Fast User-Mode Rootkit Scanner
for the Enterprise

Yi-Min Wang and Doug Beck — Microsoft Research, Redmond

ABSTRACT

User-mode resource hiding through API interception and filtering is a well-known technique
used by malware programs to achieve stealth. Although it is not as powerful as kernel-mode
techniques, it is more portable and reliable and, as a result, widely used. In this paper, we describe
the design and implementation of a fast scanner that uses a cross-view diff approach to detect all
user-mode hiding Trojans and rootkits. We also present detection results from a large-scale
enterprise deployment to demonstrate the effectiveness of the tool.

Introduction

The term “rootkit” generally refers to the class
of stealth malware programs that hide ‘“‘resources”
from the operating system resource-enumeration APIs.
For example, a rootkit may be used to hide critical
executable files from anti-virus scanners, to hide criti-
cal Windows Registry entries from experienced sys-
tem administrators using programs such as RegEdit,
and to hide critical processes from average users run-
ning Windows Task Manager. By making critical
resources “invisible” to the APIs and the system utili-
ties that make use of such APIs, rootkits have a much
better chance of evading detection and maintaining
full control of infected machines for an extended
period of time.

The techniques used by rootkits to achieve
stealth can be broadly divided into two categories.
Rootkits in the first category intercept resource-enu-
meration APIs in user mode or kernel mode, and
remove selected entries before the results are returned
to the API caller. Rootkits in the second category per-
form Direct Kernel Object Manipulation (DKOM) to
remove selected resource entries from a cached list
(such as the ActiveProcessList on Windows) that is
designed specifically for answering resource queries
and not critical to the actual functions of the resources
or to the functioning of the operating system.

Cross-View Diff-Based Rootkit Detection

The traditional signature-based anti-virus
approach cannot effectively deal with rootkit infec-
tions in the enterprise for three reasons. First, viruses
usually have well-defined bundles and scope of
impact, which can be analyzed in a lab to generate
fixed signatures. In contrast, rootkits are merely
“resource hiders” that can be used to hide any hacker
tools, keyloggers, spyware programs, FTP servers,
etc., so each rootkit infection can potentially involve a
customized bundle with a different scope of impact.

Second, sophisticated hackers who attack large
enterprise are less likely to use common tools or

malware programs for which commercial anti-virus
scanners already have signatures. Finally, while the
major strength of anti-virus software is to detect and
automatically remove known-bad malware programs
without user intervention, corporate security organiza-
tions in large enterprises often need to investigate
every rootkit infection case to assess potential dam-
ages and prevent future infections; automatic removal
is often not desirable.

We previously proposed a non-signature, diff-
based approach to rootkit detection, called Ghost-
Buster [WVR+04]. The basic idea is to get “the lie”
from inside the box, get “the truth” from outside the
box, and take a diff to detect hidden resources. Specif-
ically, we get “the lie” by enumerating files and Reg-
istry entries through infected APIs inside the operating
system. Then we boot into a clean CD and scan the
files and Registry on the infected drive as a data drive.
Since the rootkit is not running, we obtain “‘the truth”
that includes the resources that the rootkit was trying
to hide so that the diff between “the lie” and “‘the
truth” will reveal precisely those hidden entries. Such
a diff-based approach essentially turns the hiding
behavior into its own detection mechanism and turns
one of the most difficult anti-malware problems into
one of the easiest problems to solve.

Fast User-Mode Rootkit Scanner for the Enterprise

Although this CD-boot-based solution can cover
a broad range of rootkits, no matter how they are oper-
ating in user mode or kernel mode, it is inconvenient,
requires user cooperation, and is difficult to deploy on
an enterprise scale as a scanner. Since the statistics
from a major Product Support Service (PSS) organiza-
tion indicates that user-mode rootkits account for over
90% of the reported enterprise rootkit cases, it is desir-
able to have a scalable rootkit scanner that can be
deployed in the enterprise to detect all user-mode
rootkits, which intercept and filter resource API calls
in the address space of each user-mode process [YHO03,
YNO4].

