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W e performed a detailed study of development and deployment 
issues of six open-source scalable distributed systems (scale-out 
systems) by analyzing 3655 vital issues reported within a three-

year span [4]. The results of our study should be useful to system develop-
ers and operators, systems researchers, and tool builders in advancing the 
reliability of future scale-out systems. The database of our Cloud Bug Study 
(CbsDB) is publicly available [1].

As the cloud computing era becomes more mature, various scale-out systems—including 
distributed computing frameworks, key-value stores, file systems, synchronization services, 
streaming systems, and cluster management services—have become a dominant part of 
software infrastructure running behind cloud datacenters. These systems are considerably 
complex as they must deal with a wide range of distributed components, hardware failures, 
users, and deployment scenarios. Bugs in scale-out systems are a major cause of cloud ser-
vice outages.

In this study, we focused on six popular and important scale-out systems: Hadoop, HDFS, 
HBase, Cassandra, ZooKeeper, and Flume, which collectively represent a diverse set of scale-
out architectures. A comprehensive study of bugs in scale-out systems can provide intel-
ligent answers to many dependability questions. For example, why are scale-out systems not 
100% dependable? Why is it hard to develop fully reliable cloud systems? What types of bugs 
live in scale-out systems, and how often do they appear? Why can’t existing tools capture 
these bugs, and how should dependability tools evolve in the near future?

The answers to these questions are useful for different communities. System developers can 
learn about a wide variety of failures in the field and come up with better system designs. 
System operators can gain further understandings of distributed operations that are fragile 
to failure. For system researchers, this study provides bug benchmarks that they can use to 
evaluate their techniques. This study also motivates researchers to address new large-scale 
reliability challenges. Finally, tool builders can understand the limitations they work within 
and advance current tools.

In the rest of this article, we will present our high-level findings by focusing on new inter-
esting types of bugs that we believe require more attention. At the end of this article, we 
will provide more samples of CbsDB use cases. The full scope of our study and specific bug 
examples can be found in our conference paper [4].

Findings
Before presenting specific types of bugs, we summarize our important findings.

New bugs in town: As shown in Figure 1, classical issues such as reliability (45%), perfor-
mance (22%), and availability (16%) are the dominant categories. In addition, new classes 
of bugs unique to scale-out systems have emerged: data consistency (5%), scalability (2%), 
topology (1%), and QoS (1%) aspects.
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Handling diverse hardware failures is not easy: “Hardware can fail, and reliabil-
ity should come from the software” has been preached extensively, but handling diverse 
hardware failures such as fail stop, corruption, and “limpware[3],” including the timing of 
failures, is not straightforward (13% of the issues relate to hardware faults).

Vexing software bugs: The 87% of issues that pertain to software bugs consist of logic 
(29%), error-code handling (18%), optimization (15%), configuration (14%), data race (12%), 
hang (4%), space (4%) and load (4%) issues, as shown in Figure 3a.

In this article, we will delve into three interesting types of software bugs: (1) single-point-
of-failure (SPoF) bugs, which can simultaneously affect multiple nodes or the entire cluster; 
(2) distributed concurrency bugs, caused by nondeterministic distributed events such as 
message reorderings and failure timings; and (3) performance logic bugs, which can cause 
significant performance degradation of the system.

Less-tested operational protocols: User-facing read/write protocols are continuously 
exercised in deployment and thus tend to be robust. Conversely, operational protocols (e.g., 
bootstrap logic, failure recovery, rebalancing) are rarely run and not rigorously tested. Bugs 
often linger in operational protocols.

A wide range of implications: Exacerbating the problem is the fact that each bug type can 
lead to almost all kinds of implication such as failed operations (42%), performance problems 
(23%), component downtimes (18%), data loss (7%), corruption (5%), and staleness (5%), as 
shown in Figure 3b.

The need for multi-dimensional dependability tools: As each kind of bug can 
lead to many implications and vice versa (Figure 4), bug-finding tools should not be 
one-dimensional.

