Towards Fast and Scalable
Graph Pattern Mining

Anand lyer*, Zaoxing Liu *, Xin Jin*,
Shivaram Venkataraman*, Viadimir Braverman *, lon Stoica *
*UC Berkeley * Johns Hopkins University * Microsoft Research / University of Wisconsin

HotCloud, July 09, 2018

drise

UC Berkeley

lytics

popular in big data analytics

Graph Analytics

Graph Analytics

Processing Algorithms

Graph Analytics

Processing Algorithms

PageRank

°"° o
‘g: s Connected Components
ﬁii!'ﬁ“4=i! p

Graph Analytics

Processing Algorithms Mining Algorithms

Graph Analytics

Processing Algorithms Mining Algorithms

A R e e e T B]
==
= HEHEEEE
Motifs ==
Cliques e
HEEEE

Graph Analytics

)
-
-
4
K-
@)
&b
<
o0
=
=
=

3
O
)
C

L8

Processing Algorithms

@ JanusGraph

-&fi- GraphX

.
:
%
g
)
N

O

ouh

7 LS

[-’

SEEeOET

48249, 280 Y

00 9" 0

R TS0

A P A C H E
GIRAPH

X0
LA
R
e
s
[
a%g,
L

Graph Analytics: State-of-the-Art

Processing Algorithms

Mining Algorithms

Computes properties of the Discovers structural patterns in the
underlying graph underlying graph

Graph Analytics: State-of-the-Art

Processing Algorithms

Mining Algorithms

Computes properties of the Discovers structural patterns in the
underlying graph underlying graph

» Easytoimplement
= Massively parallelizable
» Canhandle large graphs

Graph Analytics: State-of-the-Art

Processing Algorithms

Mining Algorithms

Computes properties of the Discovers structural patterns in the
underlying graph underlying graph
= Fasytoimplement = Efficient custom algorithms
= Massively parallelizable = Exponential intermediate data

= Can handle large graphs » |imited to small graphs

Graph Analytics: State-of-the-Art

Processing Algorithms Mining Algorithms
Computes properties of the Discovers structural patterns in the
underlying graph underlying graph
= Fasytoimplement = Efficient custom algorithms
= Massively parallelizable = Exponential intermediate data
= Can handle large graphs » |imited to small graphs

Challenging to mine patterns in large graphs

Graph Analytics: Processing vs Mining

BN # Edges
B Computation Time

Log scale

Graph Analytics: Processing vs Mining

BN # Edges
B Computation Time

Log scale

-
O
e
+
—

PageRank

Graph Analytics: Processing vs Mining

B # Edges:
B Computation Time

Log scale

-
O
e
+
—

PageRank

Graph Analytics: Processing vs Mining

B # Edges.
B Computation Time

Log scale

Arabesque (SOSP’15)

I ~1 billion

-
O
e
+
—

PageRank Motifs with size = 3

Graph Analytics: Processing vs Mining

B # Edges:
B Computation Time

Arabesque (SOSP’15)

Log scale

Can graph pattern mmmg be made both
fastand scalable?

Many mining tasks ask for the number of
occurrences and do not need exactanswers

Many mining tasks ask for the number of
occurrences and do not need exactanswers

Leverage approximationtor graph pattern
mining

Approximate Analytics

General approach: Apply algorithm on
subset(s) (sample) of the input data

Approximate Analytics

General approach: Apply algorithm on
subset(s) (sample) of the input data
graph

Approximate Analytics

General approach: Apply algorithm on

subset(s) (sample) of the input data

graph edge sampling
(p=0.5)

