
- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Python Pandas - Basics
- Python Pandas - Introduction to Data Structures
- Python Pandas - Index Objects
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Python Pandas - Indexing & Selecting Data
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - Slicing a Series Object
- Python Pandas - Attributes of a Series Object
- Python Pandas - Arithmetic Operations on Series Object
- Python Pandas - Converting Series to Other Objects
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - Accessing DataFrame
- Python Pandas - Slicing a DataFrame Object
- Python Pandas - Modifying DataFrame
- Python Pandas - Removing Rows from a DataFrame
- Python Pandas - Arithmetic Operations on DataFrame
- Python Pandas - IO Tools
- Python Pandas - IO Tools
- Python Pandas - Working with CSV Format
- Python Pandas - Reading & Writing JSON Files
- Python Pandas - Reading Data from an Excel File
- Python Pandas - Writing Data to Excel Files
- Python Pandas - Working with HTML Data
- Python Pandas - Clipboard
- Python Pandas - Working with HDF5 Format
- Python Pandas - Comparison with SQL
- Python Pandas - Data Handling
- Python Pandas - Sorting
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Concatenation
- Python Pandas - Statistical Functions
- Python Pandas - Descriptive Statistics
- Python Pandas - Working with Text Data
- Python Pandas - Function Application
- Python Pandas - Options & Customization
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Merging/Joining
- Python Pandas - MultiIndex
- Python Pandas - Basics of MultiIndex
- Python Pandas - Indexing with MultiIndex
- Python Pandas - Advanced Reindexing with MultiIndex
- Python Pandas - Renaming MultiIndex Labels
- Python Pandas - Sorting a MultiIndex
- Python Pandas - Binary Operations
- Python Pandas - Binary Comparison Operations
- Python Pandas - Boolean Indexing
- Python Pandas - Boolean Masking
- Python Pandas - Data Reshaping & Pivoting
- Python Pandas - Pivoting
- Python Pandas - Stacking & Unstacking
- Python Pandas - Melting
- Python Pandas - Computing Dummy Variables
- Python Pandas - Categorical Data
- Python Pandas - Categorical Data
- Python Pandas - Ordering & Sorting Categorical Data
- Python Pandas - Comparing Categorical Data
- Python Pandas - Handling Missing Data
- Python Pandas - Missing Data
- Python Pandas - Filling Missing Data
- Python Pandas - Interpolation of Missing Values
- Python Pandas - Dropping Missing Data
- Python Pandas - Calculations with Missing Data
- Python Pandas - Handling Duplicates
- Python Pandas - Duplicated Data
- Python Pandas - Counting & Retrieving Unique Elements
- Python Pandas - Duplicated Labels
- Python Pandas - Grouping & Aggregation
- Python Pandas - GroupBy
- Python Pandas - Time-series Data
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Sparse Data Structures
- Python Pandas - Sparse Data
- Python Pandas - Visualization
- Python Pandas - Visualization
- Python Pandas - Additional Concepts
- Python Pandas - Caveats & Gotchas
Python Pandas - SQL
Python's Pandas library provides powerful tools for interacting with SQL databases, allowing you to perform SQL operations directly in Python with Pandas. Through the pandas.io.sql module, you can query, retrieve, and save data between Pandas objects (such as DataFrame or Series) and SQL databases.
Combining Pandas library with SQL databases simplifies data analysis tasks by enabling easy data parsing and storing. In this tutorial, we will learn key Pandas SQL operations, including reading and writing data between Pandas and SQL databases, and handling data types effectively.
Integrating SQL with Pandas
Pandas enables SQL operations with minimal setup, offering a number of tools to interact with various SQL databases. This integration allows you to perform operations like reading data from a database, writing DataFrames to a SQL table, and running SQL queries directly. Before performing SQL operations with Pandas, it is important to install relevant libraries −
Apache Arrow ADBC Drivers: Use these for optimal performance, null handling, and type detection.
SQLAlchemy: If an ADBC driver isn't available, install SQLAlchemy alongside your database driver library (e.g., psycopg2 for PostgreSQL or pymysql for MySQL). SQLite is supported natively in Python's standard library.
SQLite with sqlite3.Connection: If SQLAlchemy is not installed, you can use a sqlite3.Connection in place of a SQLAlchemy engine, connection, or URI string.
Key Pandas Functions for SQL
Pandas provides several methods to work with SQL databases −
read_sql_table(): Reads a SQL database table into a Pandas DataFrame.
read_sql_query(): Executes a SQL query and returns the result as a DataFrame.
read_sql(): Reads either a table or query into a DataFrame.
to_sql(): Writes a DataFrame to a SQL database.
Reading Data from SQL into a Pandas DataFrame
The read_sql() method is used for reading the database table into a Pandas DataFrame or executing SQL queries and retrieving their results directly into a DataFrame. It is a convenient wrapper for both read_sql_table() and read_sql_query(), and automatically determines whether to process a table or a query based on the input.
