
- Python - Home
- Python - Overview
- Python - History
- Python - Features
- Python vs C++
- Python - Hello World Program
- Python - Application Areas
- Python - Interpreter
- Python - Environment Setup
- Python - Virtual Environment
- Python - Basic Syntax
- Python - Variables
- Python - Data Types
- Python - Type Casting
- Python - Unicode System
- Python - Literals
- Python - Operators
- Python - Arithmetic Operators
- Python - Comparison Operators
- Python - Assignment Operators
- Python - Logical Operators
- Python - Bitwise Operators
- Python - Membership Operators
- Python - Identity Operators
- Python - Operator Precedence
- Python - Comments
- Python - User Input
- Python - Numbers
- Python - Booleans
- Python - Control Flow
- Python - Decision Making
- Python - If Statement
- Python - If else
- Python - Nested If
- Python - Match-Case Statement
- Python - Loops
- Python - for Loops
- Python - for-else Loops
- Python - While Loops
- Python - break Statement
- Python - continue Statement
- Python - pass Statement
- Python - Nested Loops
- Python Functions & Modules
- Python - Functions
- Python - Default Arguments
- Python - Keyword Arguments
- Python - Keyword-Only Arguments
- Python - Positional Arguments
- Python - Positional-Only Arguments
- Python - Arbitrary Arguments
- Python - Variables Scope
- Python - Function Annotations
- Python - Modules
- Python - Built in Functions
- Python Strings
- Python - Strings
- Python - Slicing Strings
- Python - Modify Strings
- Python - String Concatenation
- Python - String Formatting
- Python - Escape Characters
- Python - String Methods
- Python - String Exercises
- Python Lists
- Python - Lists
- Python - Access List Items
- Python - Change List Items
- Python - Add List Items
- Python - Remove List Items
- Python - Loop Lists
- Python - List Comprehension
- Python - Sort Lists
- Python - Copy Lists
- Python - Join Lists
- Python - List Methods
- Python - List Exercises
- Python Tuples
- Python - Tuples
- Python - Access Tuple Items
- Python - Update Tuples
- Python - Unpack Tuples
- Python - Loop Tuples
- Python - Join Tuples
- Python - Tuple Methods
- Python - Tuple Exercises
- Python Sets
- Python - Sets
- Python - Access Set Items
- Python - Add Set Items
- Python - Remove Set Items
- Python - Loop Sets
- Python - Join Sets
- Python - Copy Sets
- Python - Set Operators
- Python - Set Methods
- Python - Set Exercises
- Python Dictionaries
- Python - Dictionaries
- Python - Access Dictionary Items
- Python - Change Dictionary Items
- Python - Add Dictionary Items
- Python - Remove Dictionary Items
- Python - Dictionary View Objects
- Python - Loop Dictionaries
- Python - Copy Dictionaries
- Python - Nested Dictionaries
- Python - Dictionary Methods
- Python - Dictionary Exercises
- Python Arrays
- Python - Arrays
- Python - Access Array Items
- Python - Add Array Items
- Python - Remove Array Items
- Python - Loop Arrays
- Python - Copy Arrays
- Python - Reverse Arrays
- Python - Sort Arrays
- Python - Join Arrays
- Python - Array Methods
- Python - Array Exercises
- Python File Handling
- Python - File Handling
- Python - Write to File
- Python - Read Files
- Python - Renaming and Deleting Files
- Python - Directories
- Python - File Methods
- Python - OS File/Directory Methods
- Python - OS Path Methods
- Object Oriented Programming
- Python - OOPs Concepts
- Python - Classes & Objects
- Python - Class Attributes
- Python - Class Methods
- Python - Static Methods
- Python - Constructors
- Python - Access Modifiers
- Python - Inheritance
- Python - Polymorphism
- Python - Method Overriding
