaderberg et al., 2015a – This paper describes the full

word-centric text spotting system of Chapter 5.

• ICLR 2015: Jaderberg et al., 2015b – This paper contains the work from

Chapter 6 on unconstrained text recognition with structured output learning.



Chapter 2

Literature Review

In this chapter we review the development in methods relating to this thesis. We

start with a review of deep learning in Section 2.1 and a number of works making

use of deep learning. In particular we focus on convolutional neural networks, their

use for a range of vision tasks, and the work on speeding up networks.

In Section 2.2 we provide an overview of this thesis’ target problem domain –

text spotting. We review a range of different methods for text spotting, and its

constituent sub-problems of text detection and text recognition.

2.1 Deep Learning

In this section we discuss deep learning. Deep learning can be seen as a form of

hierarchical learning, where algorithms make use of multiple layers of representations

to gradually transform data into high level concepts. A “deep” architecture is one

which is composed of more than one layer of transformations from input to output.

Moving from the input, through each layer of transformations, higher level features

are derived from the lower level features, leading to a hierarchical representation.

Such a design choice – systems built from multiple levels of representation – is

highly motivated from nature. It has been well observed that the mammalian visual

12
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Figure 2.1: A neural network. Each circle corresponds to a neuron, taking a number
of inputs and producing a single output. Connections between the neurons form a
network, and can take any arbitrary network structure. By arranging neurons in
a hierarchical manner, layers of representation can be built. This neural network
shown has three layers of neurons, so is referred to as a three layer network. In-
termediate layers between the input and output are referred to as hidden layers, as
their states are not directly observed.

cortex exhibits a layered structure [Hubel and Wiesel, 1962], with layers comprising

of groups of neuron cells in the brain. This has led to a number of computational

architectures aimed at emulating the brain, with arguably the most successful of

those formulations being the introduction of neural networks [Rosenblatt, 1958].

Neural networks allow multiple layers of “neurons”, where a neuron is a func-

tional unit taking multiple inputs and producing a single scalar output. We will use

the terms “neurons” and “units” interchangeably. A layer is comprised of multiple

neurons, whose inputs are taken from a previous layer of neurons, and whose out-

puts are fed to a subsequent layer of neurons. Figure 2.1 illustrates a simple three

layer neural network.

While a neural network can take any arbitrary network structure, in this thesis

we consider only feed-forward neural networks, whose graph structure takes the
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form of a directed acyclic graph. However, it is important to note that other network

structures are possible, such as those that incorporate cyclic or feedback connections,

giving rise to recurrent neural networks (e.g. Hochreiter and Schmidhuber, 1997)

that lend themselves to modeling sequential data, for example for speech [Graves and

Schmidhuber, 2005]. While feed-forward and recurrent neural networks are directed

graphs, it is also possible to define more generic graphical models with undirected

connections between units, such as Deep Boltzman Machines [Salakhutdinov and

Hinton, 2009] – though computationally very expensive, Deep Boltzman Machines

explicitly model data distributions with stochastic units, and are used for generative

models.

For computer vision, one of the earliest neural networks was the Neocognitron

[Fukushima, 1988], comprised of alternating layers of filters (where a neuron’s re-

sponse in a spatial position is the response of a filter at that spatial location) and

pooling layers. Each filter creates a feature map – the response of the filter across

spatial locations of the input. The pooling layers aggregate local responses and

subsample the feature maps, allowing some translational invariance to the filter

responses. This framework was able to learn to perform simple pattern recognition.

A similar representation, convolutional neural networks, was also developed for

visual recognition [LeCun et al., 1989; LeCun et al., 1998]. These convolutional

models have proved to be highly successful in computer vision. The next section in-

troduces convolutional neural networks. We then review some of the applications of

this learning framework to computer vision problems in Section 2.1.2, as well as ways

of approximating, reducing the size, and speeding up these models in Section 2.1.3.

2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [LeCun et al., 1989; LeCun et al., 1998]

are obtained by stacking multiple layers of convolutional filter banks on top of each
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other, followed by a non-linear response function. Each filter bank or convolutional

layer takes an input which is a feature map zi ∈ RH×W×C , with width W and height

H. zi(u, v) ∈ RC contains C scalar features or channels zci (u, v). The output of a

convolutional layer is a new feature map zi+1 ∈ RH′×W ′×N such that

zni+1 = hi(win ∗ zi + bin) ∀n ∈ [1 . . . N ], (2.1)

where win and bin denote the n-th filter kernel and bias respectively, zni+1 is the n-th

channel of the output tensor zi+1, ∗ denotes the convolution operator, and hi is an

element-wise non-linear activation function. This non-linear activation function can

take any form, but is most often a sigmoid such as hi(z) = tanh(z), or a rectified

linear unit (ReLU) hi(z) = max{0, z} where all negative elements of z are clamped

to zero.

Convolutional layers can be intertwined with pooling layers with subsampling.

A pooling layer takes a local region of a feature map and outputs a scalar response

using a pooling function – commonly this pooling function is average pooling, which

outputs the average value of the pooling region, or max pooling, which outputs the

maximum value of the pooling region. This pooling operation can be evaluated with

a pooling region centred on every pixel of the feature map, or can be evaluated on a

subset of pixels leading to a subsampled output feature map. For example, a 2× 2

max pooling layer with a stride of 2 takes the maximum value of a 2×2 pooling region

in a feature map centred at every other pixel, leading to a 2× subsampled output

feature map. Pooling layers help build translation invariance in local neighbourhoods

while also downsampling the feature maps to reduce dimensionality for the rest of

the model.

The forward evaluation process of a CNN starts with z1 = x, where x is the

input image, and ends by, for example, connecting the last feature map to a logistic
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regressor in the case of classification. Often the last few layers of a network are fully

connected layers, where each unit is connected to every element of the input feature

maps.

CNNs are a sub-type of neural network, which exploit weight sharing by defining

filters whose weights are the same but applied to each spatial location of the input

feature map. Besides helping to reduce the number of parameters required by the

network, weight sharing with convolutional layers means that a single model of a

particular visual object can be learnt which responds to that object regardless of

its spatial location in the input image. The response of the visual object is simply

translated in the output feature map corresponding to the object’s translation in

the input image.

Training. Part of the power of convolutional neural networks is in the ability for

all the parameters of the network, ψ = {win,bin} ∀ n, i to be jointly optimised in the

case of supervised learning. This is done by defining a differentiable loss function

and using back-propagation [Rumelhart et al., 1986]. For example, the supervised

learning error is

E(X , ψ) =
1

|X |

|X |∑
k=1

L(f(xk;ψ), yk) (2.2)

with a loss function L between the groundtruth label yk and the output of the

CNN f(xk;ψ) on the k-th training sample xk from the training set X . This can be

minimised, minψ E(X , ψ), by computing the gradients of the loss with respect to

the parameters of the network.

The parameters of the model can be jointly optimised to minimise the loss over

the training set using Stochastic Gradient Descent (SGD). In a classification task,

this means that the classifier (loosely corresponding to the final layer of the CNN) is

jointly trained with the feature extractors (the lower layers of the network) without

any human engineering of features, however, the distinction between the classifier



2.1. DEEP LEARNING 17

Figure 2.2: The classic LeNet-5 convolutional neural network, taken from LeCun et
al., 1998. Alternating convolutional layers (C) and subsampling layers (S) transform
the input image, followed finally by a series of fully connected layers (F) to classify
the handwritten character image inputs.

and feature extractors are blurred.

Outside of a supervised learning paradigm, CNNs can be also trained in an

unsupervised manner, such as by using an autoencoder [Bengio, 2009], which learns

layers by minimising the error between the original input and its reconstruction,

which is the input after it has been transformed by a number of layers. This is done

in a greedy manner, layer by layer, to learn feature extractors based on the data.

Unsupervised learning is one way to initialise CNNs for supervised learning, rather

than, for example, randomly initialising the weights of a CNN with a Gaussian

distribution.

2.1.2 CNNs for Vision

The general structure of convolutional networks provides a powerful framework for

building computer vision systems. In fact, one of the earliest successful CNN mod-

els was used for character recognition, something useful in traditional text spotting

pipelines. The LeNet-5 convolutional neural network (LeCun et al., 1998, shown in

Figure 2.2) performs digit recognition, defining the classic, successful architecture

of alternating convolutional layers with subsampling layers for feature extraction,

and using fully connected layers for the final classification layers. By using subsam-
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pling layers, the spatial dimensionality of feature maps are reduced, reducing the

computation required by the remainder of the network. This was shown to achieve

very good performance on the MNIST digit recognition dataset [LeCun and Cortes,

1998].

However, due to the complexity of natural images, it wasn’t until recent years

that CNNs have proven to be competitive in natural image vision problems. The ad-

vent of large training datasets, such as ImageNet [Deng et al., 2009], and massively-

parallel GPU implementations, has made it possible to train much larger networks

quickly, and with enough data to avoid overfitting. This was exploited by Krizhevsky

et al., 2012 and Ciresan et al., 2012, showing large improvements in visual classifi-

cation tasks.

Krizhevsky et al., 2012 use an eight layer CNN (the number of layers refers to

only the weight layers), incorporating ReLU non-linearities, max-pooling, and con-

trastive normalisation. This was trained on ImageNet to perform 1000-way object

classification. Since the network contains 60 million parameters, the authors use

dropout [Hinton et al., 2012] and input image jittering to ensure that overfitting is

mitigated.

Since then, a number of other works have used CNNs to advance object classifi-

cation further [Szegedy et al., 2014; Simonyan and Zisserman, 2015; He et al., 2014].

Simonyan and Zisserman, 2015 use a very deep, 19 layer CNN to perform object

classification, and additionally perform localisation – predicting the bounding box

of the object within the image – by training a CNN to regress the coordinates of

the object’s bounding box directly.

There have also been advancements in CNN based object detection (localising

and recognising all instances of objects within an image) for example with the

OverFeat system from Sermanet et al., 2013 and the R-CNN system from Girshick

et al., 2014. To perform object detection in Girshick et al., 2014, region proposals
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are extracted with Selective Search [Uijlings et al., 2013] which are subsequently

classified by a CNN. This general object detection framework inspired our own text

spotting pipeline in Chapter 5.

Outside of general object recognition, the work by Farabet et al., 2012 has shown

the effectiveness of a multi-scale CNN architecture for semantic scene segmentation,

directly predicting the class label of each pixel in the input image. Taigman et

al., 2014 shows that with a huge amount of training data, CNNs can be used to

obtain human level face recognition accuracy. Toshev and Szegedy, 2013; Pfister

et al., 2014; Tompson et al., 2014 use CNNs effectively for human pose estimation,

and Simonyan and Zisserman, 2014 enable action recognition in videos with a two-

stream convolutional neural network. One stream of the CNN acts on the raw image

frames, while the other on motion data computed with optical flow, with the output

descriptors of each stream undergoing late fusion for classification.

Similar to our own work in Chapter 6, there have been previous works which

extend CNNs to incorporate graphical models, such as the early text recognition

work of LeCun et al., 1998 to combine character classifier results on image segmen-

tations. Another example is the recent work of Tompson et al., 2014 for human pose

estimation, where an MRF-like model over the distribution of spatial locations for

each body part is constructed, incorporating a single round of message-passing.

In addition, Section 2.2 includes the review of some further works using CNNs

specifically for text spotting.

2.1.3 Fast and Efficient CNNs

As is clear from the wealth of state-of-the-art results in computer vision reported in

the works from the previous section, CNNs are a compelling tool for any deployed or

commercial vision system. However, the massive number of parameters causes the

memory and storage requirements to be large, and the need to perform large num-
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bers of convolutions on multiple feature maps causes the computational complexity

and hence the time for inference to be large. This section reviews work related to

speeding up and reducing the memory footprint of convolutional neural networks.

Some of these methods can be applied at training and test time, while others can

only be applied at test time after the model has been fully trained.

2.1.3.1 Hardware Acceleration

To speed up the training and execution of CNNs, one can focus on hardware-specific

optimisations. In recent years, a successful approach to this has been to utilise the

massively parallel nature of GPUs. GPUs are general purpose computation units

which contain thousands of processing cores. Though these are generally clocked

slower than CPU cores, they can be very efficiently programmed for parallel execu-

tion, allowing large speedups on parallelisable problems. The convolution of multiple

filters across feature maps – the main computational component of a convolutional

layer in a CNN – is an example of a parallelisable computation problem. This is

taken advantage of in cuda-convnet [Krizhevsky et al., 2012], where Krizhevsky

parallelises the application of convolutions in spatial locations, across filters, and

also across data samples. GPU execution of CNNs is also exploited in the Caffe

framework Jia, 2013 and the MatConvNet framework Vedaldi and Lenc, 2014. In

these two frameworks, the 3D convolution operation across multiple channels and

multiple data samples is converted to matrix-matrix multiplication. While this con-

version incurs some computational overhead, as well as increasing the amount of

memory required for the routine, the matrix-matrix multiplication can take advan-

tage of low level optimised linear algebra routines, leading to large overall speedups.

The work of Chetlur et al., 2014 also addresses GPU based parallelisation with low

level optimisations for GPUs. In general, by taking advantage of a parallel GPU

based CNN framework, speedups of around 40× can be gained over CPU execution.
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Another promising approach to speeding up convolutional layer execution in

CNNs is to compute the convolution in the Fourier domain [Mathieu et al., 2013].

The convolution between two kernels in the real domain becomes the point-wise

multiplication in the Fourier domain, i.e.

win ∗ zi = F−1(F(win) · F(zi)) (2.3)

where F denotes the Fourier transform and F−1 the inverse Fourier transform.

When the kernel win is large and the Fourier transform can be computed quickly, for

example using the Fast Fourier Transform algorithm (FFT), speedups over regular

convolution can be achieved. In particular, by sharing the FFT computation of

the filters between data samples within the same SGD batch, the transformation

costs can be minimised. Mathieu et al., 2013 show that this can be implemented

efficiently on a GPU for speed gains.

Other hardware specific speedup techniques for CNNs are presented in the work

of Vanhoucke et al., 2011. It is shown that specific CPU architectures can be taken

advantage of by using SSSE3 and SSE4 fixed-point instructions and intelligently

aligning data in memory. Finally, Farabet et al., 2011 engineer a bespoke FPGA

implementation of CNNs, allowing real-time inference of a semantic scene segmen-

tation system.

While not specific to hardware, one can take advantage of the parallelisation

schemes of convolution frameworks to achieve speedups during inference. As an

example, to speed up test-time in a sliding window context for a CNN, Iandola

et al., 2014 shows that multi-scale features can be computed efficiently by simply

convolving the CNN across a flattened multi-scale pyramid. This allows sharing

convolutions, something we also exploit in Chapter 4.
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2.1.3.2 Approximating for Speed

Another, often orthogonal, approach to speed up the execution of CNNs is to look

at approximating the computations of a CNN. These can be seen as more general

speedup methods for CNNs, but can have an associated impact on the accuracy of

the CNN due to the approximations made.

Denil et al., 2013 make in important contribution by showing that many of

the parameters of a neural network are redundant, and can in fact be predicted

by a few base parameters. In particular, the smoothness of the Gabor-like filters

produced in the first layer of a CNN can be modelled, and in the best case the full

set of parameters can be predicted from just 5% of the parameters, with no loss in

accuracy of the full CNN. This is achieved by selecting an appropriate basis set of

features and regressing the full set of parameters from the basis. Taking advantage

of this redundancy allows memory savings in their method, but this work paves the

way for methods that can exploit these redundancies for computational speedups as

well.

A simple manner to force approximations of CNNs for computational speedup

from Vanhoucke et al., 2011 is to use 8-bit quantisation of the weight parameters,

instead of single or double precision floating point representations. This reduces the

memory use of the CNN by up to 4×, and also allows the use of fast SSSE3 and

SSE4 instructions as described in the previous section. This quantisation is applied

to all but the first layer of the network, with negligible impact on accuracy.

Taking into account the structure of CNNs, in particular convolutional layers, it

is possible to perform low-rank approximations of the filters in the layer.

As opposed to performing full convolution, with full-rank filters, Mamalet and

Garcia, 2012 enforce that the filters are rank-1, so the convolution can be simplified

into separable convolution, which is less computationally demanding. In addition
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to the separability of filters, Mamalet and Garcia, 2012 aim at combining the dense

convolution layer followed by pooling into a single convolutional layer. This can

be achieved by ignoring the non-linear component of the network after convolu-

tion is performed. In that case, convolution followed by average pooling with 2×

down-sampling can by simplified to a single convolutional layer with a stride of 2.

Separable convolution and sub-sampling layers are fused together in the network de-

sign, and used for training and testing with some success. However, this technique

imposes constraints on the designs of the network.

Denton et al., 2014 also use low rank approximations and clustering of filters to

find approximate the filters in a CNN and achieve speedups. The 4D filter tensors

(width× height× channels× number of filters) can be reduced in rank using a CP-

decomposition based scheme. Denton et al., 2014 perform biclustering, splitting

the two non-spatial dimensions of the filter kernel into subgroups, and reduces the

effective ranks in the CP-decomposition. Each component is computed in a greedy

manner, and found by minimising the reconstruction error with least squares. It

should be noted that this process is not applied to the first layer of the network.

Similar to our observations in Chapter 7, the filters in this exhibit different properties

which do not lend themselves to low rank decomposition. Using these techniques

Denton et al., 2014 achieve 1.6× speedup of single convolutional layers (not of the

whole network) with a 1% drop in classification accuracy on a CNN trained for

ImageNet classification.

An alternative method for computing low rank decompositions of filter banks,

not specific to CNNs, is the work of Rigamonti et al., 2013. Rigamonti et al. show

that multiple image filters can be approximated by a shared set of separable (rank-

1) filters, allowing large speedups with minimal loss in accuracy. We build on this

approach in our own work in Chapter 7, with the method of Rigamonti et al., 2013

discussed fully there. The recently released work of Lebedev et al., 2014 also builds
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on this idea and our own work, performing a full CP-decomposition on the 4D filter

tensors, showing impressive results.

2.2 Text Spotting

This section now focusses on a review of the previous work related to text spot-

ting. In particular, this literature review will focus on the recognition of text from

natural images, as opposed to recognising text from scanned (or fronto-parallel pho-

tographed) documents – a much less complex problem.

Since text spotting is usually decomposed into two salient part, detection and

recognition, with previous work sometimes constrained to an individual sub-task

or the end-to-end text spotting problem as a whole, we focus on reviewing each

sub-problem separately in Section 2.2.1 and Section 2.2.2.

2.2.1 Text Detection Methods

Text detection methods tackle the first task of the standard text spotting pipeline [Chen

and Yuille, 2004]: producing segmentations or bounding boxes of words in natural

scene images. Detecting instances of words in noisy and cluttered images is a highly

non-trivial task, and the methods developed to solve this are based on either char-

acter regions [Chen et al., 2011; Epshtein et al., 2010; Yi and Tian, 2011; Yin et al.,

2013; Neumann and Matas, 2010; Neumann and Matas, 2011; Neumann and Matas,

2012; Neumann and Matas, 2013; Huang et al., 2014] or sliding windows [Quack,

2009a; Anthimopoulos et al., 2011; Posner et al., 2010; Wang et al., 2011; Wang

et al., 2012; Chen and Yuille, 2004].

2.2.1.1 Character Region Methods

Character region methods aim at finding connected component regions in the im-

age which are characters, and then grouping character regions into words. The

advantage of character region methods for detecting words is that the segmenta-
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(a) (b)

(c) (d)

Figure 2.3: An example of the Stroke Width Transform (SWT) [Epshtein et al.,
2010] used for text detection of an image (a). The SWT assigns every pixel the
value of the width of the stroke it belongs to (b). Text and characters tend to be
regions of uniform stroke width, so the variance of each connected component can
be computed (c). Regions of low variance are likely to be characters, and can be
grouped for word detection (d). Images from Epshtein et al., 2010
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tion of characters is predicted as part of the process which can aid the subsequent

recognition process.

Epshtein et al., 2010 use the notion of stroke width to assign pixels to characters.

The Stroke Width Transform (SWT) produces a per-pixel output transformation

of the original image, where each pixel is assigned the value of the width of the

stroke it is estimated to belong to. Regions of similar stroke width are grouped

together, and the variance of each connected component computed. Intuitively, it

is observed that characters are composed from regions of constant stroke width,

so low variance connected components are taken as character candidates. Nearby

character candidates with similar stroke width, sizes, and other heuristic properties,

are grouped together to form words. This process is illustrated in Figure 2.3. In more

recent work, Neumann and Matas, 2013 revisit the notion of characters represented

as strokes, but rather than using the SWT, use gradient filters to detect oriented

strokes.

Another method of finding character regions in images is to use Extremal Regions

Matas et al., 2002. An Extremal Region (ERs) is a connected component region of a

grayscale image with similar intensity values. These regions are found by incremen-

tally thresholding the image which gives rise to a tree of ERs, with the root node

corresponding to an ER consisting of the whole image. Maximally Stable Extremal

Regions (MSERs) are a subset of ERs which exhibit stability in shape while vary-

ing the threshold intensities. ERs and MSERs have the advantage of being fast to

compute. The work by Neumann and Matas [Neumann and Matas, 2011; Neumann

and Matas, 2010; Neumann and Matas, 2012] exploit this method of generating con-

nected components for character and word detection. In Neumann and Matas, 2010,

MSERs are extracted and each one is classified by a binary character/no-character

support vector machine (SVM) classifier [Cristianini and Shawe-Taylor, 2000] acting

on shape and colour features (Figure 2.4). Text lines are then created by connecting
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Figure 2.4: Three examples of images containing text of different scripts. Below each
image, the MSERs extracted are shown, with green regions having been classified
as characters regions, and red regions classified as non-character regions. MSER
classification is used as the basis for a number of previous text spotting methods,
including that of Neumann and Matas, 2010, where this figure is taken from.

each character MSER to other character MSERs in the graph of nearby detections

when it is predicted the two character MSERs belong together, with the predic-

tion driven by another SVM. In Neumann and Matas, 2012, a cascade of classifiers

filter out ERs which do not resemble characters, and through pruning, an exhaus-

tive search of the graph connecting all character candidates is performed, grouping

characters into text lines (presented in Neumann and Matas, 2012). This method

is particularly impressive in being able to achieve real time speeds for localisation

and recognition (the recognition stage is described in Section 2.2.2). An open source

implementation of this detection algorithm is available1 which includes an improved

grouping method from Gomez and Karatzas, 2013.

MSERs are also used for text detection in the work of Yin et al., 2013; Chen

et al., 2011; Huang et al., 2014. Chen et al., 2011 build on vanilla MSERs by using

edge-enhanced MSERs which are more robust to blur, and use geometric properties

1http://docs.opencv.org/trunk/modules/objdetect/doc/erfilter.html

http://docs.opencv.org/trunk/modules/objdetect/doc/erfilter.html
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Figure 2.5: The text saliency maps (red indicates a high probability of text) com-
puted with a sliding window random forest classifier acting on local edge features
from Anthimopoulos et al., 2011. Each response map, from left to right, is computed
at a different scale, with a target text height of 10 pixels, 50 pixels, and 90 pixels
respectively. The original image has a resolution of 480× 503 pixels. Note how the
“correct” text size of 10 pixels allows fairly accurate text detection.

combined with the stroke width computed with the SWT [Epshtein et al., 2010]

as an additional cue for filtering out false positive character candidate detections.

More recently, Huang et al., 2014 expand on the use of Maximally Stable Extremal

Regions by incorporating a strong CNN classifier to efficiently prune the trees of

Extremal Regions, also leading to less false-positive detections.

2.2.1.2 Sliding Window Methods

As an alternative strategy for text detection, many previous work uses sliding win-

dow methods to find text in an image. Sliding window based methods operate in a

manner similar to generic object detection – that is taking a small window of interest

within the full image, and classifying whether or not text is contained within that

window. This window is then translated across the entire image, and at different

scales, to detect text at all possible positions and scales. The output is a pixel wise

text/no-text classifier, creating a text saliency map. The text saliency map is then

generally thresholded to generate bounding box predictions for text localisation.

Early work by Chen and Yuille, 2004, Quack, 2009a, and Posner et al., 2010 all
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make use of a similar sliding window strategy for text detection based on boosted

classifiers and Haar-like features. Posner et al., 2010 uses a cascade of boosted

classifiers to generate a saliency map for each scale, then thresholding this map

to obtain bounding boxes of text. Till Quack’s text detector [Quack, 2009a] is

based on the Viola-Jones method of face detection [Viola and Jones, 2001] – simple

rectangular block based features are combined as weak classifiers in an Adaboost

framework [Freund and Schapire, 1997] – with the positive sliding window detections

being clustered into complete bounding box estimates for text localisation.

Anthimopoulos et al., 2011 create hand-crafted features specifically for text de-

tection. These are dynamically-normalised edge features which generate local binary

patterns within the sliding window image patch. The local binary patterns are used

for a Random Forest classifier [Breiman, 2001] evaluated in a sliding window manner

to produce a text saliency map. Figure 2.5 shows some example text saliency maps

generated using our own implementation of this method.

Borrowing a popular detection framework from the general object detection lit-

erature, Wang et al., 2011 use a random ferns classifier [Ozuysal et al., 2007] trained

on HOG features [Felzenszwalb et al., 2010] in a sliding window scenario to find

characters in an image. These are grouped into words using a pictorial structures

framework [Felzenszwalb and Huttenlocher, 2005], with the grouping constrained

by a small fixed lexicon. Interestingly, Wang et al., 2011 demonstrate the ability to

train on synthetically generated character data, a theme we also explore in Chapter 5

and Chapter 6.