19th Large Installation System Administration Conference (LISA °05) 23



Fast User-Mode Rootkit Scanner for the Enterprise

We have developed such a rootkit scanner for
Windows platforms. It is based on the key observation
that, when considering only user-mode rootkits, “the
truth” can be obtained from the lowest level of user
mode by properly preparing the call stack parameters
and using a few lines of assembly code to directly
invoke the transition into the kernel, without going
through the regular user-mode Win32 API code. In our
current implementation, we use the difference to detect
hidden processes and to detect hidden hooks to Auto-
Start Extensibility Points (ASEPs), which are those
Registry locations most frequently attacked by spyware,
Trojans, and rootkits based on an extensive study
[WRV+04, WBV+05]. If any hidden processes or ASEP
hooks are detected, we then look for potentially hidden
files associated with those hidden entries. This allows us
to detect user-mode rootkit infections in a few seconds,
without requiring a reboot or any user participation.

Implementation

Figure 1 (a) and (b) illustrates how several real-
world Trojans and rootkits hook into the Registry and
process enumeration API calling chains, respectively,
to hide their resources. Urbin and Mersting are Trojan
DLLs that make modifications at the highest level by
altering the per-process Import Address Table (IAT)

Wang and Beck

entries of the Registry enumeration APIs to point to
their Trojan functions (an IAT contains pointers to
functions exported by loaded DLLs [HBO05]). In con-
trast, Vanquish directly modifies the loaded, in-mem-
ory API code to interject its code. Both techniques
cause the Trojan functions to appear in the call stack
trace of a kernel or user-mode debugging session.

To achieve better stealth, Aphex and Hacker
Defender modify the in-memory API code with a
jump to the Trojan code along with a Trojan code
jump back to the next instruction after the API detour
[HB99]; the Trojan code modifies the return address
on the stack to cause its code to be executed in the
return path. The only difference is that Aphex modi-
fies the RegEnumValue API code inside Apvapi32.dll
(denoted by Advapi32!RegEnumValue), while Hacker
Defender modifies the lower-level NtEnumerateKey
API exported by NtDILdIl. YYT rootkit operates very
similarly to Hacker Defender. ProBot SE in Figure
1(a) and FU in Figure 1(b) are kernel-mode stealth
programs that cannot be detected by the scanner
described in this paper.

Our tool performs the following steps to obtain
“the truth” from underneath all the user-mode Trojans
and rootkits shown in Figure 1.

’ RegEdit

|

Advapi32!RegEnumValue
Import Address Table (IAT)

Urbin & /
Mersting

Advapi32!'RegEnumValue

s

NtDII!NtEnumerateKey

Hacker Defender
Hﬁ & YYT Rootkit
L

Nt!NtEnumerateKey
yoo T :‘/ Service Descriptor Table Entry
. ProBot SE

Nt!NtEnumerateKey ‘

’ TaskMgr

NtDII!NtQuerySystemInformation
Import Address Table (IAT)

Hacker Defender,
YYT RootKkit,

.

User mode

2 ’ NtDII!NtQuerySystemInformationi_i.-‘__>

& Berbew

Kernel mode

Nt!NtQuerySystemInformation
Service Dispatch Table Entry

’ Nt!NtQuerySystemInformation ‘

’ Active Process List

———

Figure 1: Trojans and rootkits that (a) hide Registry entries and (b) hide processes.

24 19th Large Installation System Administration Conference (LISA °05)



Wang and Beck

1. Set up the user-mode stack with the parameters
required by the operating system; this is easily
achieved by creating a function with a signature
that exactly matches the desired Native API,
such as NtDIl/NtEnumerateKey() and NtDII!Nt
QuerySystemlInformation();

2. Populate the EAX register with the index that
indicates to the operating system which system
function you wish to call;

3. Populate the EDX register with a pointer to the
user mode’s stack parameters;

4. Execute an “int 2e” instruction to signal a ker-
nel-mode transition;

5. Return to the caller.

The previous steps basically describe what the
code in NtDIl.dll does when calling into the operating
system. Given that the steps require direct manipula-
tion of X86 registers, a portion of the code is written
in assembly — this is easily obtained by disassembling
NtDIl.dll and searching for the desired function by
name. Below is an example of the NtQuerySystemlIn-
Jformation call for retrieving “the truth” of the list of
processes:

__declspec (naked)
NTSTATUS
NTAPI

MyNtQuerySystemInformation (
SYSTEM_ INFORMATION_CLASS

SystemInformationClass,

Fast User-Mode Rootkit Scanner for the Enterprise

PVOID SystemInformation,
ULONG SystemInformationLength,
PULONG ReturnLength)

asm

mov eax, OxAD
lea edx, [espt0x4]
int 2eh

ret 10h

Several important points need to be made regard-
ing the code above. First, notice the _ declspec
(naked) compiler directive. This prevents the com-
piler from generating prolog code for the function in
order to ensure that the user-mode stack is in the right
form at the time of a kernel-mode transition. Second,
the function is labeled as NTAPTI to ensure that the
right C calling convention is used (in this case
__stdcall). Third, the value that is moved into the
EAX register is the index into a kernel-mode function
dispatch table that tells the operating system which
function to call: this value is unique to the function
and varies from version to version of the operating
system. Fourth, the “int 2eh” instruction sends a sig-
nal to the operating system to tell it to initiate a kernel-
mode transition. Finally, the parameters exactly match
the original query API because the operating system
will pass them directly to the kernel-mode API.

Rootkits & Trojans

Hidden ASEP Hooks Detected

Urbin

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\
Applnit DLLs — msvsres.dll

Mersting HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\
Applnit DLLs — kbddfl.dll
YYT Rootkit HKLM\SYSTEM\CurrentControlSet\Services\NPF — npf.sys

HKLM\SYSTEM\CurrentControlSet\Services\TSSERVER — comine.exe
HKLM\SYSTEM\CurrentControlSet\Services\Udfs

Hacker Defender 1.0

HKLM\SYSTEM\CurrentControlSet\Services\HackerDefender100 —
hxdef100.exe
HKLM\SYSTEM\CurrentControlSet\Services\HackerDefenderDrv100 —
hxdefdrv.sys

Aphex

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run —
<user defined name>.exe

Vanquish

HKLM\SYSTEM\CurrentControlSet\Services\Vanquish — vanquish.exe

(a)

Rootkits & Trojans

Hidden Processes Detected

Berbew

<random name>.exe

YYT Rootkit

comine.exe

Hacker Defender 1.0

hxdef100.exe, and any other processes with names matching the patterns
specified in hxdef100.ini

Aphex

3302 )

By default, any process with a -prefixed name (which is configurable)

(b)

Figure 2: Hidden resources detected: (a) hidden Registry ASEP hooks; (b) hidden processes.

19th Large Installation System Administration Conference (LISA ’05)

25



Fast User-Mode Rootkit Scanner for the Enterprise

Once the tool obtains “the truth” and then uses a
regular Win32 API call to obtain “the lie”, it compares
the two scans and declares as hidden resources those
that appear only in “the truth”. It is possible to see
false positives due to the creation or deletion (depend-
ing on the order the scans are performed) of resources
in the time window between the scans. In practice this
is usually not an issue. Also, this is easily mitigated by
performing successive scans and taking the intersection
of the missing resource sets to create the final result set.

Experimental Results

Results from Lab Tests

We have tested the tool in our lab against the
seven user-mode rootkits and Trojans shown in Figure
1. Although the implementations of these malware
programs are quite different, our tool was able to effi-
ciently and effectively detect all of them in a uniform
way. Figure 2(a) and (b) show the detected hidden
ASEP hooks and hidden processes, respectively, for
each malware. The Urbin, Mersting, Berbew, and YYT
Rootkit samples were captured from the wild, while
the Hacker Defender, Aphex, and Vanquish samples
were downloaded from the Web. The ‘““Applnit_
DLLs” ASEP allows auto-loading of one or more
DLLs into every Windows-based application that is
running in the current log-on session [AID]; the “Ser-
vices” ASEP allows installations of always-running
services and drivers; the “Run” ASEP allows addi-
tional processes to be auto-started near log-in time.
Results from Actual Deployment

We have deployed the tool on over 200,000 desk-
top and server machines. The executable file is copied
from a central machine to each target machine at scan
time; the scan results are reported back to the central
machine, and the executable file is removed. Figure 3

Wang and Beck

gives some examples of detected infections. They can
be broadly classified into two categories: hiding Tro-
jans and full-fledged rootkits. Figures 3 (a), (b), and
(c) show three types of hiding Trojans: they were most
likely installed by malicious Web servers that exploit
visiting browsers’ vulnerabilities [WBJ+05]. The Tro-
jans in Figure 3 (a) hide their hooks to the “Applnit_
DLLs” ASEP, while the Trojans in Figure 3 (b) and
(c) hide their randomly-named processes.