- Python - Method Overloading
- Python - Dynamic Binding
- Python - Dynamic Typing
- Python - Abstraction
- Python - Encapsulation
- Python - Interfaces
- Python - Packages
- Python - Inner Classes
- Python - Anonymous Class and Objects
- Python - Singleton Class
- Python - Wrapper Classes
- Python - Enums
- Python - Reflection
- Python Errors & Exceptions
- Python - Syntax Errors
- Python - Exceptions
- Python - try-except Block
- Python - try-finally Block
- Python - Raising Exceptions
- Python - Exception Chaining
- Python - Nested try Block
- Python - User-defined Exception
- Python - Logging
- Python - Assertions
- Python - Built-in Exceptions
- Python Multithreading
- Python - Multithreading
- Python - Thread Life Cycle
- Python - Creating a Thread
- Python - Starting a Thread
- Python - Joining Threads
- Python - Naming Thread
- Python - Thread Scheduling
- Python - Thread Pools
- Python - Main Thread
- Python - Thread Priority
- Python - Daemon Threads
- Python - Synchronizing Threads
- Python Synchronization
- Python - Inter-thread Communication
- Python - Thread Deadlock
- Python - Interrupting a Thread
- Python Networking
- Python - Networking
- Python - Socket Programming
- Python - URL Processing
- Python - Generics
- Python Libraries
- NumPy Tutorial
- Pandas Tutorial
- SciPy Tutorial
- Matplotlib Tutorial
- Django Tutorial
- OpenCV Tutorial
- Python Miscellenous
- Python - Date & Time
- Python - Maths
- Python - Iterators
- Python - Generators
- Python - Closures
- Python - Decorators
- Python - Recursion
- Python - Reg Expressions
- Python - PIP
- Python - Database Access
- Python - Weak References
- Python - Serialization
- Python - Templating
- Python - Output Formatting
- Python - Performance Measurement
- Python - Data Compression
- Python - CGI Programming
- Python - XML Processing
- Python - GUI Programming
- Python - Command-Line Arguments
- Python - Docstrings
- Python - JSON
- Python - Sending Email
- Python - Further Extensions
- Python - Tools/Utilities
- Python - GUIs
- Python Advanced Concepts
- Python - Abstract Base Classes
- Python - Custom Exceptions
- Python - Higher Order Functions
- Python - Object Internals
- Python - Memory Management
- Python - Metaclasses
- Python - Metaprogramming with Metaclasses
- Python - Mocking and Stubbing
- Python - Monkey Patching
- Python - Signal Handling
- Python - Type Hints
- Python - Automation Tutorial
- Python - Humanize Package
- Python - Context Managers
- Python - Coroutines
- Python - Descriptors
- Python - Diagnosing and Fixing Memory Leaks
- Python - Immutable Data Structures
- Python Useful Resources
- Python - Questions & Answers
- Python - Interview Questions & Answers
- Python - Online Quiz
- Python - Quick Guide
- Python - Reference
- Python - Cheatsheet
- Python - Projects
- Python - Useful Resources
- Python - Discussion
- Python Compiler
- NumPy Compiler
- Matplotlib Compiler
- SciPy Compiler
Python collections.Counter
Python Counter is a container that hold count of objects. It is used to count items available or exist in iterables. Counts are allowed to be any integer value including zero or negative counts.
Counter is a subclass of the dictionary. It represents data as a key and value. It inherits all the methods and properties of the dictionary. It allows to perform arithmetic and set operations. It can be used with any iterable which implements iteration protocol.
Syntax
Following is the syntax of the Python Counter−
class collections.Counter([iterable-or-mapping])
Parameters
This data type accepts iterable as a parameter.
Return Value
This data type returns counter object.