Wang et al., 2012 was the first work to make use of the discriminative power

of CNNs for text detection. The authors define a text/no-text classification CNN,

which is applied in a sliding window manner convolutionally to generate a text

saliency map. The CNNs are trained on a synthetic character dataset (described in

Section 3.1.6), but only after being pre-trained in an unsupervised manner [Coates
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et al., 2011]. Word detections are generated by first finding text lines (where a text

line could contain multiple words) through non-maximal suppression across rows in

the text saliency map, and then splitting the text lines into words by performing

non-maximal suppression along the columns of each text line individually. The work

by Wang et al., 2012 was a key inspiration for the text detection phase in Chapter 4.

All text detection methods reviewed employ the notion of detecting text by

first detecting characters, and subsequently grouping these into words. In our own

text detection work in Chapter 5, we depart from this notion and model words

explicitly, removing some of the ambiguity faced trying to detect single characters,

and avoiding the inaccuracy that is packaged with having to perform a character

detection grouping technique.

2.2.2 Text Recognition Methods

Once text lines or words have been detected, the next stage for a text spotting

system is to recognise the text. The methods reviewed in this section are focussed

purely on this text recognition stage. Since the input to the text recognition stage

is generally a cropped word image, all references to images in this section refer to

word images.

While it should be noted that there are many previous works focussing on hand-

writing or historical document recognition [Graves et al., 2009; Fischer et al., 2010;

Rath and Manmatha, 2007; Frinken et al., 2012; Manmatha et al., 1996], these

methods don’t generalise in function to generic scene text due to the highly variable

foreground and background textures that are not present with documents.

For scene text recognition, methods can be split into two groups – character based

recognition [Yao et al., 2014; Bissacco et al., 2013a; Alsharif and Pineau, 2014; Wang

et al., 2011; Wang et al., 2012; Quack, 2009b; Posner et al., 2010; Weinman et al.,

2014] and whole word based recognition [Goel et al., 2013; Rodriguez-Serrano et al.,
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2013; Novikova et al., 2012; Mishra et al., 2012; Almazán et al., 2014; Gordo, 2014].

2.2.2.1 Character Based Recognition

Character based recognition relies on an individual character classifier to perform

per-character recognition which is integrated across the word image to generate the

full word recognition. This therefore requires some level of character detection or

segmentation within the word image, which is often provided by the detection stage

of a text spotting pipeline.

As discussed in the previous section, Neumann and Matas, 2011; Neumann and

Matas, 2010; Neumann and Matas, 2012 construct a graph of character MSERs to

represent a word. To recognise the characters in this graph, these methods use

the gradients of the size-normalised character segmentations (the MSER associated

with a character) as features to an SVM classifier to classify character regions. This

is followed by a typographical model for disambiguating uppercase and lowercase

characters, and a pairwise letter-based language model to choose the most probable

recognised word estimate. In their more recent work, Neumann and Matas, 2013

use nearest neighbour search in feature space to a database of synthetic characters

to perform character recognition, but crucially keep a shortlist of multiple possible

recognition results for each character to mitigate uncertainty when performing word

recognition. The final word is then the maximum scoring sequence of characters

from the shortlists given a 2-gram language model and a graphical model.

The method in Wang et al., 2011 also uses a graphical model, with unary terms

from character classifiers acting on HOG features and pairwise terms incorporating

spatial layout and scale similarity between neighbouring characters. This is done in

the context of a lexicon, so each lexicon word is scored for each pictorial structure,

with the position of the characters optimised efficiently with dynamic programming.

The highest scoring lexicon word is then taken as the final recognition result.
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The work by Yao et al., 2014 also uses HOG features for character recognition,

but additionally define a set of mid-level features, strokelets, which are learnt by

clustering sub-patches of characters. Characters are detected with Hough voting,

with the characters classified by a random forest classifier acting on strokelet and

HOG features combined.

The works of Wang et al., 2012; Bissacco et al., 2013a; Alsharif and Pineau, 2014

all use CNNs as character classifiers. Wang et al., 2012 use unsupervised pre-training

(as with their text/no-text classifier described in Section 2.2.1) to create a multi-

class CNN classifier to perform case-sensitive character recognition. This is then slid

across a word image, producing a 62×W response, where W is the width of the word

image and 62 is the number of characters (0-9, a-z, A-Z). Non maximal-suppression

finds the columns of the response most likely to contain a character. As in Wang

et al., 2011, recognition is performed in the context of a fixed lexicon by scoring each

lexicon word, optimally fitting each word to the non-maximally suppressed columns

of the response map.

To remove the need to perform expensive sliding window evaluation of character

classifiers across the whole word image, Bissacco et al., 2013a and Alsharif and

Pineau, 2014 over-segment the word image into potential character regions, either

through unsupervised binarization techniques or with a fast supervised classifier

trained to detect gaps between characters. Over-segmentation produces a set of

potential character segments which are individually classified, and the final word is

recognised by selecting a path through the over-segmentation graph to maximise a

score (see Figure 2.6). Alsharif and Pineau, 2014 use a complicated combination of

segmentation-correction and character recognition CNNs together with an HMM,

constrained by a fixed lexicon, to generate these scores. The PhotoOCR system

[Bissacco et al., 2013a] uses a neural network classifier acting on the HOG features

of the segments as scores to find the best combination of segments using beam
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Figure 2.6: An example of the graph of potential character detections produced
by an over-segmentation method, such as in Bissacco et al., 2013a; Alsharif and
Pineau, 2014. Each segmentation undergoes character classification, and the full
word is found by finding the path from start (S) to end (e) which maximises some
score. Image taken from Alsharif and Pineau, 2014.

search. The beam search incorporates a strong static N-gram language model, and

the final beam search proposals are re-ranked with a further language model and

shape model.

We make our own contribution to character based recognition with the recogni-

tion system in Chapter 4.

2.2.2.2 Word Based Recognition

As an alternative approach to text recognition, other methods use whole word based

recognition methods. Rather than requiring character detection and classification,

features from across the entire word image are integrated or pooled to perform word

classification.

The works of Mishra et al., 2012 and Novikova et al., 2012 still rely on explic-

itly trained character classifiers, but pool evidence together from across the word.

Novikova et al., 2012 combines both visual and lexicon consistency into a single prob-

abilistic model. The solution is obtained by estimating the maximum a posteriori
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solution of the joint posterior of the model using weighted finite-state transducers,

resulting in accurate recognition of scene text using a full English language lexicon.

Goel et al., 2013 take a whole word image approach by comparing the word

image to many simple black-and-white synthetic font-renderings of lexicon words.

Histogram of gradient features are computed from vertical strips of the image to be

recognised at different horizontal locations, and a weighted Dynamic Time Warping

algorithm is used to match these features to the database of synthetic word images.

A popular way to exploit a full word image approach to text recognition is

to define a joint embedding space between images and dictionary/lexicon words

[Rodriguez-Serrano et al., 2013; Almazán et al., 2014; Gordo, 2014]. A mapping

from words (labels) to a common embedding space is learnt together with a mapping

from word images to the same space. Recognition can be then posed as a nearest

neighbour search by projecting the test word image into the embedding space and

finding the nearest word label in that space.

Rodriguez-Serrano et al., 2013 use aggregated Fisher Vector [Perronnin et al.,

2010] encodings of patches from the image as features, and a spatial pyramid of

characters representation for the word labels. A linear projection between these two

encodings is learnt in a Structured SVM framework, ensuring groundtruth pairs of

images and word labels are closer than the images with incorrect labels. This creates

an effective joint embedding space to allow word recognition.

Almazán et al., 2014 further explore the notion of word embeddings. Differ-

ently to Rodriguez-Serrano et al., 2013, word labels are encoded with a pyramidal

histogram of characters representation and projected into the common embedding

space, and although images are also encoded with Fisher Vectors, an attribute model

is learnt to represent the Fisher Vector encoded images before then being trans-

formed into the common embedding space with word labels. This framework is

extended in Gordo, 2014 where Gordo makes explicit use of character level training
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data to learn mid-level features to represent word images. This results in perfor-

mance on par with Bissacco et al., 2013a but using only a small fraction of the

amount of training data.

While not performing full scene text recognition, Goodfellow et al., 2013b had

great success using a CNN with multiple position-sensitive character classifier out-

puts to perform street number recognition. This model was extended to CAPTCHA

sequences up to 8 characters long where they demonstrated impressive performance

using synthetic training data for a synthetic problem (where the generative model

is known). In contrast, we show that synthetic training data can be used for a real-

world data problem (where the generative model is unknown) in the work of this

thesis.

Our methods for text recognition in Chapter 5 and Chapter 6 also follow a

whole word image approach. Similarly to Goodfellow et al., 2013b, we take the

word image as input to a deep CNN, however we employ a dictionary classification

model in Chapter 5, as well as combining a character prediction and an N-gram

prediction model with a conditional random field in Chapter 6.



Chapter 3

Data

In this chapter we describe the datasets used throughout this thesis. Since the focus

of this thesis is solely on text spotting, the same datasets for training and evaluation

are used in multiple chapters, and so we introduce and describe them here.

There are a number of pre-existing publicly available datasets for text detection

and text recognition, which we describe in Section 3.1.

However, we also make our own contributions to the data in this field. The text

spotting methods in our work are largely based on supervised machine learning,

requiring labelled training datasets. Since the quality of models learnt generally

improves as the volume of training data is increased, we collect new datasets for

training and testing. To avoid an expensive human labelling process, we present two

methods for automatically generating labelled data with minimal human interaction.

Section 3.2 describes two methods for mining existing data repositories with

weak supervision to generate word and character level annotations. In Section 3.3

we show that we can generate highly realistic synthetic data, which can be used in

place of real-world data for training and testing word recognition models.

36
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Word Recognition Datasets
Label Description Lexicon # images

Synth90k Our synthetic test dataset with words from 90kDict. 90k 900k
SynthRand Our synthetic test dataset with random text. - 900k
IC03 ICDAR 2003 [Lucas et al., 2003] test dataset. - 860
IC03-50 ICDAR 2003 [Lucas et al., 2003] test dataset with fixed lexicon. 50 860
IC03-Full ICDAR 2003 [Lucas et al., 2003] test dataset with fixed lexicon. 563 860
SVT SVT [Wang et al., 2010] test dataset. - 647
SVT-50 SVT [Wang et al., 2010] test dataset with fixed lexicon. 50 647
IC13 ICDAR 2013 [Karatzas et al., 2013] test dataset. - 1015
IIIT5k-50 IIIT5k [Mishra et al., 2012] test dataset with fixed lexicon. 50 3000
IIIT5k-1k IIIT5k [Mishra et al., 2012] test dataset with fixed lexicon. 1000 3000

Table 3.1: A description of the various word recognition datasets evaluated on. The
images are cropped word images, with the task to recognise the word depicted. A
per-image lexicon provides a shortlist of words to simplify the search space.

Text Spotting Datasets
Label Description Lexicon # images

IC03 ICDAR 2003 [Lucas et al., 2003] test dataset. - 251
IC03-50 ICDAR 2003 [Lucas et al., 2003] test dataset with fixed lexicon. 50 251
IC03-Full ICDAR 2003 [Lucas et al., 2003] test dataset with fixed lexicon. 860 251
SVT SVT [Wang et al., 2010] test dataset. - 249
SVT-50 SVT [Wang et al., 2010] test dataset with fixed lexicon. 50 249
IC11 ICDAR 2011 [Shahab et al., 2011] test dataset. - 255
IC13 ICDAR 2013 [Karatzas et al., 2013] test dataset. - 233

Table 3.2: A description of the various text spotting datasets evaluated on. The
images are of full scenes, with the task to localise and recognise the text contained
within the scenes. A per-image lexicon provides a shortlist of words to simplify the
search space.

3.1 Public Datasets

This section describes the various publicly available text spotting and recognition

datasets contributed from other authors. For simplicity, the datasets used for eval-

uation of different text spotting tasks are summarised in Table 3.1, Table 3.2, and

Table 3.3. Examples from the datasets are shown in Figure 3.1 and Figure 3.2.
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(a)

(b)

(c)

Figure 3.1: Some text spotting data examples from (a) IC03 and (b) SVT, showing
the word level bounding box annotations (green dashed). (c) Some examples from
the IIIT5k word recognition test dataset.
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Text Retrieval Datasets
Label Description # queries # images

IC11 ICDAR 2011 [Shahab et al., 2011] test dataset. 538 255
SVT SVT [Wang et al., 2010] test dataset. 427 249
STR IIIT STR [Mishra et al., 2013] text retrieval dataset. 50 10k
Sports IIIT Sports-10k [Mishra et al., 2013] text retrieval dataset. 10 10k

Table 3.3: A description of the various text retrieval datasets evaluated on. The
task is to retrieve all the images that contain the query word text.

3.1.1 ICDAR datasets

There are a number of datasets introduced by the International Conference of Doc-

ument Analysis and Recognition (ICDAR), labelled by year.

All the datasets listed below are scene text datasets, containing high resolution

images (average size of 940 × 770) of scenes which contain a variable amount of

text within them. The images are taken with a range of cameras around urban

areas, with varying levels of annotation. Many of the images are shared between

the different years of ICDAR datasets, including across training and test splits, so

care must be taken when training on one year’s training dataset to evaluate on the

test set of another year to avoid training on test data.

ICDAR 2003 (IC03) [Lucas et al., 2003]. Consists of 181 training and 251

test images with word level and character level bounding boxes as well as their case-

sensitive transcriptions. Wang et al., 2011 additionally define per-image lexicons to

constrain the recognition output for test images. IC03-50 denotes the IC03 dataset

with a per-image small lexicon of approximately 50 words, and IC03-Full denotes

the IC03 dataset with a lexicon shared across all images of the 563 test words. When

used for evaluation, a lexicon constrained dataset (e.g. IC03-50 or IC03-Full) reduces

the recognition problem to choosing the correct groundtruth word from the shortlist

defined by the lexicon, whereas in the absence of a lexicon (e.g. IC03) there is no

shortlist to choose from.
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ICDAR 2005 (IC05) [Lucas, 2005]. Consists of 1001 training and 489 test

images with word and character level bounding boxes and case-sensitive labels.

ICDAR 2011 (IC11) [Shahab et al., 2011]. Consists of 229 training and 255

test images with word and character level bounding boxes and case-sensitive labels.

ICDAR 2013 (IC13) [Karatzas et al., 2013]. Consists of 229 training and 233

test images with word and character level bounding boxes and case-sensitive labels.

3.1.2 Street View Text dataset

The Street View Text dataset (SVT) [Wang et al., 2011] consists of 349 high res-

olution images (average size 1260 × 860) downloaded from Google StreetView of

road-side scenes. The training set contains 100 images and the test set 249 images.

Only word level bounding boxes are provided with case-insensitive labels. It is im-

portant to note that there are many words that have not been annotated. This is a

challenging dataset with a lot of noise and since much of the text in the images is

attributed to shop signs, there is a wide range of fonts and graphic styles. Per-image

50 word lexicons are also provided (SVT-50).

3.1.3 IIIT datasets

A number of scene text datasets have come from the International Institute of Infor-

mation Technology (IIIT). The images for these datasets are collected with Google

image search.

IIIT 5k Word (IIIT5k) [Mishra et al., 2012]. This is a word recognition

dataset, comprising of 5k images, 2k training and 3k test images. Each image is

a cropped word image of scene text with case-insensitive labels, so this dataset is

used purely for cropped word recognition (not detection). Per-image 50 word and

1k word lexicons are also provided: IIIT5k-50 and IIIT5k-1k respectively.
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IIIT Scene Text Retrieval (STR) [Mishra et al., 2013]. This is a text based

image retrieval dataset. There are 50 query words, with each word having an as-

sociated list of 10-50 images that contain the query word. There are also a large

number of distractor images with no text downloaded from Flickr. In total there

are 10k images, mainly of urban and roadside scenes. No localisation annotation

(word or character bounding boxes) is provided, so this dataset can only be used for

retrieval evaluation.

IIIT Sports-10k (Sports) [Mishra et al., 2013]. Sports is another text based

image retrieval dataset constructed from frames of sports video footage. The images

are low resolution (480×360 and 640×352) and often noisy or blurred due to camera

movement, with text generally located on advertisements and signboards, making

this a challenging retrieval task. 10 query words are provided with 10k total images,

without any localisation annotations.

3.1.4 KAIST dataset

The KAIST dataset [Lee et al., 2010] consists of 3000 images of indoor and out-

door scenes containing text, with both a mixture of photos from a high resolution

(1600×1200) digital camera and a lower resolution (640×480) mobile phone camera.

Word and character bounding boxes are provided as well as segmentation maps of

characters, and the words are a mixture of English and Korean. However, not all

instances of text are labelled.

3.1.5 Oxford Cornmarket Scene Text dataset

This dataset from Posner et al., 2010 provides very high resolution images (average

size 3870 × 2590) of busy street scenes, with case-insensitive, word level bounding

box annotations.
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3.1.6 Character Datasets

Character image datasets can be generated by using the character level annotations

of the previously described datasets (where provided). There are also the Chars74k

dataset [Campos et al., 2009] and the StanfordSynth dataset [Wang et al., 2012].

Both datasets contain small single-character images of 62 characters (0-9, a-z, A-Z).

Chars74k comprises of a set of characters from natural images, as well as a set of

synthetically generated characters. The StanfordSynth characters are all syntheti-

cally generated, but are very representative of natural scene characters due to the

large range of fonts, colours and blending with natural images used to generate the

character samples, whereas the Chars74k synthetic characters are not as they are

simple black on white renderings of fonts.

3.2 Automatically Annotating Data

To help increase the pool of available training data, in this section we contribute

two methods for automatically generating annotations from existing data. The first

is to automatically mine photo sharing websites to acquire word and character level

annotated data utilising a weak baseline system (Section 3.2.1). The second is to

use a word-fitting algorithm to generate character level annotations when only word

level annotations exist (Section 3.2.2).

The notion of automatically annotating data for training has previously been

exploited successfully in Bissacco et al., 2013a at Google. The authors make use of

the data produced by some of the company’s mobile apps, where users take photos of

text for search or translation and the text spotting results from their existing system

is stored. It is hypothesised that much of the text photographed exists somewhere

on the internet in digital form. Therefore, the existing, often partially incorrect,

transcriptions of the app photos are searched for across the internet, and aligned to
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(a)

ADIDAS HYUNDAI

(b)

(c)

(d)

Figure 3.2: (a) Some text spotting data examples from Oxford Cornmaket showing
the word level bounding box annotations (green dashed). (b) Some example images
from Sports showing the associated query word above the image. Some examples
from (c) the Chars74k and (d) the StanfordSynth character datasets.
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the digital versions found. This allows the incorrect character labels predicted by

the existing system to be corrected, producing groundtruth labels with the character

bounding boxes coming from the existing text spotting system. This is a form of

self-supervision, and allows Bissacco et al., 2013a to automatically generate 4 million

extra character data samples. This approach inspires our own data mining methods

which we now describe.

3.2.1 Flickr Mining

Photo sharing websites such as Flickr1 contain a large range of scenes, including

those containing text. In particular, the “Typography and Lettering” group on

Flickr2 contains mainly photos or graphics containing text. As the text depicted

in the scenes are the focus of the images, the user given titles of the images often

include the text in the scene. Capitalising on this weakly supervised information,

we develop a system to find title text within the image, automatically generating

word and character level bounding box annotations.

We use a weak baseline text spotting system based on the Stroke Width Trans-

form (SWT) [Epshtein et al., 2010], described fully in Section 3.2.1.1, to generate

candidate word detections for each image downloaded from Flickr. The weak base-

line system outputs word and character level bounding boxes. If a detected word is

recognised as the same as any of the image’s title text words and there are the same

number of characters from the SWT detection phase as word characters, we say that

this is an accurate word detection, and use this detection as positive text training

data. This harsh constraint – requiring perfect recognition of the title text words –

results in very low recall (out of 130000 images, only 15000 words were found), but

the precision is greater than 99% (estimated from inspecting samples of the data).

This means the precision is high enough for the mined Flickr data to be used as

1http://www.flickr.com
2http://www.flickr.com/groups/type

http://www.flickr.com
http://www.flickr.com/groups/type
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positive training data, but the recall is too low for it to be used for background

no-text training data. We will refer to this dataset as FlickrType, which contains

6792 images, 14920 words, and 71579 characters. Figure 3.3 shows some examples

from this mining process.

This procedure will generate a bias in the data collected towards scene text that

can be found with the weak baseline system. However, because the problem is

highly constrained to only recognise the text contained with the images’ titles, we

can ignore the confidence score produced by the weak baseline system, and collect

data samples that would normally not have a high enough score to be recognised in

a purely unconstrained scenario. Therefore the data generated by this method can

still be very useful for training text spotting models.

3.2.1.1 Weak Baseline Text Spotting System

This section describes a weak baseline end-to-end text spotting system based on the

Stroke Width Transform (SWT) Epshtein et al., 2010.

First, the SWT word detection algorithm is run as described in Epshtein et al.,

2010. The SWT labels each pixel with a value of the width of the stroke it is esti-

mated to belong to. Regions of similar stroke width are combined into connected

components and are character candidates. Using simple heuristics [Epshtein et al.,

2010], these character candidates are grouped together to form words, generating

word bounding boxes, character bounding boxes, as well as rough character seg-

mentations. This process is run with multiple sets of parameters, as the SWT is

very sensitive to changes in them, producing a large number of word detection can-

didates. A random forest classifier based on Anthimopoulos et al., 2011 is then

used to produce a text saliency map for each candidate bounding box, rejecting

false positive SWT word detections. For each remaining word detection candidate,

the rough SWT character segmentations are used to generate a colour model to
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fully segment characters using Graph Cut [Boykov and Jolly, 2001], after which the

word detections are filtered based on profile features described in Dutta et al., 2012.

Finally, the segmented word detection is fed in to an off-the-shelf OCR package,

Tesseract 3.023, for case-insensitive character recognition.

When tested on the standard benchmarks, this baseline system achieves an un-

constrained end-to-end word recognition F-measure of 0.50 on ICDAR 2003 (Neu-

mann and Matas, 2011 get 0.41, higher is better) and 0.42 on ICDAR 2011 (Neumann

and Matas, 2013 get 0.45).

This weak baseline system is used only for the Flickr mining method described

before.

3.2.2 Automatic Character Annotation

Some existing text spotting datasets contain word level annotations but don’t con-

tain character level annotations, meaning the data cannot be used to train character

classifiers. However, we can use a word recognition system which models characters

to automatically generate character bounding box annotations for datasets which

only have word level bounding box annotations.

For each cropped word image, we perform the optimal fitting of the groundtruth

text to the character map using the method described in Section 4.2.2. This places

inter-character breakpoints with implied character centers, which can be used as

rough character bounding boxes. We do this for the SVT and Oxford Cornmarket

datasets which generates 22k character annotations from those datasets. These

character annotations can of course be used to crop the word images and create

character classifier training and test data.
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3.3 Synthetic Data Generation

While there are some publicly available datasets, and we can also mine Flickr for

more data as in the previous section, the number of full word image samples is

only in the thousands, and the vocabulary is very limited. To push past this limit

imposed due to lack of public data, we propose a scene text rendering algorithm,

which allows millions of realistic word image samples to be generated without any

human cost. This section described our proposed synthetic data engine which allows

us to generate unlimited amounts of data to train word recognition models.

Following the success of some synthetic character datasets described in Sec-

tion 3.1 [Campos et al., 2009; Wang et al., 2012], we create a synthetic word data

generator, capable of emulating the distribution of scene text images. This is a rea-

sonable goal, considering that much of the text found in natural scenes is restricted

to a limited set of computer-generated fonts, and only the physical rendering process

(e.g. printing, painting) and the imaging process (e.g. camera, viewpoint, illumina-

tion, clutter) are not controlled by a computer algorithm.

Figure 3.4 illustrates the generative process and some resulting synthetic data

samples. These samples are composed of three separate image-layers – a back-

ground image-layer, foreground image-layer, and optional border/shadow image-

layer – which are in the form of an image with an alpha channel. The synthetic data

generation process is as follows:

1. Font rendering – a font is randomly selected from a catalogue of over 1400

fonts downloaded from Google Fonts. The kerning, weight, underline, and

other properties are varied randomly from arbitrarily defined probability dis-

tributions. The word is rendered on to the foreground image-layer’s alpha

channel with either a horizontal bottom text line or following a random curve.

3https://code.google.com/p/tesseract-ocr

https://code.google.com/p/tesseract-ocr
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2. Border/shadow rendering – an inset border, outset border, or shadow with

a random width may be rendered from the foreground.

3. Base colouring – each of the three image-layers are filled with a different

uniform colour sampled from clusters over natural images. The clusters are

formed by k-means clustering the RGB components of each word image of the

ICDAR training datasets into three clusters.

4. Projective distortion – the foreground and border/shadow image-layers are

distorted with a random, full projective transformation, simulating the 3D

world. The random projections are sampled from a mixture of normal distri-

butions with a mean of the identity projection.

5. Natural data blending – each of the image-layers are blended with a randomly-

sampled crop of an image from the training datasets of ICDAR 2003 and SVT.

The amount of blend and alpha blend mode (e.g. normal, add, multiply, burn,

max, etc.) is dictated by a random process, and this creates an eclectic range

of textures and compositions. The three image-layers are also blended together

in a random manner, to give a single output image.

6. Noise – Elastic distortion similar to Simard et al., 2003, Gaussian noise, blur,

resampling noise, and JPEG compression artefacts are introduced to the im-

age.

