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Graph Analytics: State-of-the-Art

Processing Algorithms Mining Algorithms
Computes properties of the Discovers structural patterns in the
underlying graph underlying graph
= Fasytoimplement = Efficient custom algorithms
= Massively parallelizable = Exponential intermediate data
= Can handle large graphs » |imited to small graphs

Challenging to mine patterns in large graphs
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Graph Analytics: Processing vs Mining

B # Edges:
B Computation Time

Arabesque (SOSP’15)

Log scale

Can graph pattern mmmg be made both
fastand scalable?



Many mining tasks ask for the number of
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Leverage approximationtor graph pattern
mining
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Approximate Analytics

General approach: Apply algorithm on
subset(s) (sample) of the input data

graph edge sampling triangle result
(p=0.5) counting

W —>e=1—> e:2=2
Answer: 10

Applying exact algorithm on sampled graph(s)

not the right approach for pattern mining
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Potential Benetits

= 16 node Apache Spark cluster
= Two graphs: Live Journal (68.9B), Twitter (1.47B)
= Count 3-Motifs (2 patterns: triangle, 3-chain)

= Set error to 5%

3-Motif  Systemn Graph

Ours (5%) 16x8  Livel 48M 6898  (11.55)
Arabesque 16x8 Livel 41.7TM  147B @

Ours (5% 16 x 8 witter 41.7M  147B 4m
Arabesgue 20x32 stagram 180M  0.9B 10h45m




Building a General

Purpose Approximate
Graph Mining System




General Patterns

Building a General
Purpose Approximate
Graph Mining System




General Patterns

Building a General
Purpose Approximate
Graph Mining System

Distributed Settings



General Patterns

Building a General
Purpose Approximate
Graph Mining System

Distributed Settings

Error Estimation



General Patterns

Building a General Distributed Settings
Purpose Approximate

Graph Mining System Error Estimation

Handling Updates
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Challenge #1: General Patterns

Problem: Neighborhood sampling is for triangle counting

Break down neighborhood sampling into two phases:

Samplingphase

Closingphase
graph estimator neighborhood result
(r=4) sampling

EO ﬁv eo = 40

-

Can we restrict the implementation using a simple AF/?
How can we analyze programs written using the API?
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Challenge #2: Distributed Setting

Problem: Neighborhood sampling is for a single machine
map: w(=3) workers reduce

subgraph > partial count ¢,
0 (using r estimators)

subgraph partial count ¢,

graph 1 (using r estimators)

w-—1
Fw) .
=0

How do we compute /(w/for any pattern?

How does /() affect error?



Challenge #3: Building Error-Latency Profile

Problem: Given a time / error bound, how many
estimators should we use”?

Need to build two profiles:
« Time vs #estimators
 LError vs #estimators
Naive approach:

« Exhaustively run every possible point (infeasible)



Building Estimators vs Time Profile

Time complexity linear in number of estimators
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Runtime (min)
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No. of Estimators
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Building Estimators vs Error Profile

Error complexity non-linear in number of estimators
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Leverage techniques like experiment desigr/Bayesian optimizatior?

How do we avoid the need to know the ground truth?



Challenge #4: Updates

Problem: Graphs and queries can be updated/refined

Several systems challenges:
« Incremental pattern mining

« Can the error-latency profiles be updated”
« Caching

« Re-use results

 Pre-computation



Conclusion

» Approximation is a promising solution for pattern mining
= Significant benefits, and can handle much larger graphs...

= .. butcannotoutput all instances of the pattern

= Several challenges in realizing it
= How to extend the technique to general patterns?
= How to do approximate pattern mining in a distributed setting?
= How do we estimate the error?
= How do we handle updates?

http://www.cs.berkeley.edu/~api
api@cs.berkeley.edu
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