Initialization of Counter
Counter is initialized by using iterables as the input value. Following are the different ways to initialize the Counter −
- With a sequence of items
- With a dictionary containing keys and counts
- With keyword arguments mapping string names to counts
Example
In the following example we have initialized the Counter in different ways −
from collections import Counter # With sequence of items print(Counter(['x','x','z','x','y','z','x','x','z','x'])) # with dictionary print(Counter({'y':3, 'z':5, 'x':2})) # with keyword arguments print(Counter(z=3, x=5, y=2))
Following is the output of the above code −
Counter({'x': 6, 'z': 3, 'y': 1}) Counter({'z': 5, 'y': 3, 'x': 2}) Counter({'x': 5, 'z': 3, 'y': 2})
Example
Following is an basic example of the Counter in Python −
from collections import Counter # Create a list tuple1 = ('Python', 'Java', 'Python', 'C++', 'Python', 'Java') # Count distinct elements and print Counter a object print(Counter(tuple1))
Following is the output of the above code −
Counter({'Python': 3, 'Java': 2, 'C++': 1})
Counter Values
We can also access all the keys, values and items of a counter using keys(), values() and items() methods.
Example
Here, we have defined the Counter and found its key values, values and items −
from collections import Counter #defined Counter my_counter = Counter('xyzmnoxyzm') #Finding key values print(my_counter.keys()) #Finding values print(my_counter.values()) #Finding items print(my_counter.items())
Following is the output of the above code −
dict_keys(['x', 'y', 'z', 'm', 'n', 'o']) dict_values([2, 2, 2, 2, 1, 1]) dict_items([('x', 2), ('y', 2), ('z', 2), ('m', 2), ('n', 1), ('o', 1)])
Methods in Counter
Following are the different methods defined in Counter() class −
Method | Function |
---|---|
update() | Used to add an element or iterable into existing Counter |
total() | Compute the sum of counts |
most_common() | Return a list of the n most common elements and their counts from the most common to the least. If n is omitted or None, most_common() returns all elements in the counter |
elements() | Return an iterator over elements repeating each as many times as its count. Elements are returned in the order first encountered. |
subtract() | Elements are subtracted from an iterable or from another mapping (or counter). |
Python Counter.update() Method
The update() method in Counter class is used to add the new elements to the counter.
Example
Here, we have created an empty counter and added an elements with update() function and the Counter returns the elements with respective count −
from collections import Counter #empty counter var1 = Counter() #updated with elements var1.update([2,4,6,2,4,6,2,6]) print(var1) var1.update([2, 6, 4]) print(var1)
Following is the output of the above code −
Counter({2: 3, 6: 3, 4: 2}) Counter({2: 4, 6: 4, 4: 3})
Python Counter.subtract() Method
The subtract() method in Counter class is used to perform the subtraction operation between the two counters. The subtraction of two counters can be zero or negative value −
Example
Here, we have defined two counters, c1 and c2 and subtracted c2 from c1 −
from collections import Counter #defined counters c1 = Counter(A=4, B=3, C=10) c2 = Counter(A=10, B=3, C=4) #subtraction of c2 from cl c1.subtract(c2) print(c1)
Following is the output of the above code −
Counter({'C': 6, 'B': 0, 'A': -6})
Python Counter.total() Method
The total() method in the Counter class is used to calculate the sum of all element counts within the counter.
Example
Here, we have defined and list and converted to Counter and found the sum of all elements count −
from collections import Counter list1 = ['a', 'b', 'c', 'a', 'b', 'c', 'a'] count = Counter(list1).total() print("Total elements of the list :", count)
Following is the output of the above code −
Total elements of the list : 7
Python Counter.most_common() Method
The most_common() method of the Counter class in Python is used to return a list of the n most common elements in a counter. It returns the elements in descending order of their counts, from most common to least common. If the n value is not specified, it will return all elements in the counter.
Example
Following is an example of the most_common() method of Counter −
from collections import Counter tup1 = (2,56,13,4,2,10,13,2, ) count = Counter(tup1).most_common(2) print("Most common elements of the tuple :", count)
Following is the output of the above code −
Most common elements of the tuple : [(2, 3), (13, 2)]