Figure 3 (d), (e), (f) show three cases of infections
with full-fledged rootkits. We make the following obser-
vations: first, it is common for rootkits to create mal-
ware programs that have the same or similar filenames
as some system programs but reside in a different direc-
tory; for example, one of the Isass.exe processes in Fig-
ure 3 (f) was instantiated from the lsass.exe malware
program located in the “drivers” directory. Second,
full-fledged rootkits tend to hook the “Services” ASEP
to install services and drivers and they tend to hide mul-
tiple ASEP hooks and processes.

Rootkit Investigation Tool

Once a rootkit-infected machine is identified in an
enterprise, it is important to investigate the hacker’s
intention and the damage that has been done, without
disturbing the malware because some are designed to
erase all traces of themselves once they realize that they
have been detected. It is therefore highly desirable to
have a tool that allows such non-intrusive investigations.

We have observed that configurable rootkits,
such as the most popular Windows rootkit ‘“Hacker
Defender,” typically support the notion of “root pro-
cesses”. A root process is not infected by the rootkit and
can see “the truth”. It is provided for the convenience of
the rootkit users. For example, it can be very awkward
for hackers if the resources are hidden from their tools

Hidden ASEP Hook: HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\
Value: “Applnit DLLs” Data: “C:\WINDOWS\system32\log.dll”’

Hidden ASEP Hook: HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\
Value: “Applnit DLLs” Data: “C:\WINDOW S\System32\winpgfd.dIl”

Hidden ASEP Hook: HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\
Value: “Applnit DLLs” Data: “C:\WINDOWS\System32\winpgfd.dll”

Hidden Procs: \Device\HarddiskVolume \WINDOW S\system32\Hbkqjd32.exe
Hidden Procs: \Device\HarddiskVolume2\WINDOW S\system32\Mdnpdf32.exe
Hidden Procs: \Device\HarddiskVolume \WINDOWS\System32\Ppnlan32.exe
Hidden Procs: \Device\Harddisk Volume \WINDOWS\system32\Ljoocp32.exe
Hidden Procs: \Device\Harddisk Volume \WCINDOW S\system32\Gnaeplam.exe

Hidden Procs: \Device\HarddiskVolume \WINDOWS\System32\elitesig32.exe
Hidden Procs: \Device\Harddisk Volume \WINDOWS\system32\elitegct32.exe
Hidden Procs: \Device\HarddiskVolume2\WINDOW S\system32\eliteyzx32.exe
Hidden Procs: \Device\Harddisk Volume I\WINNT\system32\eliteohl32.exe
Hidden Procs: \Device\Harddisk Volume2\WINNT\system32\elitemfu32.exe
Hidden Procs: \Device\HarddiskVolume2\WINNT\system32\eliteace32.exe

Figures 3a-3c: Actual infection cases.

26 19th Large Installation System Administration Conference (LISA °05)



Wang and Beck

as well; when a rootkit is used to hide a spyware
browser add-on executable file, it gets really tricky if
the file is also hidden from the browser process that is
supposed to load it. With “root process” support, the
hacker tools and the browser can be declared as root
processes to ensure smooth operation, while the
resources are still hidden from all the other processes,
system utilities, and anti-malware scanners. In the case
of Hacker Defender, “root processes” are listed in a
configuration file via filenames specified with regular
expressions.

We have developed a technique to take advan-
tage of the support for root processes to allow non-

Fast User-Mode Rootkit Scanner for the Enterprise

First, the fast user-mode rootkit scanner is used to
identify hidden processes. Very often, one or more of
the hidden processes are also root processes (because
these are the most critical processes for the infection).
Suppose process “foo.exe” is a detected hidden, root
process. In the second step, we make a copy of the
command-window program ‘“cmd.exe”, rename it to
“foo.exe”, and launch it through “start foo.exe”.
Now we have a command window that is a root
process that can see all previously hidden resources. In
particular, the “dir” command from this window can
see all hidden files, including the Hacker Defender
configuration file which reveals critical information

intrusive investigations. It works as follows [WBOS5]. about the hacker’s intention.