Approximate Analytics

General approach: Apply algorithm on

subset(s) (sample) of the input data

graph edge sampling triangle
(p=0.5) counting

%ﬁ61

Approximate Analytics

General approach: Apply algorithm on
subset(s) (sample) of the input data

graph edge sampling triangle result
(p=0.5) counting

@a B o

Approximate Analytics

General approach: Apply algorithm on
subset(s) (sample) of the input data

graph edge sampling triangle result
(p=0.5) counting
—_—> —>e=1—> €-2=2

Answer: 10

Approximate Analytics

General approach: Apply algorithm on
subset(s) (sample) of the input data

graph edge sampling triangle result
(p=0.5) counting

W —>e=1—> e:2=2
Answer: 10

Applying exact algorithm on sampled graph(s)

not the right approach for pattern mining

Approximation by Sampling Patterns

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph

EO >

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph

¢ o

EO >

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph

e

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph

E0 —>\

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph

E0 —> 1

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph

E0 —> 1

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph

E0 —> 1

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph

E0 —> 1

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph

E0 —> 1

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph

E0 —> 1

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph

E0 —> ¥

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph 1

1
= — % —
P=70"2

E0 —> ¥

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph 1 1

P——*Z

EO >v eo = 40

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph neighborhood
sampling

EO >V eo = 40

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph neighborhood
sampling

EO >V eo = 40

E1 —>

E2 —>

ES >

—0o

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Approximation by Sampling Patterns

graph estimator neighborhood result
(r=4) sampling
EO > V €y = 40
EFl —> e =0 1¢
;Z e = 10
E2 —> e; =0 =0
E3S > — e3 =0

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

Pavan et al. Counting and sampling triangles from a graph stream, VLDB 2013

Potential Benetits

= 16 node Apache Spark cluster
= Two graphs: Live Journal (68.9B), Twitter (1.47B)
= Count 3-Motifs (2 patterns: triangle, 3-chain)

= Set error to 5%

Potential Benetits

= 16 node Apache Spark cluster
= Two graphs: Live Journal (68.9B), Twitter (1.47B)
= Count 3-Motifs (2 patterns: triangle, 3-chain)

= Set error to 5%

3-Motif Systemn Graph
Ours (5%) 16x8 LiveJ 4.8M 68.9B 11.5s
Arabesque 16x8 LiveJ 41.7M 147B 299.2s

Ours (5%) 16x8 Twitter 41.7M 1.47B 4m
Arabesque 20x32 Instagram 180M 0.9B 10h45m

Potential Benetits

= 16 node Apache Spark cluster
= Two graphs: Live Journal (68.9B), Twitter (1.47B)
= Count 3-Motifs (2 patterns: triangle, 3-chain)

= Set error to 5%

3-Motif Systemn Graph
Ours (5%) 16x8 LiveJ 4.8M

Arabesque 16x8 LiveJ 41.7M 1.47B
Ours (5%) 16x8 Twitter 41.7M 1.47B 4m

Arabesque 20x32 Instagram 180M 0.9B 10h45m

Potential Benetits

= 16 node Apache Spark cluster
= Two graphs: Live Journal (68.9B), Twitter (1.47B)
= Count 3-Motifs (2 patterns: triangle, 3-chain)

= Set error to 5%

3-Motif Systemn Graph

Ours (5%) 16x8 Livel 48M 6898 (11.55)
Arabesque 16x8 Livel 41.7TM 147B @

Ours (5% 16 x 8 witter 41.7M 147B 4m
Arabesgue 20x32 stagram 180M 0.9B 10h45m

Building a General

Purpose Approximate
Graph Mining System

General Patterns

Building a General
Purpose Approximate
Graph Mining System

General Patterns

Building a General
Purpose Approximate
Graph Mining System

Distributed Settings

General Patterns

Building a General
Purpose Approximate
Graph Mining System

Distributed Settings

Error Estimation

General Patterns

Building a General Distributed Settings
Purpose Approximate

Graph Mining System Error Estimation

Handling Updates

Challenge #1: General Patterns

Problem: Neighborhood sampling is for triangle counting

Break down neighborhood sampling into two phases:
Samplingphase
* (losingphase

graph estimator neighborhood result
(r=4) sampling
EO ﬁ V €o = 40
El —> =0 10
;Z e = 10
E2 —> e; =0 =0

E3 > ez =0

Challenge #1: General Patterns

Problem: Neighborhood sampling is for triangle counting

Break down neighborhood sampling into two phases:

Samplingphase

Closingphase
graph estimator neighborhood result
(r=4) sampling

EO ﬁv eo = 40

-

Can we restrict the implementation using a simple AF/?
How can we analyze programs written using the API?