Methodology
The six systems we studied come with publicly accessible issue repositories that contain 
bug reports, patches, and deep discussions among the developers. This provides an “oasis” 
of insights that helps us address the questions we listed above. From the issues repository 
of each system, we collected issues (bugs and new features) submitted over a period of three 
years (2011–2014) for a total of 21,399 issues. We manually labeled “vital” those issues per-
taining to system development and deployment problems and marked them as high priority. 
We ignored non-vital issues related to maintenance, code refactoring, unit tests, documenta-
tion, and minor easy-to-fix bugs. This left us with 3655 vital issues that we then studied and 
tagged with our issue classifications as shown in Table 1. In each classification, an issue can 
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Classification Labels

Aspect
Reliability, performance, availability, security, consistency, scalability, 
topology, QoS

Hardware Core/processor, disk, memory, network, node

HW failure Corrupt, limp, stop

Software Logic, error handling, optimization, config, race, hang, space, load

Implication
Failed operation, performance, component downtime, data loss, data 
staleness, data corruption

Impact scope Single machine, multiple machines, entire cluster

Table 1: Issue classifications
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have multiple sub-classifications. The product of our study is 
named Cloud Bug Study database (CbsDB) and is publicly avail-
able [1]. With CbsDB, users can perform both quantitative and 
qualitative analysis of cloud bugs.

Issue Aspects
The first classification that we use is by aspect. Figure 1 shows 
the distribution of the eight aspects listed in Table 1. Reliability 
(45%), performance (22%), and availability (16%) aspects are the 
three largest categories. They are caused by diverse hardware-
related and software bugs that we will discuss in subsequent 
sections. We also found many vital issues related to security 
(8%) and QoS (1%). Below, we pay attention to two interesting 
aspects distinct to scale-out systems: distributed data consis-
tency and scalability bugs.

Data Consistency
Users demand data consistency, which implies that all nodes or 
replicas should agree on the same value of data (or eventually 
agree in the context of eventual consistency). In reality, several 
cases (5%) show data consistency is violated where users get 
stale data or the system’s behavior becomes erratic. Data con-
sistency bugs are mostly caused by the two following problems:

1. Buggy logic in operational protocols: Besides the main read/
write protocols, many other operational protocols (e.g., boot-
strap, background synchronization, cloning, fsck) touch and 
modify data, and bugs within them can cause data inconsistency. 
For example, in the Cassandra cross-datacenter (DC) synchro-
nization protocol, the compression algorithm fails to compress 
some key-values, but Cassandra allows the whole operation to 
proceed, silently leaving the two DCs with inconsistent views.

2. Concurrency bugs and node failures: Intra-node (local) data 
races are a major culprit of data inconsistency. As an example, 
data races between read and write operations in updating the 
cache can lead to older values written to the cache. Inter-node 
(distributed) data races are also a major root cause; complex 
reordering of asynchronous messages combined with node fail-
ures make systems enter incorrect states.

In summary, operational protocols modify data replicas, but they 
often carry data inconsistency bugs. Robust systems require 
all protocols to be heavily tested. In addition, more research is 
needed to address complex distributed concurrency bugs (as we 
will discuss later).

Scalability
Scalability issues, although small in number (2%), are interest-
ing because they are hard to find in small-scale testing. We 
categorize scalability issues into four axes of scale: cluster size, 
data size, load, and failure.

Scale of cluster size: Protocol algorithms must anticipate dif-
ferent cluster sizes, but algorithms can be quadratic or cubic 
with respect to the number of nodes. For example, in Cassandra, 
when a node changes its ring position, other affected nodes must 
perform a key-range recalculation with a complexity Ω(n3). If 
the cluster has 100–300 nodes, this causes CPU “explosion” 
and eventually leads to nodes “flapping” (that is, live nodes are 
extremely busy and considered dead) and requires whole-cluster 
restart with manual tuning.

Scale of data size: Big Data systems must anticipate large data 
sizes, but it is often unclear what the limit is. For instance, in 
HBase, opening a big table with more than 100K regions undesir-
ably takes tens of minutes due to an inefficient table look-up 
operation.

