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Graph Analytics: State-of-the-Art

Processing Algorithms Mining Algorithms
Computes properties of the Discovers structural patterns in the
underlying graph underlying graph
= Fasytoimplement = Efficient custom algorithms
= Massively parallelizable = Exponential intermediate data
= Can handle large graphs » |imited to small graphs

Challenging to mine patterns in large graphs
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Graph Analytics: Processing vs Mining

B # Edges:
B Computation Time

Arabesque (SOSP’15)

Log scale

Can graph pattern mmmg be made both
fastand scalable?



Many mining tasks ask for the number of
occurrences and do not need exactanswers



Many mining tasks ask for the number of
occurrences and do not need exactanswers

Leverage approximationtor graph pattern
mining
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Approximate Analytics

General approach: Apply algorithm on
subset(s) (sample) of the input data

graph edge sampling triangle result
(p=0.5) counting

W —>e=1—> e:2=2
Answer: 10

Applying exact algorithm on sampled graph(s)

not the right approach for pattern mining
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Potential Benetits

= 16 node Apache Spark cluster
= Two graphs: Live Journal (68.9B), Twitter (1.47B)
= Count 3-Motifs (2 patterns: triangle, 3-chain)

= Set error to 5%

3-Motif  Systemn Graph

Ours (5%) 16x8  Livel 48M 6898  (11.55)
Arabesque 16x8 Livel 41.7TM  147B @

Ours (5% 16 x 8 witter 41.7M  147B 4m
Arabesgue 20x32 stagram 180M  0.9B 10h45m




Building a General

Purpose Approximate
Graph Mining System




General Patterns

Building a General
Purpose Approximate
Graph Mining System




General Patterns

Building a General
Purpose Approximate
Graph Mining System

Distributed Settings



General Patterns

Building a General
Purpose Approximate
Graph Mining System

Distributed Settings

Error Estimation



General Patterns

Building a General Distributed Settings
Purpose Approximate

Graph Mining System Error Estimation

Handling Updates
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Problem: Neighborhood sampling is for triangle counting

Break down neighborhood sampling into two phases:

Samplingphase

Closingphase
graph estimator neighborhood result
(r=4) sampling

EO ﬁv eo = 40

-

Can we restrict the implementation using a simple AF/?
How can we analyze programs written using the API?
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Challenge #2: Distributed Setting

Problem: Neighborhood sampling is for a single machine
map: w(=3) workers reduce

subgraph > partial count ¢,
0 (using r estimators)

subgraph partial count ¢,

graph 1 (using r estimators)

w-—1
Fw) .
=0

How do we compute /(w/for any pattern?

How does /() affect error?



Challenge #3: Building Error-Latency Profile

Problem: Given a time / error bound, how many
estimators should we use”?

Need to build two profiles:
« Time vs #estimators
 LError vs #estimators
Naive approach:

« Exhaustively run every possible point (infeasible)



Building Estimators vs Time Profile

Time complexity linear in number of estimators
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Runtime (min)
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Building Estimators vs Error Profile

Error complexity non-linear in number of estimators
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Leverage techniques like experiment desigr/Bayesian optimizatior?

How do we avoid the need to know the ground truth?



Challenge #4: Updates

Problem: Graphs and queries can be updated/refined

Several systems challenges:
« Incremental pattern mining

« Can the error-latency profiles be updated”
« Caching

« Re-use results

 Pre-computation



Conclusion

» Approximation is a promising solution for pattern mining
= Significant benefits, and can handle much larger graphs...

= .. butcannotoutput all instances of the pattern

= Several challenges in realizing it
= How to extend the technique to general patterns?
= How to do approximate pattern mining in a distributed setting?
= How do we estimate the error?
= How do we handle updates?

http://www.cs.berkeley.edu/~api
api@cs.berkeley.edu
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