
Towards Fast and Scalable
Graph Pattern Mining

Anand Iyer ⋆, Zaoxing Liu ⬩, Xin Jin ⬩,
Shivaram Venkataraman▴, Vladimir Braverman ⬩, Ion Stoica ⋆

⋆ UC Berkeley ⬩ Johns Hopkins University ▴Microsoft Research / University of Wisconsin

HotCloud, July 09, 2018

Graphs popular in big data analytics

Graphs popular in big data analytics

Graphs popular in big data analytics

Graph Analytics

Graph Analytics

Processing Algorithms

Graph Analytics

Processing Algorithms

PageRank

Connected Components

Graph Analytics

Processing Algorithms Mining Algorithms

PageRank

Connected Components

Graph Analytics

Processing Algorithms Mining Algorithms

PageRank

Connected Components
Motifs

Cliques

Graph Analytics

Processing Algorithms Mining Algorithms

PageRank

Connected Components
Motifs

Cliques

Graph Analytics: State-of-the-Art

Processing Algorithms Mining Algorithms

PageRank

Connected Components
Motifs

Cliques

Computes properties of the
underlying graph

Discovers structural patterns in the
underlying graph

Graph Analytics: State-of-the-Art

Processing Algorithms Mining Algorithms

PageRank

Connected Components
Motifs

Cliques

§ Easy to implement
§ Massively parallelizable
§ Can handle large graphs

Computes properties of the
underlying graph

Discovers structural patterns in the
underlying graph

Graph Analytics: State-of-the-Art

Processing Algorithms Mining Algorithms

PageRank

Connected Components
Motifs

Cliques

§ Easy to implement
§ Massively parallelizable
§ Can handle large graphs

§ Efficient custom algorithms
§ Exponential intermediate data
§ Limited to small graphs

Computes properties of the
underlying graph

Discovers structural patterns in the
underlying graph

Graph Analytics: State-of-the-Art

Processing Algorithms Mining Algorithms

PageRank

Connected Components
Motifs

Cliques

§ Easy to implement
§ Massively parallelizable
§ Can handle large graphs

§ Efficient custom algorithms
§ Exponential intermediate data
§ Limited to small graphs

Challenging to mine patterns in large graphs

Computes properties of the
underlying graph

Discovers structural patterns in the
underlying graph

Graph Analytics: Processing vs Mining
Lo

g
sc

al
e

Edges
Computation Time

Graph Analytics: Processing vs Mining

1
tr

ill
io

n

14
0

s

PageRank

Lo
g

sc
al

e

Edges
Computation Time

Graph Analytics: Processing vs Mining

1
tr

ill
io

n

14
0

s

PageRank

Lo
g

sc
al

e

Edges
Computation Time

Graph Analytics: Processing vs Mining

1
tr

ill
io

n

14
0

s

PageRank

~1
 b

ill
io

n

11
 h

ou
rs

Motifs with size = 3

Lo
g

sc
al

e

Edges
Computation Time

Arabesque (SOSP’15)

Graph Analytics: Processing vs Mining

1
tr

ill
io

n

14
0

s

PageRank

~1
 b

ill
io

n

11
 h

ou
rs

Motifs with size = 3

Lo
g

sc
al

e

Edges
Computation Time

Can graph pattern mining be made both
fast and scalable?

Arabesque (SOSP’15)

Many mining tasks ask for the number of
occurrences and do not need exact answers

Leverage approximation for graph pattern
mining

Many mining tasks ask for the number of
occurrences and do not need exact answers

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

0

1 4

2 3

graph

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

0

1 4

2 3

edge sampling
(p=0.5)

graph

0

1 4

2 3

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

0

1 4

2 3

edge sampling
(p=0.5)

graph

e = 1

0

1 4

2 3

triangle
counting

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

0

1 4

2 3

edge sampling
(p=0.5)

graph

e = 1

0

1 4

2 3

triangle
counting

result

$ % 2 = 2

Answer: 10

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

0

1 4

2 3

edge sampling
(p=0.5)

graph

e = 1

0

1 4

2 3

triangle
counting

result

$ % 2 = 2

Answer: 10

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

0

1 4

2 3

edge sampling
(p=0.5)

graph

e = 1

0

1 4

2 3

triangle
counting

result

$ % 2 = 2

Applying exact algorithm on sampled graph(s)
not the right approach for pattern mining

