Towards Fast and Scalable Graph Pattern Mining

Anand Iyer *, Zaoxing Liu *, Xin Jin *, Shivaram Venkataraman *, Vladimir Braverman *, Ion Stoica * * UC Berkeley * Johns Hopkins University * Microsoft Research / University of Wisconsin

HotCloud, July 09, 2018

Graphs popular in big data analytics

Processing Algorithms

Processing Algorithms

Processing Algorithms

PageRank

Connected Components

Mining Algorithms

6

Processing Algorithms

ID = 7

PageRank

ID = 2

Connected Components

Mining Algorithms

Chain

Connected Motifs of size 3

Star

Chain

Motifs

Processing Algorithms

Grap

_ab

Connected Compone

Mining Algorithms

Motifs

Processing Algorithms

Computes properties of the underlying graph

Mining Algorithms

Discovers structural patterns in the underlying graph

Motifs

Processing Algorithms

Computes properties of the underlying graph

гиуекипк

- Easy to implement
- Massively parallelizableCan handle large graphs

onnected Components

Mining Algorithms

Discovers structural patterns in the underlying graph

Motifs

Processing Algorithms

Computes properties of the underlying graph

гиуекинк

- Easy to implement
- Massively parallelizableCan handle large graphs

onnected Components

Mining Algorithms

Discovers structural patterns in the underlying graph

- Efficient custom algorithms
- Exponential intermediate data
- Limited to small graphs

Processing Algorithms

Computes properties of the underlying graph

гиуекинк

- Easy to implement
- Massively parallelizableCan handle large graphs

Mining Algorithms

Discovers structural patterns in the underlying graph

- Efficient custom algorithms
- Exponential intermediate data
- Limited to small graphs

Challenging to mine patterns in large graphs

Graph Analytics: Processing vs Mining # Edges Computation Time

Many mining tasks ask for the number of occurrences and do not need *exact* answers

Many mining tasks ask for the number of occurrences and do not need *exact* answers Leverage *approximation* for graph pattern mining

General approach: Apply algorithm on subset(s) (sample) of the input data

graph

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

graph

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

edge stream: (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

- 16 node Apache Spark cluster
- Two graphs: Live Journal (68.9B), Twitter (1.47B)
- Count 3-Motifs (2 patterns: triangle, 3-chain)
- Set error to 5%

- 16 node Apache Spark cluster
- Two graphs: Live Journal (68.9B), Twitter (1.47B)
- Count 3-Motifs (2 patterns: triangle, 3-chain)
- Set error to 5%

3-Motif	System	Graph	V	E	Time
Ours (5%)	16 x 8	LiveJ	4.8M	68.9B	11.5s
Arabesque	16 x 8	LiveJ	41.7M	1.47B	299.2s
Ours (5%)	16 x 8	Twitter	41.7M	1.47B	4m
Arabesque	20x32	Instagram	180M	0.9B	10h45m

- 16 node Apache Spark cluster
- Two graphs: Live Journal (68.9B), Twitter (1.47B)
- Count 3-Motifs (2 patterns: triangle, 3-chain)
- Set error to 5%

3-Motif	System	Graph	V	E	Time
Ours (5%)	16×8	LiveJ	4.8M	68.9B	11.5s
Arabesque	16 x 8	LiveJ	41.7M	1.47B	299.23
Ours (5%)	16 x 8	Twitter	41.7M	1.47B	4m
Arabesque	20x32	Instagram	180M	0.9B	10h45m

- 16 node Apache Spark cluster
- Two graphs: Live Journal (68.9B), Twitter (1.47B)
- Count 3-Motifs (2 patterns: triangle, 3-chain)
- Set error to 5%

3-Motif	System	Graph	V	E	Time
Ours (5%)	16 x 8	LiveJ	4.8M	68.9B	11.5s
Arabesque	16 x 8	LiveJ	41.7M	1.47B	299.23
Ours (5%)	16 x 8	Twitter	41.7M	1.47B	4m
Arabesque	20x32	Instagram	180M	0.9B	10h45m

Building a General Purpose Approximate Graph Mining System

Building a General Purpose Approximate Graph Mining System

Building a General Purpose Approximate Graph Mining System

Distributed Settings

Building a General Purpose Approximate Graph Mining System

Distributed Settings

Error Estimation

Building a General Purpose Approximate Graph Mining System

Distributed Settings

Error Estimation

Handling Updates

Challenge #1: General Patterns <u>Problem:</u> Neighborhood sampling is for triangle counting Break down neighborhood sampling into two phases:

- Sampling phase
- *Closing* phase

Challenge #1: General Patterns <u>Problem:</u> Neighborhood sampling is for triangle counting Break down neighborhood sampling into two phases:

- Sampling phase
- *Closing* phase

Can we restrict the implementation using a simple *API*? How can we *analyze* programs written using the API?

Challenge #2: Distributed Setting <u>Problem:</u> Neighborhood sampling is for a single machine

Challenge #2: Distributed Setting
<u>Problem:</u> Neighborhood sampling is for a single machine

graph

Challenge #2: Distributed Setting
<u>Problem:</u> Neighborhood sampling is for a single machine

Challenge #2: Distributed Setting
<u>Problem:</u> Neighborhood sampling is for a single machine
 map: w(=3) workers

Challenge #2: Distributed Setting
<u>Problem:</u> Neighborhood sampling is for a single machine
 map: w(=3) workers

Challenge #2: Distributed Setting
<u>Problem:</u> Neighborhood sampling is for a single machine
 map: w(=3) workers

Challenge #3: Building Error-Latency Profile

<u>Problem:</u> Given a time / error bound, how many estimators should we use?

Need to build two profiles:

- Time vs #estimators
- Error vs #estimators

Naïve approach:

• Exhaustively run every possible point (infeasible)

Building Estimators vs Time Profile Time complexity linear in number of estimators

Building Estimators vs Error Profile Error complexity non-linear in number of estimators

Building Estimators vs Error Profile Error complexity non-linear in number of estimators

Leverage techniques like *experiment design/Bayesian optimization*? How do we avoid the need to know the ground truth?

Challenge #4: Updates

Problem: Graphs and queries can be updated/refined

Several systems challenges:

- Incremental pattern mining
 - Can the error-latency profiles be updated?
- Caching
 - Re-use results
 - Pre-computation

Conclusion

- Approximation is a promising solution for pattern mining
 - Significant benefits, and can handle much larger graphs...
 - ... but cannot output all instances of the pattern
- Several challenges in realizing it
 - How to extend the technique to general patterns?
 - How to do approximate pattern mining in a distributed setting?
 - How do we estimate the error?
 - How do we handle updates?

http://www.cs.berkeley.edu/~api api@cs.berkeley.edu