This process produces a wide range of synthetic data samples, being drawn from

a multitude of random distributions, mimicking real-world samples of scene text

images. The exact details of the process can be found in the source code4.

Using this process we generate two datasets which we use in this thesis:

4https://bitbucket.org/jaderberg/text-renderer/src/42cf691414a7d6f8c2d303673daac70a813871a2/

word_renderer.py

https://bitbucket.org/jaderberg/text-renderer/src/42cf691414a7d6f8c2d303673daac70a813871a2/word_renderer.py
https://bitbucket.org/jaderberg/text-renderer/src/42cf691414a7d6f8c2d303673daac70a813871a2/word_renderer.py
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Synth90k. This synthetically generated dataset consists of 9 million word images,

with equal numbers of word samples from a 90k word dictionary. We use 900k of

these images for a testing dataset, 900k for validation, and the remaining for training.

The 90k dictionary consists of the English dictionary from Hunspell5, a popular open

source spell checking system. This dictionary consists of 50k root words, and we

expand this to include all the prefixes and suffixes possible, as well as adding in the

test dataset words from the ICDAR, SVT and IIIT datasets – 90k words in total.

We will refer to the dictionary as 90kDict. This dataset is publicly available at

http://www.robots.ox.ac.uk/~vgg/data/text/.

SynthRand. This is another synthetic dataset of word images, with a training

set of 8 million training images and a test set of 900k images. The words generated

are completely random strings of characters, with characters uniformly sampled and

with variable lengths up to ten characters long. In this corpus there are very few

word repetitions (in addition to the random rendering variations).

These two datasets, Synth90k and SynthRand, can be used for training word

recognition models. There is a wide range of difficulty in this dataset, from perfectly

readable text to almost impossible to read samples. As we show in Chapter 5 and

Chapter 6, this synthetic data can be used in place of real-world data to achieve

state-of-the-art performance on real-world test data. In Section 5.6.3.1 we explicitly

investigate the effect of each stage of the synthetic data generation process on the

accuracy of a text recognition system trained on synthetic data and testing on real-

world data.

5http://hunspell.sourceforge.net/

http://www.robots.ox.ac.uk/~vgg/data/text/
http://hunspell.sourceforge.net/
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rubber

rescue

house

hearts

heads

Figure 3.3: Some random examples form the automatically mined and annotated Flickr-
Type dataset, showing word level and character level annotations on the original images
(left) and the cropped found words with their groundtruth label (right). There are many
missed words due to the process being tuned for high precision, and the fact that the only
words that can be found are contained within the title of each image.
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(a)

(b)

Figure 3.4: (a) The text generation process after font rendering, creating and colour-
ing the image-layers, applying projective distortions, and after image blending. (b)
Some randomly sampled data from Synth90k, created by the synthetic text engine.



Chapter 4

Character-centric Text Spotting

In this chapter we present an end-to-end text spotting system, taking a character-

centric approach. We treat characters as the atomic building blocks for text, mod-

elling them explicitly, and constructing text lines and words by grouping character

detections together.

There are many previous works that have taken a character-centric approach suc-

cessfully, such as [Alsharif and Pineau, 2014; Wang et al., 2012] which are described

in Section 2.2. However, in this chapter we show that using a very high quality

character classifier can improve over the state of the art for both the word detection

and recognition tasks. This is achieved using a convolutional neural network to

generate a per-pixel text/no-text saliency map, a case-sensitive and case-insensitive

character saliency map, and a bigram saliency map. The text saliency map drives

the proposal of word bounding boxes, while the character and bigram saliency maps

assist in recognising the word within each bounding box through a combination of

soft costs.

The key novelty of this chapter is that we introduce a method to share features

which allows us to extend our character classifiers to other tasks such as character

detection and bigram classification at a very small extra cost: we first generate

52



4.1. CNN FEATURE LEARNING 53

a single rich feature set, by training a strongly supervised character classifier, and

then use the intermediate hidden layers as features for text detection, character case-

sensitive and insensitive classification, and bigram classification. Sharing features

has shown success in general object recognition [Torralba et al., 2004], and here we

show that this is also the case for text recognition. This procedure makes best use of

the available training data: plentiful for character/non-character but less so for the

other tasks. All the classifiers are trained on character-level data, making use of the

data mining procedures from Section 3.2 to train on more data and learn stronger

classifiers.

Another novelty in the context of text detection is to leverage the convolutional

structure of the CNN to process the entire image in one go instead of running CNN

classifiers on each cropped character proposal [LeCun et al., 1998]. This allows us

to generate efficiently, in a single pass, all the features required to detect word

bounding boxes, and that we use for recognising words from a fixed lexicon using

the Viterbi algorithm. We also make a technical contribution in showing that our

CNN architecture using maxout [Goodfellow et al., 2013a] as the non-linear activa-

tion function (described in the next section) has superior performance to the more

standard rectified linear unit.

In the following sections we first introduce the CNN architecture and training

procedure for the character classifiers in Section 4.1. Our end-to-end (image in, text

out) text spotting pipeline is described in Section 4.2. Finally, Section 4.3 evaluates

the method on a number of standard benchmarks. We show that the performance

exceeds the state of the art across multiple measures.

4.1 CNN Feature Learning

The workhorse of a character-centric text-spotting system is the character classifier.

The output of this classifier is used to recognise words and, in our system, to detect
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image regions that contain text. Text-spotting systems appear to be particularly

sensitive to the performance of character classification; for example, in Bissacco

et al., 2013b increasing the accuracy of the character classifier by 7% led to a 25%

increase in word recognition. In this section we therefore concentrate on maximising

the performance of this component.

To classify an image patch x as one of the possible characters (or background),

we extract a set of features Φ(x) = (φ1(x), φ2(x), ..., φK(x)) and then learn a binary

classifier fc for each character c of the alphabet C. Classifiers are learnt to yield a

posterior probability distribution p(c|x) = fc(Φ(x)) over characters and the latter is

maximised to recognise the character c̄ contained in patch x:

c̄ = argmax
c∈C

p(c|x). (4.1)

Traditionally, feature extractors Φ are manually engineered and optimised through

a laborious trial-and-error cycle involving adjusting the features and re-learning the

classifiers. In this chapter, we propose instead to learn the representation using a

CNN, jointly optimising the performance of the features as well as of the classi-

fiers. As noted in the recent literature (Section 2.1.2), a well designed learnable

representation of this type can in fact yield substantial performance gains.

CNNs are obtained by stacking multiple layers of features as defined in Sec-

tion 2.1.1. Usually sigmoid or ReLU functions are used as the non-linear activation

functions hi within the network, however, in our experiments it was found empiri-

cally that maxout [Goodfellow et al., 2013a] yields marginally superior performance

for character classification.

Maxout is an alternative non-linear function that operates in channel space,

taking the maximum response across multiple channels at a each spatial position.

It can be thought of, in particular when used in the final classification layer, as
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Figure 4.1: The convolutional neural network architecture employed. The method
uses four CNNs. These share the first two layers, computing “generic” char-
acter features and terminate in layers specialised for text/no-text classification,
case-insensitive and case-sensitive character classification, and bigram classification.
Each connection between feature maps consists of convolutions with maxout groups.

taking the maximum response over a mixture of linear models, allowing the CNN

to easily model multiple modes of the data. The maxout of two feature channels z1
i

and z2
i is simply their point-wise maximum: hi(zi(u, v)) = max{z1

i (u, v), z2
i (u, v)}.

More generally, the n′-th maxout operator hn
′
i is obtained by selecting a subset

Gn′i ⊂ {1, 2, . . . , Ni} of Ni feature channels and computing the maximum over them:

hn
′
i (zi(u, v)) = maxn∈Gn′i

zni (u, v). While different grouping strategies are possible,

here groups are formed by taking g consecutive channels of the input map: G1
i =

{1, 2, . . . , g}, G2
i = {g+1, g+2, . . . , 2g} and so on. Hence, given Ni feature channels

as input, maxout constructs N ′i = Ni/g new channels.

4.1.1 Training and Implementation Details

This section discusses the details of learning the various character classifiers. Train-

ing is divided into two stages. In the first stage, a case-insensitive CNN character

classifier is learnt. In the second stage, the feature extractors resulting from the

learnt CNN are applied to other classification problems as needed. The products of

these two stages are four state-of-the-art CNN classifiers: a character/background

classifier, a case-insensitive character classifier, a case-sensitive character classifier,
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and a bigram classifier.

4.1.1.1 Stage 1: Bootstrapping the case-insensitive classifier.

The case-insensitive classifier uses a four-layer CNN outputting a probability p(c|x)

over an alphabet C including all 26 letters, 10 digits, and a noise/background (no-

text) class, giving a total of 37 classes (Figure 4.1). The input z1 = x of the CNN are

grayscale cropped character images of 24 × 24 pixels, zero-centred and normalised

by subtracting the patch mean and dividing by the standard deviation.

Unlike conventional CNN architectures, no spatial pooling or downsampling is

performed. Starting from the first layer, the input image is convolved with 96 filters

of size 9 × 9, resulting in a map of size 16 × 16 (to avoid boundary effects) and 96

channels. The 96 channels are then pooled with maxout in group of size g = 2,

resulting in 48 channels. The sequence continues by convolving with 128, 512, 148

filters of side 9, 8, 1 and maxout groups of size g = 2, 4, 4, resulting in feature maps

with 64, 128, 37 channels and size 8×8, 1×1, 1×1 respectively. The last 37 channels

are fed into a softmax to convert them into character probabilities. In practice we

use 48 channels in the final classification layer rather than 37 as the software we use,

based on cuda-convnet [Krizhevsky et al., 2012], is optimised for multiples of 16

convolutional filters – we do however use the additional 12 classes as extra no-text

classes, abstracting this to 37 output classes.

We train using stochastic gradient descent and back-propagation, and also use

dropout [Hinton et al., 2012] in all layers except the first convolutional layer to

help prevent overfitting. Dropout simply involves randomly zeroing a proportion

of the parameters; the proportion we keep for each layer is 1, 0.5, 0.5, 0.5. The

training data is augmented by random rotations and noise injection. By omitting

any downsampling in our network and ensuring the output for each class is one pixel

in size, it is immediate to apply the learnt filters on a full image in a convolutional
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Figure 4.2: Visualisations of each character class learnt from the 37-way case-
insensitive character classifier CNN. Each image is synthetically generated by max-
imising the posterior probability of a particular class. This is implemented by back-
propagating the error from a cost layer that aims to maximise the score of that
class [Simonyan et al., 2013; Erhan et al., 2009].

manner to obtain a per-pixel output without a loss of resolution, as shown in the

second image of Figure 4.3. We can also probe the resulting CNNs to visualise the

representations learnt by them. Figure 4.2 illustrates this using the visualisation

technique of Simonyan et al., 2013.

4.1.1.2 Stage 2: Learning the other character classifiers.

Training on a large amount of annotated data, and also including a no-text class in

our alphabet, means the hidden layers of the network produce feature maps highly

adept at discriminating characters, and can be adapted for other classification tasks

related to text. We use the outputs of the second convolutional layer as our set of

discriminative features, Φ(x) = z2. From these features, we train a 2-way text/no-

text classifier1, a 63-way case-sensitive character classifier, and a bigram classifier,

each one using a two-layer CNN acting on Φ(x), depicted in Figure 4.1. The last two

layers of each of these three CNNs result in feature maps with 128-2, 128-63, and 128-

604 channels respectively, all resulting from maxout grouping of size g = 4. These

are all trained with Φ(x) as input, with dropout of 0.5 on all layers, and fine-tuned

1Training a dedicated classifier was found to yield superior performance to using the background
class in the 37-way case-sensitive character classifier.
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by adaptively reducing the learning rate. The bigram classifier recognises instances

of two adjacent characters, e.g. Figure 4.5, with a class for each combination of two

characters possible.

Discussion. These CNNs could have been learned independently, but found better

performance by enforcing feature sharing (see Section 4.3.2). However, sharing the

first two layers has two key advantages. First, the low-level features learned from

case-insensitive character classification allows sharing training data among tasks,

reducing overfitting and improving performance in classification tasks with less in-

formative labels (text/no-text classification), or tasks with fewer training examples

(case-sensitive character classification, bigram classification). Second, it allows shar-

ing computations, significantly increasing the efficiency when using the network for

inference on an image.

We also tried a number of different network architectures, varying the number of

layers and filters, as well as altering the non-linearity used to ReLU and a sigmoid,

implementing the unsupervised pre-training of Wang et al., 2012, and varying the

input size and normalisation – the given architecture empirically achieved the lowest

classification errors. Also, our design decision to omit down-sampling and pooling

stages from the network had no effect on the maximum achieved performance com-

pared to when they are added and the architecture optimised.

4.2 End-to-End Pipeline

This section describes the various stages of the proposed end-to-end text spotting

system, making use of the features learnt in Section 4.1. The pipeline starts with

a detection phase (Section 4.2.1) that takes a raw image and generates candidate

bounding boxes of words, making use of the text/no-text classifier. The words

contained within these bounding boxes are then recognised against a fixed lexicon

of words (Section 4.2.2), driven by the character classifiers, bigram classifier, and
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Figure 4.3: The text detection phase for a single scale. From left to right: input
image, CNN generated text saliency map using that text/no-text classifier, after the
run length smoothing phase, after the word splitting phase, the implied bounding
boxes. Subsequently, the bounding boxes will be combined at multiple scales and
undergo filtering and non-maximal suppression.

other geometric cues.

4.2.1 Text Detection

The aim of the detection phase is to start from a large, raw pixel input image and

generate a set of rectangular bounding boxes, each of which should contain the image

of a word. This detection process (Figure 4.3) is tuned for high recall, and generates

a set of candidate word bounding boxes.

The process starts by computing a text saliency map by evaluating the charac-

ter/background CNN classifier in a sliding window fashion across the image, which

has been appropriately zero-padded so that the resulting text saliency map is the

same resolution as the original image. As the CNN is trained to detect text at a

single canonical height, this process is repeated for 16 different scales to target text

heights between 16 and 260 pixels by resizing the input image.

Given these saliency maps, word bounding boxes are generated independently at

each scale in two steps. The first step is to identify lines of text. To this end, the

probability map is first thresholded to find local regions of high probability. Then

these regions are connected in text lines by using the run length smoothing algorithm
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(RLSA): for each row of pixels the mean µ and standard deviation σ of the spacings

between probability peaks are computed and neighbouring regions are connected if

the space between them is less than 3µ − 0.5σ. Finding connected components of

the linked regions results in candidate text lines.

The next step is to split text lines into words. For this, the image is cropped

to just that of a text line and Otsu thresholding [Otsu, 1979] is applied to roughly

segment foreground characters from background. Adjacent connected components

(which are hopefully segmented characters) are then connected if their horizontal

spacings are less than the mean horizontal spacing for the text line, again using

RLSA. The resulting connected components give candidate bounding boxes for in-

dividual words, which are then added to the global set of bounding boxes at all

scales. Finally, these bounding boxes are filtered based on geometric constraints

(box height, aspect ratio, etc.) and undergo non-maximal suppression sorting them

by decreasing average per-pixel text saliency score.

4.2.2 Word Recognition

The aim of the word recognition stage is to take the candidate cropped word images

I ∈ RW×H of width W and height H and estimate the text contained in them.

In order to recognise a word from a fixed lexicon, each word hypothesis is scored

using a generative model that combines multiple visual cues. The computational

complexity is therefore linear in the lexicon size.

The inputs to the word recognition are the 2D character probability maps (case

sensitive and insensitive) and bigram probability maps generated using the CNN

classifiers. Restricted to the cropped word region, this results in a W ×H map for

each character hypothesis. These W × H maps are reduced to W × 1 responses

by averaging along the columns (averaging uses a Gaussian weight centred on the

middle row). Grouping the 1D responses per classifier type, this result in matrices



4.2. END-TO-END PIPELINE 61

(a)

(b)

Figure 4.4: (a) The optimal placing of breakpoints for the word “SHOGUN” in the
image, with the 1D character response map for 37 character classes below. Each
row of the response map is the flattened CNN response for a particular character,
with classes in row order from top to bottom: no-text, 0-9, a-z (i.e. first row is
the no-text class response, last row is the “z” class response). (b) The optimal
breakpoint placing for “County” with the bigram responses of only the groundtruth
text bigrams shown below. Green lines show the placed breakpoints bw with red
circles showing the implied character center.
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P ∈ R37×W , Q ∈ R63×W , R ∈ R604×W for the case-insensitive, case-sensitive, and

bigram classifier classifiers respectively. Figure 4.4 (a) shows the case-insensitive

response matrix P for a particular example, and Figure 4.4 (b) shows a select few

rows from the bigram response matrix R for another example.

Given matrices P, Q, R, the next step is to score each word hypothesis w =

(c1, c2, . . . , cLw), where Lw is the number of characters in the word. Let bw =

(bw1 , b
w
2 , . . . , b

w
Lw+1) denote the Lw + 1 positions of breakpoints between characters

– bw1 marks the beginning of the first character, bwLw
the beginning of the last char-

acter (and therefore also the end of the Lw − 1’th character), and bwLw+1 the end of

the last character. The word-breakpoints hypothesis (w, bw) receives a score

s(w, bw, P, Q, R) =
1

|bw|

 |bw|∑
i=1

mi(b
w
i , R) +

|bw|∑
i=2

φ(bwi , b
w
i−1, P, Q, R)

 . (4.2)

This score represents how well the word w is explained by the breakpoints bw and

the response matrices P, Q, and R. This score is computed for each word hypothesis

w and maximised by selecting the optimal location of breakpoints using dynamic

programming. The final recognised result w∗ is taken as the word with the best

score:

w∗ = arg max
w

{
max
bw

s(w, bw, P, Q, R)
}
. (4.3)

The unary score mi(b
w
i , R) of Equation 4.2 combines the following cues: distance

from expected breakpoint placement, distance to out of image bounds, no-text class

score, the bigram score, and, for the first and last breakpoint, the distance from

the edge of the image. The pairwise score φ(bwi , b
w
i−1, P, Q, R) combines: the character

score at the midpoint between breakpoints, the no-text score at the character center,

the deviation from the average width of the character, and a dynamic contribution

from the left and right bigram responses relative to the character score – this allows
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Figure 4.5: Some training samples used for bigram classification as seen by the CNN.
From left to right, the top row labels are “de”, “sf”, “aw”, “lp”, “oa”, and “ad”.

bigram responses to take control when it is difficult to classify the character in

focus, but easy to classify characters on either side. Also it is ensured that there

is no violation of the sequence of characters in the word and that the character

centres are all in the region of the word image. Each score is weighted and linearly

combined, with the parameters found by grid search on a validation set.

Given the recognised word, the bounding box is adjusted to match the estimated

breakpoints and added to a list of candidate recognised word regions. The final step

is to perform non-maximal suppression based on overlap on this set of bounding

boxes in order to eliminate duplicate detections.

4.3 Experiments

This section evaluates our method on a number of standard text-spotting bench-

marks. Data and technical details are discussed next, with results in Section 4.3.2.

A full description of all the datasets referenced can be found in Section 3.1.

4.3.1 Classifier Training Data

The case-insensitive character classifier is trained on 163k cropped 24 × 24 pixel

characters from ICDAR 2003, 2005, 2011, 2013 training sets, KAIST, the natural

images from Chars74k (we do not use the synthetically generated images), and

StanfordSynth. We also use the characters from FlickrType – our own automatically

generated dataset created by mining Flickr (see Section 3.2.1).
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After this first round of training, the characters in the SVT training set and Ox-

ford Cornmarket dataset are automatically annotated using the process described in

Section 3.2.2. We continue training including the newly annotated samples, giving

a total of 186k training character images. No-text data is generated from all four

ICDAR training datasets (all other datasets do not annotate all text occurrences).

The case-sensitive character classifier is trained on the same data, excluding Flickr-

Type and automatically annotated characters due to the lack of case-sensitive labels,

giving 107k training samples. Wherever possible, the characters were cropped and

resized to maintain their original aspect ratio.

The bigram classifier performs 604-way classification – the number of unique

bigrams present in the ICDAR 2003 and SVT lexicons. We train on 24 × 24 pixel

samples, generated by centering a window with width 1.5 times that of the height at

the breakpoint between two characters, cropping the image, and resizing to 24× 24

pixels, thus squashing the aspect ratio. We use the character annotations from the

ICDAR 2003, 2005, 2011, 2013 training sets, KAIST dataset, FlickrType and the

automatically annotated datasets giving a total of 92k samples. However, due to

the relative distribution of bigrams in natural text, some bigram classes have no

training data, while others have thousands of samples – on average there are 152

image samples per bigram class.

4.3.2 Results

This section compares the performance of our system against the standard bench-

marks and state-of-the-art. It also reports the performance of the individual com-

ponents of the system.

4.3.2.1 CNN Classifiers

Table 4.1 shows the results of the trained classifiers tested on ICDAR 2003 cropped

characters (IC03) and SVT automatically annotated cropped characters, as well as
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Character
Classifier

(%)

Case-sensitive
Character
Classifier

(%)

Text/No-
text

Classifier
(%)

Bigram
Classifier

(%)

Method IC03 SVT IC03 IC03 SVT IC03

Wang et al., 2012 - - 83.9 97.8* - -
Alsharif and Pineau, 2014 89.8 - 86.0 - - -
This chapter 91.3 80.3 86.8 98.2 97.1 72.5

Table 4.1: The accuracy of classifiers for 36-way character classification, 62-way
case-sensitive character classification, 2-way text detection, and 604-way bigram
classification on groundtruth cropped patches. For the SVT dataset the character-
level annotation is automatically generated by our system. *Value read from graph.

ICDAR 2003 cropped bigrams. To make results comparable with published ones

where the background class is not included in the test problem, we ignore the back-

ground class response. The 37-way case-insensitive character classifier and case-

sensitive classifier both achieve state-of-the-art performance, as does the text/no-

text classifier used for detection. Our bigram classifier gives a recognition accuracy

of 72.5%, a good result for a problem with 604 classes.

Although the CNNs are large (2.6 million parameters for the case-insensitive clas-

sifier), the method does not require any unsupervised pre-training as is done in Wang

et al., 2012, and incorporating the unsupervised approach described in Wang et al.,

2012; Coates et al., 2011 gives no improvement. Empirically, maxout and dropout

were found to be essential to achieve this performance. For example, replacing max-

out with ReLU non-linearities (this equates to reducing the number of filters to give

the same layer output dimensionality) causes slight overfitting hence worse accu-

racy (−3.3% accuracy for case-insensitive character classification). We also found

experimentally that pooling and downsampling have no effect on classifier accuracy.

Sharing feature maps between tasks improves results compared to learning inde-

pendent models: +3% accuracy for text/no-text, +1% accuracy for the case-sensitive

character classifier, and +2.5% accuracy for the bigram classifier. Including the

FlickrType mined data also gives an extra 0.8% accuracy for the case-insensitive



4.3. EXPERIMENTS 66

Cropped Words
Method IC03-50 IC03-Full SVT-50

Wang et al., 2011 76.0 62.0 57.0
Mishra et al., 2012 81.8 67.8 73.2
Novikova et al., 2012 82.8 - 72.9
Wang et al., 2012 90.0 84.0 70.0
Alsharif and Pineau, 2014 93.1 88.6 74.3
Goel et al., 2013 - - 77.3
Bissacco et al., 2013b - - 90.4
This chapter 96.2 91.5 86.1

Table 4.2: Ground-truth cropped word recognition accuracy (%) on different
datasets.

End-to-End
Method IC03-50 IC03-Full SVT-50

Wang et al., 2011 68 51 38
Weak Baseline (Section 3.2.1.1) - 55 41
Wang et al., 2012 72 67 46
Alsharif and Pineau, 2014 77 70 48
This chapter 80 75 56

Table 4.3: End-to-end word recognition F-measure results (%). These methods
report PASCAL VOC style 50% overlap match measure for the detection.

character classifier, illustrating the importance of more training data. On the con-

trary, learning on extra synthetic data from the Chars74k dataset (very simple black

and white renderings of different fonts) and Wang et al., 2011 (more realistic textured

renderings of fonts) harmed recognition accuracy by causing the CNN to overfit to

the synthetic data. While these improvements are seemingly small, when integrated

across a textline even a small reduction in character classifier error can result in a

noticeable reduction in word recognition error.

The classifiers, including code to reproduce Table 4.1 can be found at https:

//bitbucket.org/jaderberg/eccv2014_textspotting.

4.3.2.2 Cropped Word Recognition

The cropped word recognition accuracy of the recognition sub-system (Table 4.2) is

evaluated following the protocol of Wang et al., 2011 (in particular, words smaller

https://bitbucket.org/jaderberg/eccv2014_textspotting
https://bitbucket.org/jaderberg/eccv2014_textspotting
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Figure 4.6: Five randomly chosen cropped groundtruth cropped words out of only
33 that were recognised incorrectly in the IC03-50 cropped word benchmark.

than two characters are ignored). The datasets used for this evaluation are sum-

marised in Table 3.1.

For each test image, the correct word must be picked out of a list of words,

a lexicon, consisting of the groundtruth word as well as a number of distractor

words. These distractors are: in IC03-Full the full lexicon, in IC03-50 the 50 words

from Wang et al., 2011, and in SVT, 50 selected words. These datasets are described

fully in Section 3.1.