Hidden processes detected: 2
PID Name
2168 \Device\Harddisk Volume \WINDOW S S\system32\scrss.exe
2460\Device\Harddisk Volume 1\WINDOWS\system32\taskmgnr.exe

Hidden service keys detected: 2

Key: HKEY LOCAL MACHINESYSTEM\CurrentControlSet\Services\scrss
ImagePath: C:\WINDOWS\system32\scrss.exe

Key: HKEY LOCAL MACHINESYSTEM\CurrentControlSet\Services\tskmgr
ImagePath: C:\WINDOWS\system32\taskmgnr.exe

(d)
Hidden processes detected: 11

PID Name
436 \Device\HarddiskVolume2\WINDOW S\system32\smss.exe
564 \Device\Harddisk Volume2\WINDOW S S\system32\lsass.exe
1396 \Device\HarddiskVolume2\WINDOW S S\system32\svchosts.exe
1428 \Device\Harddisk Volume2\WINDOWS\system32\csschk.exe
1744 \Device\Harddisk Volume2\WINDOWS\system32\DNTUS26.EXE
1976 \Device\HarddiskVolume2\WINDOWS\system32\ShellExt\ \tmp\[PSSvc.exe
248 \Device\HarddiskVolume2\ SYSTEM™1\ system\lsass.exe
308 \Device\HarddiskVolume2\WINDOWS\smss.exe
364 \Device\HarddiskVolume2\ SYSTEM™1\ system\system\ioFTPD.exe
2052 \Device\HarddiskVolume2\ SYSTEM™1\ system\Isass.exe
2164 \Device\HarddiskVolume2\ SYSTEM™1\ system\bot\eggdrop.exe
Hidden service keys detected: 2
Key: HKEY LOCAL MACHINESYSTEM\CurrentControlSet\Services\IPSdrv
ImagePath: \??\c:\windows\system32\shellext\ \tmp\IPSdrv.sys
Key: HKEY LOCAL MACHINESYSTEM\CurrentControlSet\Services\NetSecc
ImagePath: c:\windows\system32\shellext\ \tmp\ipssvc.exe naslib.dll
(e)
Hidden processes detected: 4
PID Name
556 \Device\HarddiskVolume2\WINDOWS\system32\services.exe
568 \Device\HarddiskVolume2\WINDOW S S\system32\Isass.exe
1768 \Device\Harddisk Volume2\WINDOW S)\java\lspool.exe
484 \Device\Harddisk Volume2\WINDOW S\system32\drivers\Isass.exe
Hidden service keys detected: 2
Key: HKEY LOCAL MACHINESYSTEM\CurrentControlSet\Services\Lspool
ImagePath: c:\windows\java\lspool.exe
Key: HKEY LOCAL MACHINESYSTEM\CurrentControlSet\Services\r_server
ImagePath: c:\windows\system32\drivers\lsass.exe /service

Figures 3d-3f: Actual infection cases.

19th Large Installation System Administration Conference (LISA °05) 27



Fast User-Mode Rootkit Scanner for the Enterprise

In the third step, we launch Task Manager,
RegEdit, anti-virus scanner, anti-spyware scanner, etc.
from this command window. Since this root process is
not infected it cannot infect its child processes; as a
result, all these utilities are now running as root processes
that can see all previously hidden resources. After the
investigation, malware processes, Registry entries, and
files can all be terminated/deleted through these utilities.

Related Work

There are two different approaches to rootkit
detection. The first approach targets the hiding mecha-
nism by, for example, detecting the presence of API
interceptions [Y1, ZVI, YK, YKS, YV04]. It has at least
two disadvantages: first, it cannot catch rootkit pro-
grams that do not use the targeted mechanism; second,
it may catch as false positives legitimate uses of API
interceptions for in-memory software patching, fault-
tolerance wrappers, security wrappers, etc. The second
approach targets the hiding behavior by detecting any
discrepancies between “the truth” and “the lie”. For
example, comparing the output of “Is” and “echo *”
can detect an infected “Is” program [B99]. Our user-
mode rootkit detector belongs to the second category.

