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Processing Algorithms Mining Algorithms

PageRank

Connected Components
Motifs

Cliques

§ Easy to implement
§ Massively parallelizable
§ Can handle large graphs

§ Efficient custom algorithms
§ Exponential intermediate data 
§ Limited to small graphs

Challenging to mine patterns in large graphs

Computes properties of the 
underlying graph

Discovers structural patterns in the 
underlying graph
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Can graph pattern mining be made both 
fast and scalable?

Arabesque (SOSP’15)
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Leverage approximation for graph pattern 
mining

Many mining tasks ask for the number of 
occurrences and do not need exact answers
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General approach: Apply algorithm on 
subset(s) (sample) of the input data

Approximate Analytics
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result

$ % 2 = 2

Applying exact algorithm on sampled graph(s) 
not the right approach for pattern mining
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Challenge #1: General Patterns
Problem: Neighborhood sampling is for triangle counting
Break down neighborhood sampling into two phases:
• Sampling phase
• Closing phase
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Can we restrict the implementation using a simple API ?

How can we analyze programs written using the API?
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Problem: Neighborhood sampling is for a single machine

How do we compute f(w) for any pattern?
How does f(w) affect error?



Challenge #3: Building Error-Latency Profile
Problem: Given a time / error bound, how many 
estimators should we use? 
Need to build two profiles:
• Time vs #estimators
• Error vs #estimators
Naïve approach:
• Exhaustively run every possible point (infeasible)
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Leverage techniques like experiment design/Bayesian optimization?
How do we avoid the need to know the ground truth?



Challenge #4: Updates
Problem: Graphs and queries can be updated/refined
Several systems challenges:
• Incremental pattern mining

• Can the error-latency profiles be updated?

• Caching
• Re-use results
• Pre-computation 



Conclusion
§ Approximation is a promising solution for pattern mining

§ Significant benefits, and can handle much larger graphs…
§ … but cannot output all instances of the pattern

§ Several challenges in realizing it
§ How to extend the technique to general patterns?
§ How to do approximate pattern mining in a distributed setting?
§ How do we estimate the error?
§ How do we handle updates?

http://www.cs.berkeley.edu/~api
api@cs.berkeley.edu

http://www.cs.berkeley.edu/~api
mailto:api@cs.berkeley.edu