Our word recognition system gives state of the art accuracy on the ICDAR 2003

benchmarks, improving on state of the art by 3.1% for the 50 word lexicon and

2.4% for the full lexicon. The total recognition accuracy of 96.2% for the 50 word

lexicon makes only 33 mistakes out of 860 test images, and many of the misclassified

examples can be very difficult to classify even for a human (Figure 4.6). On the SVT

dataset, we achieve an accuracy of 86.1%, which while 4.3% off state-of-the-art,

improves on the next best result [Goel et al., 2013] by 8.8%. This is a competitive

result considering our method is trained on two orders of magnitude less data, and

so must use a smaller model than the state-of-the-art PhotoOCR [Bissacco et al.,

2013b] method.

4.3.2.3 Text Spotting

The results of our end-to-end text spotting system are evaluated on the 251 ICDAR

2003 test images with different sized lexicons (Section 3.1.1) and the 249 image

SVT dataset (Section 3.1.2). The results are shown in Table 4.3 and the associated

precision recall curves in Figure 5.9. A recognition result is considered to be correct
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if the bounding box has at least 50% overlap with the groundtruth and the text

is correct. The overlap for bounding boxes b1 and b2 is defined as the ratio of

intersection over union (IoU): |b1∩b2||b1∪b2| .

The detector described in Section 4.2.1 is tuned for high recall and generates

word bounding boxes with localisation P/R (precision/recall) of 0.19/0.80 (IC03)

and 0.04/0.72 (SVT). After word recognition, the detection results are re-ranked

by their word recognition scores, P/R curves generated, and the P/R/F-measure

at the maximum F-measure working point is reported [Wang et al., 2012; Wang

et al., 2011; Alsharif and Pineau, 2014]. Our end-to-end pipeline outperforms pre-

vious works, with P/R/F-measure of 0.90/0.73/0.80 for IC03-50, 0.89/0.66/0.75 for

IC03-Full, and 0.73/0.45/0.56 for SVT-50. Interestingly, due to the fact that our

pre-recognition bounding boxes are generated by a detector trained from the same

data as the character recogniser, we find that the difference between the localisation

and recognition scores to be inline with the cropped word recognition results: at

maximum recall, 95% of correctly localised words are subsequently correctly recog-

nised in IC03-50. Some example end-to-end text spotting results on IC03-50 are

shown in Figure 4.7.

When removing the bigram response maps from the word recognition process,

F-measure drops significantly from 0.8 to 0.76 for IC03-50 and from 0.56 to 0.50

for SVT-50. This clearly shows the representational power of modelling bigrams in

addition to single characters.

Limitations. There are a number of limitations to the text spotting method in

this chapter. The main issue is the large amount of time taken to process a single

image. Due to the multiple scales and aspect ratios that must be processed in

a sliding window manner by the text detection CNN, creating the text saliency

maps takes 90s on average for an image from the SVT dataset on a single GPU.

Also, although fast for small dictionary sizes (hundreds of words), the computational
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complexity for finding the optimal word with the generative model of Equation (4.3)

is linear in the number of words, making it unfeasible for large dictionaries (tens

of thousands of words). This leaves space for faster, more scalable detection and

recognition algorithms. In terms of accuracy, one of the main limiting factors is the

lack of recall achieved by the detection method – only 72% of words are detected,

capping the upper-bound of end-to-end recall. These are issues we hope to address

in the next chapter.

4.4 Conclusions

In this chapter we have presented a text spotting system following a conventional

character-based detection and recognition framework. However, using a single set of

rich, learnt features, allows us to achieve state-of-the-art performance on a number

of benchmarks. These results illustrate the power of jointly learning features to build

multiple strong classifiers, combining data and labels across different classification

tasks. Finally, it should be noted that this framework is not only limited to fixed

lexicon recognition, as the major contributions in this chapter are agnostic as to

whether a lexicon is used or not.
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Figure 4.7: Some end-to-end text spotting results from IC03-50. Incorrectly recognised
words are labelled in red.
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Figure 4.8: The precision/recall curves on the IC03-50 dataset (a), IC03-Full (b), and
SVT-50 dataset (c) with lines of constant F-measure. The results from [Wang et al.,
2012; Alsharif and Pineau, 2014] were extracted from the papers. Given values are
maximum F-measure, and additionally, average precision for the proposed method
of this chapter.



Chapter 5

Word-centric Text Spotting

The majority of full text spotting systems, as well as our own framework described

in Chapter 4, take a character-centric approach to text detection and recognition,

which has been shown to work successfully. However, within these pipelines, algo-

rithms assume that characters occur in clusters (words, text lines, paragraphs) and

include heuristics and grouping mechanisms to discover these clusters which are sub-

sequently recognised. Indeed, a single, lone character occurring in an image can be a

very ambiguous object, and it is often impossible to distinguish between character-

like objects that are part of text from those that are just by-products of the rest of

the world, when isolated from their context. For example the visual shapes of the

characters “I”, “x”, and “o” occur frequently in natural images without any connec-

tion to text. Only in the context of other spatially-near, character-like objects can

these shapes be distinguished as characters and not background structures. Even

when looking just at a single word, the similarity between characters (such as “I”

and “1”) and the inter-character spaces can cause confusion when trying to recognise

single characters without any context. To help alleviate this issue in Chapter 4, we

increased the context of character recognition by including a bigram classifier, which

was shown to greatly increase the recognition accuracy of the proposed system.
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Aiming to completely remove the ambiguity of single-character context, in this

chapter, we move away from modelling individual characters, and deal solely with

words. This chapter describes a new end-to-end text spotting system that takes a

word-centric approach, visually modelling whole words for detection and recognition.

By focussing our visual models on whole words rather than single characters, we hope

to remove the ambiguity that arises by forcing context and pooling evidence from

entire words, helping both detection and recognition performance. In fact, there is

a lot of evidence to show that reading words as a whole, rather than character-by-

character, is much closer to the way humans read [Coltheart et al., 2001].

In this chapter we continue to build upon the success of deep learning methods

and propose a new model for text recognition. This model is in the form of a deep

convolutional neural network which takes the whole word image as input to the net-

work. Evidence is gradually pooled from across the image to perform classification

of the word across a huge dictionary, such as the 90k-word dictionary evaluated in

this chapter. Remarkably, our model is trained purely on synthetic data, without

incurring the cost of human labelling. Due to the scale of this modelling task, we

also propose an incremental learning method to successfully train a model with

such a large number of classes. Our recognition framework is exceptionally power-

ful, substantially outperforming previous state of the art on real-world scene text

recognition, without using any real-world labelled training data.

We also describe a new text detection strategy: the use of fast region proposal

methods to perform word detection. We use a combination of an object-agnostic

region proposal method and a learnt sliding window detector. This gives very high

recall coverage of individual word bounding boxes, resulting in around 98% word re-

call on both ICDAR 2003 and Street View Text datasets with a manageable number

of proposals. After the initial proposal stage, false-positive candidate word bound-

ing boxes are filtered with a stronger random forest classifier and the remaining
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proposals adjusted using a CNN trained to regress the bounding box coordinates.

The performance of each part of the pipeline is exposed in experiments, showing

that we can maintain the high recall of the initial proposal stage while gradually

boosting precision as more complex models and higher order information is incor-

porated. The recall of the detection stage is shown to be significantly higher than

that of previous text detection methods, and the accuracy of the word recognition

stage higher than all previous methods. The result is an end-to-end text spotting

system that outperforms all previous methods by a large margin. We demonstrate

this for the text spotting task (detecting and recognising text in images) across a

large range of standard text spotting datasets, as well as in a retrieval scenario (re-

trieving a ranked list of images that contain the text of a query string) for standard

datasets.

The following section gives an overview of this chapter’s pipeline. Sections 5.2-5.5

present the stages of our pipeline. We extensively test all elements of our pipeline in

Section 5.6 and include the details of datasets and the experimental setup. Finally,

Section 5.7 summarises and concludes.

5.1 Overview of the Approach

The stages of the approach in this chapter are as follows: word bounding box pro-

posal generation (Section 5.2), proposal filtering and adjustments (Section 5.3), text

recognition (Section 5.4) and final merging for the specific task (Section 5.5). The

full process is illustrated in Figure 5.1.

This process loosely follows the detection/recognition separation [Chen and Suter,

2004] – a word detection stage followed by a word recognition stage as discussed in

Section 2.2. However, these two stages are not wholly distinct, as we use the infor-

mation gained from word recognition to vote for, merge and refine detection results

at the end, leading to a stronger holistic text spotting system.



5.1. OVERVIEW OF THE APPROACH 75

Figure 5.1: The end-to-end text spotting pipeline proposed. a) A combination of
region proposal methods extracts many word bounding box proposals. b) Proposals
are filtered with a random forest classifier reducing number of false-positive de-
tections. c) A CNN is used to perform bounding box regression for refining the
proposals. d) A CNN performs text recognition on each of the refined proposals. e)
Detections are merged based on proximity and recognition results and assigned a
score. f) Thresholding the detections produces in the final text spotting result.
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The detection stage of our pipeline is based on weak-but-fast detection methods

to generate word bounding-box proposals. This draws on the success of the R-

CNN object detection framework of Girshick et al., 2014 where region proposals are

mapped to a fixed size for CNN recognition. The use of region proposals avoids

the computational complexity of evaluating an expensive classifier with exhaustive

multi-scale, multi-aspect-ratio sliding window search. We use a combination of Edge

Box proposals [Zitnick and Dollár, 2014] and a trained aggregate channel features

detector [Dollár et al., 2014] to generate candidate word bounding boxes. Due to

the large number of false-positive proposals, we then use a random forest classifier

to filter the number of proposals to a manageable size – this is a stronger classifier

than those found in the proposal algorithms. Finally, inspired by the success of

bounding box regression in DPM [Felzenszwalb et al., 2010] and R-CNN [Girshick

et al., 2014], we regress more accurate bounding boxes from the seeds of the proposal

algorithms which greatly improves the average overlap ratio of positive detections

with groundtruth. However, unlike the linear regressors of Felzenszwalb et al., 2010

and Girshick et al., 2014 we train a non-linear CNN specifically for regression. We

discuss these design choices in each section.

The second stage of our framework produces a text recognition result for each

proposal generated from the detection stage. We take a whole-word approach to

recognition, providing the entire cropped region of the word as input to a deep con-

volutional neural network. We present a dictionary model which poses the recogni-

tion task as a multi-way classification task across a dictionary of 90k possible words.

Due to the mammoth training data requirements of classification tasks of this scale,

these models are trained purely from synthetic data. Our synthetic data engine,

described in Section 3.3, is capable of rendering sufficiently realistic and variable

word image samples that the models trained on this data translate to the domain

of real-world word images giving state-of-the-art recognition accuracy.



5.2. PROPOSAL GENERATION 77

Finally, we use the information gleaned from recognition to update our detection

results with multiple rounds of box merging, non-maximal suppression, bounding

box regression and recognition on the new set of bounding boxes. This sequence

is repeated multiple times, iteratively incorporating the cues from the recognition

model into the detection model, increasing the overall precision and recall.

5.2 Proposal Generation

The first stage of our word-centric text spotting pipeline relies on the generation of

word bounding boxes. This is word detection – in an ideal scenario we would be able

to generate word bounding boxes with high recall and high precision, achieving this

by extracting the maximum amount of information from each bounding box candi-

date possible. However, in practice a precision/recall tradeoff is required to reduce

computational complexity. With this in mind we opt for a fast, high recall initial

phase, using computationally cheap classifiers, and gradually incorporate more in-

formation and more complex models to improve precision by rejecting false-positive

detections resulting in a cascade. To compute recall and precision in a detection

scenario, a bounding box is said to be a true-positive detection if it has overlap with

a groundtruth bounding box above a defined threshold. As a reminder, the overlap

for bounding boxes b1 and b2 is defined as the ratio of intersection over union (IoU):

|b1∩b2|
|b1∪b2| .

Though never applied to word detection before, region proposal methods have

gained a lot of attention for generic object detection. Region proposal methods [Ui-

jlings et al., 2013; Alexe et al., 2012; Cheng et al., 2014; Zitnick and Dollár, 2014]

aim to generate object region proposals with high recall, but at the cost of a large

number of false-positive detections. Even so, this still reduces the search space dras-

tically compared to sliding window evaluation of the subsequent stages of a detection

pipeline. Effectively, region proposal methods can be viewed as a weak detector.
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In this work we combine the results of two detection mechanisms – the Edge

Boxes region proposal algorithm (Zitnick and Dollár, 2014, Section 5.2.1) and a

weak aggregate channel features detector (Dollár et al., 2014, Section 5.2.2).

5.2.1 Edge Boxes

We use the formulation of Edge Boxes as described in Zitnick and Dollár, 2014. The

key intuition behind Edge Boxes is that since objects are generally self contained, the

number of contours wholly enclosed by a bounding box is indicative of the likelihood

of the box containing an object. Edges tend to correspond to object boundaries, and

so if edges are contained inside a bounding box this implies objects are contained

within the bounding box, whereas edges which cross the border of the bounding box

suggest there is an object that is not wholly contained by the bounding box.

The notion of an object being a collection of boundaries is especially true when

the desired objects are words – collections of characters with sharp boundaries.

Following Zitnick and Dollár, 2014, we compute the edge response map using the

Structured Edge detector [Dollár and Zitnick, 2013; Dollár and Zitnick, 2014] and

perform non-maximal suppression orthogonal to the edge responses, sparsifying the

edge map. A candidate bounding box b is assigned a score sb based on the number

of edges wholly contained by b, normalised by the perimeter of b. The complete

details can be found in Zitnick and Dollár, 2014.

The boxes b are evaluated in a sliding window manner, over multiple scales and

aspect ratios, and given a score sb. Finally, the boxes are sorted by score and non-

maximal suppression is performed: a box is removed if its overlap with another box

of higher score is more than a threshold. This results in a set of candidate bounding

boxes for words Be.
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5.2.2 Aggregate Channel Feature Detector

Another method for generating candidate word bounding box proposals is by using a

conventional trained detector. We use the aggregate channel features (ACF) detector

framework of Dollár et al., 2014 for its speed of computation. This is a conventional

sliding window detector based on ACF features coupled with an AdaBoost classifier.

ACF based detectors have been shown to work well on pedestrian detection and

general object detection, and here we use the same framework for word detection.

For each image I a number of feature channels are computed, such that channel

C = Ω(I), where Ω is the channel feature extraction function. We use the same

channels to those in Dollár et al., 2010 – normalised gradient magnitude, histogram

of oriented gradients (6 channels) – as well as the additional raw greyscale input as

an extra channel. We follow the same process as in Dollár et al., 2010: each channel

C is smoothed, divided into blocks, and the pixels in each block are summed and

smoothed again, resulting in aggregate channel features.

The ACF features are not scale invariant, so for multi-scale detection we need to

extract features at many different scales – a feature pyramid. In a standard detection

pipeline, the channel features for a particular scale s are computed by resampling

the image and recomputing the channel features Cs = Ω(Is) where Cs are the channel

features at scale s and Is = R(I, s) is the image resampled by s. Resampling and

recomputing the features at every scale is computationally expensive. However,

as shown in Dollár et al., 2010; Dollár et al., 2014, the channel features at scale

s can be approximated by resampling the features at a different scale, such that

Cs ≈ R(C, s) · s−λΩ , where λΩ is a channel specific power-law factor. Therefore,

fast feature pyramids can be computed by evaluating Cs = Ω(R(I, s)) at only a

single scale per octave (s ∈ {1, 1
2
, 1

4
, . . . }) and at intermediate scales, Cs is computed

using Cs = R(Cs′ , s/s
′)(s/s′)−λΩ where s′ ∈ {1, 1

2
, 1

4
, . . . }. This results in much faster
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feature pyramid computation.

The sliding window classifier is an ensemble of weak decision trees, trained using

AdaBoost [Friedman et al., 2000], using the aggregate channel features. We evaluate

the classifier on every block of aggregate channel features in our feature pyramid,

and repeat this for multiple aspect ratios to account for different length words, giving

a score for each box. Thresholding on score gives a set of word proposal bounding

boxes from the detector, Bd.

Discussion. We experimented with a number of region proposal algorithms. Some

were too slow to be useful [Uijlings et al., 2013; Alexe et al., 2012]. A very fast

method, BING [Cheng et al., 2014], gives good recall when re-trained specifically

for word detection but achieves a low overlap ratio for detections and poorer overall

recall. We found Edge Boxes to give the best recall and overlap ratio. We also

experimented with using existing text detection methods such as the stroke width

transform [Epshtein et al., 2010] and ER grouping [Neumann and Matas, 2012] to

provide word region proposals (these algorithms are described in Section 2.2). These

had high precision but comparatively low recall so were not used.

It was also observed that independently, neither Edge Boxes nor the ACF detec-

tor achieve particularly high recall, 92% and 70% recall respectively (see Section 5.6.2

for experiments), but when the proposals are combined achieve 98% recall (recall is

computed at 0.5 overlap). In contrast, combining BING, with a recall of 86% with

the ACF detector gives a combined recall of only 92%. This suggests that the Edge

Box and ACF detector methods are very complementary when used in conjunction,

and so we compose the final set of candidate bounding boxes B = {Be ∪ Bd}.

5.3 Filtering & Refinement

The proposal generation stage of Section 5.2 produces a set of candidate word bound-

ing boxes B. However, to achieve a high recall, thousands of bounding boxes are
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generated, most of which are false-positives. We therefore aim to use a stronger

classifier to further filter these to a number that is computationally manageable for

the more expensive full text recognition stage. This word/no-word classifier is de-

scribed in Section 5.3.1. We also observe that the overlap of many of the bounding

boxes with the groundtruth is unsatisfactorily low, and therefore train a regressor

to refine the location of the bounding boxes, as described in Section 5.3.2.

5.3.1 Word Classification

To reduce the number of false-positive word detections, we seek a classifier to per-

form word/no-word binary classification. For this we use a random forest classi-

fier [Breiman, 2001] acting on HOG features [Felzenszwalb et al., 2010].

For each bounding box proposal b ∈ B we resample the cropped image region to

a fixed size and extract HOG features, resulting in a descriptor h. The descriptor

is then classified with a random forest classifier, with decision stump nodes. The

random forest classifies every proposal, and the proposals falling below a certain

threshold are rejected, leaving a filtered set of bounding boxes Bf .

For the details on training the random forest classifier please see Section 5.6.2.

5.3.2 Bounding Box Regression

Although our proposal mechanism and filtering stage give very high recall, the over-

lap of these proposals can be quite poor.

While an overlap of 0.5 is usually acceptable for general object detection [Ever-

ingham et al., 2010], for accurate text recognition this can be unsatisfactory. This is

especially true when one edge of the bounding box is predicted accurately but not

the other – e.g. if the height of the bounding box is computed perfectly, the width

of the bounding box can be either double or half as wide as it should be and still

achieve 0.5 overlap. This is illustrated in Figure 5.2. Both predicted bounding boxes

have 0.5 overlap with the groundtruth, but for text this can amount to only seeing



5.3. FILTERING & REFINEMENT 82

Figure 5.2: The shortcoming of using an overlap ratio for text detection of 0.5. The
two examples of proposal bounding boxes (green solid box) have approximately 0.5
overlap with groundtruth (red dashed box). In the bottom case, a 0.5 overlap is not
satisfactory to produce accurate text recognition results.

half the word if the height is correctly computed, and so it would be impossible to

recognise the correct word in the bottom example of Figure 5.2. Note that both

proposals contain text, so neither are filtered by the word/no-word classifier.

Due to the large number of region proposals, we could hope that there would be

some proposals that would overlap with the groundtruth to a satisfactory degree,

but we can encourage this by explicitly refining the coordinates of the proposed

bounding boxes – we do this within a regression framework.

Our bounding box coordinate regressor takes each proposed bounding box b ∈

Bf and produces an updated estimate of that proposal b∗. A bounding box is

parametrised by its top-left and bottom-right corners, such that bounding box b =

(x1, y1, x2, y2). The full image I is cropped to a rectangle centred on the region b,

with the width and height inflated by a scale factor. The resulting image is resampled

to a fixed size W ×H, giving Ib, which is processed by the CNN to regress the four

values of b∗. We do not regress the absolute values of the bounding box coordinates
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directly, but rather encoded values. The top-left coordinate is encoded by the top-

left quadrant of Ib, and the bottom left coordinate by the bottom-left quadrant of

Ib as illustrated by Figure 5.3. This normalises the coordinates to generally fall in

the interval [0, 1], but allows the breaking of this interval if required.

In practice, we inflate the cropping region of each proposal by a factor of two.

This gives the CNN enough context to predict a more accurate location of the

proposal bounding box. The CNN is trained with example pairs of (Ib, bgt) to

regress the groundtruth bounding box bgt from the sub-image Ib cropped from I by

the estimated bounding box b. This is done by minimising the L2 loss between the

encoded bounding boxes, i.e.

min
ψ

∑
b∈Btrain

‖g(Ib;ψ)− q(bgt)‖2
2 (5.1)

over the network parameters ψ on a training set Btrain, where g is the CNN forward

pass function and q is the bounding box coordinate encoder.

Discussion. The choice of which features and the classifier and regression methods

to use was made through experimenting with a number of different options. This

included using a CNN for classification, with a dedicated classification CNN, and

also by jointly training a single CNN to perform both classification and regression

simultaneously with multi-task learning. However, the classification performance

of the CNN was not significantly better than that of HOG with a random forest,

but requires more computations and a GPU for processing. We therefore chose the

random forest classifier to reduce the computational cost of our pipeline without

impacting end results.

The bounding box regression not only improves the overlap to aid text recogni-

tion for each individual sample, but also causes many proposals to converge on the

same bounding box coordinates for a single instance of a word, therefore aiding the
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Figure 5.3: The bounding box regression encoding scheme showing the original
proposal (red) and the adjusted proposal (green). The cropped input image shown
is always centred on the original proposal, meaning the original proposal always has
implied encoded coordinates of (0.5, 0.5, 0.5, 0.5).
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voting/merging mechanism described in Section 5.6.3.2 with duplicate detections.

5.4 Text Recognition

At this stage of our processing pipeline, a pool of accurate word bounding box

proposals has been generated as described in the previous sections. We now turn to

the task of recognising words inside these proposed bounding boxes. To this end we

use a deep CNN to perform classification across a pre-defined dictionary of words –

dictionary encoding – which explicitly models natural language. The cropped image

of each of the proposed bounding boxes is taken as input to the CNN, and the CNN

produces a probability distribution over all the words in the dictionary. The word

with the maximum probability can be taken as the recognition result.

The model, described fully in Section 5.4.1, can scale to a huge dictionary of 90k

words, encompassing the majority of the commonly used English language (see Sec-

tion 5.6.1 for details of the dictionary used). However, to achieve this, many training

samples of every different possible word must be amassed. Such a training dataset

does not exist, so we instead use our synthetic data engine, described previously in

Section 3.3, to train our CNN. This synthetic data is so realistic that the CNN can

be trained purely on the synthetic data but still applied to real world data.

The synthetic data engine produces a wide range of synthetic data samples, being

drawn from a multitude of random distributions, mimicking real-world samples of

scene text images. Here, the synthetic data is used in place of real-world data,

and the labels are generated from a corpus or dictionary as desired. By using a

synthesised training dataset many orders of magnitude larger than what has been

available before, we are able to use data-hungry deep learning algorithms to train a

richer, whole-word-based model.
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Figure 5.4: A schematic of the CNN used for text recognition by word classification.
The dimensions of the featuremaps at each layer of the network are shown.

5.4.1 CNN Model

This section describes our model for word recognition. We formulate recognition

as a multi-class classification problem, with one class per word, where words w are

constrained to be selected in a pre-defined dictionaryW . While the dictionaryW of

a natural language may seem too large for this approach to be feasible, in practice an

advanced English vocabulary, including different word forms, contains only around

90k words, which is large but manageable.

In detail, we propose to use a CNN classifier where each word w ∈ W in the lex-

icon corresponds to an output neuron. We use a CNN with five convolutional layers

and three fully-connected layers, with the exact details described in Section 5.6.2.

The final fully-connected layer performs classification across the dictionary of words,

so has the same number of units as the size of the dictionary we wish to recognise.

The predicted word recognition result w∗ out of the set of all dictionary words

W in a language L for a given input image x is given by

w∗ = arg max
w∈W

P (w|x,L). (5.2)

With the assumptions that x is conditionally independent of L given w, i.e. P (x|w,L) =

P (x|L), then P (w|x,L) can be written as

P (w|x,L) =
P (w|x)P (w|L)P (x)

P (x|L)P (w)
(5.3)
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and assuming that prior to any knowledge of our language all words are equally

probable, our scoring function reduces to

w∗ = arg max
w∈W

P (w|x)P (w|L). (5.4)

The per-word output probability P (w|x) is modelled by the softmax output of the

final fully-connected layer of the recognition CNN, and the language based word

prior P (w|L) can be modelled by a lexicon or word frequency counts. A schematic

of the network is shown in Figure 5.4.

One limitation of this CNN model is that the input x must be a fixed, pre-defined

size. This is problematic for word images, as although the height of the image is

always one character tall, the width of a word image is highly dependent on the

number of characters in the word, which can range between one and 23 characters.

To overcome this issue, we simply resample the word image to a fixed width and

height. Although this does not preserve the aspect ratio, the horizontal frequency

distortion of image features most likely provides the network with word-length cues.

We also experimented with different padding regimes to preserve the aspect ratio,

but found that the results are not quite as good as performing naive resampling.

To summarise, for each proposal bounding box b ∈ Bf for image I we compute

P (w|xb,L) by cropping the image to Ib = c(b, I), resampling to fixed dimensionsW×

H such that xb = R(Ib,W,H), and compute P (w|xb) with the text recognition CNN

and multiply by P (w|L) (task dependent) to give a final probability distribution

over words P (w|xb,L).