Scale of request load: Large request loads of various kinds are 
sometimes unanticipated. For example, in HDFS, creation of 
thousands of small files in parallel causes out-of-memory prob-
lems (OOM), and in Cassandra, users can generate a storm of 
deletions that can block other important requests.
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Scale of failure: At scale, a large number of components can fail 
at the same time, but some recovery protocols handle large scale 
failures poorly. In one example, when 16,000 mappers failed, 
Hadoop required over seven hours to recover because of unopti-
mized communication in HDFS.

In summary, scalability problems surface undesirably late in 
deployment. Similar to an earlier summary, we find the main 
read/write protocols scale robustly, but operational protocols 
(recovery, boot, etc.), on the other hand, often carry scalability 
bugs. One approach to solve this is via operational “live drills” [5], 
which should be performed frequently in deployment. Another 
research challenge is to develop scalability bug finders that can 
find scalability bugs without using large resources in testing. 

Hardware Issues
Next we categorize issues based on hardware vs. software faults. 
Figure 2a shows the percentage of issues that involve hardware 
(13%) and software (87%) faults. Figure 2b shows the heat map 
of correlation between hardware type and failure mode; the 
number in each cell is a bug count.

While fail stop and corruption are well-known failure modes, 
there is an overlooked hardware failure mode, limpware [3], 
hardware whose performance degrades significantly. For exam-
ple, in an HBase deployment, a memory card ran only at 25% of 
normal speed, causing backlogs, OOM, and crashes.

Software Issues
Figure 3a shows the distribution of software bug types. The aver-
age distributions of software issues are: logic (29%), error han-
dling (18%), optimization (15%), configuration (14%), data race/
concurrency (12%), hang (4%), space (4%), and load (4%) issues.

Figure 3b depicts respective software bug implications. The 
average distributions for the implications are: failed operations 
(42%), performance problems (23%), downtimes (18%), data loss 
(7%), corruption (5%), and staleness (5%).

Figure 4 presents an interesting heat map of correlation between 
software bugs and their implications. Each kind of bug can lead 
to many implications and vice versa. If a system attempts to 
ensure reliability on just one axis (e.g., no data loss), the system 
must deploy various bug-finding tools that can catch different 
types of software bugs. Therefore, there is a need for multi-
dimensional dependability tools.

For interested readers, discussions of the software issues above 
are discussed in our full paper [4]. Below we focus our discus-
sions on three interesting distributed system bugs: single-point-
of-failure (SPoF), distributed concurrency, and performance 
logic bugs.

SPoF Bugs
One interesting type of bug that we find is “single-point-of-failure 
(SPoF)” bugs. These bugs can simultaneously affect multiple 
nodes or even the entire cluster. The presence of these bugs 
implies that although the “no-SPoF” principle has been preached 
extensively, SPoF still exists in many forms.

Positive feedback loop: This is the case where failures happen, 
then recovery starts, but the recovery introduces more load and 
hence more failures. For example, busy gossip traffic can incor-
rectly declare live nodes dead, which then causes administrators 
or elasticity tools to add more nodes, which then causes more 
gossip traffic.

Buggy failover: A key to no-SPoF is to detect failure and perform 
a failover. But such a guarantee breaks if the failover code itself 
is buggy. For example, in HDFS, when a failover to a standby 
name node breaks, all data nodes become unreachable.

Repeated bugs after failover: Here, a buggy operation leads to a node 
crash triggering a failover. After the failover, the other node will 
repeat the same buggy logic, again crashing the node. The whole 
process will repeat and the entire cluster will eventually die.
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A small window of SPoF: Another key to no-SPoF is ensuring 
failover readiness all the time. We find few cases where failover 
mechanisms are disabled briefly for some operational tasks. In 
ZooKeeper, for example, during dynamic cluster reconfigura-
tion, heartbeat monitoring is disabled, and if the leader hangs at 
this point, a new leader cannot be elected.

Buggy start-up code: Starting up a large-scale system is typi-
cally a complex operation, and if the start-up code fails then all 
the machines are unusable. As an example, a buggy ZooKeeper 
leader election protocol can cause no leader to be elected.

Distributed deadlock: This is the case where each node is waiting 
for other nodes to progress. For example, during start-up in Cas-
sandra, it is possible that all nodes never enter a normal state as 
they keep gossiping. This corner-case situation is typically caused 
by message reorderings, network failures, or software bugs.