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

E0

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

E0

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

E0

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

E0

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

E0

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

E0

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

E0

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

E0

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

E0

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

E0

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

E0

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

! = 1
10 ∗

1
4

E0

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

! = 1
10 ∗

1
4

E0

Approximation by Sampling Patterns

0

1 4

2 3

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

'(= 40

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

! = 1
10 ∗

1
4

E0

Approximation by Sampling Patterns

0

1 4

2 3

neighborhood
sampling

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

'(= 40

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

! = 1
10 ∗

1
4

E0

Approximation by Sampling Patterns

0

1 4

2 3

neighborhood
sampling

graph

E1

E2

E3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

'(= 40

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

! = 1
10 ∗

1
4

E0

Approximation by Sampling Patterns

0

1 4

2 3

estimator
(r=4)

neighborhood
sampling

graph

E1

E2

E3

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

'(= 40

result

1
)*+,(

-./
'+ = 10'/ = 0

'0 = 0

'1 = 0

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Potential Benefits
§ 16 node Apache Spark cluster
§ Two graphs: Live Journal (68.9B), Twitter (1.47B)
§ Count 3-Motifs (2 patterns: triangle, 3-chain)
§ Set error to 5%

3-Motif System Graph |V| |E| Time
Ours (5%) 16 x 8 Twitter 41.7M 1.47B 4m
Arabesque 20x32 Instagram 180M 0.9B 10h45m

Potential Benefits
§ 16 node Apache Spark cluster
§ Two graphs: Live Journal (68.9B), Twitter (1.47B)
§ Count 3-Motifs (2 patterns: triangle, 3-chain)
§ Set error to 5%

3-Motif System Graph |V| |E| Time
Ours (5%) 16 x 8 LiveJ 4.8M 68.9B 11.5s
Arabesque 16 x 8 LiveJ 41.7M 1.47B 299.2s

3-Motif System Graph |V| |E| Time
Ours (5%) 16 x 8 Twitter 41.7M 1.47B 4m
Arabesque 20x32 Instagram 180M 0.9B 10h45m

Potential Benefits
§ 16 node Apache Spark cluster
§ Two graphs: Live Journal (68.9B), Twitter (1.47B)
§ Count 3-Motifs (2 patterns: triangle, 3-chain)
§ Set error to 5%

3-Motif System Graph |V| |E| Time
Ours (5%) 16 x 8 LiveJ 4.8M 68.9B 11.5s
Arabesque 16 x 8 LiveJ 41.7M 1.47B 299.2s

3-Motif System Graph |V| |E| Time
Ours (5%) 16 x 8 Twitter 41.7M 1.47B 4m
Arabesque 20x32 Instagram 180M 0.9B 10h45m

Potential Benefits
§ 16 node Apache Spark cluster
§ Two graphs: Live Journal (68.9B), Twitter (1.47B)
§ Count 3-Motifs (2 patterns: triangle, 3-chain)
§ Set error to 5%

3-Motif System Graph |V| |E| Time
Ours (5%) 16 x 8 LiveJ 4.8M 68.9B 11.5s
Arabesque 16 x 8 LiveJ 41.7M 1.47B 299.2s

Challenges

Building a General
Purpose Approximate
Graph Mining System

Challenges

Building a General
Purpose Approximate
Graph Mining System

General Patterns

Challenges

Building a General
Purpose Approximate
Graph Mining System

General Patterns

Distributed Settings

Challenges

Building a General
Purpose Approximate
Graph Mining System

General Patterns

Distributed Settings

Error Estimation

Challenges

Building a General
Purpose Approximate
Graph Mining System

General Patterns

Distributed Settings

Error Estimation

Handling Updates

Challenge #1: General Patterns
Problem: Neighborhood sampling is for triangle counting
Break down neighborhood sampling into two phases:
• Sampling phase
• Closing phase