5.5 Merging & Ranking

At this point in the pipeline, we have a set of word bounding boxes for each image

Bf with their associated word probability distributions PBf = {pb : b ∈ Bf}, where
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pb = P (w|b, I) = P (w|xb,L). However, this set of detections still contains a number

of false-positive and duplicate detections of words, so a final merging and ranking

of detections must be performed depending on the task at hand: text spotting or

text based image retrieval.

5.5.1 Text Spotting

As defined in Chapter 1, the goal of text spotting is to localise and recognise the

individual words in the image. Each word should be labelled by a bounding box

enclosing the word and the bounding box should have an associated text label.

For this task, we assign each bounding box in b ∈ Bf a label wb and score sb

according to b’s maximum word probability:

wb = arg max
w∈W

P (w|b, I), sb = max
w∈W

P (w|b, I) (5.5)

To cluster duplicate detections of the same word instance, we perform a greedy

non maximum suppression (NMS) on detections with the same word label, aggre-

gating the scores of suppressed proposals. This can be seen as positional voting

for a particular word. Subsequently, we perform NMS to suppress non-maximal

detections of different words with some overlap.

Our text recognition CNN is able to accurately recognise text in very loosely

cropped word sub-images. Because of this, we find that some valid text spotting

results have less than 0.5 overlap with groundtruth, but we require greater than 0.5

overlap for some applications (see Section 5.6.3.2).

To improve the overlap of detection results, we additionally perform multiple

rounds of bounding box regression as in Section 5.3.2 and NMS as described above to

further refine our detections. This can be seen as a recurrent regressor network. Each

round of regression updates the prediction of each word’s localisation, giving the next

round of regression an updated context window to perform the next regression, as
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Figure 5.5: An example of the improvement in localisation of the word detection
pharmacy through multiple rounds of recurrent regression.

shown in Figure 5.5. Performing NMS between each regression causes bounding

boxes that have become similar after the latest round of regression to be grouped

as a single detection. This generally causes the overlap of detections to converge on

a higher, stable value with only a few rounds of recurrent regression.

The refined results, given by the tuple (b, wb, sb), are ranked by their scores sb

and a threshold determines the final text spotting result. For the direct comparison

of scores across images, we normalise the scores of the results of each image by the

maximum score for a detection in that image.

5.5.2 Image Retrieval

For the task of text based image retrieval, we wish to retrieve the list of images which

contain the given query words. Localisation of the query word is not required, only

optional for giving evidence for retrieving that image.

Retrieval is achieved by, at query time, assigning each image I a score sQI for the

query wordsQ = {q1, q2, . . .}, and sorting the images in the database I in descending

order of score. It is also required that the score for all images can be computed fast

enough to scale to databases of millions of images, allowing fast retrieval of visual

content by text search. While retrieval is often performed for just a single query

word (Q = {q}), we generalise our retrieval framework to be able to handle multiple

query words.

We estimate the per-image probability distribution across word space P (w|I) by
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averaging the word probability distributions across all detections Bf in an image

pI = P (w|I) =
1

|Bf |
∑
b∈Bf

pb. (5.6)

This distribution is computed offline for all I ∈ I.

At query time, we can simply compute a score for each image sQI representing

the probability that the image I contains any of the query words Q. Assuming

independence between the presence of query words

sQI =
∑
q∈Q

logP (q|I) =
∑
q∈Q

log pI(q) (5.7)

where pI(q) is just a lookup of the log probability of word q in the word distribution

pI. These scores can be computed very quickly and efficiently by constructing an

inverted index of pI ∀ I ∈ I.

After a one-time, offline pre-processing to compute pI and assemble the inverted

index, a query can be processed across a database of millions of images in less than

a second.

5.6 Experiments

In this section we evaluate the word-centric pipeline in this chapter on a number of

standard text spotting and text based image retrieval benchmarks.

We next describe the datasets The datasets used for evaluation are given Sec-

tion 5.6.1, we give the exact implementation details and performance of each part

of our pipeline in Section 5.6.2, and finally present the results on cropped text

recognition, text spotting and image retrieval benchmarks in Section 5.6.3.
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Figure 5.6: The recall and the average number of proposals per image at each
stage of the pipeline on IC03. (a) Edge Box proposals, (b) ACF detector proposals,
(c) Proposal filtering, (d) Bounding box regression, (e) Regression NMS round 1,
(f) Regression NMS round 2, (g) Regression NMS round 3. The recall computed is
detection recall across the dataset (i.e. ignoring the recognition label) at 0.5 overlap.

5.6.1 Datasets

We evaluate our pipeline on an extensive number of datasets. Due to different levels

of annotation, the datasets are used for a combination of text recognition, text

spotting, and image retrieval evaluation. The datasets are summarised in Table 3.1,

Table 3.2, and Table 3.3. The smaller lexicons provided by some datasets are used

to reduce the search space to just text contained within the lexicons.

We evaluate these tasks on the standard ICDAR, SVT and IIIT datasets. Addi-

tionally, to assess text based image retrieval we use the queries and datasets released

by Mishra et al., 2012. Full details of the datasets are found in Section 3.1.
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5.6.2 Implementation Details

We train a single model for each of the stages in our pipeline, and hyper parameters

are selected using training datasets of ICDAR and SVT. Exactly the same pipeline,

with the same models and hyper parameters are used for all datasets and experi-

ments. This highlights the generalisability of our end-to-end framework to different

datasets and tasks. The progression of detection recall and the number of proposals

as the pipeline progresses can be seen in Figure 5.6.

5.6.2.1 Edge Boxes & ACF Detector

The Edge Box detector has a number of hyper parameters, controlling the stride of

evaluation and non maximal suppression. We use the default values of α = 0.65 and

β = 0.75 (see Zitnick and Dollár, 2014 for details of these parameters). In practice,

we saw little effect of changing these parameters in combined recall.

For the ACF detector, we set the number of decision trees to be 32, 128, 512 for

each round of bootstrapping. For feature aggregation, we use 4×4 blocks smoothed

with [1 2 1]/4 filter, with 8 scales per octave. As the detector is trained for a

particular aspect ratio, we perform detection at multiple aspect ratios in the range

[1, 1.2, 1.4, . . . , 3] to account for variable sized words. We train on 30k cropped

32 × 100 positive word samples amalgamated from all the ICDAR, SVT, KAIST

and FlickrType datasets in Section 3.1. Negative/background patches are randomly

sampled from 11k images which do not contain text.

Figure 5.7 shows the performance of our proposal generation stage. The recall

at 0.5 overlap of groundtruth labelled words in the IC03 and SVT datasets is shown

as a function of the number of proposal regions generated per image. The maximum

recall achieved using Edge Boxes is 92%, and the maximum recall achieved by the

ACF detector is around 70%. However, combining the proposals from each method

increases the recall to 98% at 6k proposals and 97% at 11k proposals for IC03 and
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Figure 5.7: The 0.5 overlap recall of different region proposal algorithms. The recall
displayed in the legend for each method gives the maximum recall achieved. The
curves are generated by decreasing the minimum score for a proposal to be valid,
and terminate when no more proposals can be found.

SVT respectively. The average maximum overlap of a particular proposal with a

groundtruth bounding box is 0.82 on IC03 and 0.77 on SVT, suggesting the region

proposal techniques produce some accurate detections amongst the thousands of

false-positives.

This high recall and high overlap gives a good starting point for the rest of our

pipeline, and has greatly reduced the search space of word detections from the tens

of millions of possible bounding boxes to around 10k proposals per image.
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5.6.2.2 Random Forest Word Classifier

The random forest word/no-word binary classifier acts on cropped region proposals.

These are resampled to a fixed 32 × 100 size, and HOG features extracted with a

cell size of 4, resulting in h ∈ R8×25×36, a 7200-dimensional descriptor. The random

forest classifier consists of 10 trees with a maximum depth of 64.

For training, region proposals are extracted as we describe in Section 5.2 on the

training datasets of ICDAR and SVT, with positive bounding box samples defined

as having at least 0.5 overlap with groundtruth, and negative samples as less than

0.3 with groundtruth. Due to the abundance of negative samples, we randomly

sample a roughly equal number of negative samples to positive samples, giving 300k

positive and 400k negative training samples.

Once trained, the result is a very effective false-positive filter. We threshold the

probability at 0.5, giving 96.6% and 94.8% recall on IC03 and SVT positive proposal

regions respectively. This filtering reduces the total number of region proposals to

on average 650 (IC03) and 900 (SVT) proposals per image.

5.6.2.3 Bounding Box Regressor

The bounding box regression CNN consists of four convolutional layers with stride

1 with {filter size, number of filters} of {5, 64}, {5, 128}, {3, 256}, {3, 512} for

each layer from input respectively, followed by two fully-connected layers with 4k

units and 4 units (one for each regression variable). All hidden layers are followed

by rectified linear non-linearities, the inputs to convolutional layers are zero-padded

to preserve dimensionality, and the convolutional layers are followed by 2 × 2 max

pooling. The fixed sized input to the CNN is a 32 × 100 greyscale image which

is zero centred by subtracting the image mean and normalised by dividing by the

standard deviation.

The CNN is trained with stochastic gradient descent (SGD) with dropout on the
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fully-connected layers to reduce overfitting, minimising the L2 distance between the

estimated and groundtruth bounding boxes (Equation 5.1). We used 700k training

examples of bounding box proposals with greater than 0.5 overlap with groundtruth,

computed on the ICDAR and SVT training datasets.

Before the regression stage, the average positive proposal region (with over 0.5

overlap with groundtruth) had an overlap of 0.61 and 0.60 on IC03 and SVT. The

CNN regressor improves this average positive overlap to 0.88 and 0.70 for IC03 and

SVT.

5.6.2.4 Text Recognition CNN

The text recognition CNN consists of eight weight layers – five convolutional layers

and three fully-connected layers. The convolutional layers have the following

{filter size, number of filters}: {5, 64}, {5, 128},

{3, 256}, {3, 512}, {3, 512}. The first two fully-connected layers have 4k units and

the final fully-connected layer has the same number of units as as number of words in

the dictionary – 90k words in our case as we use the 90kDict defined in Section 3.3.

The final classification layer is followed by a softmax normalisation layer. Rectified

linear non-linearities follow every hidden layer, and all but the fourth convolutional

layers are followed by 2×2 max pooling. The inputs to convolutional layers are zero-

padded to preserve dimensionality. The fixed sized input to the CNN is a 32× 100

greyscale image which is zero centred by subtracting the image mean and normalised

by dividing by the standard deviation.

We train the network on the Synth90k training data (Section 3.3), back-propagating

the standard multinomial logistic regression loss. Optimisation uses SGD with

dropout regularisation of fully-connected layers, and we dynamically lower the learn-

ing rate as training progresses. With uniform sampling of classes in training data,

we found the SGD batch size must be at least a fifth of the total number of classes
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in order for the network to train.

For very large numbers of classes (i.e. over 5k classes), the SGD batch size re-

quired to train effectively becomes large, slowing down training a lot. Therefore, for

large dictionaries, we perform incremental training to avoid requiring a prohibitively

large batch size. This involves initially training the network with 5k classes until par-

tial convergence, after which an extra 5k classes are added. The original weights are

copied for the previously trained classes, with the extra classification layer weights

being randomly initialised. The network is then allowed to continue training, with

the extra randomly initialised weights and classes causing a spike in training error,

which is quickly trained away. This process of allowing partial convergence on a

subset of the classes, before adding in more classes, is repeated until the full number

of desired classes is reached.

At evaluation-time we do not do any data augmentation. If a lexicon is provided,

we set the language prior P (w|L) to be equal probability for lexicon words, otherwise

zero. In the absence of a lexicon, P (w|L) is calculated as the frequency of word w in a

corpus (we use the opensubtitles.org English corpus) with power law normalisation.

In total, this model contains around 500 million parameters and can process a word

in 2.2ms on a GPU with a custom version of Caffe [Jia, 2013].

The cropped word recognition results using this CNN is given in Section 5.6.3.1.

5.6.3 Results

This section describes the results of our pipeline on various problems. Section 5.6.3.1

investigates the performance of the text recognition CNN by looking at the isolated

problem of cropped word recognition, and the performance of the entire end-to-end

pipeline is evaluated in Section 5.6.3.2 for text spotting and Section 5.6.3.3 for text

based image retrieval.
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5.6.3.1 Cropped Word Recognition

We evaluate the accuracy of our text recognition model over a wide range of datasets

and lexicon sizes. As in Chapter 4 we follow the standard evaluation protocol

by Wang et al., 2011 and perform recognition on the words containing only al-

phanumeric characters and at least three characters.

The results are shown in Table 5.1, and highlight the exceptional performance of

our deep CNN, DICT. Although we train on purely synthetic data, with no human

annotation, our model obtains significant improvements on state-of-the-art accuracy

across all standard datasets, outperforming the character classifier based recognition

model of Chapter 4. On IC03-50, the recognition problem is largely solved with

98.7% accuracy – only 11 mistakes out of 860 test samples – and we significantly

outperform the previous state-of-the-art [Bissacco et al., 2013a] on SVT-50 by 5%

and IC13 by 3%. Compared to the ICDAR datasets, the SVT accuracy, without the

constraints of a dataset-specific lexicon, is lower at 80.7%. This reflects the difficulty

of the SVT dataset as image samples can be of very low quality, noisy, and with low

contrast. The Synth90k dataset accuracy shows that our model really can recognise

word samples consistently across the whole 90k dictionary.

Model Size Effects. To investigate the effect of model size and output dictionary

size, we train some reduced capacity recognition CNNs.

The shallower CNN, dubbed DICTsmall, has the 4th convolutional layer and

one of the 4k fully connected layers removed. The DICTsmall network has a greatly

reduced accuracy, achieving 90.3% on Synth90k (-5% compared to DICT), 90.0%

on IC03 (-3%), and 73.0% on SVT (-8%). We also define a recognition CNN which,

instead of modelling the 90k words of 90kDict, models only the test words that

appear in IC03 and SVT, denoted as DICTsmall-IC03-Full and DICTsmall-SVT-

Full respectively. These models have significantly less words to model (563 for
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DICTsmall-IC03-Full and 4282 for DICTsmall-SVT-Full) and so define a simpler

recognition problem. As expected, these constrained models perform significantly

better than when trained on the entire 90k word dictionary. DICTsmall-IC03-Full

reaches 98.1% accuracy on IC03 and when constraining to the 50 word lexicon, IC03-

50, gets 99.2% accuracy, only misreading 7 out of the 860 test words. On SVT, the

DICTsmall-SVT-Full model gets 87.0%, and with the constrained 50 word lexicon,

SVT-50, achieves 96.1% accuracy.

Synthetic Data Effects. As an additional experiment, we look into the contri-

bution that the various stages of the synthetic data generation engine in Section 3.3

make to real-world recognition accuracy. For speed of computation we do this ex-

periment on the reduced output models DICTsmall-IC03-Full and DICTsmall-SVT-

Full, which are tested only on their respective datasets. We repeatedly train these

models from scratch, with the same training procedure, but with increasing levels

of sophistication of synthetic data. Figure 5.8 shows how the test accuracy of these

models increases as more sophisticated synthetic training data is used. The addition

of random image-layer colouring causes a notable increase in performance (+44% on

IC03 and +40% on SVT), as does the addition of natural image blending (+1% on

IC03 and +6% on SVT). It is interesting to observe a much larger increase in accu-

racy through incorporating natural image blending on the SVT dataset compared

to the IC03 dataset. This is most likely due to the fact that there are more varied

and complex backgrounds to text in SVT compared to in IC03.

5.6.3.2 Text Spotting

In the text spotting task, the goal is to localise and recognise the words in the

test images. Unless otherwise stated, we follow the standard evaluation protocol by

Wang et al., 2011 as in Chapter 4 and ignore all words that contain alphanumeric

characters and are not at least three characters long. A positive recognition result
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Figure 5.8: The recognition accuracies of text recognition models trained on just
the IC03 lexicon (DICTsmall-IC03-Full) and just the SVT lexicon (DICTsmall-SVT-
Full), evaluated on IC03 and SVT respectively. The models are trained on purely
synthetic data with increasing levels of sophistication of the synthetic data. (a)
Black text rendered on a white background with a single font, Droid Sans. (b)
Incorporating all of Google fonts. (c) Adding background, foreground, and border
colouring. (d) Adding perspective distortions. (e) Adding noise, blur and elastic
distortions. (f) Adding natural image blending – this gives an additional 6.2%
accuracy on SVT. The final accuracies on IC03 and SVT are 98.1% and 87.0%
respectively.
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Figure 5.9: The precision/recall curves on (a) the IC03-50 dataset, (b) the IC03-Full
dataset, and (c) the SVT-50 dataset. The lines of constant F-measure are shown at
the maximum F-measure point of each curve. The results from Wang et al., 2012;
Alsharif and Pineau, 2014 were extracted from the papers.
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Cropped Word Recognition Accuracy (%)
Model Synth90k IC03-50 IC03-Full IC03 SVT-50 SVT IC13 IIIT5k-50 IIIT5k-1k

ABBYY - 56.0 55.0 - 35.0 - - 24.3 -
Wang et al., 2011 - 76.0 62.0 - 57.0 - - - -
Mishra et al., 2012 - 81.8 67.8 - 73.2 - - 64.1 57.5
Novikova et al., 2012 - 82.8 - - 72.9 - - - -
Wang et al., 2012 - 90.0 84.0 - 70.0 - - - -
Goel et al., 2013 - 89.7 - - 77.3 - - - -
Bissacco et al., 2013a - - - - 90.4 78.0 87.6 - -

Alsharif and Pineau, 2014 - 93.1 88.6 85.1* 74.3 - - - -
Almazán et al., 2014 - - - - 89.2 - - 91.2 82.1
Yao et al., 2014 - 88.5 80.3 - 75.9 - - 80.2 69.3
Chapter 4 - 96.2 91.5 - 86.1 - - - -
Gordo, 2014 - - - - 90.7 - - 93.3 86.6
This chapter 95.2 98.7 98.6 93.1 95.4 80.7 90.8 97.1 92.7

Table 5.1: Comparison to previous methods for text recognition accuracy – where the
groundtruth cropped word image is given as input. The ICDAR 2013 results given
are case-insensitive. Bold results outperform previous state-of-the-art methods. The
baseline method is from a commercially available document OCR system, ABBYY,
evaluated in [Wang et al., 2011; Yao et al., 2014]. *Recognition is constrained to a
dictionary of 50k words.

is only valid if the detection bounding box has at least 0.5 overlap (IoU) with the

groundtruth.

Table 5.2 shows the results of our text spotting pipeline compared to previous

methods. We report the global F-measure over all images in the dataset. Across

all datasets, our pipeline drastically outperforms all previous methods. On SVT-50,

we increase the state-of-the-art by +20% to a P/R/F (precision/recall/F-measure)

of 0.85/0.68/0.76 compared to 0.73/0.45/0.56 in Chapter 4. Similarly impressive

improvements can be seen on IC03, where in all lexicon scenarios we improve F-

measure by at least +10%, reaching a P/R/F of 0.96/0.85/0.90. Looking at the

precision/recall curves in Figure 5.9, we can see that our pipeline manages to main-

tain very high recall, and the recognition score of our text recognition system is a

strong cue to the suitability of a detection.

We also give results across all datasets when no lexicon is given. As expected, the

F-measure suffers from the lack of lexicon constraints, though is still significantly

higher than other comparable work. It should be noted that the SVT dataset is
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End-to-End Text Spotting (F-measure %)
Model IC03-50 IC03-Full IC03 IC03+ SVT-50 SVT IC11 IC11+ IC13

Neumann and Matas, 2011 - - - 41 - - - - -
Wang et al., 2011 68 51 - - 38 - - - -
Wang et al., 2012 72 67 - - 46 - - - -
Neumann and Matas, 2013 - - - - - - - 45 -
Alsharif and Pineau, 2014 77 70 63* - 48 - - - -
Chapter 4 80 75 - - 56 - - - -
This chapter 90 86 78 72 76 53 76 69 76
This chapter (0.3 IoU) 91 87 79 73 82 57 77 70 77

Table 5.2: Comparison to previous methods for end-to-end text spotting. Bold results
outperform previous state-of-the-art methods. *Recognition is constrained to a dictionary
of 50k words. +Evaluation protocol described in Neumann and Matas, 2013.

Text Based Image Retrieval

Model
IC11

(mAP)
SVT

(mAP)
STR

(mAP)
Sports
(mAP)

Sports
(P@10)

Sports
(P@20)

Wang et al., 2011* - 21.3 - - - -
Neumann and Matas, 2012* - 23.3 - - - -
Mishra et al., 2013 65.3 56.2 42.7 - 44.8 43.4
This chapter 90.3 86.3 66.5 66.1 91.0 92.5

Table 5.3: Comparison to previous methods for text based image retrieval. We report
mean average precision (mAP) for IC11, SVT, STR, and Sports, and also report top-n
retrieval to compute precision at n (P@n) on Sports. Bold results outperform previous
state-of-the-art methods. *Experiments were performed in Mishra et al., 2013, not by the
author of this thesis.

only partially annotated. This means that the precision (and therefore F-measure)

is much lower than the true precision if fully annotated, since many words that are

detected are not annotated and are therefore incorrectly recorded as false-positives.

We can however report recall on SVT-50 and SVT of 71% and 59% respectively.

Interestingly, when the overlap threshold is reduced to 0.3 (last row of Table 5.2),

we see a small improvement across ICDAR datasets and a large +8% improvement on

SVT-50. This implies that our text recognition CNN is able to accurately recognise

even loosely cropped detections. Ignoring the requirement of correctly recognising

the words, i.e. performing purely word detection, we get an F-measure of 0.85 and

0.81 for IC03 and IC11.
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1.00/1.00/1.00

1.00/1.00/1.00

1.00/1.00/1.00

1.00/1.00/1.00 1.00/0.88/0.93

1.00/1.00/1.00

Figure 5.10: Some example text spotting results from SVT-50 (top row) and IC11
(bottom row). Red dashed shows groundtruth and green shows correctly localised
and recognised results. P/R/F figures are given above each image.

Some example text spotting results are shown in Figure 5.10. Since our pipeline

does not rely on connected component based algorithms or explicit character recog-

nition, we can detect and recognise disjoint, occluded and blurry words.

A common failure mode of our system is the missing of words due to the lack of

suitable proposal regions, especially apparent for slanted or vertical text, something

which is not explicitly modelled in our framework. Also the detection of sub-words

or multiple words together can cause false-positive results.

5.6.3.3 Image Retrieval

We also apply our pipeline to the task of text based image retrieval. Given a text

query, the images containing the query text must be returned.

This task is evaluated using the framework of Mishra et al., 2013, with the results

shown in Table 5.3. For each defined query, we retrieve a ranked list of all the images

of the dataset and compute the average precision (AP) for each query, reporting the
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mean average precision (mAP) over all queries. We significantly outperform Mishra

et al. across all datasets – we obtain an mAP on IC11 of 90.3%, compared to

65.3% from Mishra et al., 2013. Our method scales seamlessly to the larger Sports

dataset, where our system achieves a precision at 20 images (P@20) of 92.5%, more

than doubling that of 43.4% from Mishra et al., 2013. Mishra et al., 2013 also

report retrieval results on SVT for released implementations of other text spotting

algorithms. The method from Wang et al., 2011 achieves 21.3% mAP, the method

from Neumann and Matas, 2012 achieves 23.3% mAP and the method proposed by

Mishra et al., 2013 itself achieves 56.2% mAP, compared to our own result of 86.3%

mAP.

However, as with the text spotting results for SVT, our retrieval results suffer

from incomplete annotations on SVT and Sports datasets – Figure 5.11 shows how

precision is hurt by this problem. The consequence is that the true mAP on SVT is

higher than the reported mAP of 86.3%.

Depending on the image resolution, our algorithm takes approximately 5-20s to

compute the end-to-end results per image on a single CPU core and single GPU. We

analyse the time taken for each stage of our pipeline on the SVT dataset, which has

an average image size of 1260×860, showing the results in Table 5.4. Since we reduce

the number of proposals throughout the pipeline, we can allow the processing time

per proposal to increase while keeping the total processing time for each stage stable.

This affords us the use of more computationally complex features and classifiers as

the pipeline progresses. Our method can be trivially parallelised, meaning we can

process 1-2 images per second on a high-performance workstation with 16 physical

CPU cores and 4 commodity GPUs.

The high precision and speed of our pipeline allows us to process huge datasets

fro practical search applications. This is demonstrated on a 5000 hour BBC News

dataset in Chapter 8.
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Stage # proposals Time Time/proposal

(a) Edge Boxes > 107 2.2s < 0.002ms
(b) ACF detector > 107 2.1s < 0.002ms
(c) RF filter 104 1.8s 0.18ms
(d) CNN regression 103 1.2s 1.2ms
(e) CNN recognition 103 2.2s 2.2ms

Total 9.5s

Table 5.4: The processing time for each stage of the pipeline evaluated on the SVT
dataset on a single 3.2Ghz CPU core and single Nvidia GeForce GTX Titan GPU.
As the pipeline progresses from (a)-(e), the number of proposals is reduced (starting
from all possible bounding boxes), allowing us to increase our computational budget
per proposal while keeping the overall processing time for each stage comparable.