Example
The following example demonstrates SQL integration with Pandas using SQLite. SQLite database can be used as a temporary in-memory database where data is stored in memory. In this example, we use the read_sql() to connect to the SQLite database and load the table into a Pandas DataFrame.
import pandas as pd import sqlite3 # Create a connection to the database conn = sqlite3.connect(":memory:") # Create a sample table conn.execute("CREATE TABLE Students (id INTEGER, Name TEXT, Marks REAL, Age INTEGER)") conn.execute("INSERT INTO Students VALUES (1, 'Kiran', 80, 16), (2, 'Priya', 60, 14), (3, 'Naveen', 82, 15)") # Query the table query = "SELECT * FROM Students" df = pd.read_sql(query, conn) # Display the Output print("DataFrame from SQL table:") print(df)
Following is the output of the above code −
DataFrame from SQL table:
id | Name | Marks | Age | |
---|---|---|---|---|
0 | 1 | Kiran | 80.0 | 16 |
1 | 2 | Priya | 60.0 | 14 |
2 | 3 | Naveen | 82.0 | 15 |
Writing Pandas DataFrames to SQL Table
You can easily write data from a Pandas DataFrame or Series object into a SQL table using the to_sql() method. This method supports creating new tables, appending to existing ones, or overwriting existing data.
Example
The following example demonstrates writing Pandas DataFrame to SQL table using to_sql() method.
import pandas as pd from sqlalchemy import create_engine # Sample DataFrame data = pd.DataFrame({ "id": [1, 2, 3], "name": ["Raj", "Divya", "Charan"] }) # Create an SQLite engine engine = create_engine("sqlite:///:memory:") # Write DataFrame to SQL table data.to_sql("users", con=engine, if_exists="replace", index=False) print("DataFrame is saved to SQL table...") # Read and save SQL Data back to DataFrame query = "SELECT * FROM users" df = pd.read_sql(query, engine) # Display the Output print("DataFrame from SQL table:") print(df)
Following is the output of the above code −
DataFrame is saved to SQL table... DataFrame from SQL table:
id | name | |
---|---|---|
0 | 1 | Raj |
1 | 2 | Divya |
2 | 3 | Charan |
Handling SQL Data Types in Pandas
Pandas automatically maps most SQL data types to appropriate DataFrame data types. However, certain complex types may need manual handling.
Example
This example demonstrates how Pandas automatically handles the SQL data types while reading data from a SQL database.
import pandas as pd import sqlite3 # Create a connection conn = sqlite3.connect(":memory:") # Create a table with different SQL data types conn.execute("CREATE TABLE TypesTest (id INTEGER, flag BOOLEAN, score REAL, name TEXT)") conn.execute("INSERT INTO TypesTest VALUES (1, 1, 89.5, 'Aadyaa')") # Query and read the table into Pandas df = pd.read_sql("SELECT * FROM TypesTest", conn) # Display DataFrame and dtypes print('DataFrame from SQL Database:') print(df) print('\nData types of each field in output DataFrame:') print(df.dtypes)
The output of the above code is as follows −
DataFrame from SQL Database:
id | flag | score | name | |
---|---|---|---|---|
0 | 1 | 1 | 89.5 | Aadyaa |
Pandas Managing Datetime Columns in SQL Tables
The to_sql() method can handle both timezone-naive and timezone-aware datetime data. However, the way it is stored depends on the SQL database system used.
Example
This example demonstrates how Pandas manages the Dateime datatype while parsing the data from a SQL table. Below you can observe how Pandas can automatically converts the event_date column into datetime64.
import pandas as pd import sqlite3 # Create a connection conn = sqlite3.connect(":memory:") # Create a table with datetime values conn.execute("CREATE TABLE Events (id INTEGER, event_date TEXT)") conn.execute("INSERT INTO Events VALUES (1, '2025-01-01'), (2, '2025-01-15')") # Read data and parse datetime df = pd.read_sql("SELECT * FROM Events", conn, parse_dates=["event_date"]) # Display DataFrame and dtypes print('Output DataFrame from SQL Database:') print(df) print('\nData types of fields in the output DataFrame:') print(df.dtypes)
Following is the output of the above code −
Output DataFrame from SQL Database:
id | event_date | |
---|---|---|
0 | 1 | 2025-01-01 |
1 | 2 | 2025-01-15 |
Pandas Querying SQL Database
Pandas allows you to run SQL queries directly from Python, simplifying database operations for data analysis.
Example
The following example filters records from the database based on the amount
field using "WHERE" clause.
import pandas as pd import sqlite3 # Create a connection conn = sqlite3.connect(":memory:") # Create a sample table conn.execute("CREATE TABLE Sales (id INTEGER, product TEXT, amount REAL)") conn.execute("INSERT INTO Sales VALUES (1, 'Phone', 200.50), (2, 'Laptop', 800.00), (3, 'Tablet', 300.00)") # Query the table with specific conditions query = "SELECT * FROM Sales WHERE amount > 250" df = pd.read_sql(query, conn) # Display the results print("Output DataFrame from SQL Database after query:") print(df)
The output of the above code is as follows −
Output DataFrame from SQL Database after query:
id | product | amount | |
---|---|---|---|
0 | 2 | Laptop | 800.0 |
1 | 3 | Tablet | 300.0 |