Scalability and QoS bugs: Examples presented earlier also high-
light that scalability and QoS bugs can affect the entire cluster.

In summary, the concept of no-SPoF is not just about a simple 
failover. Many forms of SPoF bugs exist, and they can cripple 
an entire cluster (potentially hundreds or thousands of nodes). 
Scale-out systems must also be self-aware and make decisions to 
stop recovery operations that can worsen the cluster condition (for 
example, in the first two cases above). Future tools must address 
the five challenges of unearthing various forms of SPoF bugs.

Distributed Concurrency Bugs
Data races are a fundamental problem in any concurrent soft-
ware system and a major research topic over the last decade. In 
our study, data races account for 12% of software bugs. Unlike 
nondistributed software, cloud systems are subject to not 
only local concurrency bugs (e.g., thread interleaving) but also 
distributed concurrency bugs (e.g., reordering of asynchronous 
messages). Our finding is that around 50% of data race bugs are 
distributed concurrency bugs and 50% are local concurrency bugs.

As an extreme example, let’s consider the following distributed 
concurrency bug in ZooKeeper that happens on a long sequence 
of messages including failure events that must happen in a spe-
cific order.

ZooKeeper Bug #335: (1) Nodes A, B, C start with latest txid #10 
and elect B as leader; (2) B crashes; (3) Leader election rerun, and 
C becomes leader; (4) Client writes data; A and C commit new 
txid-value pair {#11:X}; (5) A crashes before committing tx #11; 
(6) C loses quorum; (7) C crashes; (8) A reboots and B reboots; 
(9) A becomes leader; (10) Client updates data; A and B com-
mit a new txid-value pair {#11:Y}; (11) C reboots after A’s new 
tx commit; (12) C synchronizes with A; C notifies A of {#11:X}; 
(13) A replies to C the “diff” starting with tx 12 (excluding tx 
{#11:Y}!); (14) Violation: permanent data inconsistency as A and 
B have {#11:Y} and C has {#11:X}.

The bug above is what we categorize as a distributed concur-
rency bug. To unearth this type of bug, testing and verifica-
tion tools must permute a large number of events, crashes, and 
reboots as well as network events (messages). Figure 5 lists 
more samples of distributed concurrency bugs. The point of the 
figure is to show that many of them were induced by multiple 
crashes and reboots at nondeterministic timings. Distributed 
concurrency bugs plague many many protocols, including leader 
election, atomic broadcast, speculative execution, job/task track-
ers, resource/application managers, gossiper, and many others. 
These bugs can cause failed jobs, node unavailability, data loss, 
inconsistency, and corruption.

For local concurrency bugs, numerous efforts have been pub-
lished in hundreds of papers. Unfortunately, distributed concur-
rency bugs have not received the same amount of attention. We 
observed that distributed concurrency bugs are typically found 
in deployment (via logs) or manually. The developers see this 
as a vexing problem; an HBase developer wrote, “Do we have to 
rethink this entire [system]? There isn’t a week going by without 
some new bugs about races between [several protocols].”

For this reason, we recently built an advanced semantic-aware 
model checker (SAMC) [6], a software (implementation-level) 
model checker targeted for distributed systems. It works by 
rapidly exercising unique sequences of events (e.g., different 
reorderings of messages, crashes, and reboots at different tim-
ings), and thereby pushing the target system into corner-case 
situations and unearthing hard-to-find bugs. SAMC is available 
for download [2].

 0
 1
 2
 3
 4
 5
 6

33
5

56
9

76
9

79
0

79
1

97
5

10
75

11
18

11
54

12
94

13
19

13
32

13
67

13
72

14
19

14
92

15
73

16
53

91
3

37
80

38
46

42
52

44
25

46
07

47
48

48
32

48
33

48
90

50
00

51
69

51
98

53
58

54
05

54
09

54
76

54
89

55
05

51
5

12
21

14
32

17
30

19
92

21
15

25
14

32
73

34
66

36
26

38
76

51
79

61
56

63
64

65
03

N
um

be
r 

of
C

ra
sh

es
/R

eb
oo

ts

#Crashes 
#Restarts 

ZooKeeper Bugs Hadoop MapReduce Bugs Cassandra Bugs

Figure 5: “Deep” distributed concurrency bugs. The x-axis lists bug numbers and the y-axis represents the number of crashes and reboots to unearth deep 
distributed concurrency bugs.

http://www.usenix.org


38    AU G U S T 20 1 5   VO L .  4 0,  N O.  4 	 www.usenix.org

PROGRAMMING
What Bugs Live in the Cloud?