Limitations. There are limitations to this system. At present there is no support

for reading vertical or significantly rotated text, as this is not modelled in the de-

tection phase, and during recognition the height resizing to 32px will cause rotated

text to be unreadably distorted. Another issue is that there seems to be a number

of false positive detections of short words (one, two, and three letter words). In

general, there is no dataset level or image level context for the text spotting, mean-

ing that it could be greatly beneficial to incorporate a word frequency model and

even an image level language model, which could help give context to the individual

detections within a single image and prevent these false positive results. Finally, by

design, the recognition part of this system can only recognise words that are con-

tained within the large dictionary supplied – an alternative text recognition model

for out-of-dictionary recognition is explored in the next chapter.

5.7 Conclusions

In this chapter we have presented an end-to-end text reading pipeline – a detection

and recognition system for text in natural scene images. By taking a word-centric

approach, this general system works remarkably well for both text spotting and

image retrieval tasks, significantly improving the performance on both tasks over
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SVT: apartments Sports: castrol

1. Score: 0.219 – Groundtruth: 0 1. Score: 1.0 – Groundtruth: 1

2. Score: 0.022 – Groundtruth: 1 2. Score: 1.0 – Groundtruth: 0

Figure 5.11: An illustration of the problems with incomplete annotations in test
datasets. We show examples of the top two results for the query apartments on the
SVT dataset and the query castrol on the Sports dataset. All retrieved images
contain the query word (green box), but some of the results have incomplete anno-
tations, and so although the query word is present the result is labelled as incorrect.
This leads to a reported AP of 0.5 instead of 1.0 for the SVT query, and a reported
P@2 of 0.5 instead of the true P@2 of 1.0.
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all previous methods, on all standard datasets, without any dataset-specific tuning.

This is largely down to a very high recall proposal stage and a text recognition

model that achieves superior accuracy to all previous systems. Our system is fast

and scalable – we demonstrate seamless scalability from datasets of hundreds of

images to being able to process datasets of millions of images for instant text based

image retrieval without any perceivable degradation in accuracy. Additionally, the

ability of our recognition model to be trained purely on synthetic data allows our

system to be easily re-trained for recognition of other languages or scripts, without

any human labelling effort.



Chapter 6

Unconstrained Text Recognition

The text spotting systems described in Chapter 4 and Chapter 5 have recognition

stages that both assume the presence of a dictionary or fixed lexicon of words that

can be recognised. While this dictionary can be extremely large (90k words in Chap-

ter 5) this still imposes a limitation on the expressivity and ability to generalise to

any given text. To push past this boundary, in this chapter we tackle the prob-

lem of unconstrained text recognition – recognising text in natural images without

restricting the words to a fixed lexicon or dictionary.

Since this is predominantly a recognition problem, this chapter focuses only on

text recognition, assuming word bounding boxes have been found already, allowing

it to be used with the detection stages of the previous two chapters.

Our unconstrained text recognition model is based on deep convolutional neural

networks, but unlike previous work which constrains or heavily weights results to

be from a dictionary of known words [Alsharif and Pineau, 2014; Bissacco et al.,

2013a; Gordo, 2014], we make no such assumptions, allowing our model to generalise

to where previously unseen or non-language based text must be recognised – for

example for generic alpha-numeric strings such as number plates or phone numbers.

The shift of focus towards a model which performs accurately without a fixed

108
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dictionary significantly increases the complexity of the text recognition problem. To

solve this, we propose a novel CNN architecture (Figure 6.2) employing a Conditional

Random Field (CRF) whose unary terms are outputs of a CNN character predictor,

which are position-dependent, and whose higher order terms are outputs of a CNN

N-gram predictor, which are position-independent. The recognition result is then

obtained by finding the character sequence that maximises the CRF score, enforcing

the consistency of the individual predictions.

The two CNN components – the character sequence predictor CNN and the N-

gram detection CNN – can be trained independently for word recognition. However,

when combined in the joint CRF model the entire network can be jointly trained

by defining a structured output learning problem, and back-propagating the corre-

sponding structured output loss. This joint formulation results in multi-task learning

of both the character and N-gram predictors, and additionally learns how to com-

bine their representations in the CRF, resulting in more accurate text recognition

than either sub-CNN alone.

The result is a highly flexible text recognition system that achieves excellent

unconstrained text recognition performance as well as state-of-the-art recognition

performance when using standard dictionary constraints. While performance is

measured on real images from standard text recognition benchmarks, as with the

recognition CNN of Chapter 5, all results are obtained by training the model purely

on the synthetic data described in Section 3.3. In addition to real-world data tests,

the model is evaluated on this synthetic data in order to study its performance under

different scenarios.

We begin by introducing the character sequence model in Section 6.1.1 and the

N-gram detection model in Section 6.1.2. Section 6.2 shows how these two predictors

can be combined to form a joint CRF model and formulates the training of the latter

as structured-output learning. Section 6.3 evaluates these models extensively and
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(a)

(b)

Figure 6.1: (a) The character sequence model. A word image is recognised by pre-
dicting the character at each position in the output, spelling out the text character
by character. Each positional classifier is learnt independently but shares a jointly
optimised set of features. (b) The N-gram detection model. The recognised text
is represented by its bag-of-N-grams. This can be thought of as 10k independently
trained binary classifiers using a shared set of jointly learnt features, trained to
detect the presence of a particular N-gram.

Section 6.4 summarises the findings of this chapter.

6.1 CNN Text Recognition Models

We now describe the component CNN models that form the basis of our joint model

in Section 6.2. Both models use the same concept as the dictionary classification

model in Section 5.4.1 of taking the entire word image as input to a CNN, but define

different output encoding schemes.
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6.1.1 Character Sequence Model

In this section we describe our character sequence model. This model encodes the

character at each position in the word and so predicts the sequence of characters in

an image region (hereafter we simply refer to the image region as an image). Each

position in the word is modelled by an independent classifier acting on a shared set

of features from a single CNN. By construction, this model makes no assumptions

about the underlying language and allows completely unconstrained recognition.

A word w of length N is modelled as a sequence of characters such that w =

(c1, c2, . . . , cN) where each ci ∈ C = {1, 2, . . . , 36} represents a character at position

i in the word, from the set of 10 digits and 26 letters. Each ci can be predicted with

a single classifier, one for each character in the word. However, since words have

variable length N which is unknown at test time, we fix the number of characters

to Nmax (here set to 23), the maximum length of a word in the training set, and

introduce a null character class. Therefore a word is represented by a string w ∈

(C ∪ {φ})Nmax .

For a given input image x, we want to return the estimated word w∗ which

maximises P (w∗|x). Since we seek an unconstrained recognition system with this

model, we assume independence between characters leading to

w∗ = arg max
w

P (w|x) = arg max
c1,c2,...,cNmax

Nmax∏
i=1

P (ci|Φ(x)) (6.1)

where P (ci|Φ(x)) is given by the classifier for the i-th position acting on a single set

of shared CNN features Φ(x). The word w∗ can be computed by taking the most

probable character at each position c∗i = arg maxci∈C∪{φ} P (ci|Φ(x)).

The CNN (Figure 6.1 (a)) takes the whole word image x as input. Word images

can be of different sizes, in particular due to the variable number of characters in

the image. However, our CNN requires a fixed size input for all input images. This
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problem is overcome by simply resampling the original word image to a canonical

height and width, without regard to preserving the aspect ratio, producing a fixed

size input x.

The base CNN has a number of convolutional layers followed by a series of fully

connected layers, giving Φ(x). The full details of the network architecture are given

in Section 6.3.2. Φ(x) is fed to Nmax separate fully connected layers (one layer per

character position) with 37 neurons each, one for each character class including the

null character. These fully connected layers are independently softmax normalised

and can be interpreted as the probabilities P (ci|Φ(x)) of the width-resized input

image x.

The CNN is trained with multinomial logistic regression loss applied to each

character position classifier, with the back-propagated gradients from each classifier

accumulating on the penultimate fully connected layer, allowing the entire network

to be trained through back-propagation and optimised with stochastic gradient de-

scent (SGD) and dropout regularisation similar to Hinton et al., 2012.

6.1.2 N-gram Detection Model

This section describes our second word recognition model, which exploits compo-

sitionality to represent words. In contrast to the sequential character encoding of

Section 6.1.1, words can be seen as a composition of an unordered set of character

N-grams, a bag-of-N-grams. In the following, if s ∈ CN and w ∈ CM are two strings,

the symbol s ⊂ w indicates that s is a substring of w. An N -gram of word w is a sub-

string s ⊂ w of length |s| = N . We will denote with GN(w) = {s : s ⊂ w ∧ |s| ≤ N}

the set of all N-grams of word w of length up to N and with GN = ∪w∈WGN(w) the

set of all such grams in the language. For example,

G3(spires) = {s, p, i, r, e, sp, pi, ir, re, es, spi, pir, ire, res}. (6.2)
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This method of encoding variable length sequences is similar to the Wickelphone

phoneme-encoding methods [Wickelgran, 1969].

Even for small values of N , GN(w) encodes each word w ∈ W nearly uniquely.

For example, with N = 4, this map has only 7 collisions out of a dictionary of

90k English words. The encoding GN(w) can be represented as a |GN |-dimensional

binary vector of N-gram occurrences. This vector is very sparse, as on average

|GN(w)| ≈ 22 for an English word, whereas |GN | = 10k.

Using a CNN we can predict GN(w) for a word w depicted in the input image

x. We can use the same architecture as in Section 6.1.1, but now have a final fully

connected layer with GN neurons to represent the encoding vector. The scores from

the fully connected layer can be interpreted as probabilities of an N-gram being

present in the image by applying the logistic function to each neuron. The CNN is

therefore learning to recognise the presence of each N-gram somewhere within the

input image, so is an N-gram detector.

With the applied logistic function, the training problem becomes that of |GN |

separate binary classification tasks, and so we back-propagate the logistic regression

loss with respect to each N-gram class independently. To jointly train a whole

range of N-grams, some of which occur very frequently and some barely at all, we

have to scale the gradients for each N-gram class by the inverse frequency of their

appearance in the training word corpus. We also experimented with hinge loss and

simple regression to train but found frequency weighted binary logistic regression

was superior. As with the other model, we use dropout and SGD.

In this model we exploit the statistics of our underlying language in choosing

a subset of |GN | N-grams from the space of all possible N-grams to be modelled.

This can be seen as using a language model to compress the representation space

of the encoding, but is not restraining the predictive capability for unconstrained

recognition. While the encoding GN(w) is almost always unique for words from
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Figure 6.2: An illustration of the construction of the path score S(camel, x) for
the word camel. The unary and edge terms used for the score are selected by the
path through the graph of character positions shown in the upper right corner. The
values of these terms, Sc(ci, x) and Se(s, x), where s ⊂ w, are given by the outputs
of the character sequence model CNN (CHAR CNN, Section 6.1.1) and the N-gram
encoding CNN (NGRAM CNN, Section 6.1.2).

natural language, non-language words often contain much fewer N-grams from the

modelled set GN leading to more ambiguous and non-unique encodings.

6.2 Joint Model

In Section 6.1.1, maximising the posterior probability of a character sequence (Equa-

tion 6.1) is equivalent to maximising the log-score

logP (w|x) = S(w, x) =
Nmax∑
i=1

Sic(ci, x) (6.3)

where Sic(ci, x) = logP (ci|Φ(x)) is the logarithm of the posterior probability of the

character at position i in the sequence. The graph associated with this function is

a set of nodes, one for each unary term Sic(ci, x), and does not contain any edges.

Hence maximising the function reduces to maximising each term individually.

The model can now be extended to incorporate the N-gram predictors of Sec-

tion 6.1.2, encoding the presence of N-grams in the word image x. The N-gram

scoring function Se(s, x) assigns a score to each string s of length |s| ≤ N , where N

is the maximum order of N-gram modelled. Note that, differently from the functions
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Sic defined before, the function Se is position-independent. However, it is applied

repeatedly at each position i in the word:

S(w, x) =
Nmax∑
i=1

Sic(ci, x) +

|w|∑
i=1

min(N,|w|−i+1)∑
n=1

Se(cici+1 . . . ci+n−1, x). (6.4)

As illustrated in Figure 6.2, the scores Sic(ci, x) are obtained from the CNN character

predictors of Section 6.1.1 whereas the score Se(s, x) is obtained from the CNN N-

gram predictor of Section 6.1.2; note that the N-gram scoring function is only defined

for the subset GN of N-grams modelled in the CNN; if s 6∈ GN , the score Se(s, x) = 0

is defined to be zero.

The graph associated with the function Equation 6.4 has cliques of order N ;

hence, when N is even moderately large, we resort to beam search [Russel, Norvig,

et al., 1994] to maximise Equation 6.4 and find the predicted word w∗. Also, the

score of Equation 6.4 can be interpreted as a potential function defining a word

posterior probability as before; however, evaluating this probability would require

computing a normalisation factor, which is non-trivial. Instead, the function is

trained discriminatively, as explained in the next section.

6.2.1 Structured Output Loss

The unary and edge score functions Sic(ci, x) and Se(s, x), should incorporate the

outputs of the character sequence model and N-gram encoding model respectively.

A simple way to do this is to apply a weighting to the output of the CNNs after

removing the softmax normalisation:

S(w, x) =
Nmax∑
i=1

αicif
i
ci

(x) +

|w|∑
i=1

min(N,|w|−i+1)∑
n=1

βcici+1...ci+n−1
gcici+1...ci+n−1

(x), (6.5)

where f ici(x) is the output of the character sequence CNN for character ci at position

i and gs(x) is the output of the N-gram encoding CNN for the N-gram s. If desired,
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the character weights α = {αici} and edge weights β = {βs} can be constrained to

be shared across different characters, character positions, different N-grams of the

same order, or across all N-grams.

The sets of weights α and β in Equation 6.5, or any weight-constrained variant of

Equation 6.5, can be learnt in a structured output learning framework, encouraging

the score of the ground-truth word wgt to be greater than or equal to the high-

est scoring incorrect word prediction plus a margin, i.e. S(wgt, x) ≥ µ + S(w∗, x)

where S(w∗, x) = maxw 6=wgt S(w, x). Enforcing this as a soft-constraint results in

the convex loss

L(xi, wgt,i, S) = max
w 6=wgt,i

max(0, µ+ S(w, x)− S(wgt,i, xi)) (6.6)

and averaging over M example pairs (xi, wgt,i) results in the regularised empirical

risk objective

E(S) =
λα
2
‖α‖2 +

λβ
2
‖β‖2 +

1

M

M∑
i=1

L(xi, wgt,i, S). (6.7)

However, in the general scenario of Equation 6.5, the weights can be incorporated

into the CNN functions f and g, resulting in the score

S(w, x) =
Nmax∑
i=1

f ici(x) +

|w|∑
i=1

min(N,|w|−i+1)∑
n=1

gcici+1...ci+n−1
(x), (6.8)

The functions f and g are defined by CNNs and so we can optimise the parameters

of them to reduce the cost in Equation 6.7. This can be done through standard

back-propagation and SGD. Differentiating the loss L with respect to S gives

∂L(x, wgt, S)

∂S(w∗, x)
=


1 if z > 0

0 otherwise

∂L(x, wgt, S)

∂S(wgt, x)
=


−1 if z > 0

0 otherwise

(6.9)
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Figure 6.3: The architecture for training the joint model, comprising of the charac-
ter sequence model (CHAR) and and the N-gram encoding model (NGRAM) with
structured output loss. The Path Select Layer generates the score S(wgt, x) by
summing the inputs of the groundtruth word. The Beam Search Layer uses beam
search to try to select the path with the largest score S(w∗, x) from the inputs. The
hinge loss implements a ranking loss, constraining the highest scoring path to be
the groundtruth path, and can be back-propagated through the entire network to
jointly learn all the parameters.

where z = maxw 6=wgt,i
µ + S(w, x) − S(wgt, x). Differentiating the score function of

Equation 6.8 with respect to the character sequence model and N-gram encoding

model outputs f ici and gs gives

∂S(w, x)

∂f ic
=


1 if ci = c

0 otherwise

,
∂S(w, x)

∂gs
=

|w|−|s|+1∑
i=1

1{cici+1...ci+|s|−1=s} (6.10)

This allows errors to be back-propagated to the entire network. Intuitively, the

errors are back-propagated through the CNN outputs which are responsible for

margin violations, since they contributed to form an incorrect score.

Using this structured output loss allows the parameters of the entire model to be

jointly optimised within the structure imposed by Equation 6.8. Figure 6.3 shows the

training architecture used. Due to the presence of high order scores in Equation 6.8,

it is too expensive to exhaustively search the space of all possible paths to find

w∗, even with dynamic programming, so instead we use beam search to find the
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approximate highest scoring path.

The structured output loss described in this section bares resemblance to the

discriminative Viterbi training introduced by LeCun et al., 1998. However, our

model includes higher-order terms, terms of a different nature (N-grams), and uses

a structured-output formulation. Furthermore, our method incorporates only a very

weak language model, limited to assigning a score of 0 to all N-grams outside a tar-

get set GN . Note that this does not mean that these N-grams cannot be recognised

(this would require assigning to them a score of −∞); instead it is a smoothing

technique that assigns a nominal score to infrequent N-grams.

6.3 Evaluation

In this section we evaluate the three models introduced in the previous sections. The

datasets used for training and testing are given in Section 6.3.1, the implementation

details given in Section 6.3.2, and the results of experiments reported in Section 6.3.3.

6.3.1 Datasets

We evaluate our models on a number of real-world standard datasets – ICDAR 2003,

ICDAR 2013, Street View Text, and IIIT5k. Training of the models is performed

purely using the synthetic data data from Section 3.3. We also use the synthetic

data, Synth90k and SynthRand, to test our models across a larger vocabulary and

also completely random words. Full descriptions of the datasets can be found in

Chapter 3 and summarised in Table 3.1.

6.3.2 Implementation Details

In the following, the character sequence model is referred to as CHAR, the N-gram

encoding model as NGRAM, and the joint model as JOINT.

The CHAR and NGRAM models both have the same base CNN architecture.

The base CNN has five convolutional layers and two fully connected layers. The
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input is a 32×100 greyscale image obtained by resizing the word image (ignoring its

aspect ratio) and then subtracting its mean and dividing by its standard deviation.

Rectified linear units are used throughout after each weight layer except for the last

one. In forward order, the convolutional layers have 64, 128, 256, 512, and 512

square filters with an edge size of 5, 5, 3, 3, and 3. Convolutions are performed with

stride 1 and there is input feature map padding to preserve spatial dimensionality.

2× 2 max-pooling follows the first, second and third convolutional layers. The fully

connected layers have 4096 units.

On top of this base CNN, the CHAR model has 23 independent fully connected

layers with 37 units, allowing recognition of words of up to Nmax = 23 characters

long. The NGRAM model operates on a selection of 10k frequent N-grams of order

N ≤ 4 (identified as the ones that occur at least 10 times in the Synth90k word cor-

pus, resulting in 36 1-grams, 522 2-grams, 3965 3-grams, and 5477 4-grams). This

requires a final fully connected layer on top of the base CNN with 10k units. There-

fore, the graph of function Equation 6.8 has cliques of sizes at most 4. Beam search

uses a width of 5 during training and of 10 during testing. If a lexicon is used to

constrain the output, instead of performing beam search, the paths associated with

the lexicon words are scored with Equation 6.8, and the word with the maximum

score is selected as the final result.

The three models are all trained with SGD and dropout regularisation. The

learning rates are dynamically decreased as training progresses. The JOINT model

is initialised with the pre-trained CHAR and NGRAM network weights and the

convolutional layers’ weights are frozen during training.

6.3.3 Experiments

We evaluate our models on a combination of real-world test data and synthetic data

to highlight different operating characteristics.
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Figure 6.4: The precision-recall curve for N-gram detection by the NGRAM model,
generated by varying the probability threshold on the Synth90k dataset. Maximum
F-score is 0.87.

6.3.3.1 N-gram Detection Model

The NGRAM model predicts the N-grams contained in input word image. Due to the

highly unbalanced nature of this problem (where only 10-20 N-grams are contained

in any given image), results are reported as the maximum achieved F-score on the

test dataset, computed as the harmonic mean of precision and recall. Precision and

recall is computed at different operating points by varying the threshold probability

for an N-gram to be classified as present in the word. The maximum achieved F-

score on Synth90k is 87.0% and on IC03 is 87.1%. The precision/recall curve for

Synth90k is shown in Figure 6.4.

This NGRAM model can in fact be used for constrained text recognition by

itself. Since each N-gram detection vector represents a word, we can predict the

N-gram detection vector with the CNN and then find the dictionary word which

is most closely represented by the predicted vector. A simple way to achieve this

is by finding the nearest neighbour (in Euclidean space) between the predicted N-

gram vector and the groundtruth N-gram vectors of a dictionary of words (where
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Training Data Test Data CHAR JOINT

Synth90k

Synth90k 87.3 91.0
Synth72k-90k 87.3 -
Synth45k-90k 87.3 -
IC03 85.9 89.6
SVT 68.0 71.7
IC13 79.5 81.8

Synth1-72k Synth72k-90k 82.4 89.7
Synth1-45k Synth45k-90k 80.3 89.1
SynthRand SynthRand 80.7 79.5

Table 6.1: The accuracy (%) of the character sequence model, CHAR, and the
joint model, JOINT. Different combinations of training and test data are evaluated.
Synthx-y refers to a subset of the Synth90k that only contains words in the label
interval [x, y] (word label indicies are in random, non-alphabetical order). Train-
ing and testing on completely distinct words demonstrates the power of a general,
unconstrained recognition model.

an element is 1 if the N-gram is contained in the word and 0 if not). Doing this for

the ICDAR 2003 test dataset constrained to a lexicon of 50 words per image (IC03-

50, Section 3.1.1) results in a recognition accuracy of 94.2%. This extremely naive

method still gives competitive performance, illustrating the discriminative nature

of N-grams for word recognition. Instead, one could learn a linear SVM mapping

from N-gram encoding to dictionary words, allowing for scalable word recognition

through an inverted index of these mappings. Training an SVM for each dictionary

word in the ICDAR 2003 test set results in 96.5% accuracy on IC03-50. This is

impressive compared to the 98.7% accuracy of the dictionary classification model in

Chapter 5, considering the CNN is not trained explicitly for word classification.

The performance of the N-gram detector, both in terms of F-score and on the

constrained recognition tests, illustrates the predictive capability of the NGRAM

CNN alone.
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6.3.3.2 Character Sequence Model and Joint Model

We now turn our attention to the character sequence model, CHAR, and the jointly

trained formulation with the N-gram detection model incorporated as well, JOINT.

The CHAR and JOINT models are evaluated on standard as well as synthetic

benchmarks (Table 6.1). When trained on the Synth90k data, the CHAR model

achieves good performance, with an accuracy of 85.9% on IC03 and 87.3% on the

huge Synth90k test dataset. However, the JOINT model consistently outperforms

the lone CHAR model, with an accuracy improvement of as much as +4% on IC03,

Synth90k and SVT. Figure 6.6 shows some example results using the JOINT model.

To investigate the effect of model size on the accuracy of the CHAR model, we

train a reduced capacity model with the 4th convolutional layer and a fully connected

layer removed from the base CNN architecture. This shallower model performs

significantly worse, with 77.0% accuracy on IC03 (-9%) and 56.4% accuracy on

SVT (-12%). This clearly illustrates the importance of depth in CNN architectures,

something reinforced in the recognition CNN of Chapter 5 and the work of Simonyan

and Zisserman, 2015.

Next, we evaluate the ability of our model to generalise by recognising words

unseen during training. This effectively amounts to zero-shot learning and is the

key contribution of this chapter over previous word recognition systems. In order to

evaluate this, the training vocabulary (90kDict, Section 3.3) is split into two parts,

with one part (50% or 80%) used for training and the other one for evaluation (50%

or 20%). This means that the models are tested solely on words that have never been

seen before during training. In this case the CHAR model is significantly penalised,

but the JOINT model can recover most of the performance. For instance, on the

50/50 split, the JOINT model accuracy is 89.1%, only -2% compared to the 91.0%

obtained when the training and testing vocabularies are equal.
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Figure 6.5: Some results of the CHAR and JOINT model on the SynthRand test
dataset. Letters in red have been predicted incorrectly with the groundtruth (GT)
shown below. Notice the range in difficulty of the SynthRand data.

The final test pushes generalisation by training and testing on completely ran-

dom strings from SynthRand. As this dataset is a lot less regular than a natural

language, the performance of the CHAR model suffers, dropping to 80.7% accu-

racy. Furthermore, as could be expected form the absence of common N-grams in

the random language, the JOINT model performs slightly worse at 79.5% accuracy.

However this drop is very small because N-grams are not used as hard constraints

on the predicted words, but rather to nudge the word scores based on further visual

cues. Some example results are shown in Figure 6.5.

6.3.3.3 Comparison to the state-of-the-art

Table 6.2 compares the accuracy of CHAR and JOINT to previous works. Whereas

these works make use of strong language models, our models make minimal assump-

tions about the language. In the constrained lexicon cases (the starred columns of

Table 6.2), both CHAR and JOINT are very close to the state-of-the-art dictionary

classification model of Chapter 5. We will refer to the dictionary classification model

in Chapter 5 as DICT. Furthermore, if the same 90k dictionary used by DICT –

90kDict – is used to constrain the output of the JOINT model, the performance

is identical to that achieved in Chapter 5, at 93.1% accuracy on IC03, and better
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than the word recognition stage of Chapter 4. While in the constrained lexicon

experiments the lexicon is limited at test time, these results are still remarkable

because, differently from DICT, CHAR and JOINT are not formulated for a specific

dictionary. In particular, DICT would not be able to operate on random strings.