Challenge #2: Distributed Setting

Problem: Neighborhood sampling is for a single machine

Challenge #2: Distributed Setting

Problem: Neighborhood sampling is for a single machine

graph

Challenge #2: Distributed Setting

Problem: Neighborhood sampling is for a single machine

subgraph > partial count ¢,
0 (using r estimators)

subgraph > partial count ¢,

graph 1 (using r estimators)

subgraph > partial count c,
2 (using r estimators)

Challenge #2: Distributed Setting

Problem: Neighborhood sampling is for a single machine
map: w(=3) workers

subgraph > partial count ¢,
0 (using r estimators)

subgraph > partial count ¢,

graph 1 (using r estimators)

subgraph > partial count c,
2 (using r estimators)

Challenge #2: Distributed Setting

Problem: Neighborhood sampling is for a single machine
map: w(=3) workers

subgraph > partial count ¢,
0 (using r estimators)

subgraph > partial count ¢,

graph 1 (using r estimators)

subgraph > partial count c,
2 (using r estimators)

Challenge #2: Distributed Setting

Problem: Neighborhood sampling is for a single machine
map: w(=3) workers

subgraph > partial count ¢,
0 (using r estimators)

S
A

subgraph > partial count ¢,

graph 1 (using r estimators)

subgraph > partial count c,
2 (using r estimators)

Challenge #2: Distributed Setting

Problem: Neighborhood sampling is for a single machine
map: w(=3) workers reduce

subgraph > partial count ¢,
0 (using r estimators)

S
A

subgraph > partial count ¢,

graph 1 (using r estimators)

subgraph > partial count c,
2 (using r estimators)

Challenge #2: Distributed Setting

Problem: Neighborhood sampling is for a single machine
map: w(=3) workers reduce

subgraph > partial count ¢,

0 (using r estimators)
w—1
subgraph partial count ¢, 2 i
graph 1 > (using r estimators) f(w) e l

subgraph > partial count c,
2 (using r estimators)

Challenge #2: Distributed Setting

Problem: Neighborhood sampling is for a single machine
map: w(=3) workers reduce

subgraph > partial count ¢,
0 (using r estimators)

subgraph partial count ¢,

graph 1 (using r estimators)

w-—1
Fw) .
=0

How do we compute /(w/for any pattern?

How does /() affect error?

Challenge #3: Building Error-Latency Profile

Problem: Given a time / error bound, how many
estimators should we use”?

Need to build two profiles:
« Time vs #estimators
 LError vs #estimators
Naive approach:

« Exhaustively run every possible point (infeasible)

Building Estimators vs Time Profile

Time complexity linear in number of estimators
3

Twitter Graph

Runtime (min)

0.5M 1M 1.5M 2M
No. of Estimators

Building Estimators vs Error Profile

Error complexity non-linear in number of estimators

40 -
—~ 35 |
= 30 ¢
25 |
20
15 |
10 |

 Twitter Graph —¢—

Yo

Error Rate

50k im 1.5m 2.1m

No. of Estimators

Building Estimators vs Error Profile

Error complexity non-linear in number of estimators

40 -
—~ 35 |
= 30 ¢
25 |
20
15 |
10 |
5,
O\

 Twitter Graph —¢—

Yo

Error Rate

Leverage techniques like experiment desigr/Bayesian optimizatior?

How do we avoid the need to know the ground truth?

Challenge #4: Updates

Problem: Graphs and queries can be updated/refined

Several systems challenges:
« Incremental pattern mining

« Can the error-latency profiles be updated”
« Caching

« Re-use results

 Pre-computation

Conclusion

» Approximation is a promising solution for pattern mining
= Significant benefits, and can handle much larger graphs...

= .. butcannotoutput all instances of the pattern

= Several challenges in realizing it
= How to extend the technique to general patterns?
= How to do approximate pattern mining in a distributed setting?
= How do we estimate the error?
= How do we handle updates?

http://www.cs.berkeley.edu/~api
api@cs.berkeley.edu

http://www.cs.berkeley.edu/~api
mailto:api@cs.berkeley.edu