There is a subtle but important difference between
the “cross-view diff” used in our proposal and the
more common “‘cross-time diff” used in Tripwire
[KS94] and the Strider Troubleshooter [WVSO03,
WVD+03]. The goal of a cross-time diff is to capture
changes made to persistent state by essentially compar-
ing snapshots from two different points in time (one
before the changes and one after). In contrast, the goal
of a cross-view diff is to detect hiding behavior by
comparing two snapshots of the same state at exactly
the same point in time, but from two different points of
view (one through the infected path and one not).
Cross-time diff is a more general approach for captur-
ing a broader range of malware programs, hiding or
not; the downside is that it typically includes a signifi-
cant number of false positives stemming from legiti-
mate changes and thus requires additional noise filter-
ing, which has a negative impact on usability. In con-
trast, cross-view diff targets only hiding malware and
usually has zero or very few false positives because
legitimate programs rarely hide.

Ideally, “the truth” should be obtained from
“outside the box” to eliminate the possibility of any
malware intervention. The WinPE-based GhostBuster
tool [WBV+05] took such an approach to obtain “the
truth” of the file system and Registry. The PCI-add-in
card described in the Copilot paper [PFM+04] or the
Myrinet NIC described in the Bookdoors paper
[BNG+04] can be used to obtain “the truth” of the
process list through Direct Memory Access (DMA)
without the knowledge or intervention of the poten-
tially infected OS. Instead of targeting comprehensive-
ness, our user-mode rootkit detector targets efficiency,
scalability, and ease of use with good coverage.

Wang and Beck

In response to the increasing popularity of stealth
techniques among Windows malware, several rootkit
detection tools have been released in recent months,
including RootkitRevealer from Sysinternals, Black-
light Rootkit Eliminator from F-Secure, and IceSword
from Xfocus.net. RootkitRevealer uses the same cross-
view diff technique described in our previous paper on
Inside-the-box GhostBuster [WBV+05]: it performs
high- and low-level scans and reports the differences
between these scans. For the file scans, it performs
two low-level scans by reading the NTFS Master File
Table and the NTFS on-disk directory index structures.
For the low-level Registry scan, the tool reads the raw
Registry hive files. A file discrepancy is reported if a
file does not appear in all three scans. A Registry dis-
crepancy is reported if the data, length, or type of a
Registry value differs or if an entry is missing.

Blacklight is designed to detect hidden processes
and files via a kernel-mode driver. In addition to run-
ning as a standalone process, it incorporates detection
evasion technology: it may perform its scans through
the Windows Explorer process. IceSword uses kernel-
mode technology to detect hidden processes, hidden
ports, hidden services, hidden auto-start programs,
hidden files, hidden Browser Helper Objects, and hid-
den Registry entries. It monitors process creation and
deletion and is able to disable filter drivers that pre-
vent file creation and deletion. In order to achieve its
functionality, the program loads a kernel-mode driver
and then disables kernel-level debugging. Unlike the
other rootkit tools, it has anti-rootkit attack technology
to keep it from being disabled by malicious software.
It achieves this by trapping keyboard strokes and
requiring that the user hit Ctrl+Alt+D in order to put
the program into a mode where it may be shutdown.

Similar rootkit problems exist on the
Linux/UNIX platforms as well [PFM+04, YKS, YC,
YW98, B99, YA03]. (In fact, the term “‘rootkit™ origi-
nated from the root privilege concept on UNIX plat-
forms.) A common technique used by Linux/UNIX
rootkits to hide resources is to intercept system calls to
the kernel via a Loadable Kernel Module (LKM) [ZK,
YJ, JO1]. For example, some rootkits are known to hook
read, write, close, and the getdents (get directory entries)
system calls. More advanced rootkits can directly patch
the kernel in memory [YC98, YLO1]. We discussed
cross-view diff-based hidden resource detection for
Linux/UNIX platforms in our previous paper
[WBV+05].