Performance Bugs
Another notorious type of bug are performance bugs, which can 
cause a system to under-deliver the expected performance (e.g., 
a job takes 10x longer than usual). Conversation with several 
cloud engineers reflects that performance stability is often more 
important than performance optimization.

To dissect the root-cause anatomy of performance bugs, we per-
formed a deeper study of vital performance bugs in Hadoop [7]. 
We found that the root causes of performance bugs are complex 
deployment scenarios that the system failed to anticipate. 
Table 2 shows a partial root-cause anatomy that we built. The 
table shows some of the scenario types such as “Data Source 
(DSR)” and specific conditions such as “some tasks read from the 
same data node (DSR1).” 

A performance bug typically appears in a specific scenario. For 
example, we found cases of untriggered speculative execution 
when the original task and the backup task read from the same 
slow remote data node (which can be represented as the combi-
nation of DSR1 & FTY1 & FPL1 & DLC1 as described in Table 2) 
or when all reducers must read from a mapper remotely and the 
mapper is slow (JCH1 & FTY1 & FPL2). If one of the conditions is 
not true, the performance bug might not surface. 

These examples point to the fact that performance anomalies 
are hard to find and reproduce. Scale-out systems make many 
nondeterministic choices (e.g., task placement, data source 
selection) that depend on deployment conditions. On top of that, 
external conditions such as hardware faults can happen in dif-
ferent forms and places.

The challenge is clear: to unearth performance bugs, we need 
to exercise the target system against many possible deployment 
scenarios. Unfortunately, performance regression testing is 
time-consuming and does not cover the complete scenarios. 
What is missing is fast, pre-deployment detection of perfor-
mance bugs in distributed systems. One viable approach is the 
use of formal modeling tools (with time simulation) such as 
Colored Petri Nets (CPN) and TLA+/PlusCal. To be practical, 

the next big challenge is to automatically generate formal models 
that truly reflect the original systems code [7].

Other Use Cases of CbsDB
CbsDB [1] contains a set of rich classifications that can be corre-
lated in various different ways which can enable a wide range of 
powerful bug analyses. For example, CbsDB can provide answers 
to questions such as: Which software bug types take the longest/
shortest time to resolve (TTR) or have the most/least number 
of responses? What is the distribution of software bug types in 
the top 1% (or 10%) of most responded to (or longest-to-resolve) 
issues? Which components have significant counts of issues? 
How does bug count evolve over time? More details regarding 
CbsDB use cases can be found in our full paper [4].

Conclusion
At scale, hardware is not a single point of failure, but software 
is. A software bug can cause catastrophic failures including 
downtimes, corruption, and data loss. Our study brings new 
insights on some of the most intricate bugs in scale-out systems 
that we hope can be beneficial for the cloud research community 
in diverse areas as well as to scale-out system developers.
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Scenario Type Possible Conditions

DLC: Data Locality (1) Read from remote disk, (2) read from local disk,…

DSR: Data Source (1) Some tasks read from same data node,  (2) all tasks read from different data nodes,…

JCH: Job Characteristic MapReduce is (1) many-to-all, (2) all-to-many, (3) large fan-in, (4) large fan-out,…

FTY: Fault Type (1) Slow node/NIC, (2) node disconnect/packet drop, (3) disk error/out of space, (4) rack switch,…

FPL: Fault Placement Slow down fault injection at the (1) source data node, (2) mapper, (3) reducer,…

FGR: Fault Granularity (1) Single disk/NIC, (2) single node (dead node), (3) entire rack (network switch),…

FTM: Fault Timing (1) During shuffling, (2) during 95% of task completion,…

Table 2: A partial anatomy of scenario root causes of performance bugs
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