The recognition results without a lexicon are still behind that of some constrained

models, however the JOINT model provides competitive performance and is far

more flexible to recognise unseen words than previous works, while still achieving

state-of-the-art performance if a lexicon is then applied as a constraint at test time.

Figure 6.6 shows some example results where the CHAR model does not recognise

the word correctly but the JOINT model succeeds.

Limitations. An issue with the recognition models proposed in this chapter is

that only fixed width images are modelled, causing squashing of long words and the

destruction of visual information. The introduction of a recurrent neural network,

with the model proposed in this chapter being unrolled over multiple positions across

the input image could help address this limitation. There is also a large disparity in

accuracy when testing on synthetic data (Synth90k) and easy real-world data (IC03)

compared to harder real-world data (SVT). This calls for more realistic synthetic

training data or for fine-tuning the model on hard, real-world data.

6.4 Conclusion

In this chapter we have introduced a new formulation for word recognition, designed

to be used identically in language and non-language scenarios. By modelling charac-

ter positions and the presence of common N-grams, we can define a joint graphical

model. This can be trained effectively by back propagating structured output loss,

and results in a more accurate word recognition system than predicting characters

alone. We show impressive results for unconstrained text recognition with the abil-

ity to generalise recognition to previously unseen words, and match state-of-the-art
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(a) (b)

(c) (d)

Figure 6.6: Results where the unary terms of the JOINT model cannot solely recog-
nise the word correctly, but the addition of the edge scores result in correct recog-
nition, from SVT (a,b) and IC13 (c,d). The input image is shown in the top left
corner. The unary scores for characters (rows) at each position (columns, up to 12
out of 23 characters) are shown, with the selected path using only the unary score
term Sic (orange) and when edge scores Se are incorporated (cyan). The bars show
the NGRAM strengths, with lighter colour representing larger values.
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Model IC03-50* IC03-Full* IC03-50k* IC03 SVT-50* SVT IC13 IIIT5k-50* IIIT5k-1k*

ABBYY 56.0 55.0 - - 35.0 - - 24.3 -
Wang et al., 2011 76.0 62.0 - - 57.0 - - - -
Mishra et al., 2012 81.8 67.8 - - 73.2 - - - -
Novikova et al., 2012 82.8 - - - 72.9 - - 64.1 57.5
Wang et al., 2012 90.0 84.0 - - 70.0 - - - -
Goel et al., 2013 89.7 - - - 77.3 - - - -
Bissacco et al., 2013a - - - - 90.4 78.0 87.6 - -
Alsharif and Pineau, 2014 93.1 88.6 85.1 - 74.3 - - - -
Almazán et al., 2014 - - - - 89.2 - - 91.2 82.1
Yao et al., 2014 88.5 80.3 - - 75.9 - - 80.2 69.3
Chapter 4 96.2 91.5 - - 86.1 - - - -
Gordo, 2014 - - - - 90.7 - - 93.3 86.6
Chapter 5 98.7 98.6 93.3 93.1 95.4 80.7 90.8 97.1 92.7
CHAR (This chapter) 98.5 96.7 92.3 85.9 93.5 68.0 79.5 95.0 89.3
JOINT (This chapter) 97.8 97.0 93.4 89.6 93.2 71.7 81.8 95.5 89.6

Table 6.2: Comparison to previous methods. The baseline method is from a com-
mercially available OCR system. Note that the training data for DICT includes
the lexicons of the test sets, so it has the capacity to recognise all test words. The
baseline method is from a commercially available document OCR system, ABBYY,
evaluated in [Wang et al., 2011; Yao et al., 2014]. *Results are constrained to the
lexicons described in Section 6.3.1.

accuracy when comparing in lexicon constrained scenarios.



Chapter 7

Speeding up Convolutional Neural

Networks

In this chapter we depart from the specific applications of deep learning to text

detection and recognition, and focus on speeding up convolutional neural networks.

We have demonstrated in previous chapters that CNNs can be extremely pow-

erful machines for text spotting, and as discussed in Section 2.1.2 CNNs achieve

state-of-the-art results in a range of other computer vision tasks [Simonyan and Zis-

serman, 2015; Taigman et al., 2014; Sermanet et al., 2013; Tompson et al., 2014].

However, these high performing CNNs come with a large computational cost due

to the use of chains of several convolutional layers, often requiring implementations

on GPUs [Krizhevsky et al., 2012; Jia, 2013] or highly optimised distributed CPU

architectures [Vanhoucke et al., 2011] to process large datasets. The increasing use

of these networks for detection in sliding window approaches [Sermanet et al., 2013;

Farabet et al., 2012; Oquab et al., 2014] and the desire to apply CNNs in real-

world production systems to cater for millions of users, means the speed of inference

becomes an important factor for applications.

To tackle this issue, we introduce an easy-to-implement method for significantly

127
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speeding up pre-trained CNNs requiring minimal modifications to existing CNN

frameworks. Since this method is based on approximations, there can be a small

associated loss in performance, but this is tuneable to a desired accuracy level. For

example, we show that a 4.5× speedup can still give state-of-the-art performance in

our application to the network of Chapter 4.

While a few other CNN acceleration methods exist (see Section 2.1.3 for a re-

view of previous methods), our key insight is to exploit the redundancy that exists

between different feature channels and filters, highlighted in the work of Denil et al.,

2013. In particular, we build upon the work of Rigamonti et al., 2013 which shows

that multiple image filters can be approximated by a shared set of separable (rank-1)

filters, allowing large speedups with minimal loss in accuracy.

We contribute two approximation schemes to do so (Section 7.1) and two opti-

misation methods for each scheme (Section 7.3). Both schemes are orthogonal to

other architecture-specific optimisations and can be easily applied to existing CPU

and GPU software. Performance is evaluated empirically in Section 7.4 and results

are summarised in Section 7.5.

Note, the methods we propose are not specific to any processing architecture or

application, and can be combined with many of the other speedup methods given

in the literature.

7.1 Filter Approximations

Filter banks are used widely in computer vision as a method of feature extraction,

and when used in a convolutional manner, generate feature maps from input im-

ages. For an input x ∈ RH×W , the set of output feature maps Y = {y1, y2, . . . , yN},

yn ∈ RH′×W ′ are generated by convolving x with N filters F = {fi} ∀i ∈ [1 . . . N ]

such that yi = fi ∗ x. The collection of filters F can be learnt, for example, through

dictionary learning methods [Kavukcuoglu et al., 2010; Lee et al., 2009; Rigamonti
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et al., 2011] or CNNs, and are generally full rank and expensive to convolve with

large images. Using a direct implementation of convolution, the complexity of con-

volving a single channel input image with a bank of N 2D filters of size d × d is

O(d2NH ′W ′). We next introduce our method for accelerating this computation

that takes advantage of the fact that there exists significant redundancy between

different filters and feature channels.

One way to exploit this redundancy is to approximate the filter set by a linear

combination of a smaller basis set of M filters [Rigamonti et al., 2013; Song et al.,

2012; Song et al., 2013]. The basis filter set S = {si} ∀i ∈ [1 . . .M ] is used to

generate basis feature maps which are then linearly combined such that

yi '
M∑
k=1

aiksk ∗ x (7.1)

This can lead to a speedup in feature map computation as a smaller number of filters

need be convolved with the input image, and the final feature maps are composed

of a cheap linear combination of these. The complexity in this case is O((d2M +

MN)H ′W ′), so a speedup can be achieved if M < d2N
d2+N

.

As shown in [Rigamonti et al., 2013], further speedups can be achieved by choos-

ing the filters in the approximating basis to be rank-1 and so making individual

convolutions separable. This means that each basis filter can be decomposed in to

a sequence of horizontal and vertical filters si ∗ x = vi ∗ (hi
> ∗ x) where si ∈ Rd×d,

vi ∈ Rd×1, and hi
> ∈ R1×d. Using this decomposition, the convolution of a separable

filter si can be performed in O(2dH ′W ′) operations instead of O(d2H ′W ′).

The separable filters of Rigamonti et al., 2013 are a low-rank approximation,

but performed in the spatial filter dimensions. We expand upon this and show that

in CNNs substantial speedups can be achieved by also exploiting the cross-channel

redundancy to perform low-rank decomposition in the channel dimension as well.
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We explore both of these low-rank approximations in the following section.

Note that the FFT speedup method demonstrated by [Mathieu et al., 2013] could

be used as an alternative method to accelerate individual convolutions in combina-

tion with our low-rank cross-channel decomposition scheme. However, separable

convolutions have several practical advantages: they are significantly easier to im-

plement than a well tuned FFT implementation, particularly on GPUs; they do

not require feature maps to be padded to a special size, such as a power of two as

in Mathieu et al., 2013; they are far more memory efficient; and, they yield a good

speedup for small image and filter sizes too (which can be common in CNNs), whilst

FFT acceleration tends to be better for large filters due to the overheads incurred

in computing the FFTs.

7.2 Approximating CNN Filter Banks

We now describe the approximation schemes applied to a single layer, but this can

of course be applied to each layer of a CNN.

The N filters wn learnt for each layer are full rank, 3D filters with the same depth

as the number of channels of the input, such that wn(u, v) ∈ RC . For example, for

a 3-channel color image input, C = 3. The convolution wn ∗ z of a 3D filter wn with

the 3D image z is the 2D image wn ∗ z =
∑C

c=1 w
c
n ∗ zc, where wcn ∈ Rd×d is a single

channel of the filter. This is a sum of 2D convolutions so we can think of each 3D

filter as being a collection of 2D filters, whose output is collapsed to a 2D signal.

However, since N such 3D filters are applied to z, the overall output is a new 3D

image with N channels. This process is illustrated for the case C = 1, N > 1 in

Figure 7.1 (a). The resulting computational cost for a convolutional layer with N

filters of size d× d acting on C input channels is O(CNd2H ′W ′).

We now propose two schemes to approximate a convolutional layer of a CNN

to reduce the computational complexity and discuss their training in Section 7.3.
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Both schemes follow the same intuition: that CNN filter banks can be approximated

using a low rank basis of filters that are separable in the spatial domain.

7.2.1 Scheme 1

The first method for speeding up convolutional layers is to directly apply the method

suggested in Section 7.1 to the filters of a CNN (Figure 7.1 (b)). As described

above, a single convolutional layer with N filters wn ∈ Rd×d×C requires evaluating

NC 2D filters F = {wcn ∈ Rd×d : n ∈ [1 . . . N ], c ∈ [1 . . . C]}. Note that there

are N filters {wcn : n ∈ [1 . . . N ]} operating on each input channel zc. These can

be approximated as linear combinations of a basis of M < N (separable) filters

Sc = {scm : m ∈ [1 . . .M ]} as wcn '
∑M

m=1 a
cm
n scm. Since convolution is a linear

operator, filter reconstruction and image convolution can be swapped, yielding the

approximation

wn ∗ z =
C∑
c=1

wcn ∗ zc '
C∑
c=1

M∑
m=1

acmn (scm ∗ zc). (7.2)

To summarize, the direct calculation involves computing NC 2D filters wcn ∗ zc with

cost O(NCd2H ′W ′), while the approximation involves computing MC 2D filters

scm∗zc with cost O(MC(d2+N)H ′W ′) – the additional MCNH ′W ′ term accounting

for the need to recombine the basis response linearly. Due to the second term, the

approximation is efficient only if M � d2, i.e. if the number of filters in the basis is

less than the filter area.

The first cost term CMd2H ′W ′ would also suggest that efficiency requires the

condition M � N ; however, this can be considerably ameliorated by using separable

filters in the basis. In this case the approximation cost is reduced to O(MC(d +

N)H ′W ′); together with the former condition, Scheme 1 is then efficient if M �

dmin{d,N}.

Note that this scheme uses C filter basis S1,S2, . . . ,SC as each operates on a

different input channel. In practice, we choose S1 = S2 = · · · = SC = S because
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(a)

(b)

(c)

Figure 7.1: (a) The original convolutional layer acting on a single-channel input
i.e. C=1. (b) The approximation to that layer using the method of Scheme 1. (c)
The approximation to that layer using the method of Scheme 2. Individual filter
dimensions are given above the filter layers.

empirically there is no actual gain in performance and a single channel basis is

simpler and more compact.

The bank of separable filters S can be thought of as producing MC feature maps

B, which are then linearly combined by N convolutional filters of size 1× 1×MC.

7.2.2 Scheme 2

Scheme 1 focuses on approximating 2D filters. As a consequence, each input chan-

nel zc is approximated by a particular basis of 2D separable filters. Redundancy

amongst feature channels is exploited, but only in the sense of the N output chan-

nels. In contrast, Scheme 2 is designed to take advantage of both input and output
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redundancies by considering 3D filters throughout. The idea is simple: each con-

volutional layer is factored as a sequence of two regular convolutional layers but

with rectangular (in the spatial domain) filters, as shown in Figure 7.1 (c). The

first convolutional layer has K filters of spatial size d × 1 resulting in a filter bank

{vk ∈ Rd×1×C : k ∈ [1 . . . K]} and producing output feature maps V such that

V(u, v) ∈ RK . The second convolutional layer has N filters of spatial size 1 × d

resulting in a filter bank {hn ∈ R1×d×K : n ∈ [1 . . . N ]}. Differently from Scheme

1, the filters operate on multiple channels simultaneously. The rectangular shape of

the filters is selected to match a separable filter approximation. To see this, note

that convolution by one of the original filters wn ∗ z =
∑C

c=1 w
c
n ∗ zc is approximated

by

wn ∗ z ' hn ∗ V =
K∑
k=1

hkn
> ∗ Vk =

K∑
k=1

hkn
> ∗ (vk ∗ z)

=
K∑
k=1

hkn
> ∗

C∑
c=1

vck ∗ zc

=
C∑
c=1

[
K∑
k=1

hkn
> ∗ vck

]
∗ zc

(7.3)

which is the sum of separable filters hkn
> ∗ vck. The computational cost of this

scheme is O(KCdH ′W ) for the first vertical filters and O(NKdH ′W ′) for the second

horizontal filter. Assuming that the image width W � d is significantly larger than

the filter size, the output image width W ≈ W ′ is about the same as the input

image width W ′. Hence the total cost can be simplified to O(K(N + C)dH ′W ′).

Compared to the direct convolution cost of O(NCd2H ′W ′), this scheme is therefore

convenient provided that K(N + C) � NCd. For example, if K, N , and C are of

the same order, the speedup is about d times.

In both schemes, we are assuming that the full rank original convolutional filter

bank can be decomposed into a linear combination of a set of separable basis fil-
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ters. The difference between the schemes is how/where they model the interaction

between input and output channels, which amounts to how the low rank channel

space approximation is modelled. In Scheme 1 it is done with the linear combination

layer, whereas with Scheme 2 the channel interaction is modelled with 3D vertical

and horizontal filters inducing a summation over channels as part of the convolution.

7.3 Optimisation

This section deals with the details on how to attain the optimal separable basis rep-

resentation of a convolutional layer for the schemes. The first method (Section 7.3.1)

aims to reconstruct the original filters directly by minimising filter reconstruction

error. The second method (Section 7.3.2) approximates the convolutional layer in-

directly, by minimising the empirical reconstruction error of the filter output.

7.3.1 Filter Reconstruction Optimisation

The first way that we can attain the separable basis representation is to aim to

minimise the reconstruction error of the original filters with our new representation.

Scheme 1. The separable basis can be learnt simply by minimising the L2 recon-

struction error of the original filters, whilst penalising the nuclear norm ‖sm‖∗ of

the filters sm. In fact, the nuclear norm ‖sm‖∗ is a proxy for the rank of sm ∈ Rd×d

and rank-1 filters are separable. This yields the formulation:

min
{sm},{acmn }

N∑
n=1

C∑
c=1

∥∥∥∥∥wcn −
M∑
m=1

acmn sm

∥∥∥∥∥
2

2

+ λ
M∑
m=1

‖sm‖∗. (7.4)

This minimisation is biconvex, so given {sm} a unique {acmn } can be found, therefore

a minimum is found by alternating between optimising {sm} and {acmn }. A suitably

large λ ensures the resulting filters are rank-1. For full details of the implementation

of this optimisation see Rigamonti et al., 2013.



7.3. OPTIMISATION 135

Scheme 2. The set of horizontal and vertical filters can be learnt by explicitly

minimising the L2 reconstruction error of the original filters. From Equation 7.3

we can see that the original filter can be approximated by minimising the objective

function

min
{hk

n
>},{vc

k}

N∑
n=1

C∑
c=1

∥∥∥∥∥wcn −
K∑
k=1

hkn
> ∗ vck

∥∥∥∥∥
2

2

. (7.5)

This optimisation is simpler than for Scheme 1 due to the lack of nuclear norm con-

straints, which we are able to avoid by modelling the separability explicitly with two

variables. We perform conjugate gradient descent, alternating between optimising

the horizontal and vertical filter sets.

7.3.2 Data Reconstruction Optimisation

The problem with optimising the separable basis through minimising original filter

reconstruction error is that this does not necessarily give the most optimised basis

set for the end CNN prediction performance. As an alternative, one can optimise

a scheme’s separable basis by aiming to reconstruct the outputs of the original

convolutional layer given training data. For example, for Scheme 2 this amounts to

min
{hk

n
>},{vc

k}

|X |∑
i=1

N∑
n=1

∥∥∥∥∥wn ∗ Φl−1(xi)−
C∑
c=1

K∑
k=1

hkn
> ∗ vck ∗ Φl−1(xi)

∥∥∥∥∥
2

2

(7.6)

where l is the index of the convolutional layer to be approximated and Φl(xi) is the

evaluation of the CNN up to and including layer l on data sample xi ∈ X where X

is the set of training examples. This optimisation can be done quite elegantly by

simply mirroring the CNN with the un-optimised separable basis layers, and training

only the approximation layer by back-propagating the L2 error between the output

of the original layer and the output of the approximation layer (see Figure 7.2). This

is done layer by layer.

There are two main advantages of this method for optimisation of the approxima-
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(a) (b)

Figure 7.2: Example network schematics of how to optimise separable basis ap-
proximation layers in a data reconstruction setting. (a) Approximating Conv2 with
Sep2. (b) Approximating Conv3 with Sep3, incorporating the approximation of
Conv2 as well. Conv2 and Conv3 represent the original full-rank convolutional lay-
ers, whereas Sep2 and Sep3 represent the approximation structure that is learnt by
back-propagating the L2 error between the outputs.

tion schemes. The first is that the approximation is conditioned on the manifold of

the training data – original filter dimensions that are not relevant or redundant in the

context of the training data will by ignored by minimising data reconstruction error,

but will still be penalised by minimising filter reconstruction error (Section 7.3.1)

and therefore uselessly using up model capacity. Secondly, stacks of approximated

layers can be learnt to incorporate the approximation error of previous layers by

feeding the data through the approximated net up to layer l rather than the orig-

inal net up to layer l (see Figure 7.2 (b)). This additionally means that all the

approximation layers could be optimised jointly with back-propagation.

An obvious alternative optimisation strategy would be to replace the original con-

volutional layers with the un-optimised approximation layers and train just those

layers by back-propagating the classification error of the approximated CNN. How-

ever, this does not actually result in better classification accuracy than doing L2 data

reconstruction optimisation – in practice, optimising the separable basis within the

full network leads to overfitting of the training data, and attempts to minimise this

overfitting through regularisation methods like dropout [Hinton et al., 2012] lead to

under-fitting, most likely due to the fact that we are already trying to heavily ap-

proximate our original filters. However, this is an area that needs to be investigated

in more detail.
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7.4 Experiments

In this section we demonstrate the application of both proposed filter approximation

schemes and show that we can achieve large speedups with a very small drop in ac-

curacy. As a test model, we use the pre-trained CNN that performs case-insensitive

character classification of scene text from Chapter 4.

We first give the details of the base CNN model used for character classifica-

tion which will be subject to speedup approximations. The optimisation processes

and how we attain the approximations of Scheme 1 & 2 to this model are given,

and finally we discuss the results of the separable basis approximation methods on

accuracy and inference time of the model.

7.4.1 Test Model

We use the case-insensitive character classifier model from Chapter 4 as a test model

to apply our speedup framework. As a reminder, this is a four layer CNN with a

softmax output which models a probability distribution p(c|x) over an alphabet

C which includes all 26 letters and 10 digits, as well as a noise/background (no-

text) class. The input x is a grey input image patch of size 24 × 24 pixels, which

has been zero-centred and normalised by subtracting the patch mean and dividing

by the standard deviation. The non-linearity used between convolutional layers is

maxout [Goodfellow et al., 2013a] as defined in Section 4.1. For reference, Table 7.1

gives the details of the layers for the model used, which is connected in the linear

arrangement Conv1-Conv2-Conv3-Conv4-Softmax.

7.4.2 Datasets & Evaluation

We use the same training and test data as in Chapter 4. The training dataset

consists of the 163k collected character samples from a number of datasets (see

Section 4.3.1 for details) and the test set is a collection of 5k cropped characters
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Layer name Filter size In channels Out channels Filters Maxout groups Time

Conv1 9× 9 1 48 96 2 0.473ms (8.3%)
Conv2 9× 9 48 64 128 2 3.008ms (52.9%)
Conv3 8× 8 64 128 512 4 2.160ms (38.0%)
Conv4 1× 1 128 37 148 4 0.041ms (0.7%)

Softmax - 37 37 - - 0.004ms (0.1%)

Table 7.1: The details of the layers in the CNN used with the forward pass timings
of each layer.

from the ICDAR 2003 test dataset (Section 3.1.1). We evaluate the case-insensitive

accuracy of the classifier, ignoring the background class. As shown in Chapter 4,

the Test Model achieves state-of-the-art results of 91.3% accuracy compared to the

next best result of 89.8% Alsharif and Pineau, 2014.

7.4.3 Implementation Details

The CNN framework we use is the CPU implementation of Caffe [Jia, 2013], where

convolutions are performed by constructing a matrix of filter windows of the input,

im2col, and using BLAS for the matrix-matrix multiplication between the filters

and data windows. At time of writing, we found this to be the fastest CPU CNN

implementation attainable. We use the network exactly as it is trained in Chapter 4.

For filter reconstruction optimisation, we optimise a separable basis until a stable

minimum of reconstruction error is reached. For data reconstruction optimisation,

we optimise each approximated layer in turn, and can incorporate a fine-tuning with

joint optimisation.

For the CNN presented, we only approximate layers Conv2 and Conv3. This

is because layer Conv4 has a 1 × 1 filter size and so would not benefit much from

our speedup schemes. We also don’t approximate Conv1 due to the fact that it

acts on raw pixels from natural images – the filters in Conv1 are very different

to those found in the rest of the network and experimentally we found that they

cannot be approximated well by separable filters (also observed in Denton et al.,
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Figure 7.3: Reconstruction error for the theoretical and actual attained speedups on
test data for Conv2 & Conv3. Theoretical speedups are obtained by considering the
theoretical number of operations required for the different schemes with direct con-
volution. We do not go below 10× theoretical speedup for Scheme 1 as computation
takes too long.

2014). Omitting layers Conv1 and Conv4 from the schemes does not change overall

network speedup significantly, since Conv2 and Conv3 constitute 90% of the overall

network processing time, as shown in Table 7.1.

7.4.4 Results

We now give the results of our speedup methods by assessing the layer-wise perfor-

mance, as well as the speedups and accuracy that can be achieved when applying

our approximations to the full classification network.
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Figure 7.4: The percent loss in performance as a result of the speedups attained
with Scheme 1 (a) and Scheme 2 (b).

7.4.4.1 Layer-wise Performance

Figure 7.3 shows the output reconstruction error of each approximated layer with

the test data. It is clear that the reconstruction error worsens as the speedup

achieved increases, both theoretically and practically. As the reconstruction error

is that of the test data features fed through the approximated layers, as expected

the data reconstruction optimization scheme gives lower errors for the same speedup

compared to the filter reconstruction. This generally holds even when completely

random Gaussian noise data is fed through the approximated layers – data from

a completely different distribution to what the data optimization scheme has been

trained on.

Looking at the theoretical speedups possible in Figure 7.3, Scheme 1 gives better

reconstruction error to speedup ratio, suggesting that the Scheme 1 model is per-

haps better suited for approximating convolutional layers. However, when the actual

measured speedups are compared, Scheme 1 is actually slower than that of Scheme

2 for the same reconstruction error. This is due to the fact that the Caffe convo-

lution routine is optimized for 3D convolution (summing over channels), so Scheme

2 requires only two im2col and BLAS calls. However, to implement Scheme 1 with
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Caffe style convolution involving per-channel convolution without channel summa-

tion, means that there are many more costly im2col and BLAS calls, thus slowing

down the layer evaluation and negating the model approximation speedups. It is

possible that using a different convolution routine with Scheme 1 will bring the

actual timings closer to the theoretically achievable timings.

7.4.4.2 Full Net Performance

Figure 7.4 (b) & (c) show the overall drop in accuracy as the speedup of the end-

to-end network increases under different optimization strategies. Generally, joint

data optimization of Conv2 and Conv3 improves final classification performance for

a given speedup. Under Scheme 2 we can achieve a 2.5× speedup with no loss in

accuracy, and a 4.5× speedup with only a drop of 1% in classification accuracy, giving

90.3% accuracy – still state-of-the-art for this benchmark. The 4.5× configuration

is obtained by approximating the original 128 Conv2 filters with 31 horizontal filters

followed by 128 vertical filters, and the original 512 Conv3 filters with 26 horizontal

filters followed by 512 vertical filters.