As a final note, most of today’s Windows rootk-
its do not modify OS files or memory image; rather,
they “extend” the OS through ASEP hooking in a
way that is indistinguishable from many other good
software programs that also extend the OS. Therefore,
it is difficult to apply the genuinity tests and software-
based attestation techniques that detect deviations
from a known-good hash of a well-defined OS mem-
ory range [KJ03, SPDKO04]. On the other hand, these

28 19th Large Installation System Administration Conference (LISA °05)



Wang and Beck

techniques can detect both hiding and non-hiding mal-
ware programs that modify the OS and are comple-
mentary to the cross-view diff approach.

Summary

User-mode rootkits are popular because they are
more portable and reliable than kernel-mode rootkits.
We have shown that there is a quick and easy way to
detect all user-mode rootkits: by performing a cross-
view diff between a high-level infected scan above
rootkit interception and a low-level clean scan below
the interception, our tool can precisely detect hidden
Registry entries and processes within a few seconds.
The simplicity and efficiency make it an attractive tool
for scalable deployment in large enterprises to provide
protection against new or customized rootkits that
escape common signature-based anti-malware scan-
ning. Detection results from actual deployment sug-
gested that hiding Trojans, most likely installed
through malicious Web sites, may be an even more
serious concern than rootkits in terms of prevalence.

Author Information

Yi-Min Wang manages the Cybersecurity and
Systems Management Research Group and leads the
Strider project at Microsoft Research, Redmond. He
received his Ph.D. in Electrical and Computer Engi-
neering from University of Illinois at Urbana-Cham-
paign in 1993, worked at AT&T Bell Labs from 1993 to
1997, and joined Microsoft in 1998. His research inter-
ests include security, systems management, dependabil-
ity, home networking, and distributed systems.

Doug Beck is a senior developer at Microsoft
where he has worked for the past six years. During his
career at Microsoft Doug has focused on developing
Systems Management software. He received a Ph.D. in
Theoretical Physical Chemistry from the University of
Washington in 1996 where he developed simulation
software for solving partial differential equations as
part of his research. Doug is currently working at
Microsoft Research and can be reached at Doug.Beck@
microsoft.com.

References

[AID] Working with the AppInit DLLs registry value,
http://support.microsoft.com/kb/q197571/.

[AS] Microsoft Windows Anti-Spyware, http://www.
microsoft.com/spyware .

[B99] Brumley, D., “Invisible Intruders: Rootkits
In Practice,” ;login:, http://www.usenix.org/
publications/login/1999-9/features/rootkits.html,
1999.

[BNG+04] Bohra, A., I. Neamtiu, P. Gallard, F. Sul-
tan, and L. Iftode, “Remote Repair of Operating
System State Using Backdoors,” Proc. Int. Conf.
on Autonomic Computing (ICAC), pp. 256-263,
May, 2004.

Fast User-Mode Rootkit Scanner for the Enterprise

[HB99] Hunt, Galen and Doug Brubacher, “Detours:
Binary Interception of Win32 Functions,” Proc.
the Third Usenix Windows NT Symposium, pp.
135-143, http://research.microsoft.com/sn/detours/,
July, 1999.

[HBO5] Hoglund, G. and J. Butler, Rootkits: Subvert-
ing The Windows Kernel, Addison-Wesley, 2005.

[JO1] Jones, K., “Loadable kernel modules,” ;login:,
http://www.usenix.org/publications/login/2001-11/
pdfs/jones2.pdf, Nov., 2001.

[KJO3] Kennell, Rick and Leah H. Jamieson, ‘““Estab-
lishing the Genuinity of Remote Computer Sys-
tems,” Proc. USENIX Security Symposium,
August, 2003.

[KS94] Kim, G. H. and E. H. Spafford, “The Design
and Implementation of Tripwire: A File System
Integrity Checker,” Proc. of the Second ACM
Conf. on Computer and Communications Secu-
rity, pp. 18-29, Nov., 1994.

[MSRT] Windows Malicious Software Removal Tool,
http://www.microsoft.com/security/malwareremove;/ .

[PFM+04] Petroni, Jr., Nick L., Timothy Fraser, Jesus
Molina, and William A. Arbaugh, “Copilot — a
Coprocessor-based Kernel Runtime Integrity Moni-
tor,” Proc. Usenix Security Symposium, Aug., 2004.

[SPDKO04] Seshadri, A., A. Perrig, L. van Doorn, and
P. Khosla, “SWATT: SoftWare-based ATTesta-
tion for Embedded Devices,” Proc. [EEE Symp.
on Security and Privacy, May, 2004.