! = 1
10 ∗

1
4

E0
0

1 4

2 3

estimator
(r=4)

neighborhood
sampling

graph

E1

E2

E3

'(= 40

result

1
)*+,(

-./
'+ = 10'/ = 0

'0 = 0

'1 = 0

Challenge #1: General Patterns
Problem: Neighborhood sampling is for triangle counting
Break down neighborhood sampling into two phases:
• Sampling phase
• Closing phase

! = 1
10 ∗

1
4

E0
0

1 4

2 3

estimator
(r=4)

neighborhood
sampling

graph

E1

E2

E3

'(= 40

result

1
)*+,(

-./
'+ = 10'/ = 0

'0 = 0

'1 = 0
Can we restrict the implementation using a simple API ?

How can we analyze programs written using the API?

Challenge #2: Distributed Setting
Problem: Neighborhood sampling is for a single machine

Challenge #2: Distributed Setting

graph

Problem: Neighborhood sampling is for a single machine

Challenge #2: Distributed Setting

graph

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

Problem: Neighborhood sampling is for a single machine

Challenge #2: Distributed Setting

graph

map: w(=3) workers

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

Problem: Neighborhood sampling is for a single machine

Challenge #2: Distributed Setting

graph

map: w(=3) workers

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

Problem: Neighborhood sampling is for a single machine

Challenge #2: Distributed Setting

graph !
"#$

%&'
("

map: w(=3) workers

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

Problem: Neighborhood sampling is for a single machine

Challenge #2: Distributed Setting

graph !
"#$

%&'
("

map: w(=3) workers reduce

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

Problem: Neighborhood sampling is for a single machine

Challenge #2: Distributed Setting

graph !
"#$

%&'
("

map: w(=3) workers reduce

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

)(+)

Problem: Neighborhood sampling is for a single machine

Challenge #2: Distributed Setting

graph !
"#$

%&'
("

map: w(=3) workers reduce

subgraph
0

partial count c0
(using r estimators)

subgraph
1

partial count c1
(using r estimators)

subgraph
2

partial count c2
(using r estimators)

)(+)

Problem: Neighborhood sampling is for a single machine

How do we compute f(w) for any pattern?
How does f(w) affect error?

Challenge #3: Building Error-Latency Profile
Problem: Given a time / error bound, how many
estimators should we use?
Need to build two profiles:
• Time vs #estimators
• Error vs #estimators
Naïve approach:
• Exhaustively run every possible point (infeasible)

Building Estimators vs Time Profile

1

2

3

0.5M 1M 1.5M 2M

R
u
n
tim

e
 (

m
in

)

No. of Estimators

Twitter Graph

Time complexity linear in number of estimators

Building Estimators vs Error Profile

 0
 5

 10
 15
 20
 25
 30
 35
 40

50k 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph

Error complexity non-linear in number of estimators

Building Estimators vs Error Profile

 0
 5

 10
 15
 20
 25
 30
 35
 40

50k 1m 1.5m 2.1m

E
rr

o
r

R
a
te

 (
%

)

No. of Estimators

Twitter Graph

Error complexity non-linear in number of estimators

Leverage techniques like experiment design/Bayesian optimization?
How do we avoid the need to know the ground truth?

Challenge #4: Updates
Problem: Graphs and queries can be updated/refined
Several systems challenges:
• Incremental pattern mining

• Can the error-latency profiles be updated?

• Caching
• Re-use results
• Pre-computation

Conclusion
§ Approximation is a promising solution for pattern mining

§ Significant benefits, and can handle much larger graphs…
§ … but cannot output all instances of the pattern

§ Several challenges in realizing it
§ How to extend the technique to general patterns?
§ How to do approximate pattern mining in a distributed setting?
§ How do we estimate the error?
§ How do we handle updates?

http://www.cs.berkeley.edu/~api
api@cs.berkeley.edu

http://www.cs.berkeley.edu/~api
mailto:api@cs.berkeley.edu