This speedup is particularly useful for sliding window schemes, allowing fast

generation of, for example, detection maps such as the character detection and

classification maps shown in Figure 7.5 (a) and (b). There is very little difference

with even a 3.5× speedup, and when incorporated in to a full application pipeline,

the speedup can be tuned to give an acceptable end-pipeline result. Figure 7.5 (c)

shows a selection of filter reconstructions obtained by the two schemes. While they

perform similarly, visually it is clear the two presented schemes act very differently.

Comparing to an FFT based CNN [Mathieu et al., 2013], our method can result

in greater speedups. With the same layer setup (5×5 kernel, 16 × 16 × 256 input,

384 filters), Scheme 2 gives an actual 2.4× speedup with 256 basis filters (which

should result in no performance drop), compared to 2.2× in Mathieu et al., 2013.
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Comparing with Denton et al., 2014, simply doing a filter reconstruction approxi-

mation with Scheme 2 of the second layer of OverFeat [Sermanet et al., 2013] gives a

2× theoretical speedup with only 0.5% drop in top-5 classification accuracy on Im-

ageNet, far better than the 1.2% drop in accuracy for the same theoretical speedup

reported in Denton et al., 2014. However, these results are not directly comparable

since the exact test data is different. This accuracy should be further improved if

data optimisation is used.

7.5 Conclusions

In this chapter we have shown that the redundancies in representation in CNN

convolutional layers can be exploited by approximating a learnt full rank filter bank

as combinations of a rank-1 filter basis. We presented two schemes to do this,

with two optimization techniques for attaining the approximations. The resulting

approximations require significantly less operations to compute, resulting in large

speedups observed with a real CNN trained for scene text character recognition: a

4.5× speedup, only a drop of 1% in classification accuracy.

Since this work was first published [Jaderberg et al., 2014c], the following papers

have extended our methods. Lebedev et al., 2014 perform full CP-decomposition

on the entire 4D filter volumes to approximate the decomposition, and fine tune

layer-wise as we did. Jin et al., 2014 also extend the method of Scheme 2 to include

an extra final layer which consists of 1D filters in the channel domain.
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(a)

(b) (c)

Figure 7.5: Text spotting using the CNN character classifier. (a) The maximum
response map over the character classes of the CNN output with Scheme 2 indicates
the scene text positions. The approximations have sufficient quality to locate the
text, even at 6.7× speedup. (b) The character classifier responses for a single word
image. Each colour represents a different character class. (c) A selection of Conv2
filters from the original CNN (left), and the reconstructed versions under Scheme 1
(centre) and Scheme 2 (right), where both schemes have the same model capacity
corresponding to 10× theoretical speedup. Visually the approximated filters look
very different with Scheme 1 naturally smoothing the representation, but both still
achieve good accuracy.



Chapter 8

Applications

Throughout this thesis we have focussed on the development of text spotting sys-

tems, as well as the deep learning algorithms to allow these powerful systems to be

possible. In this chapter, we now contemplate the applications of text spotting.

As discussed in Chapter 1, there are a range of possible applications of text

spotting. With fast and accurate text spotting, machines and automated processes

would be better able to understand the visual world, be it for real time navigation

and world exploration, or for offline media understanding, cataloguing, and retrieval.

With the introduction of the exceptionally high accuracy text recognition methods

based on deep learning described in Chapter 5 and Chapter 6, as well as the big

increase in end-to-end text spotting and text retrieval performance also displayed

in Chapter 5, there is suddenly scope for realising some of the practical applications

of text spotting.

In this chapter, we show that the text spotting system proposed in Chapter 5

can be applied for visual media retrieval, allowing video to be searched instantly

for text contained within thousands of hours of footage. The footage we process

is provided in partnership with the British Broadcasting Corporation (BBC) and

constitutes thousands of hours of BBC News footage. We describe this application

144
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Figure 8.1: Some example frames from the BBC News dataset. There are a wide
range of different types of text that occur within the frames: general scene text,
artificially inserted labels, news ticker text, and 3D rendered graphics text.

in Section 8.1. To help enable future applications of this work, we have released

software and data, outlined in Section 8.2.

8.1 Searching the News

In Chapter 5 we introduced a text spotting system based on word region proposals

and a deep CNN for word recognition, exhibiting state-of-the-art performance on

a wide range of datasets. In particular, what can be noted from Section 5.6.3 is

the very high precision achieved on the text based image retrieval benchmarks.

In addition, the algorithm is fast and easily parallelizable with multiple cores and

multiple GPUs.

The high precision and speed of the pipeline in Chapter 5 allows us to process

huge datasets for practical search applications. Here, we apply the text based image

retrieval pipeline to TV broadcast search – allowing the frames, source videos, and
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Figure 8.2: The processing pipeline for the video retrieval application. First,
keyframes are extracted from the raw video file. Each of the keyframes are pro-
cessed by the text spotting system of Chapter 5, producing per-image descriptors,
encoding the text contained within the keyframe images. These descriptors are
loaded in to an in-memory database with an inverted index for fast retrieval at
query time.

metadata from the broadcasts which visually contain the search term to be instantly

retrieved. This is a very useful function to have when vast archives of video footage

need to be searched, as footage can be retrieved on the visual content in addition to

the textual metadata which is easily searchable by traditional text indexing meth-

ods. Being able to search for text within the video would complement other search

modalities, such as searching for objects [Chatfield and Zisserman, 2013].

We demonstrate this application on a large BBC News video dataset. We build

a search engine and front-end web application around our text based image retrieval

pipeline, allowing a user to instantly search for visual occurrences of text within the

huge video dataset, and inspect the frames and broadcasts where the text occurs.

Data. The data consists of 5000 hours of footage broadcast on a number of BBC

TV channels in the evening (after 6pm) between 2007 and 2012, and is limited to

programmes with a genre label of “news”, “factual”, and “politics”. The 5000 hours
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of video corresponds to approximately 12 million frames. The videos are taken

from a range of different BBC programmes on news and current affairs, including

the BBC’s Evening News programme. Text is often present in the frames from

artificially inserted labels, subtitles, news-ticker text, as well as from general scene

text. No labels or annotations are provided for this dataset. Figure 8.1 shows some

examples of frames from this dataset.

Offline pre-processing. This search application consists of two parts – a one-

time, offline pre-processing stage to build a searchable representation of the video

data, and an online search process to query this representation instantly and retrieve

the results.

The offline pre-processing stage is illustrated in the schematic of Figure 8.2.

To reduce the number of frames that must be processed, we define a smaller

number keyframes that are processed to represent the full set of frames. Keyframes

are extracted from the video, at a rate of one per second and clustered based on

similarity, resulting in 2.3 million keyframes.

Each keyframe is processed by the text spotting system of Chapter 5, acting in

retrieval mode (Section 5.5.2), resulting in a vector per keyframe from Equation 5.6.

As a reminder, these vectors represent the probability of a word occurring in the

keyframe from the 90k words of 90kDict (Section 3.3), and can be viewed as a

descriptor for the keyframe image.

The keyframes and descriptors are stored in a database, along with the bounding

boxes for all the detections Bf used to generate the descriptor (this includes multiple

detections of the same word within the image). An inverted index [Manning et al.,

2008] is constructed on the descriptors.

Processing the 2.3 million keyframes took 2 weeks on a single machine with 16

physical CPU cores and 4 commodity GPUs.
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Online search process. To query the system, a user provides a search term

from the 90kDict (if the search term supplied is not present in the 90kDict, no

results are returned) and a score for each keyframe in the database is computed

(Equation 5.7). This can be computed very efficiently using the inverted index data

structure. Keyframes with a score above a certain threshold are ranked in descending

score order and displayed to the user. Due to the efficiency of the inverted index,

this process can be completed in a matter of milliseconds.

The online system is wrapped in a web application and is accessible at time of

writing at http://zeus.robots.ox.ac.uk/textsearch/. Figure 8.3 shows screen-

shots from the web application. When a user selects a particular result from the

ranked list on the search results page (Figure 8.3 (b)), the result page is displayed

which shows the keyframe, as well as the localisation of the query word that was

stored and the metadata of the broadcast that the keyframe is from (Figure 8.3 (c)).

It is worth noting that the online system does not require the large computational

requirements of the offline pre-processing stage.

This application works exceptionally well, with Figure 8.4 showing some example

retrieval results from our visual search engine. While we do not have groundtruth

annotations to quantify the retrieval performance on this dataset, we measure the

precision at 100 (P@100) for the test queries in Figure 8.4, showing a P@100 of

100% for the queries hollywood and boris johnson, and 93% for vision.

8.2 Releases

In this section we describe various software releases, aimed at helping enable future

applications and development in text spotting.

Character-based Classifiers. We have released the convolutional neural net-

work models from Chapter 4. The text/no-text classifier, case-insensitive character

classifier, case-sensitive character classifier, and the bigram classifiers for the ICDAR

http://zeus.robots.ox.ac.uk/textsearch/
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2003 and SVT test set bigrams are included in this release. The full details of these

classifiers can be found in Section 4.1. The MATLAB1 code allows the recreation

of Table 4.1 as well as being able to run the classifiers in sliding window mode to

create the detection and character class maps used by the pipeline. This software

release also includes the character data used to train and test on, which includes the

characters mined from Flickr (Section 3.2.1).

Word-based Models. We have also released the word-based recognition mod-

els used in Chapter 5 and Chapter 6. In particular, we package the dictionary

classification model (Section 5.4.1), which gives state-of-the-art word recognition

accuracy on all standard datasets, the character sequence model to allow uncon-

strained text recognition (Section 6.1.1), and the N-gram detection model (Sec-

tion 6.1.2). The models are in the form of MATLAB code using the MatConvNet

toolbox [Vedaldi and Lenc, 2014]. As mentioned in Section 3.3, we have also released

the 9 million synthetic word images, Synth90k, used for training these models at

http://www.robots.ox.ac.uk/~vgg/data/text/.

1http://uk.mathworks.com/products/matlab/

http://www.robots.ox.ac.uk/~vgg/data/text/
http://uk.mathworks.com/products/matlab/
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(a) (b)

(c)

Figure 8.3: Screenshots of the web application interface allowing the searching for
text in BBC News footage. (a) Home page with search bar and a clickable word
cloud, where the size of the word represents its frequency in the data. (b) The
search results page for the search term police. (c) The results page for a particular
retrieved frame showing the green bounding box localisation of the search term
within the frame.
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hollywood boris johnson vision

P@100: 100% P@100: 100% P@100: 93%

Figure 8.4: The top two retrieval results for three queries on our BBC News dataset
– hollywood, boris johnson, and vision. The frames and associated videos are
retrieved from 5k hours of BBC video. We give the precision at 100 (P@100) for
these queries, equivalent to the first page of results of our web application.



Chapter 9

Summary and Future Work

In this chapter we summarise the achievements of the work presented in this thesis,

and also discuss possible directions for future research.

9.1 Achievements

In this thesis we have proposed several methods for improving text spotting based

on advancing the capabilities of deep learning frameworks, contributed to the public

data available for this problem, as well as proposing a general method for speeding

up CNNs and developing a practical application of text spotting.

In Chapter 3 we tackled the problem of data generation for text spotting. We

approached this in two ways, first by automatic mining of real world data, and

then by the synthetic generation of data. In Section 3.2 we showed that a simple

weak baseline text spotting system can be used to crawl a photo sharing website

and produce extra word and character level data samples automatically in a weakly

supervised manner. We then made another contribution in Section 3.3 by presenting

a synthetic data generation engine. This engine can generate word images with a

huge variation in visual style, mimicking real-world text spotting data. The data

produced by this process is realistic and variable enough to be used in place of real-

152
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world training data, to train text spotting systems that are applicable to real-world

test data. We have made a major release of this data (9 million images) for the use

of future work by others.

We proposed a full, end-to-end text spotting pipeline in Chapter 4. This builds

upon the conventional character detection and classification based pipeline, however,

used an unconventional CNN architecture including feature sharing between four

classification tasks. The use of CNNs and feature sharing combined resulted in

character classifiers that exceeded previous state-of-the-art [Alsharif and Pineau,

2014] in accuracy. The end-to-end text spotting system outperformed all existing

methods and is only exceeded in F-score by our next contribution in this thesis.

Chapter 5 presented our second end-to-end text spotting pipeline, developed to

explore the advantages of whole word detection and recognition. The fast region

proposal based detection stage achieves very high word detection recall, with pre-

cision boosted by a filtering, regression, and non-maximal suppression stage which

takes into account the text recognition results. The text recognition system is based

on a deep CNN that takes the whole word image as input, and poses recognition as

a classification problem in a huge dictionary. This text recognition system outper-

forms all previous methods (including the previous state of the art set by Chapter 4

and Bissacco et al., 2013a), and surprisingly is trained purely on our synthetic data.

The end-to-end text spotting pipeline is fast and accurate, greatly outperforming all

previous results in text spotting, and more than doubling the precision over Mishra

et al., 2013 in large scale image retrieval by text. A final example of text spotting

this system is shown in Figure 9.1.

We then focussed on a more neglected problem in natural scene text recognition,

that of unconstrained text recognition, where a dictionary, lexicon, or constrain-

ing language model is not used. Chapter 6 described the system, comprised of two

complementary character prediction CNNs, the first predicting the sequence of char-
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Figure 9.1: An example text spotting result using the pipeline of Chapter 5. The
bounding boxes of each word found are shown in green, with the recognised words
given in typographical layout order together with the score assigned by the pipeline
in brackets.

acters directly, the second predicting the presence of character N-grams. The two

architectures are combined in a single formulation and jointly optimised by defining

and back-propagating a structured output loss. The resulting text recognition model

performs very well and is shown to generalise to vocabulary and completely random

text that has never been seen during training. There are no previous unconstrained

scene text recognition algorithms to compare directly to, but once constrained by a

dictionary or lexicon we match state of the art (set by Chapter 5).

Chapter 7 addressed the problem of speeding up CNNs, contributing to the effi-

cient application of this inference method for a host of general computer vision prob-

lems beyond text spotting. We defined two frameworks for approximating CNNs,

drawing on the work of Rigamonti et al., 2013 for creating separable filter bases. It

is shown that by jointly optimising the approximations of the convolutional layers

together, we can achieve a 4.5× speedup of the CNN from Chapter 4 with minimal

drop in accuracy. This has inspired other work since its publication [Jaderberg et al.,

2014c] including the successful work of Lebedev et al., 2014 who perform full tensor
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decomposition approximations for speedups.

Finally, in Chapter 8, we presented a practical application of text spotting. A

web application front end was developed for searching through vast video archives

for visual instances of user-given text, using the system of Chapter 5 to index the

frames of thousands of hours of video. We also detailed the software releases made,

and hope that through this software and data, new applications and advances can

be discovered to move forward text spotting beyond this thesis.

9.2 Future Work

This section discusses some potentially promising directions for future work. These

constitute both immediate through to long term visions for text spotting and deep

learning.

Combined recognition models. In Chapter 5 we showed the power of per-

forming text recognition by word classification, but this has the problem of the

recognition result being constrained to the dictionary trained with. We can define

models such as those from Chapter 6 to remove the dictionary constraint, but the

accuracy is then much lower than language constrained model. It would therefore

be interesting to pursue a combined approach, bringing together the powerful dic-

tionary classification model of Section 5.4 and the unconstrained recognition model

of Chapter 6.

A simple way to achieve this would be to add a “not in dictionary” class to

the dictionary model. This would allow the model to flag when a word depicted

in an image is likely to not be able to be classified by the model since it is not in

the classification dictionary. When such a flag occurs, the governing system could

then ignore the dictionary classification model and use the unconstrained recogni-

tion model to generate the final recognition result. A potentially more powerful way

would be to incorporate the pre-trained dictionary model (Section 5.4), character
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sequence model (Section 6.1.1), and N-gram detection model (Section 6.1.2) in a

single CRF or graph structure. This could then be trained jointly, presented with

both dictionary and non-dictionary training samples to learn the optimal configu-

ration of the three models. This more complex formulation would allow all three

models to share evidence, potentially leading to more a accurate, and completely

generalisable, recognition system.

Very deep architectures for text recognition. It would useful to explore fur-

ther CNN architectures for the tasks in this thesis. Recently it was shown that

big gains in object classification accuracy can be made by training very deep CNN

architectures [Simonyan and Zisserman, 2015]. Initial experiments have shown that

our own text recognition CNNs improve with depth, but this could be taken to the

extreme with a similar architecture to [Simonyan and Zisserman, 2015], where only

3× 3 convolution kernels and up to 19 weight layers are used.

Expanded synthetic data. There is potential to expand the synthetic data gen-

eration engine from Section 3.3. Currently the distributions driving the random

process of data generation are hand set and arbitrarily defined. It would be inter-

esting to perform parameter exploration to tune the distributions, potentially even

by posing parameter exploration as a game played between the synthetic data engine

and a binary classification CNN trained for real-world/synthetic data classification

(similar in spirit to Goodfellow et al., 2014).

Continual self-supervised mining. Building on the work of Chapter 4, Chap-

ter 5, and the data mining technique of Section 3.2, it would be interesting to

continue classifier learning by self-supervision. A text spotting system could contin-

ually and automatically crawl and mine more data from the internet, using the weak

supervision to generate real-world labelled data. This newly generated data could

be used to continue training the classifiers and recognition models. This cycle of
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mining and training would allow the progressive updating of the learnt models, and

could gradually mine enough real-world data to remove the reliance on synthetic

data, potentially leading to more accurate recognition models.

Font classification, visual translation. Aside from text recognition, we could

use our framework of synthetic data training CNN classifiers for a range of other

text-related problems. For example, font identification [Chen et al., 2014] would

be an area that could be improved upon – our synthetic data engine is capable of

labelling the font used for each sample, potentially allowing the training of robust

systems for font identification in the wild.

Another text-related problem that could be tackled with this framework is lan-

guage identification. This would aim to identify the language that the word in the

image belongs to. This problem could even be framed in the scenario of translating

words back to English, and could incorporate research into the support for translat-

ing multiple languages into English using a single model, requiring a level of context

switching conditioned on the detected language of the word image.

Adaptation to mobile systems. Due to the pervasiveness of smart phone usage,

it becomes increasingly desirable to incorporate text spotting as a feature on mobile

phones. The suitability and adaptation of our end-to-end text spotting pipelines for

mobile phone deployment could be explored. This could be incorporated with the

speedup (and memory reduction) method of Chapter 7, to allow the solution to fit in

the limited memory and processing budget of these low-power mobile devices. Such

a solution to mobile text spotting may exist where different parts of the processing

pipeline are split between being computed locally on the phone, and remotely on a

server, to achieve the fastest overall response time. This could also involve research

into using a video stream rather than a single image to produce the text spotting

result for the scene.
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Holistic text spotting systems. Finally, as a longer term vision for the future of

text spotting systems, a promising idea is to begin to move towards more holistic text

spotting. By holistic we refer to merging the separate text detection and recognition

stages together, and look to jointly optimise the end-to-end system, rather than each

sub-system individually. This is starting to be explored with work such as Mnih et

al., 2014, where attention models are integrated with recognition models, but there

is much research to be done to get to the point of holistic text spotting systems.
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Appendix A

The Design of Convolutional

Neural Network Architectures

Throughout this thesis, a number of convolutional neural networks (CNNs) [Le-

Cun et al., 1998] are used successfully. While the exact details of the architectures

are given, the design process and intuition behind the architectures are not. This

appendix aims to summarise some general findings on best practices for designing

CNNs for computer vision, and in the process to expose the design decisions and

evolution of the two main architectures used in this thesis – the character recogni-

tion CNN architecture of Chapter 4, and the base architecture for the whole word

recognition models used in Chapter 5 and Chapter 6.

The problem that arises when starting to design a CNN is that there are a large

number of hyper parameters with respect to the architecture. These are namely: the

number of convolutional layers, number of fully connected layers, number of filters

in each layer, the kernel size of the filters, the type of non-linearity used, how much

and what type of pooling is used, and input and featuremap normalisation schemes.

This high dimensional space of architectures cannot be fully explored for each

new problem due to the long training time of a CNN. Instead, many of these design
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parameters must be set, often inherited from historically successful architectures,

with iterations in design performed by varying the most important hyper parameters.

The setting of hyper parameters generally reduces to a compromise between the

number of weights, computational complexity, and model performance after training.

Evidence and general intuition for these hyper parameters will now be given, with

reference to the design choices for the character recognition CNN from Chapter 4

and the word recognition CNNs from Chapter 5 and Chapter 6.

Network Structure. A CNN should start with convolutional layers. Convolu-

tional layers exploit the fact that the same local structures can occur anywhere in

an image, learning translationally equivariant responses. Convolutional layers are

parameter efficient, as they integrate only local context and are good for extracting

patch-level features. However, a CNN used for a task requiring global inference

across the whole image (e.g. classification) should end with fully connected layers,

which operate across the whole spatial resolution of the featuremap. In fact there is

no distinction between a fully connected layer and a convolutional layer with a filter

size the same as the spatial resolution of the featuremap it operates on, something

we exploit for the CNN in Chapter 4. This global inference is something that might

not be required for other tasks, such as semantic segmentation as shown in Long

et al., 2014, and so no fully connected layers are needed.

Network Size. The size of a network is ultimately described by the the number

of learnable parameters (weights and biases), which is a function of the number of

layers, number of filters in each layer, and the size of the filters. Filter sizes should be

large enough to capture the spatial size of the expected discriminative structures –

in Chapter 4 we set the first layer convolutional filter size to 9×9 to be able to model

large parts of the 24 × 24 character images. There is increasing evidence to show

that deeper networks, with more layers, are more powerful [Simonyan and Zisserman,

2015; Goodfellow et al., 2013b], and that large filter sizes can be replaced by multiple
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layers of smaller filters (e.g. three stacked convolutional layers with 3×3 filters have

the receptive field of a single convolutional layer with 7 × 7 filters). However, the

increase in depth increases the number of parameters. For Chapter 4 we limit

ourselves to relatively shallow four-layer networks in order to reduce parameters

and avoid gross overfitting since we had limited training data. In Chapter 5 and

Chapter 6 we had large amounts of data and could afford smaller filters with deeper

networks resulting in larger numbers of parameters with minimal overfitting. In

fact, initial experiments for the networks in Chapter 5 and Chapter 6 used shallower

six-layer CNNs, but we found adding more layers gave higher accuracy models (with

diminishing returns), producing the final eight-layer CNN architectures described.

The number of filters in a layer is historically a multiple of 16 due to implementation

details of cuda-convnet [Krizhevsky et al., 2012], and as a rule of thumb, for every

2× reduction in spatial resolution from pooling, the number of filters should be

doubled.

Non-linearity. A crucial part of the effectiveness of CNNs is their non-linear

nature. This non-linear nature is created by inserting element-wise non-linearities

after convolutional and fully connected layers. While classically a saturating non-

linearity such as tanh is used, it was shown in Nair and Hinton, 2010; Krizhevsky

et al., 2012; Jarrett et al., 2009 that rectified linear non-linearities are quicker to

train with and produce higher accuracy models. Subsequently, the default non-

linearity to use in computer vision models is a rectifier. However, alternatives such

as maxout [Goodfellow et al., 2013a] can give better accuracy models than rectifiers.

In Chapter 4, the use of maxout non-linearity gave around 1% improvement over

rectifiers for case-insensitive accuracy, resulting in the final networks using maxout.

However, maxout requires at least 2× the number of filters per layer to achieve

the same dimensional featuremaps – this was acceptable when training the small

models of Chapter 4, but in Chapter 5 and Chapter 6 the increase in filters and
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computational complexity from using maxout was deemed too much compared to

the minimal increase (if any) in accuracy that may have resulted by using maxout.

Pooling. Local pooling layers are used to reduce the spatial dimensionality of fea-

turemaps, and provide spatial invariance in small neighbourhoods. Two popular

pooling mechanisms are average pooling and max pooling. Max pooling most of-

ten gives higher accuracies in classification models [Jarrett et al., 2009], something

which we confirmed when exploring the CNN design for Chapter 5 – max pooling

consistently resulted in higher accuracy models than average pooling. In Chapter 4

we forgo the use of any pooling, as we want our CNN to be evaluated convolutionally

across an entire image without any reduction in spatial resolution.

Normalisation. There are two places that normalisation can be employed – on the

input images and local response normalisation (LRN) between convolutional layers.

LRN has been successful in some historic architectures (e.g. Krizhevsky et al., 2012),

however more recently it is shown that LRN does not give any improvements and

can be ignored completely [Simonyan and Zisserman, 2015], so in this work we do

not use LRN anywhere. However, input normalisation is an important addition to

an architecture – whitening the inputs (sample mean subtraction and division by

sample standard deviation) keeps the distribution of data values similar for each

data sample. Input normalisation helps accuracy of models (we found a small 0.5%

increase in accuracy when adding standard deviation division to the network of

Chapter 5) and helps to map different datasets into the same dynamic range for

generalisable models.

To summarise, while there are a large number of design choices when it comes

to CNN architectures, generally deep, rectifier networks with max pooling, small

filters (e.g. 3 × 3) and input normalisation give competitive results. While CNNs

can be designed from scratch for a new problem, it is often best to start with a

known successful architecture for a similar problem and iterate – the CNN from
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Chapter 4 was based on that from Alsharif and Pineau, 2014, and the base CNN

from Chapter 5 and Chapter 6 was based on that from Goodfellow et al., 2013b.

Finally, one of the advantages of using CNNs is that from empirical experience, the

trained performance of CNNs is not very sensitive to small changes in architecture

(e.g. number of filters) if there is enough capacity to model the problem, making

CNNs a robust machine learning tool.
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