[WBO05] Wang, Yi-Min and Doug Beck, “How to
‘Root’” a Rootkit That Supports Root Processes
Using Strider GhostBuster Enterprise Scanner,”
Microsoft Research Technical Report MSR-
TR-2005-21, February 11, 2005.

[WBJ+05] Wang, Yi-Min, Doug Beck, Xuxian Jiang,
and Roussi Roussev, ‘“Automated Web Patrol
with Strider HoneyMonkeys: Finding Web Sites
That Exploit Browser Vulnerabilities,” Microsoft
Research Technical Report MSR-TR-2005-72,
August, 2005.

[WBV+05] Wang, Yi-Min, Doug Beck, Binh Vo,
Roussi Roussev, and Chad Verbowski, “Detect-
ing Stealth Software with Strider GhostBuster,”
Proc. DSN, June, 2005.

[WRV+04] Wang, Yi-Min, Roussi Roussev, Chad Ver-
bowski, and Aaron Johnson, “Gatekeeper: Moni-
toring Auto-Start Extensibility Points (ASEPs)
for Spyware Management,” Proc. Usenix LISA,
Nov., 2004.

[WVD+03] Wang, Yi-Min, et al., “STRIDER: A
Black-box, State-based Approach to Change and
Configuration Management and Support,” Proc.
Usenix LISA, pp. 159-171, October, 2003.

[WVR+04] Wang, Yi-Min, Binh Vo, Roussi Roussev,
Chad Verbowski, and Aaron Johnson, ‘“Strider
GhostBuster: Why It’s A Bad Idea For Stealth
Software To Hide Files,” Microsoft Research
Technical Report MSR-TR-2004-71, July, 2004.

19th Large Installation System Administration Conference (LISA ’05) 29



Fast User-Mode Rootkit Scanner for the Enterprise

[WVS03] Wang, Yi-Min, Chad Verbowski, and Daniel R.
Simon, “Persistent-state Checkpoint Comparison
for Troubleshooting Configuration Failures,” Proc.
IEEE DSN, June, 2003.

[YAO03] Chuvakin, A. “An Overview of UNIX Root-
kits,” iALERT White Paper, iDefense Labs,
http://www.megasecurity.org/papers/Rootkits.pdf,
February, 2003.

[YC] The chkrootkit tool, http://www.chkrootkit.org/.

[YC98] Cesare, Silvio “Runtime kernel kmem patch-
ing,” http://vx.netlux.org/lib/vsc07.html, Nov.,
1998.

[YHO3] “How to become unseen on Windows NT,”
http://rootkit.host.sk/knowhow/hidingen.txt,
May 8, 2003.

[YI] Ivanov, Ivo, “API hooking revealed,” http:/
www.codeproject.com/system/hooksys.asp .

[YJ] Jones, A. R., “A Review of Loadable Kernel
Modules,”” http://www.giac.org/practical/gsec/
Andrew_Jones GSEC.pdf.

[YK] Keong, Tan Chew, “ApiHookCheck Version 1.01,”
http://www.security.org.sg/code/apihookcheck.html ,
April 15, 2004.

[YKS] KSTAT — Kernel Security Therapy Anti-Trolls,
http://sOftpj.org/en/tools.html .

[YLO1] “Linux on-the-fly kernel patching without
LKM,” http://www.phrack.org/phrack/58/p58-0x07,
Phrack Magazine, Dec., 2001.

[YNO4] “NTIllusion — A portable Win32 userland
rootkit.txt,”” Phrack Magazine, July 13, 2004.

[YV04] VICE — Catch the hookers! http://www.blackhat.
com/presentations/bh-usa-04/bh-us-04-butler/bh-
us-04-butler.pdf .

[YWO8] “Weakening the Linux Kernel,” Phrack
Magazine, http://www.phrack.org/phrack/52/
P52-18, Jan., 1998.

[ZK] Knark LKM-rootkit, http://www.sans.org/resources/
idfag/knark.php .

[ZVI] Vice, http://www.rootkit.com/project.php?id=20.

Wang and Beck

30 19th Large Installation System Administration Conference (LISA °05)





